Why I draw with robots | Sougwen Chung

30,020 views ・ 2020-02-14

TED


請雙擊下方英文字幕播放視頻。

00:00
Translator: Ivana Korom Reviewer: Camille Martínez
0
0
7000
譯者: Harper Chang 審譯者: Helen Chang
00:12
Many of us here use technology in our day-to-day.
1
12937
3165
在座的各位大多在日常中使用科技,
00:16
And some of us rely on technology to do our jobs.
2
16126
3247
有些人的工作離不開科技。
00:19
For a while, I thought of machines and the technologies that drive them
3
19397
3950
有一陣子,我認為機器、科技
00:23
as perfect tools that could make my work more efficient and more productive.
4
23371
4505
只是實現工作高產、高效的工具。
00:28
But with the rise of automation across so many different industries,
5
28403
3254
但隨着自動化技術滲透各產業,
00:31
it led me to wonder:
6
31681
1372
我不禁思考,
00:33
If machines are starting to be able to do the work
7
33077
2341
如果機器能夠做人類的傳統工作,
00:35
traditionally done by humans,
8
35442
1667
00:37
what will become of the human hand?
9
37133
2333
那人類的手用來做什麼?
00:40
How does our desire for perfection, precision and automation
10
40133
4093
對完美、精確和自動化的追求
00:44
affect our ability to be creative?
11
44250
1922
如何影響我們的創造力?
00:46
In my work as an artist and researcher, I explore AI and robotics
12
46553
4087
作為藝術家和研究者,
我研究運用人工智慧和機器人 來開發人類的創造力。
00:50
to develop new processes for human creativity.
13
50664
3005
00:54
For the past few years,
14
54077
1286
過去幾年裡,
00:55
I've made work alongside machines, data and emerging technologies.
15
55387
4376
我運用機器、數據 和新型技術進行創作。
01:00
It's part of a lifelong fascination
16
60143
1861
其中永恆的魅力
01:02
about the dynamics of individuals and systems
17
62028
2735
在於人與技術間奇妙的動力學,
01:04
and all the messiness that that entails.
18
64787
2381
還有其中不可避免的混亂。
01:07
It's how I'm exploring questions about where AI ends and we begin
19
67192
4808
我借此來探索 AI 與人類的邊界
01:12
and where I'm developing processes
20
72024
1642
以及探索未來感官融合的可能。
01:13
that investigate potential sensory mixes of the future.
21
73690
3326
01:17
I think it's where philosophy and technology intersect.
22
77675
2857
我覺得這是哲學與技術的交匯。
01:20
Doing this work has taught me a few things.
23
80992
2239
這項工作教會了我一些道理,
01:23
It's taught me how embracing imperfection
24
83642
2824
它教會我,坦然接受不完美
01:26
can actually teach us something about ourselves.
25
86490
2489
有助於更認識自己。
01:29
It's taught me that exploring art
26
89428
2336
它教會我,探索藝術,
01:31
can actually help shape the technology that shapes us.
27
91788
2931
能夠更好地構建科技,然後構建生活。
01:35
And it's taught me that combining AI and robotics
28
95148
3261
它教會我,將 AI 和機器人
01:38
with traditional forms of creativity -- visual arts in my case --
29
98433
3532
結合到傳統創作中,
01:41
can help us think a little bit more deeply
30
101989
2302
能幫助我們更深入理解 何為人類,何為機器。
01:44
about what is human and what is the machine.
31
104315
2897
01:47
And it's led me to the realization
32
107942
1707
它讓我意識到,
01:49
that collaboration is the key to creating the space for both
33
109673
3055
在前行路上,
合作是創造人機生存空間的關機。
01:52
as we move forward.
34
112752
1267
01:54
It all started with a simple experiment with machines,
35
114387
2746
這一切都緣起於 一個簡單的機器實驗,
01:57
called "Drawing Operations Unit: Generation 1."
36
117157
2826
那個機器叫「第一代繪畫器」 (Drawing Operations Unit: Generation 1)
02:00
I call the machine "D.O.U.G." for short.
37
120434
2516
我叫它「道格」(D.O.U.G.)。
02:02
Before I built D.O.U.G,
38
122974
1326
在「道格」之前,
02:04
I didn't know anything about building robots.
39
124324
2365
我對製造機器人一無所知。
02:07
I took some open-source robotic arm designs,
40
127220
2897
我參照了一些開源的機械臂設計,
02:10
I hacked together a system where the robot would match my gestures
41
130141
3341
編成了一個系統,來實現匹配手勢,
02:13
and follow [them] in real time.
42
133506
1639
並實時模仿。
02:15
The premise was simple:
43
135169
1448
方式很簡單:
02:16
I would lead, and it would follow.
44
136641
2200
我畫,它模仿。
02:19
I would draw a line, and it would mimic my line.
45
139403
2936
我畫一條線,它也畫一條線。
02:22
So back in 2015, there we were, drawing for the first time,
46
142363
3698
2015 年,我們第一次
02:26
in front of a small audience in New York City.
47
146085
2619
在紐約市的一小群觀衆前作畫。
02:28
The process was pretty sparse --
48
148728
2555
整個過程很冷清,
02:31
no lights, no sounds, nothing to hide behind.
49
151307
3487
沒有燈光,沒有音樂,什麼都沒有,
02:35
Just my palms sweating and the robot's new servos heating up.
50
155241
3395
只有手掌冒出的汗, 和機械臂升高的溫度。
02:38
(Laughs) Clearly, we were not built for this.
51
158950
2441
(笑)顯然這不是最理想的效果。
02:41
But something interesting happened, something I didn't anticipate.
52
161820
3233
但我不曾預料到, 一些有趣的事情發生了。
02:45
See, D.O.U.G., in its primitive form, wasn't tracking my line perfectly.
53
165077
4802
初代的「道格」並沒有 完美地模仿我的線條,
02:49
While in the simulation that happened onscreen
54
169903
2333
在計算機模擬中
02:52
it was pixel-perfect,
55
172260
1357
它的模仿是精準完美的,
02:53
in physical reality, it was a different story.
56
173641
2531
但到了現實世界, 就是另一番景象了。
02:56
It would slip and slide and punctuate and falter,
57
176196
2817
它會滑動,會卡頓,會晃動,
02:59
and I would be forced to respond.
58
179037
2068
於是我不得不應和它的線條。
03:01
There was nothing pristine about it.
59
181525
1778
它的狀態並不完美,
03:03
And yet, somehow, the mistakes made the work more interesting.
60
183327
3238
然而這些失誤讓作品更加有趣,
03:06
The machine was interpreting my line but not perfectly.
61
186589
2754
機器模仿我的線條,但並不完美,
03:09
And I was forced to respond.
62
189367
1372
於是我必須應和它,
03:10
We were adapting to each other in real time.
63
190763
2709
我們不斷實時地熟悉彼此。
03:13
And seeing this taught me a few things.
64
193496
1937
我領悟到了一些事情,
03:15
It showed me that our mistakes actually made the work more interesting.
65
195457
4880
我們的失誤實際上讓創作更加有趣,
03:20
And I realized that, you know, through the imperfection of the machine,
66
200663
4249
透過機器的不完美,
03:24
our imperfections became what was beautiful about the interaction.
67
204936
3705
我們的不完美成就了人機交流之美。
03:29
And I was excited, because it led me to the realization
68
209650
3087
我激動地意識到,
03:32
that maybe part of the beauty of human and machine systems
69
212761
3650
或許人機系統的美妙之處,
03:36
is their shared inherent fallibility.
70
216435
2738
有一部分來自共同的、固有的失誤。
03:39
For the second generation of D.O.U.G.,
71
219197
1820
到了「道格」第二代,
03:41
I knew I wanted to explore this idea.
72
221041
2307
我知道我要探索這個想法。
03:43
But instead of an accident produced by pushing a robotic arm to its limits,
73
223372
4418
我並不打算放大機器的失誤,
03:47
I wanted to design a system that would respond to my drawings
74
227814
2897
而是設計能夠以意料之外的方式
03:50
in ways that I didn't expect.
75
230735
1833
回應我筆畫的系統。
03:52
So, I used a visual algorithm to extract visual information
76
232592
3849
於是,我運用機器視覺算法
03:56
from decades of my digital and analog drawings.
77
236465
2978
來提取我幾十年來的數字繪畫。
03:59
I trained a neural net on these drawings
78
239467
2055
我以此訓練了一個神經網路,
04:01
in order to generate recurring patterns in the work
79
241546
2865
優化機器的遞歸模式 需要大量的樣本,
04:04
that were then fed through custom software back into the machine.
80
244435
3476
這些樣本經過專門軟件 處理後導入機器。
04:07
I painstakingly collected as many of my drawings as I could find --
81
247935
4386
於是我使盡渾身解數 彙集我的畫作,
04:12
finished works, unfinished experiments and random sketches --
82
252345
4215
成品、未完成的實驗品、隨筆畫——
04:16
and tagged them for the AI system.
83
256584
1999
把它們標記給 AI 系統。
04:18
And since I'm an artist, I've been making work for over 20 years.
84
258607
3684
作為藝術家,我作畫超過二十年,
04:22
Collecting that many drawings took months,
85
262315
2024
所以彙集這些畫作花了幾個月的時間,
04:24
it was a whole thing.
86
264363
1389
這是個大工程。
04:25
And here's the thing about training AI systems:
87
265776
2595
說到訓練人工智慧,
04:28
it's actually a lot of hard work.
88
268395
2200
這其實要費一番功夫,
04:31
A lot of work goes on behind the scenes.
89
271022
2191
背後有很多工作要做。
04:33
But in doing the work, I realized a little bit more
90
273237
2681
但過程中,我對人工智慧的結構
04:35
about how the architecture of an AI is constructed.
91
275942
3421
瞭解得更深入了一點。
04:39
And I realized it's not just made of models and classifiers
92
279387
2947
我意識到這不僅是 神經網路的模型和分類器,
04:42
for the neural network.
93
282358
1322
04:43
But it's a fundamentally malleable and shapable system,
94
283704
3532
更是可延展、可塑的系統,
04:47
one in which the human hand is always present.
95
287260
3111
人類的手始終參與其中。
04:50
It's far from the omnipotent AI we've been told to believe in.
96
290395
4000
它不再是我們認為 無所不能的人工智慧。
04:54
So I collected these drawings for the neural net.
97
294419
2515
用畫作訓練神經網路後,
04:56
And we realized something that wasn't previously possible.
98
296958
3929
前所未有的事情發生了——
05:00
My robot D.O.U.G. became a real-time interactive reflection
99
300911
4091
我的機器人道格 在實時交互的創作中,
呼應了我過去人生幾十年的作品。
05:05
of the work I'd done through the course of my life.
100
305026
2627
05:07
The data was personal, but the results were powerful.
101
307677
3865
輸入的數據僅來源於我, 輸出的結果卻遠超於我。
05:11
And I got really excited,
102
311566
1484
我感到非常興奮,
05:13
because I started thinking maybe machines don't need to be just tools,
103
313074
4582
或許機器不該只是工具,
05:17
but they can function as nonhuman collaborators.
104
317680
3420
它還可以是非人的合作者。
05:21
And even more than that,
105
321537
1547
更進一步想,
05:23
I thought maybe the future of human creativity
106
323108
2429
也許未來的人類創作 不在於作品本身,
05:25
isn't in what it makes
107
325561
1524
05:27
but how it comes together to explore new ways of making.
108
327109
3436
而在於人機共同探索藝術的方式。
05:31
So if D.O.U.G._1 was the muscle,
109
331101
2190
如果說一代「道格」是肌肉,
05:33
and D.O.U.G._2 was the brain,
110
333315
1762
二代「道格」是大腦,
05:35
then I like to think of D.O.U.G._3 as the family.
111
335101
2928
三代「道格」便是家人。
05:38
I knew I wanted to explore this idea of human-nonhuman collaboration at scale.
112
338482
4793
我想要將人機合作的想法放大。
05:43
So over the past few months,
113
343299
1373
於是在過去幾個月裡,
05:44
I worked with my team to develop 20 custom robots
114
344696
3135
我和團隊造出了 20 個定製的機器人
05:47
that could work with me as a collective.
115
347855
1960
與我集體創作。
05:49
They would work as a group,
116
349839
1293
它們會像團隊一樣協作,
05:51
and together, we would collaborate with all of New York City.
117
351156
2889
我和它們一起, 與整個紐約市攜手合作。
05:54
I was really inspired by Stanford researcher Fei-Fei Li,
118
354069
2944
史丹佛大學的李飛飛教授 激勵了我的靈感,她說:
05:57
who said, "if we want to teach machines how to think,
119
357037
2515
「要想教機器如何思考,
05:59
we need to first teach them how to see."
120
359576
1984
先要教它如何看見。」
06:01
It made me think of the past decade of my life in New York,
121
361584
2785
這讓我想起了 過去幾十年的紐約生活,
06:04
and how I'd been all watched over by these surveillance cameras around the city.
122
364393
3993
城市上空的攝像頭一直俯視著我。
06:08
And I thought it would be really interesting
123
368410
2056
如果我用它們來訓練機器視覺,
06:10
if I could use them to teach my robots to see.
124
370490
2405
那一定很有趣。
06:12
So with this project,
125
372919
1888
在這個專案中,
06:14
I thought about the gaze of the machine,
126
374831
1967
我思考著機器對我們的凝視。
06:16
and I began to think about vision as multidimensional,
127
376822
3226
於是我開始將視覺看成多元的,
06:20
as views from somewhere.
128
380072
1600
看成某處來的觀點。
06:22
We collected video
129
382151
1834
我們從各處收集影片,
06:24
from publicly available camera feeds on the internet
130
384009
3063
網路上的公眾攝影機拍的影片,
06:27
of people walking on the sidewalks,
131
387096
1690
人行道上的行人,
06:28
cars and taxis on the road,
132
388810
1712
車道上的轎車、計程車……
06:30
all kinds of urban movement.
133
390546
1817
城市中的各類運動軌跡。
06:33
We trained a vision algorithm on those feeds
134
393188
2603
基於一種叫「光流法」的技術,
06:35
based on a technique called "optical flow,"
135
395815
2286
我們訓練了一個視覺算法,
06:38
to analyze the collective density,
136
398125
1977
來分析收集到的人流密度,
06:40
direction, dwell and velocity states of urban movement.
137
400126
3637
都市中軌跡的方向、速度, 以及生活方式。
06:44
Our system extracted those states from the feeds as positional data
138
404178
4269
系統從海量的位置數據中 提取出這些參數,
06:48
and became pads for my robotic units to draw on.
139
408471
3373
我的機器人依靠這些數據來作畫。
06:51
Instead of a collaboration of one-to-one,
140
411868
2534
與之前的一對一合作不同,
06:54
we made a collaboration of many-to-many.
141
414426
3024
我們實現了多對多的合作。
06:57
By combining the vision of human and machine in the city,
142
417474
3587
透過結合城市中 人類與機器的視界,
07:01
we reimagined what a landscape painting could be.
143
421085
2794
我們重構了景觀繪畫。
07:03
Throughout all of my experiments with D.O.U.G.,
144
423903
2218
在與「道格」共同作畫的經歷中,
07:06
no two performances have ever been the same.
145
426145
2717
沒有哪兩次是完全相同的。
07:08
And through collaboration,
146
428886
1382
透過合作,
07:10
we create something that neither of us could have done alone:
147
430292
2864
我們完成了無法獨自做到的事,
07:13
we explore the boundaries of our creativity,
148
433180
2611
我們共同探索了創作的邊界、
07:15
human and nonhuman working in parallel.
149
435815
2892
人類與非人類的平行工作。
07:19
I think this is just the beginning.
150
439823
2334
我想這才剛剛開始。
07:22
This year, I've launched Scilicet,
151
442569
2183
今年, 我創辦了 Scilicet 實驗室,
07:24
my new lab exploring human and interhuman collaboration.
152
444776
4245
以探索人類和人類間的合作。
07:29
We're really interested in the feedback loop
153
449339
2120
我們對人類、AI 與生態系統之間的
07:31
between individual, artificial and ecological systems.
154
451483
4230
反饋關係很感興趣。
07:36
We're connecting human and machine output
155
456276
2269
我們將人類和 AI
07:38
to biometrics and other kinds of environmental data.
156
458569
2984
與生物特徵識別數據 和其他環境數據相聯繫,
07:41
We're inviting anyone who's interested in the future of work, systems
157
461577
4079
我們邀請所有 對未來的作品、系統、
07:45
and interhuman collaboration
158
465680
1595
人類合作感興趣的人
07:47
to explore with us.
159
467299
1550
加入我們,一同探索。
07:48
We know it's not just technologists that have to do this work
160
468873
3405
這項事業不僅屬於科技工作者,
07:52
and that we all have a role to play.
161
472302
2103
每個人都能作出貢獻。
07:54
We believe that by teaching machines
162
474429
2243
我們相信
透過教授機器 完成人類的傳統工作,
07:56
how to do the work traditionally done by humans,
163
476696
2730
07:59
we can explore and evolve our criteria
164
479450
2953
我們就能探索和更新
08:02
of what's made possible by the human hand.
165
482427
2443
對人類創造可能性的認知。
08:04
And part of that journey is embracing the imperfections
166
484894
3493
這段旅程的一部分是悅納不完美,
08:08
and recognizing the fallibility of both human and machine,
167
488411
3690
發現人機共有的缺陷,
08:12
in order to expand the potential of both.
168
492125
2405
以此更好地發掘兩者的潛能。
08:14
Today, I'm still in pursuit of finding the beauty
169
494919
2301
今天,我仍追求著人機創作的美妙。
08:17
in human and nonhuman creativity.
170
497244
2276
08:19
In the future, I have no idea what that will look like,
171
499865
2829
我還不知道未來這會變得怎樣,
08:23
but I'm pretty curious to find out.
172
503627
2024
但我滿懷好奇,探索不止。
08:25
Thank you.
173
505675
1151
謝謝大家。
08:26
(Applause)
174
506850
1884
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7