How do we learn to work with intelligent machines? | Matt Beane

64,555 views ・ 2019-02-21

TED


请双击下面的英文字幕来播放视频。

翻译人员: Ruijie Wu 校对人员:
00:13
It’s 6:30 in the morning,
0
13292
1875
清晨六点半,
00:15
and Kristen is wheeling her prostate patient into the OR.
1
15583
4875
克里斯汀正推着 她的前列腺病人进手术室。
00:21
She's a resident, a surgeon in training.
2
21500
2250
她是一名实习住院外科医生,
00:24
It’s her job to learn.
3
24333
2167
学习是她工作的一部分。
00:27
Today, she’s really hoping to do some of the nerve-sparing,
4
27292
3351
这天,她非常想 参与进行神经保留手术,
00:30
extremely delicate dissection that can preserve erectile function.
5
30667
3875
这要求医生有极度精细的切割技巧, 以让病人恢复勃起的功能。
00:35
That'll be up to the attending surgeon, though, but he's not there yet.
6
35500
3338
不过,这还要看主治医生的意思, 但那会儿他并不在手术室。
00:39
She and the team put the patient under,
7
39625
2393
克里斯汀和其他手术人员 给病人打了麻醉。
首先,她在病人的下腹部 切开了一道8英寸的切口,
00:42
and she leads the initial eight-inch incision in the lower abdomen.
8
42042
3708
00:47
Once she’s got that clamped back, she tells the nurse to call the attending.
9
47042
3586
当她把切口固定好, 便让护士打电话给主治医生。
00:51
He arrives, gowns up,
10
51583
2292
主治医生赶到后,穿上手术服。
00:54
And from there on in, their four hands are mostly in that patient --
11
54458
5792
接着,两人共同开始手术, 他们四只手都在病人体内,
01:00
with him guiding but Kristin leading the way.
12
60708
2917
主治医生负责指导, 克里斯汀则主导了手术。
01:04
When the prostates out (and, yes, he let Kristen do a little nerve sparing),
13
64875
4643
当病人的前列腺被取出后,主治医生 让她进行了部分神经保留的操作,
01:09
he rips off his scrubs.
14
69542
1226
他脱掉了手术服,
01:10
He starts to do paperwork.
15
70792
1375
开始处理一些文件。
01:12
Kristen closes the patient by 8:15,
16
72833
5375
而克里斯汀在一个 初级住院医生的协助下
01:18
with a junior resident looking over her shoulder.
17
78583
2435
于8:15完成了手术,
克里斯汀还让他 给病人做了最后的缝合。
01:21
And she lets him do the final line of sutures.
18
81042
3083
01:24
Kristen feels great.
19
84833
3042
克里斯汀感觉好极了,
01:28
Patient’s going to be fine,
20
88250
1559
病人很快就会恢复,
01:29
and no doubt she’s a better surgeon than she was at 6:30.
21
89833
3167
而她也无疑比凌晨六点半时的 自己更进了一步。
01:34
Now this is extreme work.
22
94208
2834
虽然,医生的工作挑战性极高。
01:37
But Kristin’s learning to do her job the way that most of us do:
23
97417
3833
但克里斯汀的学习过程 其实和我们的并无分别,
01:41
watching an expert for a bit,
24
101625
1893
通过观察专家的操作,
01:43
getting involved in easy, safe parts of the work
25
103542
3142
从简单、安全的部分开始着手,
01:46
and progressing to riskier and harder tasks
26
106708
2185
过渡到风险更高、难度更大的工作,
01:48
as they guide and decide she’s ready.
27
108917
2333
其中确保她准备就绪, 并且有专家在一旁指导。
01:52
My whole life I’ve been fascinated by this kind of learning.
28
112042
2892
我这一生都被这种学习过程所吸引。
01:54
It feels elemental, part of what makes us human.
29
114958
3667
这样基本的步骤,体现了人之常情,
01:59
It has different names: apprenticeship, coaching, mentorship, on the job training.
30
119750
5417
人们为这个过程赋予不同的名字, 学艺、训练、教导和在职培训,
02:05
In surgery, it’s called “see one, do one, teach one.”
31
125542
3291
在外科手术中, 这被称为“看、做、教”,
02:09
But the process is the same,
32
129625
1344
但实际步骤是一样的,
02:10
and it’s been the main path to skill around the globe for thousands of years.
33
130993
4174
这也是千百年来所有人 在培养人才时所用的方式。
02:16
Right now, we’re handling AI in a way that blocks that path.
34
136333
4500
但如今我们应用人工智能的 方法却反其道而行之。
02:21
We’re sacrificing learning in our quest for productivity.
35
141625
2690
为了提高效率,我们 牺牲了学习必经的过程。
02:25
I found this first in surgery while I was at MIT,
36
145292
2809
我在麻省理工学院做手术时 第一次发现了这个现象,
02:28
but now I’ve got evidence it’s happening all over,
37
148125
2476
但现在我发现这样的现象随处可见,
02:30
in very different industries and with very different kinds of AI.
38
150625
3875
遍布各行各业, 以及各项人工智能的应用场景中。
02:35
If we do nothing, millions of us are going to hit a brick wall
39
155083
5851
如果我们无动于衷,成千上万的人 在学习如何掌握人工智能时,
02:40
as we try to learn to deal with AI.
40
160958
2417
将会碰壁。
02:45
Let’s go back to surgery to see how.
41
165125
1772
让我们再用外科手术作为例子,
02:47
Fast forward six months.
42
167708
1935
时间快进六个月,
02:49
It’s 6:30am again, and Kristen is wheeling another prostate patient in,
43
169667
5476
还是凌晨六点半,克里斯汀推着 另一个前列腺病人进手术室。
02:55
but this time to the robotic OR.
44
175167
3166
但这一次,是去自动化手术室。
02:59
The attending leads attaching
45
179667
1684
主治医生把一个
03:01
a four-armed, thousand-pound robot to the patient.
46
181375
2833
长着四只手、重一千镑的 机器人连接到病人身上,
03:04
They both rip off their scrubs,
47
184750
2434
医生们都脱掉了手术服,
03:07
head to control consoles 10 or 15 feet away,
48
187208
3125
来到三五米外的控制台,
03:11
and Kristen just watches.
49
191167
3750
而克里斯汀只负责观察。
03:16
The robot allows the attending to do the whole procedure himself,
50
196375
3053
在机器人的帮助下, 主治医生独自便可完成手术,
03:19
so he basically does.
51
199452
1583
他也是这么做的,
03:21
He knows she needs practice.
52
201917
2101
即使他知道克里斯汀需要练习,
03:24
He wants to give her control.
53
204042
1583
他也希望可以给她机会,
03:26
But he also knows she’d be slower and make more mistakes,
54
206250
3393
但是他同样清楚克里斯汀 操作得更慢,还有失误的风险,
03:29
and his patient comes first.
55
209667
1500
而病人的安全永远是第一位的。
03:32
So Kristin has no hope of getting anywhere near those nerves during this rotation.
56
212250
4625
所以克里斯汀在这次手术中 完全没有机会碰到病人的神经,
03:37
She’ll be lucky if she operates more than 15 minutes during a four-hour procedure.
57
217417
4375
她能在四个小时的手术中 操刀超过一刻钟就算是走运了,
03:42
And she knows that when she slips up,
58
222250
2625
而且她很清楚,万一她出现失误,
03:45
he’ll tap a touch screen, and she’ll be watching again,
59
225458
3042
主治医生就会重新操刀, 她又不得不回到观察者的角色,
03:48
feeling like a kid in the corner with a dunce cap.
60
228917
2625
感到非常沮丧和失落。
03:53
Like all the studies of robots and work I’ve done in the last eight years,
61
233583
3501
正如我过去八年做的 所有关于机器人的研究一样,
在这次研究的开始, 我也提出了一个宏大的问题:
03:57
I started this one with a big, open question:
62
237108
2118
03:59
How do we learn to work with intelligent machines?
63
239250
2792
我们要如何与智能机器共存?
04:02
To find out, I spent two and a half years observing dozens of residents and surgeons
64
242792
5809
为了寻找答案,我花了两年半的时间, 观察了数位外科医生和住院医生。
04:08
doing traditional and robotic surgery, interviewing them
65
248625
3476
他们既做传统的手术, 也做自动化手术,
我采访他们,试图了解他们的学习过程。
04:12
and in general hanging out with the residents as they tried to learn.
66
252125
3338
04:16
I covered 18 of the top US teaching hospitals,
67
256250
3351
这次研究覆盖了 美国18所顶级的教学医院,
04:19
and the story was the same.
68
259625
1458
研究结果显示出相同的趋势。
04:21
Most residents were in Kristen's shoes.
69
261875
2542
大部分住院医生都和克里斯汀一样,
04:24
They got to “see one” plenty,
70
264958
1792
他们“看”得很多,
04:27
but the “do one” was barely available.
71
267583
2292
但“做”的机会却很少。
04:30
So they couldn’t struggle, and they weren’t learning.
72
270333
2528
所以他们难以进步,也无从学习。
04:33
This was important news for surgeons, but I needed to know how widespread it was:
73
273291
3810
这一现象对外科医生来说十分重要, 但我想知道,这样的现象有多普遍?
04:37
Where else was using AI blocking learning on the job?
74
277125
3833
还有哪些领域也是这样, 人工智能阻碍了人们的学习?
04:42
To find out, I’ve connected with a small but growing group of young researchers
75
282208
4310
为了找到答案,我联系了一个 年轻但正迅速成长的研究团队。
04:46
who’ve done boots-on-the-ground studies of work involving AI
76
286542
3434
他们在不同领域都做了一些 关于人工智能的实地研究,
包括初创公司、监管治安部门、
04:50
in very diverse settings like start-ups, policing,
77
290000
2976
投资银行和在线教育等。
04:53
investment banking and online education.
78
293000
2601
04:55
Like me, they spent at least a year and many hundreds of hours observing,
79
295625
5851
和我一样,他们花了至少一年的时间, 用了数百个小时进行观察
05:01
interviewing and often working side-by-side with the people they studied.
80
301500
3917
采访研究对象,甚至 和他们一起生活、工作。
05:06
We shared data, and I looked for patterns.
81
306458
2417
我们共享了数据, 我想从中寻找出规律。
05:09
No matter the industry, the work, the AI, the story was the same.
82
309917
5208
不管在什么行业,利用何种 人工智能,结果都非常相似。
05:16
Organizations were trying harder and harder to get results from AI,
83
316042
3642
企业、机构都卯足了劲, 想从人工智能中获益,
05:19
and they were peeling learners away from expert work as they did it.
84
319708
3542
而这一行为导致学习者 从专业工作中脱离出来。
05:24
Start-up managers were outsourcing their customer contact.
85
324333
2875
初创公司的管理者把 联系消费者的工作外包出去,
05:27
Cops had to learn to deal with crime forecasts without experts support.
86
327833
4042
警察在没有专家的支持下 去做犯罪预测工作,
05:32
Junior bankers were getting cut out of complex analysis,
87
332875
3250
初级银行家被排除在复杂分析之外,
05:36
and professors had to build online courses without help.
88
336500
3083
教授也要独自开始做在线课程。
05:41
And the effect of all of this was the same as in surgery.
89
341125
3226
而这些种种带来的后果 和上述外科例子是一样的,
05:44
Learning on the job was getting much harder.
90
344375
2917
在工作中学习变得越来越难,
05:48
This can’t last.
91
348958
1417
这样的情况需要得到改善。
05:51
McKinsey estimates that between half a billion and a billion of us
92
351542
4267
据麦肯锡估计,到2030年, 我们中有5亿到10亿人,
05:55
are going to have to adapt to AI in our daily work by 2030.
93
355833
4125
将不得不在日常工作中 适应人工智能。
06:01
And we’re assuming that on-the-job learning
94
361000
2011
而我们却以为 在职学习机制将一直存在,
在我们想要学习的时候就唾手可得。
06:03
will be there for us as we try.
95
363035
1917
06:05
Accenture’s latest workers survey showed that most workers learned key skills
96
365500
4268
埃森哲最新的员工调查显示, 多数员工在工作时才能真正掌握技能,
06:09
on the job, not in formal training.
97
369792
2291
而不是在培训中。
06:13
So while we talk a lot about its potential future impact,
98
373292
3517
我们一直在关注 人工智能对未来潜在的影响,
06:16
the aspect of AI that may matter most right now
99
376833
3685
但却忘了它在目前最大的影响,
06:20
is that we’re handling it in a way that blocks learning on the job
100
380542
3375
就是它阻碍了我们学习的步伐,
06:24
just when we need it most.
101
384375
1625
而学习恰恰是 我们目前最需要的东西。
06:27
Now across all our sites, a small minority found a way to learn.
102
387458
6042
现在有一个小群体 找到了学习的方法,
06:35
They did it by breaking and bending rules.
103
395625
3042
通过改变和突破规则。
06:39
Approved methods weren’t working, so they bent and broke rules
104
399083
4643
因为现有的方法不奏效, 所以他们要改变和突破规则,
06:43
to get hands-on practice with experts.
105
403750
1976
来获取和专家一起学习的机会。
06:45
In my setting, residents got involved in robotic surgery in medical school
106
405750
5601
在我经历的环境里,住院医生 在医学院时可以参与到自动化手术中,
06:51
at the expense of their generalist education.
107
411375
3583
牺牲他们的通识教育课程,
06:56
And they spent hundreds of extra hours with simulators and recordings of surgery,
108
416417
5851
他们花了数百个小时 研究模拟器和手术记录,
07:02
when you were supposed to learn in the OR.
109
422292
2541
虽然他们更应该在手术室里实操。
07:05
And maybe most importantly, they found ways to struggle
110
425375
3476
最重要的是, 他们找到了奋斗的方法,
07:08
in live procedures with limited expert supervision.
111
428875
3750
在有限的专家指导下进行现场操作。
07:13
I call all this “shadow learning,” because it bends the rules
112
433792
4309
我称之为“影子学习”, 因为它修改了规则,
07:18
and learner’s do it out of the limelight.
113
438125
2000
让学习者在聚光灯之外学习,
07:21
And everyone turns a blind eye because it gets results.
114
441542
4101
而所有人都对此睁一只眼闭一只眼, 因为这样的学习的确有效。
07:25
Remember, these are the star pupils of the bunch.
115
445667
3166
记住,这样学习的学生都是学霸。
07:29
Now, obviously, this is not OK, and it’s not sustainable.
116
449792
3208
显然,这样的方式并不对, 也并不可持续,
07:33
No one should have to risk getting fired
117
453708
2185
没有人应该要冒着被开除的风险,
07:35
to learn the skills they need to do their job.
118
455917
2150
去学习应掌握的技能,
07:38
But we do need to learn from these people.
119
458792
2056
但我们可能真的要向这些人学习。
07:41
They took serious risks to learn.
120
461917
2250
他们为了学习不惜冒着巨大的风险,
07:44
They understood they needed to protect struggle and challenge in their work
121
464792
4351
他们明白需要保护那些工作中 遇到的困难和挑战,
07:49
so that they could push themselves to tackle hard problems
122
469167
2892
而强迫自己去解决难题,
07:52
right near the edge of their capacity.
123
472083
1959
不断挑战自己的极限。
07:54
They also made sure there was an expert nearby
124
474458
2216
他们也保证身边有 足够的专家资源指导他们,
07:56
to offer pointers and to backstop against catastrophe.
125
476698
3094
在必要的时候出来提供支持。
08:00
Let’s build this combination of struggle and expert support
126
480875
3458
让我们把努力和专家支持结合起来,
08:04
into each AI implementation.
127
484708
2750
将其应用到人工智能中。
08:08
Here’s one clear example I could get of this on the ground.
128
488375
2828
我这里有一个具体的例子,
08:12
Before robots,
129
492125
1226
在有机器人之前,
08:13
if you were a bomb disposal technician, you dealt with an IED by walking up to it.
130
493375
4792
如果你是一个拆弹专家, 你经常要直接处理简单易爆装置,
08:19
A junior officer was hundreds of feet away,
131
499333
2143
一个年轻的警官就在你几百米之外,
08:21
so could only watch and help if you decided it was safe
132
501500
3309
他只能观察你,并且在 你觉得安全的时候才能提供帮助,
08:24
and invited them downrange.
133
504833
1417
才能接近装置。
08:27
Now you sit side-by-side in a bomb-proof truck.
134
507208
3893
现在你们并排坐在防弹卡车里,
08:31
You both watched the video feed.
135
511125
1809
一起看着视频,
08:32
They control a distant robot, and you guide the work out loud.
136
512958
4310
他们远程控制着机器人, 而你大声地指挥工作,
08:37
Trainees learn better than they did before robots.
137
517292
3208
这样一来,他们反而可以 有更好的机会学习。
08:41
We can scale this to surgery, start-ups, policing,
138
521125
3933
我们可以把这种方式应用到 外科手术、初创企业、治安系统、
08:45
investment banking, online education and beyond.
139
525082
2625
投资银行和在线教育等等行业中。
08:48
The good news is we’ve got new tools to do it.
140
528375
2500
好消息是,我们有了 更好的工具辅助学习,
08:51
The internet and the cloud mean we don’t always need one expert for every trainee,
141
531750
4082
网络和云技术的发展意味着我们不再 需要专家进行一对一、面对面的教学,
08:56
for them to be physically near each other or even to be in the same organization.
142
536167
4458
专家和学习者甚至 不需要在同一个机构中。
09:01
And we can build AI to help:
143
541292
3041
我们可以利用人工智能来辅助学习,
09:05
to coach learners as they struggle, to coach experts as they coach
144
545167
5059
在学习者奋斗的过程中指导他们, 还可以指导专家进行更有效的教学,
09:10
and to connect those two groups in smart ways.
145
550250
2542
将两者以更智慧的方式联系起来。
09:15
There are people at work on systems like this,
146
555375
2542
现在已经有在职人员 有这样的教学系统,
09:18
but they’ve been mostly focused on formal training.
147
558333
2792
但是他们也仅仅是 关注入职培训,
09:21
And the deeper crisis is in on-the-job learning.
148
561458
2584
更大的危机其实出现在 在职培训当中。
09:24
We must do better.
149
564417
1851
我们必须要做得更好,
09:26
Today’s problems demand we do better
150
566292
2583
现在出现的问题 要求我们要做得更好,
09:29
to create work that takes full advantage of AI’s amazing capabilities
151
569375
4875
来创造价值,来更好地利用 人工智能带来的便利,
09:35
while enhancing our skills as we do it.
152
575042
2750
同时也让我们的技术变得更加成熟。
09:38
That’s the kind of future I dreamed of as a kid.
153
578333
2750
这才是我小时候梦想的未来,
09:41
And the time to create it is now.
154
581458
2167
而现在正是去开创 这一未来的最佳时机。
09:44
Thank you.
155
584333
1226
谢谢。
09:45
(Applause)
156
585583
3625
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog