How do we learn to work with intelligent machines? | Matt Beane

64,555 views ・ 2019-02-21

TED


請雙擊下方英文字幕播放視頻。

譯者: Val Zhang 審譯者: Melody Tang
00:13
It’s 6:30 in the morning,
0
13292
1875
凌晨六點半,
00:15
and Kristen is wheeling her prostate patient into the OR.
1
15583
4875
克莉絲汀推著她的 前列腺病人進入手術室。
00:21
She's a resident, a surgeon in training.
2
21500
2250
她是住院醫師—— 培訓中的外科醫師。
00:24
It’s her job to learn.
3
24333
2167
學習是她的義務。
00:27
Today, she’s really hoping to do some of the nerve-sparing,
4
27292
3351
今天她非常希望能參與 部分的雙側神經保留手術,
00:30
extremely delicate dissection that can preserve erectile function.
5
30667
3875
需要精湛的手術技巧, 讓病人保有勃起的功能。
00:35
That'll be up to the attending surgeon, though, but he's not there yet.
6
35500
3338
不過,這還要看主治醫師的意思, 而他還沒有到場。
00:39
She and the team put the patient under,
7
39625
2393
克莉絲汀和團隊給病人打了麻醉,
00:42
and she leads the initial eight-inch incision in the lower abdomen.
8
42042
3708
她在病人的下腹部開了 第一道 8 英吋的切口。
00:47
Once she’s got that clamped back, she tells the nurse to call the attending.
9
47042
3586
當她把切口夾好, 她請護理師打電話給主治醫師。
00:51
He arrives, gowns up,
10
51583
2292
主治醫師到場,穿上手術服,
00:54
And from there on in, their four hands are mostly in that patient --
11
54458
5792
接著,他們的四隻手 就大都在病人體內,
01:00
with him guiding but Kristin leading the way.
12
60708
2917
在主治醫師的指導下, 由克莉絲汀操作。
01:04
When the prostates out (and, yes, he let Kristen do a little nerve sparing),
13
64875
4643
當病人的前列腺被取出後,
(太好了!他讓她做了 部分神經保留手術。)
01:09
he rips off his scrubs.
14
69542
1226
主治醫師脫掉了手術服,
01:10
He starts to do paperwork.
15
70792
1375
開始填寫資料。
01:12
Kristen closes the patient by 8:15,
16
72833
5375
而克莉絲汀在八點十五分完成了手術,
01:18
with a junior resident looking over her shoulder.
17
78583
2435
一位資淺的住院醫師在旁觀摩學習。
01:21
And she lets him do the final line of sutures.
18
81042
3083
她讓他為病人做最後的縫合。
01:24
Kristen feels great.
19
84833
3042
克莉絲汀感覺好極了!
01:28
Patient’s going to be fine,
20
88250
1559
病人應該很快就會恢復,
01:29
and no doubt she’s a better surgeon than she was at 6:30.
21
89833
3167
無疑地,比起做這個手術前, 她是一位更好的外科醫師。
01:34
Now this is extreme work.
22
94208
2834
這是種極端的工作。
01:37
But Kristin’s learning to do her job the way that most of us do:
23
97417
3833
但克莉絲汀邊做邊學的方式 和我們大多數人無異:
01:41
watching an expert for a bit,
24
101625
1893
觀察專家如何操作,
01:43
getting involved in easy, safe parts of the work
25
103542
3142
從簡單、安全的部分開始著手,
01:46
and progressing to riskier and harder tasks
26
106708
2185
然後在專家的指導和確認合格之下, 接手風險更高、難度更大的工作。
01:48
as they guide and decide she’s ready.
27
108917
2333
我一直對這樣的學習過程感到著迷。
01:52
My whole life I’ve been fascinated by this kind of learning.
28
112042
2892
01:54
It feels elemental, part of what makes us human.
29
114958
3667
我覺得這似乎是人類 之所以為人類的基本要素之一。
01:59
It has different names: apprenticeship, coaching, mentorship, on the job training.
30
119750
5417
人們為這過程賦予不同的名字: 學徒、訓練、師徒制、在職訓練。
02:05
In surgery, it’s called “see one, do one, teach one.”
31
125542
3291
外科稱之為 「看一次、做一遍、教一位」,
02:09
But the process is the same,
32
129625
1344
但過程是一樣的,
02:10
and it’s been the main path to skill around the globe for thousands of years.
33
130993
4174
這也是數千年來, 全球在培養人才時運用的方式。
02:16
Right now, we’re handling AI in a way that blocks that path.
34
136333
4500
現在我們應用人工智慧的方式 阻礙了這條學習路徑。
02:21
We’re sacrificing learning in our quest for productivity.
35
141625
2690
為了更高的生產率, 我們犧牲了在工作中學習的機會。
02:25
I found this first in surgery while I was at MIT,
36
145292
2809
我最初在麻省理工學院的手術 發現了這一個現象,
02:28
but now I’ve got evidence it’s happening all over,
37
148125
2476
但現在,我發現這個情況隨處可見,
02:30
in very different industries and with very different kinds of AI.
38
150625
3875
遍佈各行各業, 應用著各種人工智慧的技術。
02:35
If we do nothing, millions of us are going to hit a brick wall
39
155083
5851
如果我們對此不做出改變,
在我們學著面對人工智慧技術時, 成千上萬的人將受挫。
02:40
as we try to learn to deal with AI.
40
160958
2417
02:45
Let’s go back to surgery to see how.
41
165125
1772
讓我們回到外科手術作為例子,
02:47
Fast forward six months.
42
167708
1935
時間快轉六個月,
02:49
It’s 6:30am again, and Kristen is wheeling another prostate patient in,
43
169667
5476
同樣是凌晨六點半,克莉絲汀推著 另一位前列腺病人進來,
02:55
but this time to the robotic OR.
44
175167
3166
但這一次,病人被推到機器人手術室,
02:59
The attending leads attaching
45
179667
1684
由主治醫師主導著 把一個有著四支手臂、
03:01
a four-armed, thousand-pound robot to the patient.
46
181375
2833
重一千磅的機器人, 連接到病人身上。
03:04
They both rip off their scrubs,
47
184750
2434
他們都脫下了手術服,
03:07
head to control consoles 10 or 15 feet away,
48
187208
3125
來到 10 ~ 15 英尺外的控制台,
03:11
and Kristen just watches.
49
191167
3750
而克莉絲汀只能旁觀。
03:16
The robot allows the attending to do the whole procedure himself,
50
196375
3053
在機器人的幫助下, 主治醫師一個人便可完成手術,
03:19
so he basically does.
51
199452
1583
他基本上也這麼做,
03:21
He knows she needs practice.
52
201917
2101
他知道克莉絲汀需要練習,
03:24
He wants to give her control.
53
204042
1583
他也希望可以讓她主導,
03:26
But he also knows she’d be slower and make more mistakes,
54
206250
3393
但是他同樣清楚她會比較慢, 可能會有失誤,
03:29
and his patient comes first.
55
209667
1500
而他的病人第一。
03:32
So Kristin has no hope of getting anywhere near those nerves during this rotation.
56
212250
4625
在這次手術中,克莉絲汀 沒有任何機會接近那些神經,
03:37
She’ll be lucky if she operates more than 15 minutes during a four-hour procedure.
57
217417
4375
在長達四小時的手術中, 若她能操作十五分鐘就算幸運了。
03:42
And she knows that when she slips up,
58
222250
2625
她知道一旦她有失誤,
03:45
he’ll tap a touch screen, and she’ll be watching again,
59
225458
3042
他只要輕敲螢幕, 她又回到旁觀的角色,
03:48
feeling like a kid in the corner with a dunce cap.
60
228917
2625
感覺像個戴笨蛋高帽的 孩子在角落裡罰站。
03:53
Like all the studies of robots and work I’ve done in the last eight years,
61
233583
3501
就像這八年來我所做的 有關機器人與工作的研究,
我以一個重要且有爭議的問題開始:
03:57
I started this one with a big, open question:
62
237108
2118
03:59
How do we learn to work with intelligent machines?
63
239250
2792
我們如何學習與智慧型機器共事呢?
04:02
To find out, I spent two and a half years observing dozens of residents and surgeons
64
242792
5809
為了找出答案, 我花了兩年半的時間
觀察數十位做傳統與機器人手術的 住院醫師和外科醫師,
04:08
doing traditional and robotic surgery, interviewing them
65
248625
3476
訪問他們,
04:12
and in general hanging out with the residents as they tried to learn.
66
252125
3338
基本上,當他們在學習的時候, 我和他們混在一起。
04:16
I covered 18 of the top US teaching hospitals,
67
256250
3351
我涵蓋了十八所美國頂尖的教學醫院,
04:19
and the story was the same.
68
259625
1458
故事都是相同的。
04:21
Most residents were in Kristen's shoes.
69
261875
2542
絕大多數的住院醫師的 處境跟克莉斯汀一樣。
04:24
They got to “see one” plenty,
70
264958
1792
他們有很多「看一次」的機會,
04:27
but the “do one” was barely available.
71
267583
2292
但「做一遍」的機會少之又少。
04:30
So they couldn’t struggle, and they weren’t learning.
72
270333
2528
他們沒有機會受挫, 也沒能進一步學習。
04:33
This was important news for surgeons, but I needed to know how widespread it was:
73
273291
3810
這對外科醫師來說是很重要的消息, 但我想知道這個情況擴散的程度。
04:37
Where else was using AI blocking learning on the job?
74
277125
3833
哪些產業也在運用人工智慧時, 阻礙了做中學呢?
04:42
To find out, I’ve connected with a small but growing group of young researchers
75
282208
4310
為了找出答案,我聯繫了一群 小而成長中的年輕研究者,
04:46
who’ve done boots-on-the-ground studies of work involving AI
76
286542
3434
他們腳踏實地研究過人工智慧
04:50
in very diverse settings like start-ups, policing,
77
290000
2976
在不同的領域的運用, 包括:新創、警政、
04:53
investment banking and online education.
78
293000
2601
投資銀行和線上教育。
04:55
Like me, they spent at least a year and many hundreds of hours observing,
79
295625
5851
像我一樣,他們花了至少一年, 以及數百個小時
觀察、訪問,並經常和他們 研究的對象肩並肩一起工作。
05:01
interviewing and often working side-by-side with the people they studied.
80
301500
3917
05:06
We shared data, and I looked for patterns.
81
306458
2417
我們分享了數據,而我觀察模式。
05:09
No matter the industry, the work, the AI, the story was the same.
82
309917
5208
不論是哪種產業、工作、人工智慧, 故事都是相同的。
05:16
Organizations were trying harder and harder to get results from AI,
83
316042
3642
所有組織都非常努力地 運用人工智慧以得到更好的成果,
05:19
and they were peeling learners away from expert work as they did it.
84
319708
3542
在這過程中,他們剝奪了 學徒習做專家工作的機會。
05:24
Start-up managers were outsourcing their customer contact.
85
324333
2875
新創公司的經理人 外包他們的客服窗口。
05:27
Cops had to learn to deal with crime forecasts without experts support.
86
327833
4042
警察在沒有專家的協助下, 學著做犯罪預測。
05:32
Junior bankers were getting cut out of complex analysis,
87
332875
3250
資淺的銀行家無法 接觸到複雜的分析,
05:36
and professors had to build online courses without help.
88
336500
3083
而教授得在沒有幫助的狀況下 打造線上課程。
05:41
And the effect of all of this was the same as in surgery.
89
341125
3226
所有這些帶來的影響 跟手術的情形是一樣的。
05:44
Learning on the job was getting much harder.
90
344375
2917
做中學變得越來越困難。
05:48
This can’t last.
91
348958
1417
這情況不能繼續下去。
05:51
McKinsey estimates that between half a billion and a billion of us
92
351542
4267
麥肯錫顧問公司估計:
大約有五~十億人在 2030 年以前,
05:55
are going to have to adapt to AI in our daily work by 2030.
93
355833
4125
必須將人工智慧應用在日常工作中。
我們以為當我們在做的時候, 會有在職訓練。
06:01
And we’re assuming that on-the-job learning
94
361000
2011
06:03
will be there for us as we try.
95
363035
1917
06:05
Accenture’s latest workers survey showed that most workers learned key skills
96
365500
4268
埃森哲顧問公司最新的工作調查顯示:
多數人透過做中學得到工作的 關鍵技能,而非透過正式的訓練。
06:09
on the job, not in formal training.
97
369792
2291
06:13
So while we talk a lot about its potential future impact,
98
373292
3517
當我們高談闊論人工智慧 對未來的潛在衝擊,
06:16
the aspect of AI that may matter most right now
99
376833
3685
此時此刻,人工智慧 對我們最重要的影響是
06:20
is that we’re handling it in a way that blocks learning on the job
100
380542
3375
我們應用人工智慧的方式, 阻礙了人們邊做邊學的機會。
06:24
just when we need it most.
101
384375
1625
而那是我們最需要學習的時候。
06:27
Now across all our sites, a small minority found a way to learn.
102
387458
6042
在我們的研究對象中, 有一小群人找到一種學習方式。
06:35
They did it by breaking and bending rules.
103
395625
3042
他們透過打破常規來學習。
06:39
Approved methods weren’t working, so they bent and broke rules
104
399083
4643
被准許的作法不可行, 所以他們改變了遊戲規則,
06:43
to get hands-on practice with experts.
105
403750
1976
才得以與專家一同實際操作。
06:45
In my setting, residents got involved in robotic surgery in medical school
106
405750
5601
我看到的是,住院醫師 在醫學院裡為了參與機器人手術,
06:51
at the expense of their generalist education.
107
411375
3583
犧牲了上全科醫師的課為代價,
06:56
And they spent hundreds of extra hours with simulators and recordings of surgery,
108
416417
5851
他們多花了數百個小時 使用模擬器與看手術錄影來學習。
07:02
when you were supposed to learn in the OR.
109
422292
2541
那是他們本來應當 在手術室裡學習的。
07:05
And maybe most importantly, they found ways to struggle
110
425375
3476
或許更重要的,
他們在有限的專家指導下, 找到在實際的手術中練習的機會。
07:08
in live procedures with limited expert supervision.
111
428875
3750
07:13
I call all this “shadow learning,” because it bends the rules
112
433792
4309
我稱之為「在陰影中學習」 因為這違反了規則,
07:18
and learner’s do it out of the limelight.
113
438125
2000
學生得要偷偷摸摸地學習。
07:21
And everyone turns a blind eye because it gets results.
114
441542
4101
大家對此睜一隻眼閉一隻眼, 因為這樣的確有效。
07:25
Remember, these are the star pupils of the bunch.
115
445667
3166
但記住,這些僅是少數的明星學生。
07:29
Now, obviously, this is not OK, and it’s not sustainable.
116
449792
3208
顯然,這樣並不恰當, 這不是長久之計。
07:33
No one should have to risk getting fired
117
453708
2185
沒有人應該冒著被開除的風險,
07:35
to learn the skills they need to do their job.
118
455917
2150
去學習他們工作必要的技巧。
07:38
But we do need to learn from these people.
119
458792
2056
但我們必須從這些人身上學習。
07:41
They took serious risks to learn.
120
461917
2250
他們為了學習而承擔高度風險。
07:44
They understood they needed to protect struggle and challenge in their work
121
464792
4351
他們明白必須保護工作中 受挫與挑戰的機會,
07:49
so that they could push themselves to tackle hard problems
122
469167
2892
以推動他們自己去挑戰
比他們的能力能解決的 更困難的問題。
07:52
right near the edge of their capacity.
123
472083
1959
07:54
They also made sure there was an expert nearby
124
474458
2216
他們也確保會有一個專家在旁,
07:56
to offer pointers and to backstop against catastrophe.
125
476698
3094
提供建議跟收拾殘局, 以防他們搞砸了。
08:00
Let’s build this combination of struggle and expert support
126
480875
3458
讓我們設計 在導入每項人工智慧時
08:04
into each AI implementation.
127
484708
2750
加入學習機會及專家協助的組合。
08:08
Here’s one clear example I could get of this on the ground.
128
488375
2828
這裡有個清楚的案例, 我能在現實中找到。
08:12
Before robots,
129
492125
1226
在機器人出現之前,
08:13
if you were a bomb disposal technician, you dealt with an IED by walking up to it.
130
493375
4792
如果你是個拆彈技術專家 面對簡易爆炸裝置時,你得走近它。
08:19
A junior officer was hundreds of feet away,
131
499333
2143
一個資淺的警官在數百公尺外支援,
08:21
so could only watch and help if you decided it was safe
132
501500
3309
他可以觀察並協助,
直到你確定裝置是安全的 並邀請他們到近距離。
08:24
and invited them downrange.
133
504833
1417
08:27
Now you sit side-by-side in a bomb-proof truck.
134
507208
3893
現在你們肩並肩地坐在防彈車裡。
08:31
You both watched the video feed.
135
511125
1809
你們一同觀看機器人傳來的影片資訊。
08:32
They control a distant robot, and you guide the work out loud.
136
512958
4310
資淺者控制著遠端機器人, 而你大聲引導著作業。
08:37
Trainees learn better than they did before robots.
137
517292
3208
受訓者的學習效果 比機器人出現之前更佳。
08:41
We can scale this to surgery, start-ups, policing,
138
521125
3933
我們可以按比例複製這樣的模式 到手術、新創公司、警政、
08:45
investment banking, online education and beyond.
139
525082
2625
投資銀行、線上教育, 以及更多產業。
08:48
The good news is we’ve got new tools to do it.
140
528375
2500
好消息是我們有新的工具去執行。
08:51
The internet and the cloud mean we don’t always need one expert for every trainee,
141
531750
4082
網路跟雲端代表著我們不再需要 一對一的師徒制,
08:56
for them to be physically near each other or even to be in the same organization.
142
536167
4458
他們不再需要去到同一個空間 甚至在不同的組織單位裡。
09:01
And we can build AI to help:
143
541292
3041
我們可以打造人工智慧來協助。
09:05
to coach learners as they struggle, to coach experts as they coach
144
545167
5059
當學生困惑時教導他們, 當專家指導學生時協助專家,
09:10
and to connect those two groups in smart ways.
145
550250
2542
並以聰明的方式聯繫這兩群人。
09:15
There are people at work on systems like this,
146
555375
2542
有人正在開發這樣的系統,
09:18
but they’ve been mostly focused on formal training.
147
558333
2792
但他們大多專注於正式的訓練。
09:21
And the deeper crisis is in on-the-job learning.
148
561458
2584
但更深的危機是工作做中學的部分。
09:24
We must do better.
149
564417
1851
我們必須做得更好。
09:26
Today’s problems demand we do better
150
566292
2583
今天所面臨的挑戰促使我們要更好地
09:29
to create work that takes full advantage of AI’s amazing capabilities
151
569375
4875
創造應用人工智慧無限潛能的工作,
09:35
while enhancing our skills as we do it.
152
575042
2750
同時讓我們在工作時 也能加強我們的技能。
09:38
That’s the kind of future I dreamed of as a kid.
153
578333
2750
這是我從孩提時代以來 一直有的夢想。
09:41
And the time to create it is now.
154
581458
2167
現在就是創造它的時刻。
09:44
Thank you.
155
584333
1226
謝謝大家。
09:45
(Applause)
156
585583
3625
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog