How do we learn to work with intelligent machines? | Matt Beane

64,159 views ・ 2019-02-21

TED


請雙擊下方英文字幕播放視頻。

譯者: Val Zhang 審譯者: Melody Tang
00:13
It’s 6:30 in the morning,
0
13292
1875
凌晨六點半,
00:15
and Kristen is wheeling her prostate patient into the OR.
1
15583
4875
克莉絲汀推著她的 前列腺病人進入手術室。
00:21
She's a resident, a surgeon in training.
2
21500
2250
她是住院醫師—— 培訓中的外科醫師。
00:24
It’s her job to learn.
3
24333
2167
學習是她的義務。
00:27
Today, she’s really hoping to do some of the nerve-sparing,
4
27292
3351
今天她非常希望能參與 部分的雙側神經保留手術,
00:30
extremely delicate dissection that can preserve erectile function.
5
30667
3875
需要精湛的手術技巧, 讓病人保有勃起的功能。
00:35
That'll be up to the attending surgeon, though, but he's not there yet.
6
35500
3338
不過,這還要看主治醫師的意思, 而他還沒有到場。
00:39
She and the team put the patient under,
7
39625
2393
克莉絲汀和團隊給病人打了麻醉,
00:42
and she leads the initial eight-inch incision in the lower abdomen.
8
42042
3708
她在病人的下腹部開了 第一道 8 英吋的切口。
00:47
Once she’s got that clamped back, she tells the nurse to call the attending.
9
47042
3586
當她把切口夾好, 她請護理師打電話給主治醫師。
00:51
He arrives, gowns up,
10
51583
2292
主治醫師到場,穿上手術服,
00:54
And from there on in, their four hands are mostly in that patient --
11
54458
5792
接著,他們的四隻手 就大都在病人體內,
01:00
with him guiding but Kristin leading the way.
12
60708
2917
在主治醫師的指導下, 由克莉絲汀操作。
01:04
When the prostates out (and, yes, he let Kristen do a little nerve sparing),
13
64875
4643
當病人的前列腺被取出後,
(太好了!他讓她做了 部分神經保留手術。)
01:09
he rips off his scrubs.
14
69542
1226
主治醫師脫掉了手術服,
01:10
He starts to do paperwork.
15
70792
1375
開始填寫資料。
01:12
Kristen closes the patient by 8:15,
16
72833
5375
而克莉絲汀在八點十五分完成了手術,
01:18
with a junior resident looking over her shoulder.
17
78583
2435
一位資淺的住院醫師在旁觀摩學習。
01:21
And she lets him do the final line of sutures.
18
81042
3083
她讓他為病人做最後的縫合。
01:24
Kristen feels great.
19
84833
3042
克莉絲汀感覺好極了!
01:28
Patient’s going to be fine,
20
88250
1559
病人應該很快就會恢復,
01:29
and no doubt she’s a better surgeon than she was at 6:30.
21
89833
3167
無疑地,比起做這個手術前, 她是一位更好的外科醫師。
01:34
Now this is extreme work.
22
94208
2834
這是種極端的工作。
01:37
But Kristin’s learning to do her job the way that most of us do:
23
97417
3833
但克莉絲汀邊做邊學的方式 和我們大多數人無異:
01:41
watching an expert for a bit,
24
101625
1893
觀察專家如何操作,
01:43
getting involved in easy, safe parts of the work
25
103542
3142
從簡單、安全的部分開始著手,
01:46
and progressing to riskier and harder tasks
26
106708
2185
然後在專家的指導和確認合格之下, 接手風險更高、難度更大的工作。
01:48
as they guide and decide she’s ready.
27
108917
2333
我一直對這樣的學習過程感到著迷。
01:52
My whole life I’ve been fascinated by this kind of learning.
28
112042
2892
01:54
It feels elemental, part of what makes us human.
29
114958
3667
我覺得這似乎是人類 之所以為人類的基本要素之一。
01:59
It has different names: apprenticeship, coaching, mentorship, on the job training.
30
119750
5417
人們為這過程賦予不同的名字: 學徒、訓練、師徒制、在職訓練。
02:05
In surgery, it’s called “see one, do one, teach one.”
31
125542
3291
外科稱之為 「看一次、做一遍、教一位」,
02:09
But the process is the same,
32
129625
1344
但過程是一樣的,
02:10
and it’s been the main path to skill around the globe for thousands of years.
33
130993
4174
這也是數千年來, 全球在培養人才時運用的方式。
02:16
Right now, we’re handling AI in a way that blocks that path.
34
136333
4500
現在我們應用人工智慧的方式 阻礙了這條學習路徑。
02:21
We’re sacrificing learning in our quest for productivity.
35
141625
2690
為了更高的生產率, 我們犧牲了在工作中學習的機會。
02:25
I found this first in surgery while I was at MIT,
36
145292
2809
我最初在麻省理工學院的手術 發現了這一個現象,
02:28
but now I’ve got evidence it’s happening all over,
37
148125
2476
但現在,我發現這個情況隨處可見,
02:30
in very different industries and with very different kinds of AI.
38
150625
3875
遍佈各行各業, 應用著各種人工智慧的技術。
02:35
If we do nothing, millions of us are going to hit a brick wall
39
155083
5851
如果我們對此不做出改變,
在我們學著面對人工智慧技術時, 成千上萬的人將受挫。
02:40
as we try to learn to deal with AI.
40
160958
2417
02:45
Let’s go back to surgery to see how.
41
165125
1772
讓我們回到外科手術作為例子,
02:47
Fast forward six months.
42
167708
1935
時間快轉六個月,
02:49
It’s 6:30am again, and Kristen is wheeling another prostate patient in,
43
169667
5476
同樣是凌晨六點半,克莉絲汀推著 另一位前列腺病人進來,
02:55
but this time to the robotic OR.
44
175167
3166
但這一次,病人被推到機器人手術室,
02:59
The attending leads attaching
45
179667
1684
由主治醫師主導著 把一個有著四支手臂、
03:01
a four-armed, thousand-pound robot to the patient.
46
181375
2833
重一千磅的機器人, 連接到病人身上。
03:04
They both rip off their scrubs,
47
184750
2434
他們都脫下了手術服,
03:07
head to control consoles 10 or 15 feet away,
48
187208
3125
來到 10 ~ 15 英尺外的控制台,
03:11
and Kristen just watches.
49
191167
3750
而克莉絲汀只能旁觀。
03:16
The robot allows the attending to do the whole procedure himself,
50
196375
3053
在機器人的幫助下, 主治醫師一個人便可完成手術,
03:19
so he basically does.
51
199452
1583
他基本上也這麼做,
03:21
He knows she needs practice.
52
201917
2101
他知道克莉絲汀需要練習,
03:24
He wants to give her control.
53
204042
1583
他也希望可以讓她主導,
03:26
But he also knows she’d be slower and make more mistakes,
54
206250
3393
但是他同樣清楚她會比較慢, 可能會有失誤,
03:29
and his patient comes first.
55
209667
1500
而他的病人第一。
03:32
So Kristin has no hope of getting anywhere near those nerves during this rotation.
56
212250
4625
在這次手術中,克莉絲汀 沒有任何機會接近那些神經,
03:37
She’ll be lucky if she operates more than 15 minutes during a four-hour procedure.
57
217417
4375
在長達四小時的手術中, 若她能操作十五分鐘就算幸運了。
03:42
And she knows that when she slips up,
58
222250
2625
她知道一旦她有失誤,
03:45
he’ll tap a touch screen, and she’ll be watching again,
59
225458
3042
他只要輕敲螢幕, 她又回到旁觀的角色,
03:48
feeling like a kid in the corner with a dunce cap.
60
228917
2625
感覺像個戴笨蛋高帽的 孩子在角落裡罰站。
03:53
Like all the studies of robots and work I’ve done in the last eight years,
61
233583
3501
就像這八年來我所做的 有關機器人與工作的研究,
我以一個重要且有爭議的問題開始:
03:57
I started this one with a big, open question:
62
237108
2118
03:59
How do we learn to work with intelligent machines?
63
239250
2792
我們如何學習與智慧型機器共事呢?
04:02
To find out, I spent two and a half years observing dozens of residents and surgeons
64
242792
5809
為了找出答案, 我花了兩年半的時間
觀察數十位做傳統與機器人手術的 住院醫師和外科醫師,
04:08
doing traditional and robotic surgery, interviewing them
65
248625
3476
訪問他們,
04:12
and in general hanging out with the residents as they tried to learn.
66
252125
3338
基本上,當他們在學習的時候, 我和他們混在一起。
04:16
I covered 18 of the top US teaching hospitals,
67
256250
3351
我涵蓋了十八所美國頂尖的教學醫院,
04:19
and the story was the same.
68
259625
1458
故事都是相同的。
04:21
Most residents were in Kristen's shoes.
69
261875
2542
絕大多數的住院醫師的 處境跟克莉斯汀一樣。
04:24
They got to “see one” plenty,
70
264958
1792
他們有很多「看一次」的機會,
04:27
but the “do one” was barely available.
71
267583
2292
但「做一遍」的機會少之又少。
04:30
So they couldn’t struggle, and they weren’t learning.
72
270333
2528
他們沒有機會受挫, 也沒能進一步學習。
04:33
This was important news for surgeons, but I needed to know how widespread it was:
73
273291
3810
這對外科醫師來說是很重要的消息, 但我想知道這個情況擴散的程度。
04:37
Where else was using AI blocking learning on the job?
74
277125
3833
哪些產業也在運用人工智慧時, 阻礙了做中學呢?
04:42
To find out, I’ve connected with a small but growing group of young researchers
75
282208
4310
為了找出答案,我聯繫了一群 小而成長中的年輕研究者,
04:46
who’ve done boots-on-the-ground studies of work involving AI
76
286542
3434
他們腳踏實地研究過人工智慧
04:50
in very diverse settings like start-ups, policing,
77
290000
2976
在不同的領域的運用, 包括:新創、警政、
04:53
investment banking and online education.
78
293000
2601
投資銀行和線上教育。
04:55
Like me, they spent at least a year and many hundreds of hours observing,
79
295625
5851
像我一樣,他們花了至少一年, 以及數百個小時
觀察、訪問,並經常和他們 研究的對象肩並肩一起工作。
05:01
interviewing and often working side-by-side with the people they studied.
80
301500
3917
05:06
We shared data, and I looked for patterns.
81
306458
2417
我們分享了數據,而我觀察模式。
05:09
No matter the industry, the work, the AI, the story was the same.
82
309917
5208
不論是哪種產業、工作、人工智慧, 故事都是相同的。
05:16
Organizations were trying harder and harder to get results from AI,
83
316042
3642
所有組織都非常努力地 運用人工智慧以得到更好的成果,
05:19
and they were peeling learners away from expert work as they did it.
84
319708
3542
在這過程中,他們剝奪了 學徒習做專家工作的機會。
05:24
Start-up managers were outsourcing their customer contact.
85
324333
2875
新創公司的經理人 外包他們的客服窗口。
05:27
Cops had to learn to deal with crime forecasts without experts support.
86
327833
4042
警察在沒有專家的協助下, 學著做犯罪預測。
05:32
Junior bankers were getting cut out of complex analysis,
87
332875
3250
資淺的銀行家無法 接觸到複雜的分析,
05:36
and professors had to build online courses without help.
88
336500
3083
而教授得在沒有幫助的狀況下 打造線上課程。
05:41
And the effect of all of this was the same as in surgery.
89
341125
3226
所有這些帶來的影響 跟手術的情形是一樣的。
05:44
Learning on the job was getting much harder.
90
344375
2917
做中學變得越來越困難。
05:48
This can’t last.
91
348958
1417
這情況不能繼續下去。
05:51
McKinsey estimates that between half a billion and a billion of us
92
351542
4267
麥肯錫顧問公司估計:
大約有五~十億人在 2030 年以前,
05:55
are going to have to adapt to AI in our daily work by 2030.
93
355833
4125
必須將人工智慧應用在日常工作中。
我們以為當我們在做的時候, 會有在職訓練。
06:01
And we’re assuming that on-the-job learning
94
361000
2011
06:03
will be there for us as we try.
95
363035
1917
06:05
Accenture’s latest workers survey showed that most workers learned key skills
96
365500
4268
埃森哲顧問公司最新的工作調查顯示:
多數人透過做中學得到工作的 關鍵技能,而非透過正式的訓練。
06:09
on the job, not in formal training.
97
369792
2291
06:13
So while we talk a lot about its potential future impact,
98
373292
3517
當我們高談闊論人工智慧 對未來的潛在衝擊,
06:16
the aspect of AI that may matter most right now
99
376833
3685
此時此刻,人工智慧 對我們最重要的影響是
06:20
is that we’re handling it in a way that blocks learning on the job
100
380542
3375
我們應用人工智慧的方式, 阻礙了人們邊做邊學的機會。
06:24
just when we need it most.
101
384375
1625
而那是我們最需要學習的時候。
06:27
Now across all our sites, a small minority found a way to learn.
102
387458
6042
在我們的研究對象中, 有一小群人找到一種學習方式。
06:35
They did it by breaking and bending rules.
103
395625
3042
他們透過打破常規來學習。
06:39
Approved methods weren’t working, so they bent and broke rules
104
399083
4643
被准許的作法不可行, 所以他們改變了遊戲規則,
06:43
to get hands-on practice with experts.
105
403750
1976
才得以與專家一同實際操作。
06:45
In my setting, residents got involved in robotic surgery in medical school
106
405750
5601
我看到的是,住院醫師 在醫學院裡為了參與機器人手術,
06:51
at the expense of their generalist education.
107
411375
3583
犧牲了上全科醫師的課為代價,
06:56
And they spent hundreds of extra hours with simulators and recordings of surgery,
108
416417
5851
他們多花了數百個小時 使用模擬器與看手術錄影來學習。
07:02
when you were supposed to learn in the OR.
109
422292
2541
那是他們本來應當 在手術室裡學習的。
07:05
And maybe most importantly, they found ways to struggle
110
425375
3476
或許更重要的,
他們在有限的專家指導下, 找到在實際的手術中練習的機會。
07:08
in live procedures with limited expert supervision.
111
428875
3750
07:13
I call all this “shadow learning,” because it bends the rules
112
433792
4309
我稱之為「在陰影中學習」 因為這違反了規則,
07:18
and learner’s do it out of the limelight.
113
438125
2000
學生得要偷偷摸摸地學習。
07:21
And everyone turns a blind eye because it gets results.
114
441542
4101
大家對此睜一隻眼閉一隻眼, 因為這樣的確有效。
07:25
Remember, these are the star pupils of the bunch.
115
445667
3166
但記住,這些僅是少數的明星學生。
07:29
Now, obviously, this is not OK, and it’s not sustainable.
116
449792
3208
顯然,這樣並不恰當, 這不是長久之計。
07:33
No one should have to risk getting fired
117
453708
2185
沒有人應該冒著被開除的風險,
07:35
to learn the skills they need to do their job.
118
455917
2150
去學習他們工作必要的技巧。
07:38
But we do need to learn from these people.
119
458792
2056
但我們必須從這些人身上學習。
07:41
They took serious risks to learn.
120
461917
2250
他們為了學習而承擔高度風險。
07:44
They understood they needed to protect struggle and challenge in their work
121
464792
4351
他們明白必須保護工作中 受挫與挑戰的機會,
07:49
so that they could push themselves to tackle hard problems
122
469167
2892
以推動他們自己去挑戰
比他們的能力能解決的 更困難的問題。
07:52
right near the edge of their capacity.
123
472083
1959
07:54
They also made sure there was an expert nearby
124
474458
2216
他們也確保會有一個專家在旁,
07:56
to offer pointers and to backstop against catastrophe.
125
476698
3094
提供建議跟收拾殘局, 以防他們搞砸了。
08:00
Let’s build this combination of struggle and expert support
126
480875
3458
讓我們設計 在導入每項人工智慧時
08:04
into each AI implementation.
127
484708
2750
加入學習機會及專家協助的組合。
08:08
Here’s one clear example I could get of this on the ground.
128
488375
2828
這裡有個清楚的案例, 我能在現實中找到。
08:12
Before robots,
129
492125
1226
在機器人出現之前,
08:13
if you were a bomb disposal technician, you dealt with an IED by walking up to it.
130
493375
4792
如果你是個拆彈技術專家 面對簡易爆炸裝置時,你得走近它。
08:19
A junior officer was hundreds of feet away,
131
499333
2143
一個資淺的警官在數百公尺外支援,
08:21
so could only watch and help if you decided it was safe
132
501500
3309
他可以觀察並協助,
直到你確定裝置是安全的 並邀請他們到近距離。
08:24
and invited them downrange.
133
504833
1417
08:27
Now you sit side-by-side in a bomb-proof truck.
134
507208
3893
現在你們肩並肩地坐在防彈車裡。
08:31
You both watched the video feed.
135
511125
1809
你們一同觀看機器人傳來的影片資訊。
08:32
They control a distant robot, and you guide the work out loud.
136
512958
4310
資淺者控制著遠端機器人, 而你大聲引導著作業。
08:37
Trainees learn better than they did before robots.
137
517292
3208
受訓者的學習效果 比機器人出現之前更佳。
08:41
We can scale this to surgery, start-ups, policing,
138
521125
3933
我們可以按比例複製這樣的模式 到手術、新創公司、警政、
08:45
investment banking, online education and beyond.
139
525082
2625
投資銀行、線上教育, 以及更多產業。
08:48
The good news is we’ve got new tools to do it.
140
528375
2500
好消息是我們有新的工具去執行。
08:51
The internet and the cloud mean we don’t always need one expert for every trainee,
141
531750
4082
網路跟雲端代表著我們不再需要 一對一的師徒制,
08:56
for them to be physically near each other or even to be in the same organization.
142
536167
4458
他們不再需要去到同一個空間 甚至在不同的組織單位裡。
09:01
And we can build AI to help:
143
541292
3041
我們可以打造人工智慧來協助。
09:05
to coach learners as they struggle, to coach experts as they coach
144
545167
5059
當學生困惑時教導他們, 當專家指導學生時協助專家,
09:10
and to connect those two groups in smart ways.
145
550250
2542
並以聰明的方式聯繫這兩群人。
09:15
There are people at work on systems like this,
146
555375
2542
有人正在開發這樣的系統,
09:18
but they’ve been mostly focused on formal training.
147
558333
2792
但他們大多專注於正式的訓練。
09:21
And the deeper crisis is in on-the-job learning.
148
561458
2584
但更深的危機是工作做中學的部分。
09:24
We must do better.
149
564417
1851
我們必須做得更好。
09:26
Today’s problems demand we do better
150
566292
2583
今天所面臨的挑戰促使我們要更好地
09:29
to create work that takes full advantage of AI’s amazing capabilities
151
569375
4875
創造應用人工智慧無限潛能的工作,
09:35
while enhancing our skills as we do it.
152
575042
2750
同時讓我們在工作時 也能加強我們的技能。
09:38
That’s the kind of future I dreamed of as a kid.
153
578333
2750
這是我從孩提時代以來 一直有的夢想。
09:41
And the time to create it is now.
154
581458
2167
現在就是創造它的時刻。
09:44
Thank you.
155
584333
1226
謝謝大家。
09:45
(Applause)
156
585583
3625
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7