Your company's data could help end world hunger | Mallory Freeman

54,143 views ・ 2016-11-29

TED


请双击下面的英文字幕来播放视频。

翻译人员: Junyi Sha 校对人员: Haoliang Chen
00:12
June 2010.
0
12880
1760
2010年6月,
00:15
I landed for the first time in Rome, Italy.
1
15760
2880
我第一次来到意大利罗马。
00:19
I wasn't there to sightsee.
2
19800
1896
我不是去那儿观光旅游的。
00:21
I was there to solve world hunger.
3
21720
3120
我是去解决世界饥饿问题的。
00:25
(Laughter)
4
25160
2096
(笑声)
00:27
That's right.
5
27280
1216
就是这样的。
00:28
I was a 25-year-old PhD student
6
28520
2096
我是一名25岁的博士生,
00:30
armed with a prototype tool developed back at my university,
7
30640
3096
带着在大学研发的设备原型,
00:33
and I was going to help the World Food Programme fix hunger.
8
33760
3080
去帮助世界粮食计划署 解决饥饿问题。
00:37
So I strode into the headquarters building
9
37840
2736
所以我大步跨入总部大楼,
00:40
and my eyes scanned the row of UN flags,
10
40600
2816
用眼睛扫视了那一排联合国旗帜,
00:43
and I smiled as I thought to myself,
11
43440
1960
我边笑边暗自想:
00:46
"The engineer is here."
12
46840
1616
“工程师来啦。”
00:48
(Laughter)
13
48480
2216
(笑声)
00:50
Give me your data.
14
50720
1776
把你们的数据给我,
00:52
I'm going to optimize everything.
15
52520
2176
我要优化这一切。
00:54
(Laughter)
16
54720
1736
(笑声)
00:56
Tell me the food that you've purchased,
17
56480
1896
告诉我你们购买过的食物,
00:58
tell me where it's going and when it needs to be there,
18
58400
2616
告诉我食物需要 何时送达何地
01:01
and I'm going to tell you the shortest, fastest, cheapest,
19
61040
2736
我就能告诉你 最短,最快,最便宜
01:03
best set of routes to take for the food.
20
63800
1936
的最佳食物运输道路。
01:05
We're going to save money,
21
65760
1496
我们就能节约资金,
01:07
we're going to avoid delays and disruptions,
22
67280
2096
我们就能避免延误和干扰,
01:09
and bottom line, we're going to save lives.
23
69400
2736
最重要的是, 我们能挽救生命。
01:12
You're welcome.
24
72160
1216
不用谢。
01:13
(Laughter)
25
73400
1696
(笑声)
01:15
I thought it was going to take 12 months,
26
75120
1976
我想这大概会需要 用12个月的时间来实现,
01:17
OK, maybe even 13.
27
77120
1560
好吧,或者是13个月。
01:19
This is not quite how it panned out.
28
79800
2280
但这并不怎么成功。
01:23
Just a couple of months into the project, my French boss, he told me,
29
83600
3776
当我加入这个项目几个月之后, 我的法国老板就告诉我:
01:27
"You know, Mallory,
30
87400
1816
“你知道的,马洛里,
01:29
it's a good idea,
31
89240
1656
这是一个好想法,
01:30
but the data you need for your algorithms is not there.
32
90920
3336
但是你的算法 需要的数据并不在这儿。
01:34
It's the right idea but at the wrong time,
33
94280
2536
这想法的思路正确, 但是出现在了错误的时间点上
01:36
and the right idea at the wrong time
34
96840
2296
错误时间点上的所谓正确想法,
01:39
is the wrong idea."
35
99160
1376
就是错误的想法。”
01:40
(Laughter)
36
100560
1320
(笑声)
01:42
Project over.
37
102960
1280
于是项目中止。
01:45
I was crushed.
38
105120
1200
我非常沮丧。
01:49
When I look back now
39
109000
1456
现在当我回顾
01:50
on that first summer in Rome
40
110480
1656
我在罗马度过的第一个夏天,
01:52
and I see how much has changed over the past six years,
41
112160
2656
我看到了六年来发生的巨大变化,
01:54
it is an absolute transformation.
42
114840
2240
真是绝对的大改变。
01:57
It's a coming of age for bringing data into the humanitarian world.
43
117640
3400
这是一个让我们将数据 带到人道主义世界的时代。
02:02
It's exciting. It's inspiring.
44
122160
2656
这真是令人兴奋,鼓舞人心。
02:04
But we're not there yet.
45
124840
1200
但是我们还没完全做到。
02:07
And brace yourself, executives,
46
127320
2296
请振作精神,高管们,
02:09
because I'm going to be putting companies
47
129640
1976
因为我正要把 企业放到焦点位置,
02:11
on the hot seat to step up and play the role that I know they can.
48
131640
3120
提高它们的作用并 尽其所能。
02:17
My experiences back in Rome prove
49
137520
2816
我在罗马的经历证明了
02:20
using data you can save lives.
50
140360
2080
数据可以拯救生命。
02:23
OK, not that first attempt,
51
143440
2456
好吧,并不是第一次的尝试,
02:25
but eventually we got there.
52
145920
2576
但是我们最终做到了。
02:28
Let me paint the picture for you.
53
148520
1736
让我来展开这幅图景。
02:30
Imagine that you have to plan breakfast, lunch and dinner
54
150280
2736
假设你需要为50万人准备三餐,
02:33
for 500,000 people,
55
153040
1616
02:34
and you only have a certain budget to do it,
56
154680
2136
你的预算是固定的,
02:36
say 6.5 million dollars per month.
57
156840
2240
比方说每月650万美元。
02:40
Well, what should you do? What's the best way to handle it?
58
160920
2762
好的,那你应该怎么做呢? 处理这件事的最好方法是什么呢?
02:44
Should you buy rice, wheat, chickpea, oil?
59
164280
2760
你是该买大米、小麦、 鹰嘴豆还是油呢?
02:47
How much?
60
167760
1216
又要买多少呢?
02:49
It sounds simple. It's not.
61
169000
2136
这听起来很简单,
实则不然。
02:51
You have 30 possible foods, and you have to pick five of them.
62
171160
3216
你有30种食物可供选择,
你需要从中选出五种。
02:54
That's already over 140,000 different combinations.
63
174400
3416
那样就会有超过14万种 不同的食物组合。
02:57
Then for each food that you pick,
64
177840
1696
针对你所挑选的每一种食物,
02:59
you need to decide how much you'll buy,
65
179560
1976
你还需要考虑购买量的问题,
03:01
where you're going to get it from,
66
181560
1696
考虑购买地的问题,
03:03
where you're going to store it,
67
183280
1480
考虑储存地的问题,
03:05
how long it's going to take to get there.
68
185760
1976
考虑运输时间的问题。
03:07
You need to look at all of the different transportation routes as well.
69
187760
3336
你还需要查看 所有不同的运输线路。
这样下来就会有 超过9亿种不同的选择。
03:11
And that's already over 900 million options.
70
191120
2080
03:14
If you considered each option for a single second,
71
194120
2376
如果考虑一种选择需要1秒钟,
03:16
that would take you over 28 years to get through.
72
196520
2336
那你就需要28年时间 才能把它们全过一遍。
03:18
900 million options.
73
198880
1520
9亿种选择。
03:21
So we created a tool that allowed decisionmakers
74
201160
2456
所以我们设计了一种工具,
使得决策者能够在短短几天之内,
03:23
to weed through all 900 million options
75
203640
2616
就成功过滤完这9亿种选择。
03:26
in just a matter of days.
76
206280
1360
03:28
It turned out to be incredibly successful.
77
208560
2240
事实证明,工具十分成功。
03:31
In an operation in Iraq,
78
211400
1256
在伊拉克的一次行动中,
03:32
we saved 17 percent of the costs,
79
212680
2536
我们节约了原成本中17%的开销,
03:35
and this meant that you had the ability to feed an additional 80,000 people.
80
215240
4136
这就意味着你有额外 的能力再供养8万人
03:39
It's all thanks to the use of data and modeling complex systems.
81
219400
4400
这一切都要归功于数据 以及对复杂系统建模的能力。
03:44
But we didn't do it alone.
82
224800
1280
但这并不是我们独自完成的。
03:46
The unit that I worked with in Rome, they were unique.
83
226840
2736
我在罗马工作的单位十分独特。
03:49
They believed in collaboration.
84
229600
1736
他们相信合作的力量。
03:51
They brought in the academic world.
85
231360
1696
他们引入学术界的帮助,
03:53
They brought in companies.
86
233080
1280
引入企业界的帮助。
03:55
And if we really want to make big changes in big problems like world hunger,
87
235200
3616
如果我们希望能在像全球饥饿问题 等重大问题上创造奇迹,
03:58
we need everybody to the table.
88
238840
2560
我们需要每一个社会成员的加入。
04:02
We need the data people from humanitarian organizations
89
242040
2936
我们需要来自人道组织的 数据人员指引道路,
04:05
leading the way,
90
245000
1256
04:06
and orchestrating just the right types of engagements
91
246280
2576
将观点一致的学者们和政府
04:08
with academics, with governments.
92
248880
1696
紧密连接在一起。
04:10
And there's one group that's not being leveraged in the way that it should be.
93
250600
3696
还有一个群体没有被充分利用。
04:14
Did you guess it? Companies.
94
254320
2096
猜到了吗?是企业。
04:16
Companies have a major role to play in fixing the big problems in our world.
95
256440
3600
企业将在解决我们的世界 重大问题上发挥重要作用。
04:20
I've been in the private sector for two years now.
96
260880
2416
我已经在私人部门干了两年了。
04:23
I've seen what companies can do, and I've seen what companies aren't doing,
97
263320
3576
我见识到了企业的能力, 以及他们没有充分去做的部分,
04:26
and I think there's three main ways that we can fill that gap:
98
266920
3376
我认为主要有三种方式 去填补那些空缺:
04:30
by donating data, by donating decision scientists
99
270320
3096
通过贡献数据,
通过贡献决策科学家,
04:33
and by donating technology to gather new sources of data.
100
273440
3480
和通过贡献收集新数据的技术。
04:37
This is data philanthropy,
101
277920
1576
这是一种数据慈善事业,
04:39
and it's the future of corporate social responsibility.
102
279520
2840
是未来的企业社会责任。
04:43
Bonus, it also makes good business sense.
103
283160
2600
当然它也有很好的商业意义。
04:46
Companies today, they collect mountains of data,
104
286920
3216
当今的企业, 收集大量的数据,
04:50
so the first thing they can do is start donating that data.
105
290160
2762
所以他们所能做的 第一件事就是贡献这些数据
04:52
Some companies are already doing it.
106
292946
2190
一部分企业已经开始提供数据。
04:55
Take, for example, a major telecom company.
107
295160
2416
就以一家主流电信公司为例,
04:57
They opened up their data in Senegal and the Ivory Coast
108
297600
2776
他们开放了位于 塞内加尔和科特迪瓦的数据
05:00
and researchers discovered
109
300400
1976
研究人员由此发现,
05:02
that if you look at the patterns in the pings to the cell phone towers,
110
302400
3334
通过观察信号塔接收到 的手机信号模式图
05:05
you can see where people are traveling.
111
305758
1938
你就能了解人们正前往何处。
05:07
And that can tell you things like
112
307720
2176
通过这些数据你还能了解到
05:09
where malaria might spread, and you can make predictions with it.
113
309920
3096
疟疾可能传播的地方, 你可以由此作出预测。
05:13
Or take for example an innovative satellite company.
114
313040
2896
或者再举一个 创新性卫星公司的例子。
05:15
They opened up their data and donated it,
115
315960
2016
他们公开提供了他们的数据,
05:18
and with that data you could track
116
318000
1656
通过那些数据,你就能够追踪
05:19
how droughts are impacting food production.
117
319680
2040
干旱是如何影响粮食产量的。
05:22
With that you can actually trigger aid funding before a crisis can happen.
118
322920
3680
有了这些数据,你甚至可以 在危机发生之前就启动援助资金。
05:27
This is a great start.
119
327560
1280
这是一个好的开始。
05:29
There's important insights just locked away in company data.
120
329840
2880
在企业们的数据中, 封存着许多重要的信息。
05:34
And yes, you need to be very careful.
121
334480
1816
是的,你需要格外的小心。
05:36
You need to respect privacy concerns, for example by anonymizing the data.
122
336320
3576
你需要尊重隐私问题, 比如可以将数据匿名化。
05:39
But even if the floodgates opened up,
123
339920
2776
但即使放开了约束,
05:42
and even if all companies donated their data
124
342720
2536
即使所有的公司 都将他们的数据捐献给
05:45
to academics, to NGOs, to humanitarian organizations,
125
345280
3256
学术界,非政府组织 和人道主义组织,
05:48
it wouldn't be enough to harness that full impact of data
126
348560
2976
这依然不足以充分使用数据,
05:51
for humanitarian goals.
127
351560
1520
实现人道主义目标。
05:54
Why?
128
354320
1456
为什么?
05:55
To unlock insights in data, you need decision scientists.
129
355800
3240
为了解锁数据中的重要信息, 你仍需要决策科学家。
05:59
Decision scientists are people like me.
130
359760
2576
像我一样的决策科学家。
06:02
They take the data, they clean it up,
131
362360
1816
他们得到数据,整理它,
06:04
transform it and put it into a useful algorithm
132
364200
2256
改造它,再把数据 用于有用的算法中,
06:06
that's the best choice to address the business need at hand.
133
366480
2840
这是企业解决手头的 业务需求的最好选择。
06:09
In the world of humanitarian aid, there are very few decision scientists.
134
369800
3696
在人道主义救援领域, 决策科学家十分短缺。
06:13
Most of them work for companies.
135
373520
1640
他们中的大部分都为企业工作。
06:16
So that's the second thing that companies need to do.
136
376480
2496
所以公司需要做的第二件事,
06:19
In addition to donating their data,
137
379000
1696
除了贡献他们的数据以外,
06:20
they need to donate their decision scientists.
138
380720
2160
他们还需要贡献决策科学家。
06:23
Now, companies will say, "Ah! Don't take our decision scientists from us.
139
383520
5736
然后企业就会说,“啊! 别带走我们的决策科学家。
06:29
We need every spare second of their time."
140
389280
2040
我们每时每刻都需要他们。”
06:32
But there's a way.
141
392360
1200
当然有解决方法。
06:35
If a company was going to donate a block of a decision scientist's time,
142
395200
3416
如果说一家公司愿意贡献出 它的决策科学家的部分时间,
06:38
it would actually make more sense to spread out that block of time
143
398640
3136
那我们应该把这部分贡献时间 分散到很长的周期里去使用,
06:41
over a long period, say for example five years.
144
401800
2200
比如说五年,这样更加有意义。
06:44
This might only amount to a couple of hours per month,
145
404600
3056
这样分配之后,每个月 可能就只需要几个小时,
06:47
which a company would hardly miss,
146
407680
2056
对于一家公司来说微不足道,
06:49
but what it enables is really important: long-term partnerships.
147
409760
3480
但这促成的结果却意义非凡: 一种长期的合作关系。
06:54
Long-term partnerships allow you to build relationships,
148
414920
2816
长期的合作关系 能够促成友谊,
06:57
to get to know the data, to really understand it
149
417760
2656
提供渠道去接触数据, 真正理解它们,
07:00
and to start to understand the needs and challenges
150
420440
2416
从而体会人道主义组织
07:02
that the humanitarian organization is facing.
151
422880
2160
正面对的需求与挑战。
07:06
In Rome, at the World Food Programme, this took us five years to do,
152
426345
3191
在罗马,我们在世界粮食计划署 花费了整整五年,
07:09
five years.
153
429560
1456
五年时间。
07:11
That first three years, OK, that was just what we couldn't solve for.
154
431040
3336
前三年,好吧,我们用于 讨论解决不了的问题。
07:14
Then there was two years after that of refining and implementing the tool,
155
434400
3496
然后我们又花了两年时间 去更新,完善我们的工具
07:17
like in the operations in Iraq and other countries.
156
437920
2800
就像在伊拉克和 其他一些国家的行动一样。
07:21
I don't think that's an unrealistic timeline
157
441520
2096
当讨论到使用数据, 做出可操作改变时,
07:23
when it comes to using data to make operational changes.
158
443640
2736
我认为我们提出的 时间线是十分现实的。
07:26
It's an investment. It requires patience.
159
446400
2400
这是一种投资。 我们需要有耐心。
07:29
But the types of results that can be produced are undeniable.
160
449760
3496
至少最终取得的 效益是不可忽视的。
07:33
In our case, it was the ability to feed tens of thousands more people.
161
453280
3560
对我们而言,这种效益 就是供养成千上万的人口。
07:39
So we have donating data, we have donating decision scientists,
162
459440
4336
所以企业贡献了数据, 企业还贡献了决策科学家,
07:43
and there's actually a third way that companies can help:
163
463800
2696
其实企业还有第三种帮忙的方式:
07:46
donating technology to capture new sources of data.
164
466520
2976
通过贡献收集新数据的技术。
07:49
You see, there's a lot of things we just don't have data on.
165
469520
2840
就像你能看到的, 我们在很多地方还缺失数据。
07:52
Right now, Syrian refugees are flooding into Greece,
166
472960
2720
此时此刻,叙利亚的难民 还在持续涌入希腊,
07:57
and the UN refugee agency, they have their hands full.
167
477120
2560
联合国难民委员会 忙的不可开交。
08:01
The current system for tracking people is paper and pencil,
168
481000
3056
现行的体系是通过 笔和纸追踪人员的
08:04
and what that means is
169
484080
1256
这就是说,
08:05
that when a mother and her five children walk into the camp,
170
485360
2856
当一位母亲领着她的五个孩子 走进难民营的时候,
08:08
headquarters is essentially blind to this moment.
171
488240
2656
总部基本上就 无视这件事的发生。
08:10
That's all going to change in the next few weeks,
172
490920
2336
在未来几周中, 这一切都将会改变,
08:13
thanks to private sector collaboration.
173
493280
1880
感谢私企的合作。
08:15
There's going to be a new system based on donated package tracking technology
174
495840
3656
我正在工作的物流公司, 给我们提供了一种全新的
08:19
from the logistics company that I work for.
175
499520
2040
基于包裹跟踪的数据技术。
08:22
With this new system, there will be a data trail,
176
502120
2336
这样一个系统, 将为我们提供数据追踪,
08:24
so you know exactly the moment
177
504480
1456
这样当妈妈和她的孩子们 走进难民营的那一刻
08:25
when that mother and her children walk into the camp.
178
505960
2496
你就会知道这件事。
08:28
And even more, you know if she's going to have supplies
179
508480
2616
不仅如此,你还会得知 下个月和下下个月,
08:31
this month and the next.
180
511120
1256
她是否会有足够的物需供给。
08:32
Information visibility drives efficiency.
181
512400
3016
信息的可视性驱动了效率。
08:35
For companies, using technology to gather important data,
182
515440
3256
对于企业来说, 使用技术去收集重要数据,
08:38
it's like bread and butter.
183
518720
1456
是它们的主要经济来源。
08:40
They've been doing it for years,
184
520200
1576
他们多年来都在从事这件事,
08:41
and it's led to major operational efficiency improvements.
185
521800
3256
并带来了卓越的效率提升。
08:45
Just try to imagine your favorite beverage company
186
525080
2360
想象一下 你最喜欢的饮料公司
08:48
trying to plan their inventory
187
528280
1576
将要计划下一批产品清单,
08:49
and not knowing how many bottles were on the shelves.
188
529880
2496
却对正在货架上的 饮料数量毫不知情。
08:52
It's absurd.
189
532400
1216
这听起来该多荒唐。
08:53
Data drives better decisions.
190
533640
1560
数据驱使我们做出更好的决策。
08:57
Now, if you're representing a company,
191
537800
2536
现在,假设你正代表着一家公司。
09:00
and you're pragmatic and not just idealistic,
192
540360
3136
你是一个实用主义 而并非理想主义的人
09:03
you might be saying to yourself, "OK, this is all great, Mallory,
193
543520
3056
你也许会对自己说: “好吧,这听起来不错,马洛里,
09:06
but why should I want to be involved?"
194
546600
1840
但是我为什么 会想要加入其中呢?”
09:09
Well for one thing, beyond the good PR,
195
549000
2816
首先,除了有好的公共关系外,
09:11
humanitarian aid is a 24-billion-dollar sector,
196
551840
2776
人道救援组织是一个 价值240亿的行业,
09:14
and there's over five billion people, maybe your next customers,
197
554640
3056
所以来自发展中国家超过50亿的人口,
09:17
that live in the developing world.
198
557720
1816
他们都可能成为你的下一批用户。
09:19
Further, companies that are engaging in data philanthropy,
199
559560
3096
另一方面,从事数据慈善业 的那些公司,
09:22
they're finding new insights locked away in their data.
200
562680
2976
他们正在挖掘 封存在数据当中的新信息。
09:25
Take, for example, a credit card company
201
565680
2256
举个例子,一家信用卡公司
09:27
that's opened up a center
202
567960
1336
开放了一个集中场所,
09:29
that functions as a hub for academics, for NGOs and governments,
203
569320
3376
作为一个中心
使学者,非政府组织和政府 能够一起工作。
09:32
all working together.
204
572720
1240
09:35
They're looking at information in credit card swipes
205
575040
2736
他们查看信用卡中刷出的信息,
09:37
and using that to find insights about how households in India
206
577800
2976
运用这些信息从而得出 在印度的家庭
09:40
live, work, earn and spend.
207
580800
1720
是如何生活,工作, 获得收入和开销的。
09:43
For the humanitarian world, this provides information
208
583680
2576
对于人道主义世界来说, 这就为我们提供了
09:46
about how you might bring people out of poverty.
209
586280
2656
帮助人们摆脱贫困问题的方案。
09:48
But for companies, it's providing insights about your customers
210
588960
3016
但对于公司来说, 这就是向他们提供了
在印度的用户和潜在用户信息。
09:52
and potential customers in India.
211
592000
2040
09:54
It's a win all around.
212
594760
1800
这是双赢的局面。
09:57
Now, for me, what I find exciting about data philanthropy --
213
597960
3776
现在,对于数据慈善业——
10:01
donating data, donating decision scientists and donating technology --
214
601760
4336
贡献数据,贡献决策科学家, 以及贡献技术——
10:06
it's what it means for young professionals like me
215
606120
2376
我激动不已,
对于像我一样选择在公司工作 的年轻学者而言意义非凡。
10:08
who are choosing to work at companies.
216
608520
1840
10:10
Studies show that the next generation of the workforce
217
610800
2656
研究表明,新一代的劳动者
10:13
care about having their work make a bigger impact.
218
613480
2560
更加关注他们的工作是否 能对社会产生更大的影响力。
10:16
We want to make a difference,
219
616920
2456
我们都想为世界做出不同,
10:19
and so through data philanthropy,
220
619400
2416
所以通过数据慈善业,
10:21
companies can actually help engage and retain their decision scientists.
221
621840
3936
公司更容易留得住 他们的决策科学家
10:25
And that's a big deal for a profession that's in high demand.
222
625800
2880
特别是对于这种高需求 的职业来说尤其重要。
10:29
Data philanthropy makes good business sense,
223
629840
3120
数据慈善业有很好的商业价值,
10:34
and it also can help revolutionize the humanitarian world.
224
634200
3280
它同时也能够为人道主义事业 做出巨大变革。
10:39
If we coordinated the planning and logistics
225
639600
2096
如果我们能够把这些 策划和物流进度
10:41
across all of the major facets of a humanitarian operation,
226
641720
3376
运用到人道主义进程 的各种领域之中,
10:45
we could feed, clothe and shelter hundreds of thousands more people,
227
645120
3600
我们就能够给更多的人 提供食物,衣物和住所,
10:49
and companies need to step up and play the role that I know they can
228
649440
4256
公司需要去加强和充分发挥
10:53
in bringing about this revolution.
229
653720
1880
他们在这场革新当中 能够发挥的那些作用。
10:56
You've probably heard of the saying "food for thought."
230
656720
2936
你也许听过这个短语“值得思考的食物” (英文习语,意思是:值得深思的问题)
10:59
Well, this is literally thought for food.
231
659680
2240
字面意思就是思考食物。
11:03
It finally is the right idea at the right time.
232
663560
4136
我们终于在正确的时间 想出了正确的主意。
11:07
(Laughter)
233
667720
1216
(笑声)
11:08
Très magnifique.
234
668960
1576
多么美妙!
11:10
Thank you.
235
670560
1216
谢谢!
11:11
(Applause)
236
671800
2851
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog