Your company's data could help end world hunger | Mallory Freeman

53,447 views ・ 2016-11-29

TED


请双击下面的英文字幕来播放视频。

翻译人员: Junyi Sha 校对人员: Haoliang Chen
00:12
June 2010.
0
12880
1760
2010年6月,
00:15
I landed for the first time in Rome, Italy.
1
15760
2880
我第一次来到意大利罗马。
00:19
I wasn't there to sightsee.
2
19800
1896
我不是去那儿观光旅游的。
00:21
I was there to solve world hunger.
3
21720
3120
我是去解决世界饥饿问题的。
00:25
(Laughter)
4
25160
2096
(笑声)
00:27
That's right.
5
27280
1216
就是这样的。
00:28
I was a 25-year-old PhD student
6
28520
2096
我是一名25岁的博士生,
00:30
armed with a prototype tool developed back at my university,
7
30640
3096
带着在大学研发的设备原型,
00:33
and I was going to help the World Food Programme fix hunger.
8
33760
3080
去帮助世界粮食计划署 解决饥饿问题。
00:37
So I strode into the headquarters building
9
37840
2736
所以我大步跨入总部大楼,
00:40
and my eyes scanned the row of UN flags,
10
40600
2816
用眼睛扫视了那一排联合国旗帜,
00:43
and I smiled as I thought to myself,
11
43440
1960
我边笑边暗自想:
00:46
"The engineer is here."
12
46840
1616
“工程师来啦。”
00:48
(Laughter)
13
48480
2216
(笑声)
00:50
Give me your data.
14
50720
1776
把你们的数据给我,
00:52
I'm going to optimize everything.
15
52520
2176
我要优化这一切。
00:54
(Laughter)
16
54720
1736
(笑声)
00:56
Tell me the food that you've purchased,
17
56480
1896
告诉我你们购买过的食物,
00:58
tell me where it's going and when it needs to be there,
18
58400
2616
告诉我食物需要 何时送达何地
01:01
and I'm going to tell you the shortest, fastest, cheapest,
19
61040
2736
我就能告诉你 最短,最快,最便宜
01:03
best set of routes to take for the food.
20
63800
1936
的最佳食物运输道路。
01:05
We're going to save money,
21
65760
1496
我们就能节约资金,
01:07
we're going to avoid delays and disruptions,
22
67280
2096
我们就能避免延误和干扰,
01:09
and bottom line, we're going to save lives.
23
69400
2736
最重要的是, 我们能挽救生命。
01:12
You're welcome.
24
72160
1216
不用谢。
01:13
(Laughter)
25
73400
1696
(笑声)
01:15
I thought it was going to take 12 months,
26
75120
1976
我想这大概会需要 用12个月的时间来实现,
01:17
OK, maybe even 13.
27
77120
1560
好吧,或者是13个月。
01:19
This is not quite how it panned out.
28
79800
2280
但这并不怎么成功。
01:23
Just a couple of months into the project, my French boss, he told me,
29
83600
3776
当我加入这个项目几个月之后, 我的法国老板就告诉我:
01:27
"You know, Mallory,
30
87400
1816
“你知道的,马洛里,
01:29
it's a good idea,
31
89240
1656
这是一个好想法,
01:30
but the data you need for your algorithms is not there.
32
90920
3336
但是你的算法 需要的数据并不在这儿。
01:34
It's the right idea but at the wrong time,
33
94280
2536
这想法的思路正确, 但是出现在了错误的时间点上
01:36
and the right idea at the wrong time
34
96840
2296
错误时间点上的所谓正确想法,
01:39
is the wrong idea."
35
99160
1376
就是错误的想法。”
01:40
(Laughter)
36
100560
1320
(笑声)
01:42
Project over.
37
102960
1280
于是项目中止。
01:45
I was crushed.
38
105120
1200
我非常沮丧。
01:49
When I look back now
39
109000
1456
现在当我回顾
01:50
on that first summer in Rome
40
110480
1656
我在罗马度过的第一个夏天,
01:52
and I see how much has changed over the past six years,
41
112160
2656
我看到了六年来发生的巨大变化,
01:54
it is an absolute transformation.
42
114840
2240
真是绝对的大改变。
01:57
It's a coming of age for bringing data into the humanitarian world.
43
117640
3400
这是一个让我们将数据 带到人道主义世界的时代。
02:02
It's exciting. It's inspiring.
44
122160
2656
这真是令人兴奋,鼓舞人心。
02:04
But we're not there yet.
45
124840
1200
但是我们还没完全做到。
02:07
And brace yourself, executives,
46
127320
2296
请振作精神,高管们,
02:09
because I'm going to be putting companies
47
129640
1976
因为我正要把 企业放到焦点位置,
02:11
on the hot seat to step up and play the role that I know they can.
48
131640
3120
提高它们的作用并 尽其所能。
02:17
My experiences back in Rome prove
49
137520
2816
我在罗马的经历证明了
02:20
using data you can save lives.
50
140360
2080
数据可以拯救生命。
02:23
OK, not that first attempt,
51
143440
2456
好吧,并不是第一次的尝试,
02:25
but eventually we got there.
52
145920
2576
但是我们最终做到了。
02:28
Let me paint the picture for you.
53
148520
1736
让我来展开这幅图景。
02:30
Imagine that you have to plan breakfast, lunch and dinner
54
150280
2736
假设你需要为50万人准备三餐,
02:33
for 500,000 people,
55
153040
1616
02:34
and you only have a certain budget to do it,
56
154680
2136
你的预算是固定的,
02:36
say 6.5 million dollars per month.
57
156840
2240
比方说每月650万美元。
02:40
Well, what should you do? What's the best way to handle it?
58
160920
2762
好的,那你应该怎么做呢? 处理这件事的最好方法是什么呢?
02:44
Should you buy rice, wheat, chickpea, oil?
59
164280
2760
你是该买大米、小麦、 鹰嘴豆还是油呢?
02:47
How much?
60
167760
1216
又要买多少呢?
02:49
It sounds simple. It's not.
61
169000
2136
这听起来很简单,
实则不然。
02:51
You have 30 possible foods, and you have to pick five of them.
62
171160
3216
你有30种食物可供选择,
你需要从中选出五种。
02:54
That's already over 140,000 different combinations.
63
174400
3416
那样就会有超过14万种 不同的食物组合。
02:57
Then for each food that you pick,
64
177840
1696
针对你所挑选的每一种食物,
02:59
you need to decide how much you'll buy,
65
179560
1976
你还需要考虑购买量的问题,
03:01
where you're going to get it from,
66
181560
1696
考虑购买地的问题,
03:03
where you're going to store it,
67
183280
1480
考虑储存地的问题,
03:05
how long it's going to take to get there.
68
185760
1976
考虑运输时间的问题。
03:07
You need to look at all of the different transportation routes as well.
69
187760
3336
你还需要查看 所有不同的运输线路。
这样下来就会有 超过9亿种不同的选择。
03:11
And that's already over 900 million options.
70
191120
2080
03:14
If you considered each option for a single second,
71
194120
2376
如果考虑一种选择需要1秒钟,
03:16
that would take you over 28 years to get through.
72
196520
2336
那你就需要28年时间 才能把它们全过一遍。
03:18
900 million options.
73
198880
1520
9亿种选择。
03:21
So we created a tool that allowed decisionmakers
74
201160
2456
所以我们设计了一种工具,
使得决策者能够在短短几天之内,
03:23
to weed through all 900 million options
75
203640
2616
就成功过滤完这9亿种选择。
03:26
in just a matter of days.
76
206280
1360
03:28
It turned out to be incredibly successful.
77
208560
2240
事实证明,工具十分成功。
03:31
In an operation in Iraq,
78
211400
1256
在伊拉克的一次行动中,
03:32
we saved 17 percent of the costs,
79
212680
2536
我们节约了原成本中17%的开销,
03:35
and this meant that you had the ability to feed an additional 80,000 people.
80
215240
4136
这就意味着你有额外 的能力再供养8万人
03:39
It's all thanks to the use of data and modeling complex systems.
81
219400
4400
这一切都要归功于数据 以及对复杂系统建模的能力。
03:44
But we didn't do it alone.
82
224800
1280
但这并不是我们独自完成的。
03:46
The unit that I worked with in Rome, they were unique.
83
226840
2736
我在罗马工作的单位十分独特。
03:49
They believed in collaboration.
84
229600
1736
他们相信合作的力量。
03:51
They brought in the academic world.
85
231360
1696
他们引入学术界的帮助,
03:53
They brought in companies.
86
233080
1280
引入企业界的帮助。
03:55
And if we really want to make big changes in big problems like world hunger,
87
235200
3616
如果我们希望能在像全球饥饿问题 等重大问题上创造奇迹,
03:58
we need everybody to the table.
88
238840
2560
我们需要每一个社会成员的加入。
04:02
We need the data people from humanitarian organizations
89
242040
2936
我们需要来自人道组织的 数据人员指引道路,
04:05
leading the way,
90
245000
1256
04:06
and orchestrating just the right types of engagements
91
246280
2576
将观点一致的学者们和政府
04:08
with academics, with governments.
92
248880
1696
紧密连接在一起。
04:10
And there's one group that's not being leveraged in the way that it should be.
93
250600
3696
还有一个群体没有被充分利用。
04:14
Did you guess it? Companies.
94
254320
2096
猜到了吗?是企业。
04:16
Companies have a major role to play in fixing the big problems in our world.
95
256440
3600
企业将在解决我们的世界 重大问题上发挥重要作用。
04:20
I've been in the private sector for two years now.
96
260880
2416
我已经在私人部门干了两年了。
04:23
I've seen what companies can do, and I've seen what companies aren't doing,
97
263320
3576
我见识到了企业的能力, 以及他们没有充分去做的部分,
04:26
and I think there's three main ways that we can fill that gap:
98
266920
3376
我认为主要有三种方式 去填补那些空缺:
04:30
by donating data, by donating decision scientists
99
270320
3096
通过贡献数据,
通过贡献决策科学家,
04:33
and by donating technology to gather new sources of data.
100
273440
3480
和通过贡献收集新数据的技术。
04:37
This is data philanthropy,
101
277920
1576
这是一种数据慈善事业,
04:39
and it's the future of corporate social responsibility.
102
279520
2840
是未来的企业社会责任。
04:43
Bonus, it also makes good business sense.
103
283160
2600
当然它也有很好的商业意义。
04:46
Companies today, they collect mountains of data,
104
286920
3216
当今的企业, 收集大量的数据,
04:50
so the first thing they can do is start donating that data.
105
290160
2762
所以他们所能做的 第一件事就是贡献这些数据
04:52
Some companies are already doing it.
106
292946
2190
一部分企业已经开始提供数据。
04:55
Take, for example, a major telecom company.
107
295160
2416
就以一家主流电信公司为例,
04:57
They opened up their data in Senegal and the Ivory Coast
108
297600
2776
他们开放了位于 塞内加尔和科特迪瓦的数据
05:00
and researchers discovered
109
300400
1976
研究人员由此发现,
05:02
that if you look at the patterns in the pings to the cell phone towers,
110
302400
3334
通过观察信号塔接收到 的手机信号模式图
05:05
you can see where people are traveling.
111
305758
1938
你就能了解人们正前往何处。
05:07
And that can tell you things like
112
307720
2176
通过这些数据你还能了解到
05:09
where malaria might spread, and you can make predictions with it.
113
309920
3096
疟疾可能传播的地方, 你可以由此作出预测。
05:13
Or take for example an innovative satellite company.
114
313040
2896
或者再举一个 创新性卫星公司的例子。
05:15
They opened up their data and donated it,
115
315960
2016
他们公开提供了他们的数据,
05:18
and with that data you could track
116
318000
1656
通过那些数据,你就能够追踪
05:19
how droughts are impacting food production.
117
319680
2040
干旱是如何影响粮食产量的。
05:22
With that you can actually trigger aid funding before a crisis can happen.
118
322920
3680
有了这些数据,你甚至可以 在危机发生之前就启动援助资金。
05:27
This is a great start.
119
327560
1280
这是一个好的开始。
05:29
There's important insights just locked away in company data.
120
329840
2880
在企业们的数据中, 封存着许多重要的信息。
05:34
And yes, you need to be very careful.
121
334480
1816
是的,你需要格外的小心。
05:36
You need to respect privacy concerns, for example by anonymizing the data.
122
336320
3576
你需要尊重隐私问题, 比如可以将数据匿名化。
05:39
But even if the floodgates opened up,
123
339920
2776
但即使放开了约束,
05:42
and even if all companies donated their data
124
342720
2536
即使所有的公司 都将他们的数据捐献给
05:45
to academics, to NGOs, to humanitarian organizations,
125
345280
3256
学术界,非政府组织 和人道主义组织,
05:48
it wouldn't be enough to harness that full impact of data
126
348560
2976
这依然不足以充分使用数据,
05:51
for humanitarian goals.
127
351560
1520
实现人道主义目标。
05:54
Why?
128
354320
1456
为什么?
05:55
To unlock insights in data, you need decision scientists.
129
355800
3240
为了解锁数据中的重要信息, 你仍需要决策科学家。
05:59
Decision scientists are people like me.
130
359760
2576
像我一样的决策科学家。
06:02
They take the data, they clean it up,
131
362360
1816
他们得到数据,整理它,
06:04
transform it and put it into a useful algorithm
132
364200
2256
改造它,再把数据 用于有用的算法中,
06:06
that's the best choice to address the business need at hand.
133
366480
2840
这是企业解决手头的 业务需求的最好选择。
06:09
In the world of humanitarian aid, there are very few decision scientists.
134
369800
3696
在人道主义救援领域, 决策科学家十分短缺。
06:13
Most of them work for companies.
135
373520
1640
他们中的大部分都为企业工作。
06:16
So that's the second thing that companies need to do.
136
376480
2496
所以公司需要做的第二件事,
06:19
In addition to donating their data,
137
379000
1696
除了贡献他们的数据以外,
06:20
they need to donate their decision scientists.
138
380720
2160
他们还需要贡献决策科学家。
06:23
Now, companies will say, "Ah! Don't take our decision scientists from us.
139
383520
5736
然后企业就会说,“啊! 别带走我们的决策科学家。
06:29
We need every spare second of their time."
140
389280
2040
我们每时每刻都需要他们。”
06:32
But there's a way.
141
392360
1200
当然有解决方法。
06:35
If a company was going to donate a block of a decision scientist's time,
142
395200
3416
如果说一家公司愿意贡献出 它的决策科学家的部分时间,
06:38
it would actually make more sense to spread out that block of time
143
398640
3136
那我们应该把这部分贡献时间 分散到很长的周期里去使用,
06:41
over a long period, say for example five years.
144
401800
2200
比如说五年,这样更加有意义。
06:44
This might only amount to a couple of hours per month,
145
404600
3056
这样分配之后,每个月 可能就只需要几个小时,
06:47
which a company would hardly miss,
146
407680
2056
对于一家公司来说微不足道,
06:49
but what it enables is really important: long-term partnerships.
147
409760
3480
但这促成的结果却意义非凡: 一种长期的合作关系。
06:54
Long-term partnerships allow you to build relationships,
148
414920
2816
长期的合作关系 能够促成友谊,
06:57
to get to know the data, to really understand it
149
417760
2656
提供渠道去接触数据, 真正理解它们,
07:00
and to start to understand the needs and challenges
150
420440
2416
从而体会人道主义组织
07:02
that the humanitarian organization is facing.
151
422880
2160
正面对的需求与挑战。
07:06
In Rome, at the World Food Programme, this took us five years to do,
152
426345
3191
在罗马,我们在世界粮食计划署 花费了整整五年,
07:09
five years.
153
429560
1456
五年时间。
07:11
That first three years, OK, that was just what we couldn't solve for.
154
431040
3336
前三年,好吧,我们用于 讨论解决不了的问题。
07:14
Then there was two years after that of refining and implementing the tool,
155
434400
3496
然后我们又花了两年时间 去更新,完善我们的工具
07:17
like in the operations in Iraq and other countries.
156
437920
2800
就像在伊拉克和 其他一些国家的行动一样。
07:21
I don't think that's an unrealistic timeline
157
441520
2096
当讨论到使用数据, 做出可操作改变时,
07:23
when it comes to using data to make operational changes.
158
443640
2736
我认为我们提出的 时间线是十分现实的。
07:26
It's an investment. It requires patience.
159
446400
2400
这是一种投资。 我们需要有耐心。
07:29
But the types of results that can be produced are undeniable.
160
449760
3496
至少最终取得的 效益是不可忽视的。
07:33
In our case, it was the ability to feed tens of thousands more people.
161
453280
3560
对我们而言,这种效益 就是供养成千上万的人口。
07:39
So we have donating data, we have donating decision scientists,
162
459440
4336
所以企业贡献了数据, 企业还贡献了决策科学家,
07:43
and there's actually a third way that companies can help:
163
463800
2696
其实企业还有第三种帮忙的方式:
07:46
donating technology to capture new sources of data.
164
466520
2976
通过贡献收集新数据的技术。
07:49
You see, there's a lot of things we just don't have data on.
165
469520
2840
就像你能看到的, 我们在很多地方还缺失数据。
07:52
Right now, Syrian refugees are flooding into Greece,
166
472960
2720
此时此刻,叙利亚的难民 还在持续涌入希腊,
07:57
and the UN refugee agency, they have their hands full.
167
477120
2560
联合国难民委员会 忙的不可开交。
08:01
The current system for tracking people is paper and pencil,
168
481000
3056
现行的体系是通过 笔和纸追踪人员的
08:04
and what that means is
169
484080
1256
这就是说,
08:05
that when a mother and her five children walk into the camp,
170
485360
2856
当一位母亲领着她的五个孩子 走进难民营的时候,
08:08
headquarters is essentially blind to this moment.
171
488240
2656
总部基本上就 无视这件事的发生。
08:10
That's all going to change in the next few weeks,
172
490920
2336
在未来几周中, 这一切都将会改变,
08:13
thanks to private sector collaboration.
173
493280
1880
感谢私企的合作。
08:15
There's going to be a new system based on donated package tracking technology
174
495840
3656
我正在工作的物流公司, 给我们提供了一种全新的
08:19
from the logistics company that I work for.
175
499520
2040
基于包裹跟踪的数据技术。
08:22
With this new system, there will be a data trail,
176
502120
2336
这样一个系统, 将为我们提供数据追踪,
08:24
so you know exactly the moment
177
504480
1456
这样当妈妈和她的孩子们 走进难民营的那一刻
08:25
when that mother and her children walk into the camp.
178
505960
2496
你就会知道这件事。
08:28
And even more, you know if she's going to have supplies
179
508480
2616
不仅如此,你还会得知 下个月和下下个月,
08:31
this month and the next.
180
511120
1256
她是否会有足够的物需供给。
08:32
Information visibility drives efficiency.
181
512400
3016
信息的可视性驱动了效率。
08:35
For companies, using technology to gather important data,
182
515440
3256
对于企业来说, 使用技术去收集重要数据,
08:38
it's like bread and butter.
183
518720
1456
是它们的主要经济来源。
08:40
They've been doing it for years,
184
520200
1576
他们多年来都在从事这件事,
08:41
and it's led to major operational efficiency improvements.
185
521800
3256
并带来了卓越的效率提升。
08:45
Just try to imagine your favorite beverage company
186
525080
2360
想象一下 你最喜欢的饮料公司
08:48
trying to plan their inventory
187
528280
1576
将要计划下一批产品清单,
08:49
and not knowing how many bottles were on the shelves.
188
529880
2496
却对正在货架上的 饮料数量毫不知情。
08:52
It's absurd.
189
532400
1216
这听起来该多荒唐。
08:53
Data drives better decisions.
190
533640
1560
数据驱使我们做出更好的决策。
08:57
Now, if you're representing a company,
191
537800
2536
现在,假设你正代表着一家公司。
09:00
and you're pragmatic and not just idealistic,
192
540360
3136
你是一个实用主义 而并非理想主义的人
09:03
you might be saying to yourself, "OK, this is all great, Mallory,
193
543520
3056
你也许会对自己说: “好吧,这听起来不错,马洛里,
09:06
but why should I want to be involved?"
194
546600
1840
但是我为什么 会想要加入其中呢?”
09:09
Well for one thing, beyond the good PR,
195
549000
2816
首先,除了有好的公共关系外,
09:11
humanitarian aid is a 24-billion-dollar sector,
196
551840
2776
人道救援组织是一个 价值240亿的行业,
09:14
and there's over five billion people, maybe your next customers,
197
554640
3056
所以来自发展中国家超过50亿的人口,
09:17
that live in the developing world.
198
557720
1816
他们都可能成为你的下一批用户。
09:19
Further, companies that are engaging in data philanthropy,
199
559560
3096
另一方面,从事数据慈善业 的那些公司,
09:22
they're finding new insights locked away in their data.
200
562680
2976
他们正在挖掘 封存在数据当中的新信息。
09:25
Take, for example, a credit card company
201
565680
2256
举个例子,一家信用卡公司
09:27
that's opened up a center
202
567960
1336
开放了一个集中场所,
09:29
that functions as a hub for academics, for NGOs and governments,
203
569320
3376
作为一个中心
使学者,非政府组织和政府 能够一起工作。
09:32
all working together.
204
572720
1240
09:35
They're looking at information in credit card swipes
205
575040
2736
他们查看信用卡中刷出的信息,
09:37
and using that to find insights about how households in India
206
577800
2976
运用这些信息从而得出 在印度的家庭
09:40
live, work, earn and spend.
207
580800
1720
是如何生活,工作, 获得收入和开销的。
09:43
For the humanitarian world, this provides information
208
583680
2576
对于人道主义世界来说, 这就为我们提供了
09:46
about how you might bring people out of poverty.
209
586280
2656
帮助人们摆脱贫困问题的方案。
09:48
But for companies, it's providing insights about your customers
210
588960
3016
但对于公司来说, 这就是向他们提供了
在印度的用户和潜在用户信息。
09:52
and potential customers in India.
211
592000
2040
09:54
It's a win all around.
212
594760
1800
这是双赢的局面。
09:57
Now, for me, what I find exciting about data philanthropy --
213
597960
3776
现在,对于数据慈善业——
10:01
donating data, donating decision scientists and donating technology --
214
601760
4336
贡献数据,贡献决策科学家, 以及贡献技术——
10:06
it's what it means for young professionals like me
215
606120
2376
我激动不已,
对于像我一样选择在公司工作 的年轻学者而言意义非凡。
10:08
who are choosing to work at companies.
216
608520
1840
10:10
Studies show that the next generation of the workforce
217
610800
2656
研究表明,新一代的劳动者
10:13
care about having their work make a bigger impact.
218
613480
2560
更加关注他们的工作是否 能对社会产生更大的影响力。
10:16
We want to make a difference,
219
616920
2456
我们都想为世界做出不同,
10:19
and so through data philanthropy,
220
619400
2416
所以通过数据慈善业,
10:21
companies can actually help engage and retain their decision scientists.
221
621840
3936
公司更容易留得住 他们的决策科学家
10:25
And that's a big deal for a profession that's in high demand.
222
625800
2880
特别是对于这种高需求 的职业来说尤其重要。
10:29
Data philanthropy makes good business sense,
223
629840
3120
数据慈善业有很好的商业价值,
10:34
and it also can help revolutionize the humanitarian world.
224
634200
3280
它同时也能够为人道主义事业 做出巨大变革。
10:39
If we coordinated the planning and logistics
225
639600
2096
如果我们能够把这些 策划和物流进度
10:41
across all of the major facets of a humanitarian operation,
226
641720
3376
运用到人道主义进程 的各种领域之中,
10:45
we could feed, clothe and shelter hundreds of thousands more people,
227
645120
3600
我们就能够给更多的人 提供食物,衣物和住所,
10:49
and companies need to step up and play the role that I know they can
228
649440
4256
公司需要去加强和充分发挥
10:53
in bringing about this revolution.
229
653720
1880
他们在这场革新当中 能够发挥的那些作用。
10:56
You've probably heard of the saying "food for thought."
230
656720
2936
你也许听过这个短语“值得思考的食物” (英文习语,意思是:值得深思的问题)
10:59
Well, this is literally thought for food.
231
659680
2240
字面意思就是思考食物。
11:03
It finally is the right idea at the right time.
232
663560
4136
我们终于在正确的时间 想出了正确的主意。
11:07
(Laughter)
233
667720
1216
(笑声)
11:08
Très magnifique.
234
668960
1576
多么美妙!
11:10
Thank you.
235
670560
1216
谢谢!
11:11
(Applause)
236
671800
2851
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7