Your company's data could help end world hunger | Mallory Freeman

53,487 views ・ 2016-11-29

TED


請雙擊下方英文字幕播放視頻。

譯者: 易帆 余 審譯者: Amy H. Fann
00:12
June 2010.
0
12880
1760
2010 年六月,
00:15
I landed for the first time in Rome, Italy.
1
15760
2880
我第一次前往意大利羅馬。
00:19
I wasn't there to sightsee.
2
19800
1896
我不是去觀光的,
00:21
I was there to solve world hunger.
3
21720
3120
我是去解決世界飢餓問題的。
00:25
(Laughter)
4
25160
2096
(笑聲)
00:27
That's right.
5
27280
1216
沒錯。
00:28
I was a 25-year-old PhD student
6
28520
2096
我當時是 25 歲的博士生,
00:30
armed with a prototype tool developed back at my university,
7
30640
3096
我帶著在大學期間開發的原型工具,
00:33
and I was going to help the World Food Programme fix hunger.
8
33760
3080
準備幫助世界糧食計劃署 解決飢餓問題。
00:37
So I strode into the headquarters building
9
37840
2736
我大步走進他們的總部大樓,
00:40
and my eyes scanned the row of UN flags,
10
40600
2816
映入眼簾的是一整排的聯合國國旗,
00:43
and I smiled as I thought to myself,
11
43440
1960
我開心地對著自己說:
00:46
"The engineer is here."
12
46840
1616
「工程師來了!」
00:48
(Laughter)
13
48480
2216
(笑聲)
00:50
Give me your data.
14
50720
1776
「拿出你們的數據,
00:52
I'm going to optimize everything.
15
52520
2176
我要優化所有資料。」
00:54
(Laughter)
16
54720
1736
(笑聲)
00:56
Tell me the food that you've purchased,
17
56480
1896
「告訴我你們已經購買的食物,
00:58
tell me where it's going and when it needs to be there,
18
58400
2616
告訴我要送到哪裡、什麼時候需要,
我就會告訴你們最短、最快、
01:01
and I'm going to tell you the shortest, fastest, cheapest,
19
61040
2736
最便宜的食物運送路徑。
01:03
best set of routes to take for the food.
20
63800
1936
01:05
We're going to save money,
21
65760
1496
我們會節省很多錢,
01:07
we're going to avoid delays and disruptions,
22
67280
2096
我們可以避免延遲和中斷,
01:09
and bottom line, we're going to save lives.
23
69400
2736
最後,我們還可以拯救世人。
01:12
You're welcome.
24
72160
1216
不用客氣!」
01:13
(Laughter)
25
73400
1696
(笑聲)
01:15
I thought it was going to take 12 months,
26
75120
1976
我在想這大概需要 12 個月的時間來實現,
01:17
OK, maybe even 13.
27
77120
1560
好吧,可能要 13 個月。
01:19
This is not quite how it panned out.
28
79800
2280
但事情並沒有想像中的簡單。
01:23
Just a couple of months into the project, my French boss, he told me,
29
83600
3776
當我加入這個專案幾個月之後, 我的法國老闆,他告訴我:
01:27
"You know, Mallory,
30
87400
1816
「馬洛里,妳知道嗎?
01:29
it's a good idea,
31
89240
1656
妳的點子是不錯啦!
01:30
but the data you need for your algorithms is not there.
32
90920
3336
但要符合你演算法的數據並不存在。
01:34
It's the right idea but at the wrong time,
33
94280
2536
點子是對的,但時機不對,
01:36
and the right idea at the wrong time
34
96840
2296
而對的點子在錯誤的時機出現……
01:39
is the wrong idea."
35
99160
1376
就是一個錯誤的點子!」
01:40
(Laughter)
36
100560
1320
(笑聲)
01:42
Project over.
37
102960
1280
專案結束!
01:45
I was crushed.
38
105120
1200
我超傷心的。
01:49
When I look back now
39
109000
1456
現在當我回頭去看
01:50
on that first summer in Rome
40
110480
1656
從羅馬的第一個夏天到現在,
01:52
and I see how much has changed over the past six years,
41
112160
2656
我看到在這六年來,
01:54
it is an absolute transformation.
42
114840
2240
真的是完全轉變了。
01:57
It's a coming of age for bringing data into the humanitarian world.
43
117640
3400
把數據帶入人道世界的時代來臨了。
02:02
It's exciting. It's inspiring.
44
122160
2656
這真是令人興奮、鼓舞人心的。
02:04
But we're not there yet.
45
124840
1200
但是我們還沒有達到。
02:07
And brace yourself, executives,
46
127320
2296
現場的各位主管,請仔細聽好了,
02:09
because I'm going to be putting companies
47
129640
1976
我準備要把你們的公司推上火線,
02:11
on the hot seat to step up and play the role that I know they can.
48
131640
3120
因為我知道你們辦得到。
02:17
My experiences back in Rome prove
49
137520
2816
我在羅馬的經驗告訴我,
02:20
using data you can save lives.
50
140360
2080
運用數據,你可以拯救生命。
02:23
OK, not that first attempt,
51
143440
2456
的確,不是一試就能成功,
02:25
but eventually we got there.
52
145920
2576
但最終我們還是能辦到。
02:28
Let me paint the picture for you.
53
148520
1736
讓我來解釋一下。
02:30
Imagine that you have to plan breakfast, lunch and dinner
54
150280
2736
想像一下,你準備要為
50 萬人準備早、中、晚餐,
02:33
for 500,000 people,
55
153040
1616
02:34
and you only have a certain budget to do it,
56
154680
2136
但你的預算有限,
02:36
say 6.5 million dollars per month.
57
156840
2240
比如說,每個月 650 萬美元。
02:40
Well, what should you do? What's the best way to handle it?
58
160920
2762
你要怎麼做?最好的方式是甚麼?
02:44
Should you buy rice, wheat, chickpea, oil?
59
164280
2760
你需要買米、小麥、鷹嘴豆和油嗎?
02:47
How much?
60
167760
1216
要買多少?
02:49
It sounds simple. It's not.
61
169000
2136
聽起來很簡單,但做起來很難。
02:51
You have 30 possible foods, and you have to pick five of them.
62
171160
3216
你有 30 種可能的食物, 你必須從中挑選五種。
02:54
That's already over 140,000 different combinations.
63
174400
3416
那樣就會有超過 14 萬種 不同的食物組合。
02:57
Then for each food that you pick,
64
177840
1696
你挑選的每樣食物,
02:59
you need to decide how much you'll buy,
65
179560
1976
你要決定準備買多少、
03:01
where you're going to get it from,
66
181560
1696
去哪買、
03:03
where you're going to store it,
67
183280
1480
買來後要存放在哪、
03:05
how long it's going to take to get there.
68
185760
1976
運送到目的地要多久的時間。
03:07
You need to look at all of the different transportation routes as well.
69
187760
3336
你還需要查看所有不同的運輸路線。
而這樣已經超過九億種選擇了。
03:11
And that's already over 900 million options.
70
191120
2080
03:14
If you considered each option for a single second,
71
194120
2376
如果你每個選項都需要思考一秒,
03:16
that would take you over 28 years to get through.
72
196520
2336
那你要花超過 28 年的時間 才能把它們全過一遍。
03:18
900 million options.
73
198880
1520
九億種選擇啊!
03:21
So we created a tool that allowed decisionmakers
74
201160
2456
所以我們創建了一個
只要花幾天的時間,就可以讓決策者
03:23
to weed through all 900 million options
75
203640
2616
03:26
in just a matter of days.
76
206280
1360
解決九億種選擇的工具。
03:28
It turned out to be incredibly successful.
77
208560
2240
果然非常成功。
03:31
In an operation in Iraq,
78
211400
1256
在伊拉克的一次任務中,
03:32
we saved 17 percent of the costs,
79
212680
2536
我們節省了 17% 的成本,
03:35
and this meant that you had the ability to feed an additional 80,000 people.
80
215240
4136
也就是說,你還有能力 能餵飽另外的八萬人。
03:39
It's all thanks to the use of data and modeling complex systems.
81
219400
4400
這一切都要感謝數據 和複雜的建模系統。
03:44
But we didn't do it alone.
82
224800
1280
但這並不是我們獨自完成的。
03:46
The unit that I worked with in Rome, they were unique.
83
226840
2736
我們在羅馬合作的單位, 他們真的很棒。
03:49
They believed in collaboration.
84
229600
1736
他們相信合作的力量。
03:51
They brought in the academic world.
85
231360
1696
他們把學術界帶入這個領域,
03:53
They brought in companies.
86
233080
1280
把企業帶入這個領域。
03:55
And if we really want to make big changes in big problems like world hunger,
87
235200
3616
如果我們希望能在像世界飢餓 這種大問題上做出改變,
03:58
we need everybody to the table.
88
238840
2560
我們需要每一個社會成員的加入。
04:02
We need the data people from humanitarian organizations
89
242040
2936
我們需要來自人道組織的數據人員
04:05
leading the way,
90
245000
1256
引領道路,
04:06
and orchestrating just the right types of engagements
91
246280
2576
並組織學術界及政府部門
04:08
with academics, with governments.
92
248880
1696
好好地參與合作。
04:10
And there's one group that's not being leveraged in the way that it should be.
93
250600
3696
還有一種群體沒有被充分利用。
04:14
Did you guess it? Companies.
94
254320
2096
猜猜是誰?公司企業。
04:16
Companies have a major role to play in fixing the big problems in our world.
95
256440
3600
公司在解決世界的大問題方面 扮演了重要的角色。
04:20
I've been in the private sector for two years now.
96
260880
2416
我在私人公司已經工作了兩年。
04:23
I've seen what companies can do, and I've seen what companies aren't doing,
97
263320
3576
我見識到了企業的能力, 以及他們沒有充分做到的部分,
04:26
and I think there's three main ways that we can fill that gap:
98
266920
3376
我認為有三個主要方式, 可以填補這個空缺:
04:30
by donating data, by donating decision scientists
99
270320
3096
藉由捐贈數據、決策科學家及科技
04:33
and by donating technology to gather new sources of data.
100
273440
3480
來收集新數據的技術。
04:37
This is data philanthropy,
101
277920
1576
這是數據慈善事業,
04:39
and it's the future of corporate social responsibility.
102
279520
2840
是企業的未來社會責任。
04:43
Bonus, it also makes good business sense.
103
283160
2600
好處就是,對公司的形象有幫助。
04:46
Companies today, they collect mountains of data,
104
286920
3216
如今的公司,收集了一大堆數據,
04:50
so the first thing they can do is start donating that data.
105
290160
2762
所以他們可以做的第一件事 就是捐贈數據。
04:52
Some companies are already doing it.
106
292946
2190
有些公司已經在做了。
04:55
Take, for example, a major telecom company.
107
295160
2416
舉例,以某一家大型的 電信公司為例。
04:57
They opened up their data in Senegal and the Ivory Coast
108
297600
2776
他們開放了位於塞內加爾 和象牙海岸的數據,
05:00
and researchers discovered
109
300400
1976
研究人員發現,
05:02
that if you look at the patterns in the pings to the cell phone towers,
110
302400
3334
如果你觀察手機傳送到 基地台的數據圖形,
05:05
you can see where people are traveling.
111
305758
1938
你可以觀察到人們到哪裡活動,
05:07
And that can tell you things like
112
307720
2176
像這樣的數據能告訴你,
05:09
where malaria might spread, and you can make predictions with it.
113
309920
3096
瘧疾可能傳播的地方, 你可以用它做預測。
05:13
Or take for example an innovative satellite company.
114
313040
2896
或者拿另一個創新的衛星公司為例,
05:15
They opened up their data and donated it,
115
315960
2016
他們開放並捐獻了數據,
05:18
and with that data you could track
116
318000
1656
使用那些數據,你就能夠追蹤
05:19
how droughts are impacting food production.
117
319680
2040
乾旱是如何影響糧食產量的。
05:22
With that you can actually trigger aid funding before a crisis can happen.
118
322920
3680
有了這些數據,你甚至可以 在危機發生之前就啟動援助資金。
05:27
This is a great start.
119
327560
1280
這是一個好的開始。
05:29
There's important insights just locked away in company data.
120
329840
2880
在公司的數據中, 禁錮著許多重要的信息。
05:34
And yes, you need to be very careful.
121
334480
1816
是的,你需要非常小心。
05:36
You need to respect privacy concerns, for example by anonymizing the data.
122
336320
3576
你需要尊重隱私問題, 例如可以用匿名化數據解決。
05:39
But even if the floodgates opened up,
123
339920
2776
但即使所有的管道資料都開放了,
05:42
and even if all companies donated their data
124
342720
2536
即使所有的公司都捐贈出他們的數據
05:45
to academics, to NGOs, to humanitarian organizations,
125
345280
3256
給學術界、非政府組織、人道組織,
05:48
it wouldn't be enough to harness that full impact of data
126
348560
2976
光有這些資料,仍無法達到
05:51
for humanitarian goals.
127
351560
1520
人道主義的目標。
05:54
Why?
128
354320
1456
為什麼?
05:55
To unlock insights in data, you need decision scientists.
129
355800
3240
要解開數據中的信息, 你仍需要決策科學家。
05:59
Decision scientists are people like me.
130
359760
2576
像我這樣的決策科學家。
06:02
They take the data, they clean it up,
131
362360
1816
他們拿到數據,會稍作整理,
06:04
transform it and put it into a useful algorithm
132
364200
2256
把資料轉換後, 帶入有用的演算法裡。
06:06
that's the best choice to address the business need at hand.
133
366480
2840
這才是解決問題的最佳選擇。
06:09
In the world of humanitarian aid, there are very few decision scientists.
134
369800
3696
但在人道援助的領域裡, 決策科學家很罕見。
06:13
Most of them work for companies.
135
373520
1640
他們大多數都為私人企業工作。
06:16
So that's the second thing that companies need to do.
136
376480
2496
所以,公司要做第二件事,
06:19
In addition to donating their data,
137
379000
1696
公司除了捐贈他們的數據以外,
06:20
they need to donate their decision scientists.
138
380720
2160
他們還需要捐贈他們的決策科學家。
06:23
Now, companies will say, "Ah! Don't take our decision scientists from us.
139
383520
5736
但公司會說:
「啊!別帶走我們的決策科學家,
06:29
We need every spare second of their time."
140
389280
2040
我們分分秒秒都很需要他們。」
06:32
But there's a way.
141
392360
1200
但是有一個辦法,
06:35
If a company was going to donate a block of a decision scientist's time,
142
395200
3416
如果說一家公司決定貢獻出 它的決策科學家的部分時間,
06:38
it would actually make more sense to spread out that block of time
143
398640
3136
那我們就把這些時間分散到 長期使用,這樣才行得通,
06:41
over a long period, say for example five years.
144
401800
2200
比如說,五年的時間。
06:44
This might only amount to a couple of hours per month,
145
404600
3056
這樣分配之後,每個月 可能就只需要幾個小時,
06:47
which a company would hardly miss,
146
407680
2056
對於一家公司來說不足掛齒,
06:49
but what it enables is really important: long-term partnerships.
147
409760
3480
但產生的效果是很重大的: 長期的夥伴關係。
06:54
Long-term partnerships allow you to build relationships,
148
414920
2816
長期的夥伴關係能促進建立友誼,
06:57
to get to know the data, to really understand it
149
417760
2656
對資料更理解,
而且可以更深入地了解到
07:00
and to start to understand the needs and challenges
150
420440
2416
07:02
that the humanitarian organization is facing.
151
422880
2160
人道組織的需求及 目前所面臨到的問題。
07:06
In Rome, at the World Food Programme, this took us five years to do,
152
426345
3191
在羅馬,我們在世界糧食計劃署,
07:09
five years.
153
429560
1456
花費了五年時間,五年。
07:11
That first three years, OK, that was just what we couldn't solve for.
154
431040
3336
前三年,沒錯,我們在 討論解決不了的問題。
07:14
Then there was two years after that of refining and implementing the tool,
155
434400
3496
然後我們又花了兩年時間 去更新、完善我們的工具。
07:17
like in the operations in Iraq and other countries.
156
437920
2800
就像我們在伊拉克 和其他國家的行動一樣。
07:21
I don't think that's an unrealistic timeline
157
441520
2096
當涉及到使用數據 進行營運修改的時候,
07:23
when it comes to using data to make operational changes.
158
443640
2736
我不認為這樣的時間安排 會有甚麼不妥。
07:26
It's an investment. It requires patience.
159
446400
2400
這是一項投資,我們要有耐心。
07:29
But the types of results that can be produced are undeniable.
160
449760
3496
但產生的效果是不可否認的。
07:33
In our case, it was the ability to feed tens of thousands more people.
161
453280
3560
以我們的個案而言, 它可以養活好幾萬人。
07:39
So we have donating data, we have donating decision scientists,
162
459440
4336
所以我們需要捐獻數據, 我們需要捐獻決策科學家,
07:43
and there's actually a third way that companies can help:
163
463800
2696
實際上公司還有 第三種方法可以提供協助:
07:46
donating technology to capture new sources of data.
164
466520
2976
透過捐贈技術來取得數據的新來源。
07:49
You see, there's a lot of things we just don't have data on.
165
469520
2840
你看,還有很多地方, 我們都沒有數據。
07:52
Right now, Syrian refugees are flooding into Greece,
166
472960
2720
目前,敘利亞難民正湧入希臘,
07:57
and the UN refugee agency, they have their hands full.
167
477120
2560
而聯合國的難民機構, 他們也忙得不可開交。
08:01
The current system for tracking people is paper and pencil,
168
481000
3056
目前的難民跟進系統 是用紙和筆來作業,
08:04
and what that means is
169
484080
1256
意思就是,
08:05
that when a mother and her five children walk into the camp,
170
485360
2856
當一個母親帶著她的五個孩子 走進難名營時,
08:08
headquarters is essentially blind to this moment.
171
488240
2656
總部基本上根本看不到。
08:10
That's all going to change in the next few weeks,
172
490920
2336
在未來幾周中, 這一切都將會改變,
08:13
thanks to private sector collaboration.
173
493280
1880
這要感謝私人機構的合作。
08:15
There's going to be a new system based on donated package tracking technology
174
495840
3656
我合作的物流公司,
即將捐贈一套全新的追蹤科技系統。
08:19
from the logistics company that I work for.
175
499520
2040
08:22
With this new system, there will be a data trail,
176
502120
2336
有了這個新系統,數據就能被追踪,
08:24
so you know exactly the moment
177
504480
1456
所以當一位母親 帶著她的孩子走進難民營時,
08:25
when that mother and her children walk into the camp.
178
505960
2496
你就會知道這件事。
甚至,你還可以知道
08:28
And even more, you know if she's going to have supplies
179
508480
2616
這個月及下個月她是否能得到支援。
08:31
this month and the next.
180
511120
1256
08:32
Information visibility drives efficiency.
181
512400
3016
數據的能見度驅動了效率。
08:35
For companies, using technology to gather important data,
182
515440
3256
對公司而言,利用技術收集重要數據,
08:38
it's like bread and butter.
183
518720
1456
就像奶油和麵包一樣基本。
08:40
They've been doing it for years,
184
520200
1576
他們多年來都在從事這件事,
08:41
and it's led to major operational efficiency improvements.
185
521800
3256
並帶來了卓越的效率提升。
08:45
Just try to imagine your favorite beverage company
186
525080
2360
試想一下,你最喜歡的飲料公司,
08:48
trying to plan their inventory
187
528280
1576
將要計劃下一批生產,
08:49
and not knowing how many bottles were on the shelves.
188
529880
2496
卻對正在貨架上的飲料數量毫不知情,
08:52
It's absurd.
189
532400
1216
這是很荒謬的。
08:53
Data drives better decisions.
190
533640
1560
數據驅使我們做出更好的決策。
08:57
Now, if you're representing a company,
191
537800
2536
現在,如果您代表一個公司,
09:00
and you're pragmatic and not just idealistic,
192
540360
3136
你很務實,不是那種只會空想的人,
09:03
you might be saying to yourself, "OK, this is all great, Mallory,
193
543520
3056
你可能會說:「沒錯, 是很偉大,馬洛里,
09:06
but why should I want to be involved?"
194
546600
1840
但為什麼我要參與?」
09:09
Well for one thing, beyond the good PR,
195
549000
2816
其實,就一件事,提升公司形象,
09:11
humanitarian aid is a 24-billion-dollar sector,
196
551840
2776
人道援助是一個 240 億美元的事業,
09:14
and there's over five billion people, maybe your next customers,
197
554640
3056
有超過 50 億人口住在發展中國家,
09:17
that live in the developing world.
198
557720
1816
很有可能你的下一個客戶就是他們。
09:19
Further, companies that are engaging in data philanthropy,
199
559560
3096
此外,從事數據慈善事業的那些公司,
09:22
they're finding new insights locked away in their data.
200
562680
2976
他們正在挖掘 禁錮在數據當中的新信息。
09:25
Take, for example, a credit card company
201
565680
2256
例如,以某家信用卡公司為例,
09:27
that's opened up a center
202
567960
1336
他們建立了一個數據中心樞紐,
09:29
that functions as a hub for academics, for NGOs and governments,
203
569320
3376
將學術界、非政府組織和政府
09:32
all working together.
204
572720
1240
組織起來一起工作。
09:35
They're looking at information in credit card swipes
205
575040
2736
他們透過刷卡紀錄,
09:37
and using that to find insights about how households in India
206
577800
2976
觀察到一般的印度家庭
09:40
live, work, earn and spend.
207
580800
1720
他們如何生活、工作、賺錢和消費。
09:43
For the humanitarian world, this provides information
208
583680
2576
對人道組織而言,這裡面隱含著
09:46
about how you might bring people out of poverty.
209
586280
2656
如何使人們擺脫貧困的資訊。
09:48
But for companies, it's providing insights about your customers
210
588960
3016
但對公司來說, 這就是向他們提供了
09:52
and potential customers in India.
211
592000
2040
在印度的用戶和潛在用戶信息。
09:54
It's a win all around.
212
594760
1800
這是一個三贏的局面。
09:57
Now, for me, what I find exciting about data philanthropy --
213
597960
3776
而對我而言,我發現 數據慈善事業是令人振奮的──
10:01
donating data, donating decision scientists and donating technology --
214
601760
4336
數據捐贈、決策科學家捐贈 及科技捐贈──
10:06
it's what it means for young professionals like me
215
606120
2376
對我這樣年輕的專家而言,
10:08
who are choosing to work at companies.
216
608520
1840
這就是我們選擇待在公司的原因。
10:10
Studies show that the next generation of the workforce
217
610800
2656
研究表明,下一世代的 勞動人口關心的是
10:13
care about having their work make a bigger impact.
218
613480
2560
他們的工作能不能為世界帶來影響。
10:16
We want to make a difference,
219
616920
2456
我們想要改變,
10:19
and so through data philanthropy,
220
619400
2416
所以透過數據慈善事業,
10:21
companies can actually help engage and retain their decision scientists.
221
621840
3936
公司更容易留得住他們的決策科學家,
10:25
And that's a big deal for a profession that's in high demand.
222
625800
2880
特別是對於這種高需求的 職業來說尤其重要。
10:29
Data philanthropy makes good business sense,
223
629840
3120
數據慈善事業 能創造良好的商業形象,
10:34
and it also can help revolutionize the humanitarian world.
224
634200
3280
它同時也能夠為人道主義事業 做出巨大變革。
10:39
If we coordinated the planning and logistics
225
639600
2096
如果我們可以協調規劃
10:41
across all of the major facets of a humanitarian operation,
226
641720
3376
並支援所有人道主義各方面的後勤,
10:45
we could feed, clothe and shelter hundreds of thousands more people,
227
645120
3600
我們就可以為成千上萬的人 提供食物、衣服和住所,
10:49
and companies need to step up and play the role that I know they can
228
649440
4256
為了這場改革, 公司需要站出來扮演其中的角色,
10:53
in bringing about this revolution.
229
653720
1880
因為我知道你們辦的到。
10:56
You've probably heard of the saying "food for thought."
230
656720
2936
各位也許聽過「值得思考的食物」。 (英文意思是:值得深思的問題)
10:59
Well, this is literally thought for food.
231
659680
2240
而字面意思就是「想想食物」。
11:03
It finally is the right idea at the right time.
232
663560
4136
我終於在對的時間找到對的方法了!
11:07
(Laughter)
233
667720
1216
(笑聲)
11:08
Très magnifique.
234
668960
1576
(法語)太棒了!
11:10
Thank you.
235
670560
1216
謝謝。
11:11
(Applause)
236
671800
2851
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7