Your company's data could help end world hunger | Mallory Freeman

54,143 views ・ 2016-11-29

TED


請雙擊下方英文字幕播放視頻。

譯者: 易帆 余 審譯者: Amy H. Fann
00:12
June 2010.
0
12880
1760
2010 年六月,
00:15
I landed for the first time in Rome, Italy.
1
15760
2880
我第一次前往意大利羅馬。
00:19
I wasn't there to sightsee.
2
19800
1896
我不是去觀光的,
00:21
I was there to solve world hunger.
3
21720
3120
我是去解決世界飢餓問題的。
00:25
(Laughter)
4
25160
2096
(笑聲)
00:27
That's right.
5
27280
1216
沒錯。
00:28
I was a 25-year-old PhD student
6
28520
2096
我當時是 25 歲的博士生,
00:30
armed with a prototype tool developed back at my university,
7
30640
3096
我帶著在大學期間開發的原型工具,
00:33
and I was going to help the World Food Programme fix hunger.
8
33760
3080
準備幫助世界糧食計劃署 解決飢餓問題。
00:37
So I strode into the headquarters building
9
37840
2736
我大步走進他們的總部大樓,
00:40
and my eyes scanned the row of UN flags,
10
40600
2816
映入眼簾的是一整排的聯合國國旗,
00:43
and I smiled as I thought to myself,
11
43440
1960
我開心地對著自己說:
00:46
"The engineer is here."
12
46840
1616
「工程師來了!」
00:48
(Laughter)
13
48480
2216
(笑聲)
00:50
Give me your data.
14
50720
1776
「拿出你們的數據,
00:52
I'm going to optimize everything.
15
52520
2176
我要優化所有資料。」
00:54
(Laughter)
16
54720
1736
(笑聲)
00:56
Tell me the food that you've purchased,
17
56480
1896
「告訴我你們已經購買的食物,
00:58
tell me where it's going and when it needs to be there,
18
58400
2616
告訴我要送到哪裡、什麼時候需要,
我就會告訴你們最短、最快、
01:01
and I'm going to tell you the shortest, fastest, cheapest,
19
61040
2736
最便宜的食物運送路徑。
01:03
best set of routes to take for the food.
20
63800
1936
01:05
We're going to save money,
21
65760
1496
我們會節省很多錢,
01:07
we're going to avoid delays and disruptions,
22
67280
2096
我們可以避免延遲和中斷,
01:09
and bottom line, we're going to save lives.
23
69400
2736
最後,我們還可以拯救世人。
01:12
You're welcome.
24
72160
1216
不用客氣!」
01:13
(Laughter)
25
73400
1696
(笑聲)
01:15
I thought it was going to take 12 months,
26
75120
1976
我在想這大概需要 12 個月的時間來實現,
01:17
OK, maybe even 13.
27
77120
1560
好吧,可能要 13 個月。
01:19
This is not quite how it panned out.
28
79800
2280
但事情並沒有想像中的簡單。
01:23
Just a couple of months into the project, my French boss, he told me,
29
83600
3776
當我加入這個專案幾個月之後, 我的法國老闆,他告訴我:
01:27
"You know, Mallory,
30
87400
1816
「馬洛里,妳知道嗎?
01:29
it's a good idea,
31
89240
1656
妳的點子是不錯啦!
01:30
but the data you need for your algorithms is not there.
32
90920
3336
但要符合你演算法的數據並不存在。
01:34
It's the right idea but at the wrong time,
33
94280
2536
點子是對的,但時機不對,
01:36
and the right idea at the wrong time
34
96840
2296
而對的點子在錯誤的時機出現……
01:39
is the wrong idea."
35
99160
1376
就是一個錯誤的點子!」
01:40
(Laughter)
36
100560
1320
(笑聲)
01:42
Project over.
37
102960
1280
專案結束!
01:45
I was crushed.
38
105120
1200
我超傷心的。
01:49
When I look back now
39
109000
1456
現在當我回頭去看
01:50
on that first summer in Rome
40
110480
1656
從羅馬的第一個夏天到現在,
01:52
and I see how much has changed over the past six years,
41
112160
2656
我看到在這六年來,
01:54
it is an absolute transformation.
42
114840
2240
真的是完全轉變了。
01:57
It's a coming of age for bringing data into the humanitarian world.
43
117640
3400
把數據帶入人道世界的時代來臨了。
02:02
It's exciting. It's inspiring.
44
122160
2656
這真是令人興奮、鼓舞人心的。
02:04
But we're not there yet.
45
124840
1200
但是我們還沒有達到。
02:07
And brace yourself, executives,
46
127320
2296
現場的各位主管,請仔細聽好了,
02:09
because I'm going to be putting companies
47
129640
1976
我準備要把你們的公司推上火線,
02:11
on the hot seat to step up and play the role that I know they can.
48
131640
3120
因為我知道你們辦得到。
02:17
My experiences back in Rome prove
49
137520
2816
我在羅馬的經驗告訴我,
02:20
using data you can save lives.
50
140360
2080
運用數據,你可以拯救生命。
02:23
OK, not that first attempt,
51
143440
2456
的確,不是一試就能成功,
02:25
but eventually we got there.
52
145920
2576
但最終我們還是能辦到。
02:28
Let me paint the picture for you.
53
148520
1736
讓我來解釋一下。
02:30
Imagine that you have to plan breakfast, lunch and dinner
54
150280
2736
想像一下,你準備要為
50 萬人準備早、中、晚餐,
02:33
for 500,000 people,
55
153040
1616
02:34
and you only have a certain budget to do it,
56
154680
2136
但你的預算有限,
02:36
say 6.5 million dollars per month.
57
156840
2240
比如說,每個月 650 萬美元。
02:40
Well, what should you do? What's the best way to handle it?
58
160920
2762
你要怎麼做?最好的方式是甚麼?
02:44
Should you buy rice, wheat, chickpea, oil?
59
164280
2760
你需要買米、小麥、鷹嘴豆和油嗎?
02:47
How much?
60
167760
1216
要買多少?
02:49
It sounds simple. It's not.
61
169000
2136
聽起來很簡單,但做起來很難。
02:51
You have 30 possible foods, and you have to pick five of them.
62
171160
3216
你有 30 種可能的食物, 你必須從中挑選五種。
02:54
That's already over 140,000 different combinations.
63
174400
3416
那樣就會有超過 14 萬種 不同的食物組合。
02:57
Then for each food that you pick,
64
177840
1696
你挑選的每樣食物,
02:59
you need to decide how much you'll buy,
65
179560
1976
你要決定準備買多少、
03:01
where you're going to get it from,
66
181560
1696
去哪買、
03:03
where you're going to store it,
67
183280
1480
買來後要存放在哪、
03:05
how long it's going to take to get there.
68
185760
1976
運送到目的地要多久的時間。
03:07
You need to look at all of the different transportation routes as well.
69
187760
3336
你還需要查看所有不同的運輸路線。
而這樣已經超過九億種選擇了。
03:11
And that's already over 900 million options.
70
191120
2080
03:14
If you considered each option for a single second,
71
194120
2376
如果你每個選項都需要思考一秒,
03:16
that would take you over 28 years to get through.
72
196520
2336
那你要花超過 28 年的時間 才能把它們全過一遍。
03:18
900 million options.
73
198880
1520
九億種選擇啊!
03:21
So we created a tool that allowed decisionmakers
74
201160
2456
所以我們創建了一個
只要花幾天的時間,就可以讓決策者
03:23
to weed through all 900 million options
75
203640
2616
03:26
in just a matter of days.
76
206280
1360
解決九億種選擇的工具。
03:28
It turned out to be incredibly successful.
77
208560
2240
果然非常成功。
03:31
In an operation in Iraq,
78
211400
1256
在伊拉克的一次任務中,
03:32
we saved 17 percent of the costs,
79
212680
2536
我們節省了 17% 的成本,
03:35
and this meant that you had the ability to feed an additional 80,000 people.
80
215240
4136
也就是說,你還有能力 能餵飽另外的八萬人。
03:39
It's all thanks to the use of data and modeling complex systems.
81
219400
4400
這一切都要感謝數據 和複雜的建模系統。
03:44
But we didn't do it alone.
82
224800
1280
但這並不是我們獨自完成的。
03:46
The unit that I worked with in Rome, they were unique.
83
226840
2736
我們在羅馬合作的單位, 他們真的很棒。
03:49
They believed in collaboration.
84
229600
1736
他們相信合作的力量。
03:51
They brought in the academic world.
85
231360
1696
他們把學術界帶入這個領域,
03:53
They brought in companies.
86
233080
1280
把企業帶入這個領域。
03:55
And if we really want to make big changes in big problems like world hunger,
87
235200
3616
如果我們希望能在像世界飢餓 這種大問題上做出改變,
03:58
we need everybody to the table.
88
238840
2560
我們需要每一個社會成員的加入。
04:02
We need the data people from humanitarian organizations
89
242040
2936
我們需要來自人道組織的數據人員
04:05
leading the way,
90
245000
1256
引領道路,
04:06
and orchestrating just the right types of engagements
91
246280
2576
並組織學術界及政府部門
04:08
with academics, with governments.
92
248880
1696
好好地參與合作。
04:10
And there's one group that's not being leveraged in the way that it should be.
93
250600
3696
還有一種群體沒有被充分利用。
04:14
Did you guess it? Companies.
94
254320
2096
猜猜是誰?公司企業。
04:16
Companies have a major role to play in fixing the big problems in our world.
95
256440
3600
公司在解決世界的大問題方面 扮演了重要的角色。
04:20
I've been in the private sector for two years now.
96
260880
2416
我在私人公司已經工作了兩年。
04:23
I've seen what companies can do, and I've seen what companies aren't doing,
97
263320
3576
我見識到了企業的能力, 以及他們沒有充分做到的部分,
04:26
and I think there's three main ways that we can fill that gap:
98
266920
3376
我認為有三個主要方式, 可以填補這個空缺:
04:30
by donating data, by donating decision scientists
99
270320
3096
藉由捐贈數據、決策科學家及科技
04:33
and by donating technology to gather new sources of data.
100
273440
3480
來收集新數據的技術。
04:37
This is data philanthropy,
101
277920
1576
這是數據慈善事業,
04:39
and it's the future of corporate social responsibility.
102
279520
2840
是企業的未來社會責任。
04:43
Bonus, it also makes good business sense.
103
283160
2600
好處就是,對公司的形象有幫助。
04:46
Companies today, they collect mountains of data,
104
286920
3216
如今的公司,收集了一大堆數據,
04:50
so the first thing they can do is start donating that data.
105
290160
2762
所以他們可以做的第一件事 就是捐贈數據。
04:52
Some companies are already doing it.
106
292946
2190
有些公司已經在做了。
04:55
Take, for example, a major telecom company.
107
295160
2416
舉例,以某一家大型的 電信公司為例。
04:57
They opened up their data in Senegal and the Ivory Coast
108
297600
2776
他們開放了位於塞內加爾 和象牙海岸的數據,
05:00
and researchers discovered
109
300400
1976
研究人員發現,
05:02
that if you look at the patterns in the pings to the cell phone towers,
110
302400
3334
如果你觀察手機傳送到 基地台的數據圖形,
05:05
you can see where people are traveling.
111
305758
1938
你可以觀察到人們到哪裡活動,
05:07
And that can tell you things like
112
307720
2176
像這樣的數據能告訴你,
05:09
where malaria might spread, and you can make predictions with it.
113
309920
3096
瘧疾可能傳播的地方, 你可以用它做預測。
05:13
Or take for example an innovative satellite company.
114
313040
2896
或者拿另一個創新的衛星公司為例,
05:15
They opened up their data and donated it,
115
315960
2016
他們開放並捐獻了數據,
05:18
and with that data you could track
116
318000
1656
使用那些數據,你就能夠追蹤
05:19
how droughts are impacting food production.
117
319680
2040
乾旱是如何影響糧食產量的。
05:22
With that you can actually trigger aid funding before a crisis can happen.
118
322920
3680
有了這些數據,你甚至可以 在危機發生之前就啟動援助資金。
05:27
This is a great start.
119
327560
1280
這是一個好的開始。
05:29
There's important insights just locked away in company data.
120
329840
2880
在公司的數據中, 禁錮著許多重要的信息。
05:34
And yes, you need to be very careful.
121
334480
1816
是的,你需要非常小心。
05:36
You need to respect privacy concerns, for example by anonymizing the data.
122
336320
3576
你需要尊重隱私問題, 例如可以用匿名化數據解決。
05:39
But even if the floodgates opened up,
123
339920
2776
但即使所有的管道資料都開放了,
05:42
and even if all companies donated their data
124
342720
2536
即使所有的公司都捐贈出他們的數據
05:45
to academics, to NGOs, to humanitarian organizations,
125
345280
3256
給學術界、非政府組織、人道組織,
05:48
it wouldn't be enough to harness that full impact of data
126
348560
2976
光有這些資料,仍無法達到
05:51
for humanitarian goals.
127
351560
1520
人道主義的目標。
05:54
Why?
128
354320
1456
為什麼?
05:55
To unlock insights in data, you need decision scientists.
129
355800
3240
要解開數據中的信息, 你仍需要決策科學家。
05:59
Decision scientists are people like me.
130
359760
2576
像我這樣的決策科學家。
06:02
They take the data, they clean it up,
131
362360
1816
他們拿到數據,會稍作整理,
06:04
transform it and put it into a useful algorithm
132
364200
2256
把資料轉換後, 帶入有用的演算法裡。
06:06
that's the best choice to address the business need at hand.
133
366480
2840
這才是解決問題的最佳選擇。
06:09
In the world of humanitarian aid, there are very few decision scientists.
134
369800
3696
但在人道援助的領域裡, 決策科學家很罕見。
06:13
Most of them work for companies.
135
373520
1640
他們大多數都為私人企業工作。
06:16
So that's the second thing that companies need to do.
136
376480
2496
所以,公司要做第二件事,
06:19
In addition to donating their data,
137
379000
1696
公司除了捐贈他們的數據以外,
06:20
they need to donate their decision scientists.
138
380720
2160
他們還需要捐贈他們的決策科學家。
06:23
Now, companies will say, "Ah! Don't take our decision scientists from us.
139
383520
5736
但公司會說:
「啊!別帶走我們的決策科學家,
06:29
We need every spare second of their time."
140
389280
2040
我們分分秒秒都很需要他們。」
06:32
But there's a way.
141
392360
1200
但是有一個辦法,
06:35
If a company was going to donate a block of a decision scientist's time,
142
395200
3416
如果說一家公司決定貢獻出 它的決策科學家的部分時間,
06:38
it would actually make more sense to spread out that block of time
143
398640
3136
那我們就把這些時間分散到 長期使用,這樣才行得通,
06:41
over a long period, say for example five years.
144
401800
2200
比如說,五年的時間。
06:44
This might only amount to a couple of hours per month,
145
404600
3056
這樣分配之後,每個月 可能就只需要幾個小時,
06:47
which a company would hardly miss,
146
407680
2056
對於一家公司來說不足掛齒,
06:49
but what it enables is really important: long-term partnerships.
147
409760
3480
但產生的效果是很重大的: 長期的夥伴關係。
06:54
Long-term partnerships allow you to build relationships,
148
414920
2816
長期的夥伴關係能促進建立友誼,
06:57
to get to know the data, to really understand it
149
417760
2656
對資料更理解,
而且可以更深入地了解到
07:00
and to start to understand the needs and challenges
150
420440
2416
07:02
that the humanitarian organization is facing.
151
422880
2160
人道組織的需求及 目前所面臨到的問題。
07:06
In Rome, at the World Food Programme, this took us five years to do,
152
426345
3191
在羅馬,我們在世界糧食計劃署,
07:09
five years.
153
429560
1456
花費了五年時間,五年。
07:11
That first three years, OK, that was just what we couldn't solve for.
154
431040
3336
前三年,沒錯,我們在 討論解決不了的問題。
07:14
Then there was two years after that of refining and implementing the tool,
155
434400
3496
然後我們又花了兩年時間 去更新、完善我們的工具。
07:17
like in the operations in Iraq and other countries.
156
437920
2800
就像我們在伊拉克 和其他國家的行動一樣。
07:21
I don't think that's an unrealistic timeline
157
441520
2096
當涉及到使用數據 進行營運修改的時候,
07:23
when it comes to using data to make operational changes.
158
443640
2736
我不認為這樣的時間安排 會有甚麼不妥。
07:26
It's an investment. It requires patience.
159
446400
2400
這是一項投資,我們要有耐心。
07:29
But the types of results that can be produced are undeniable.
160
449760
3496
但產生的效果是不可否認的。
07:33
In our case, it was the ability to feed tens of thousands more people.
161
453280
3560
以我們的個案而言, 它可以養活好幾萬人。
07:39
So we have donating data, we have donating decision scientists,
162
459440
4336
所以我們需要捐獻數據, 我們需要捐獻決策科學家,
07:43
and there's actually a third way that companies can help:
163
463800
2696
實際上公司還有 第三種方法可以提供協助:
07:46
donating technology to capture new sources of data.
164
466520
2976
透過捐贈技術來取得數據的新來源。
07:49
You see, there's a lot of things we just don't have data on.
165
469520
2840
你看,還有很多地方, 我們都沒有數據。
07:52
Right now, Syrian refugees are flooding into Greece,
166
472960
2720
目前,敘利亞難民正湧入希臘,
07:57
and the UN refugee agency, they have their hands full.
167
477120
2560
而聯合國的難民機構, 他們也忙得不可開交。
08:01
The current system for tracking people is paper and pencil,
168
481000
3056
目前的難民跟進系統 是用紙和筆來作業,
08:04
and what that means is
169
484080
1256
意思就是,
08:05
that when a mother and her five children walk into the camp,
170
485360
2856
當一個母親帶著她的五個孩子 走進難名營時,
08:08
headquarters is essentially blind to this moment.
171
488240
2656
總部基本上根本看不到。
08:10
That's all going to change in the next few weeks,
172
490920
2336
在未來幾周中, 這一切都將會改變,
08:13
thanks to private sector collaboration.
173
493280
1880
這要感謝私人機構的合作。
08:15
There's going to be a new system based on donated package tracking technology
174
495840
3656
我合作的物流公司,
即將捐贈一套全新的追蹤科技系統。
08:19
from the logistics company that I work for.
175
499520
2040
08:22
With this new system, there will be a data trail,
176
502120
2336
有了這個新系統,數據就能被追踪,
08:24
so you know exactly the moment
177
504480
1456
所以當一位母親 帶著她的孩子走進難民營時,
08:25
when that mother and her children walk into the camp.
178
505960
2496
你就會知道這件事。
甚至,你還可以知道
08:28
And even more, you know if she's going to have supplies
179
508480
2616
這個月及下個月她是否能得到支援。
08:31
this month and the next.
180
511120
1256
08:32
Information visibility drives efficiency.
181
512400
3016
數據的能見度驅動了效率。
08:35
For companies, using technology to gather important data,
182
515440
3256
對公司而言,利用技術收集重要數據,
08:38
it's like bread and butter.
183
518720
1456
就像奶油和麵包一樣基本。
08:40
They've been doing it for years,
184
520200
1576
他們多年來都在從事這件事,
08:41
and it's led to major operational efficiency improvements.
185
521800
3256
並帶來了卓越的效率提升。
08:45
Just try to imagine your favorite beverage company
186
525080
2360
試想一下,你最喜歡的飲料公司,
08:48
trying to plan their inventory
187
528280
1576
將要計劃下一批生產,
08:49
and not knowing how many bottles were on the shelves.
188
529880
2496
卻對正在貨架上的飲料數量毫不知情,
08:52
It's absurd.
189
532400
1216
這是很荒謬的。
08:53
Data drives better decisions.
190
533640
1560
數據驅使我們做出更好的決策。
08:57
Now, if you're representing a company,
191
537800
2536
現在,如果您代表一個公司,
09:00
and you're pragmatic and not just idealistic,
192
540360
3136
你很務實,不是那種只會空想的人,
09:03
you might be saying to yourself, "OK, this is all great, Mallory,
193
543520
3056
你可能會說:「沒錯, 是很偉大,馬洛里,
09:06
but why should I want to be involved?"
194
546600
1840
但為什麼我要參與?」
09:09
Well for one thing, beyond the good PR,
195
549000
2816
其實,就一件事,提升公司形象,
09:11
humanitarian aid is a 24-billion-dollar sector,
196
551840
2776
人道援助是一個 240 億美元的事業,
09:14
and there's over five billion people, maybe your next customers,
197
554640
3056
有超過 50 億人口住在發展中國家,
09:17
that live in the developing world.
198
557720
1816
很有可能你的下一個客戶就是他們。
09:19
Further, companies that are engaging in data philanthropy,
199
559560
3096
此外,從事數據慈善事業的那些公司,
09:22
they're finding new insights locked away in their data.
200
562680
2976
他們正在挖掘 禁錮在數據當中的新信息。
09:25
Take, for example, a credit card company
201
565680
2256
例如,以某家信用卡公司為例,
09:27
that's opened up a center
202
567960
1336
他們建立了一個數據中心樞紐,
09:29
that functions as a hub for academics, for NGOs and governments,
203
569320
3376
將學術界、非政府組織和政府
09:32
all working together.
204
572720
1240
組織起來一起工作。
09:35
They're looking at information in credit card swipes
205
575040
2736
他們透過刷卡紀錄,
09:37
and using that to find insights about how households in India
206
577800
2976
觀察到一般的印度家庭
09:40
live, work, earn and spend.
207
580800
1720
他們如何生活、工作、賺錢和消費。
09:43
For the humanitarian world, this provides information
208
583680
2576
對人道組織而言,這裡面隱含著
09:46
about how you might bring people out of poverty.
209
586280
2656
如何使人們擺脫貧困的資訊。
09:48
But for companies, it's providing insights about your customers
210
588960
3016
但對公司來說, 這就是向他們提供了
09:52
and potential customers in India.
211
592000
2040
在印度的用戶和潛在用戶信息。
09:54
It's a win all around.
212
594760
1800
這是一個三贏的局面。
09:57
Now, for me, what I find exciting about data philanthropy --
213
597960
3776
而對我而言,我發現 數據慈善事業是令人振奮的──
10:01
donating data, donating decision scientists and donating technology --
214
601760
4336
數據捐贈、決策科學家捐贈 及科技捐贈──
10:06
it's what it means for young professionals like me
215
606120
2376
對我這樣年輕的專家而言,
10:08
who are choosing to work at companies.
216
608520
1840
這就是我們選擇待在公司的原因。
10:10
Studies show that the next generation of the workforce
217
610800
2656
研究表明,下一世代的 勞動人口關心的是
10:13
care about having their work make a bigger impact.
218
613480
2560
他們的工作能不能為世界帶來影響。
10:16
We want to make a difference,
219
616920
2456
我們想要改變,
10:19
and so through data philanthropy,
220
619400
2416
所以透過數據慈善事業,
10:21
companies can actually help engage and retain their decision scientists.
221
621840
3936
公司更容易留得住他們的決策科學家,
10:25
And that's a big deal for a profession that's in high demand.
222
625800
2880
特別是對於這種高需求的 職業來說尤其重要。
10:29
Data philanthropy makes good business sense,
223
629840
3120
數據慈善事業 能創造良好的商業形象,
10:34
and it also can help revolutionize the humanitarian world.
224
634200
3280
它同時也能夠為人道主義事業 做出巨大變革。
10:39
If we coordinated the planning and logistics
225
639600
2096
如果我們可以協調規劃
10:41
across all of the major facets of a humanitarian operation,
226
641720
3376
並支援所有人道主義各方面的後勤,
10:45
we could feed, clothe and shelter hundreds of thousands more people,
227
645120
3600
我們就可以為成千上萬的人 提供食物、衣服和住所,
10:49
and companies need to step up and play the role that I know they can
228
649440
4256
為了這場改革, 公司需要站出來扮演其中的角色,
10:53
in bringing about this revolution.
229
653720
1880
因為我知道你們辦的到。
10:56
You've probably heard of the saying "food for thought."
230
656720
2936
各位也許聽過「值得思考的食物」。 (英文意思是:值得深思的問題)
10:59
Well, this is literally thought for food.
231
659680
2240
而字面意思就是「想想食物」。
11:03
It finally is the right idea at the right time.
232
663560
4136
我終於在對的時間找到對的方法了!
11:07
(Laughter)
233
667720
1216
(笑聲)
11:08
Très magnifique.
234
668960
1576
(法語)太棒了!
11:10
Thank you.
235
670560
1216
謝謝。
11:11
(Applause)
236
671800
2851
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog