Your company's data could help end world hunger | Mallory Freeman

53,564 views ใƒป 2016-11-29

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Evgeny Fabia ืžื‘ืงืจ: Zeeva Livshitz
00:12
June 2010.
0
12880
1760
ื™ื•ื ื™ 2010.
00:15
I landed for the first time in Rome, Italy.
1
15760
2880
ื ื—ืชืชื™ ื‘ืคืขื ื”ืจืืฉื•ื ื” ื‘ืจื•ืžื, ืื™ื˜ืœื™ื”.
00:19
I wasn't there to sightsee.
2
19800
1896
ืœื ื”ื’ืขืชื™ ืœืฉื ื›ืชื™ื™ืจืช.
00:21
I was there to solve world hunger.
3
21720
3120
ื”ื’ืขืชื™ ืœืฉื ื›ื“ื™ ืœืคืชื•ืจ ืืช ื”ืจืขื‘ ื‘ืขื•ืœื.
00:25
(Laughter)
4
25160
2096
(ืฆื—ื•ืง)
00:27
That's right.
5
27280
1216
ื‘ื“ื™ื•ืง ื›ืš.
00:28
I was a 25-year-old PhD student
6
28520
2096
ื”ื™ื™ืชื™ ืชืœืžื™ื“ืช ื“ื•ืงื˜ื•ืจื˜ ื‘ืช 25
00:30
armed with a prototype tool developed back at my university,
7
30640
3096
ื—ืžื•ืฉื” ื‘ืื‘-ื˜ื™ืคื•ืก ืฉืœ ื›ืœื™ ืฉืคื•ืชื— ื‘ืื•ื ื™ื‘ืจืกื™ื˜ื” ืฉืœื™
00:33
and I was going to help the World Food Programme fix hunger.
8
33760
3080
ื•ื”ืชื›ื•ื•ื ืชื™ ืœืขื–ื•ืจ ืœืชื•ื›ื ื™ืช ื”ืžื–ื•ืŸ ื”ืขื•ืœืžื™ืช ืœืคืชื•ืจ ืืช ื‘ืขื™ื™ืช ื”ืจืขื‘.
00:37
So I strode into the headquarters building
9
37840
2736
ืื– ืฆืขื“ืชื™ ืœืชื•ืš ื‘ื ื™ื™ืŸ ื”ืžื˜ื”
00:40
and my eyes scanned the row of UN flags,
10
40600
2816
ื•ืขื™ื ื™ื™ ืกืจืงื• ืืช ืฉื•ืจืช ื“ื’ืœื™ ื”ืื•"ื,
00:43
and I smiled as I thought to myself,
11
43440
1960
ื•ื—ื™ื™ื›ืชื™ ื›ืฉื—ืฉื‘ืชื™ ืœืขืฆืžื™,
00:46
"The engineer is here."
12
46840
1616
"ื”ืžื”ื ื“ืกืช ื›ืืŸ".
00:48
(Laughter)
13
48480
2216
(ืฆื—ื•ืง)
00:50
Give me your data.
14
50720
1776
ืชื ื• ืœื™ ืืช ื”ื ืชื•ื ื™ื ืฉืœื›ื.
00:52
I'm going to optimize everything.
15
52520
2176
ืื ื™ ื”ื•ืœื›ืช ืœื™ื™ืขืœ ื”ื›ืœ.
00:54
(Laughter)
16
54720
1736
(ืฆื—ื•ืง)
00:56
Tell me the food that you've purchased,
17
56480
1896
ืกืคืจื• ืœื™ ืžื” ื”ืžื–ื•ืŸ ืฉืจื›ืฉืชื,
00:58
tell me where it's going and when it needs to be there,
18
58400
2616
ืœืื™ืคื” ื”ื•ื ื”ื•ืœืš ื•ืžืชื™ ื”ื•ื ืฆืจื™ืš ืœื”ื™ื•ืช ืฉื
01:01
and I'm going to tell you the shortest, fastest, cheapest,
19
61040
2736
ื•ืื’ื™ื“ ืœื›ื ืžื” ื”ื“ืจืš ื”ืงืฆืจื”, ื”ืžื”ื™ืจื”, ื”ื–ื•ืœื”,
01:03
best set of routes to take for the food.
20
63800
1936
ื”ืžืกืœื•ืœ ื”ื˜ื•ื‘ ื‘ื™ื•ืชืจ ืฉื™ืฉ ืœื‘ื—ื•ืจ ืขื‘ื•ืจ ื”ืื•ื›ืœ.
01:05
We're going to save money,
21
65760
1496
ืื ื—ื ื• ื”ื•ืœื›ื™ื ืœื—ืกื•ืš ื›ืกืฃ,
01:07
we're going to avoid delays and disruptions,
22
67280
2096
ืœื”ื™ืžื ืข ืžืขื™ื›ื•ื‘ื™ื ื•ื”ืคืจืขื•ืช,
01:09
and bottom line, we're going to save lives.
23
69400
2736
ื•ื‘ืฉื•ืจื” ื”ืชื—ืชื•ื ื”, ืื ื—ื ื• ื”ื•ืœื›ื™ื ืœื”ืฆื™ืœ ื—ื™ื™ื.
01:12
You're welcome.
24
72160
1216
ื”ืขื•ื ื’ ื›ื•ืœื• ืฉืœื™.
01:13
(Laughter)
25
73400
1696
(ืฆื—ื•ืง)
01:15
I thought it was going to take 12 months,
26
75120
1976
ื—ืฉื‘ืชื™ ืฉื–ื” ื™ืงื— 12 ื—ื•ื“ืฉื™ื,
01:17
OK, maybe even 13.
27
77120
1560
ืื•ืงื™ื™, ืื•ืœื™ ืืคื™ืœื• 13.
01:19
This is not quite how it panned out.
28
79800
2280
ื–ื” ืœื ื‘ื“ื™ื•ืง ืื™ืš ืฉื–ื” ื™ืฆื.
01:23
Just a couple of months into the project, my French boss, he told me,
29
83600
3776
ืœืื—ืจ ื›ืžื” ื—ื•ื“ืฉื™ื ื‘ืคืจื•ื™ื™ืงื˜, ื”ืžื ื”ืœ ื”ืฆืจืคืชื™ ืฉืœื™ ืืžืจ ืœื™
01:27
"You know, Mallory,
30
87400
1816
"ืืช ื™ื•ื“ืขืช, ืžืœื•ืจื™,
01:29
it's a good idea,
31
89240
1656
"ื–ื” ืจืขื™ื•ืŸ ืžื•ืฆืœื—,
01:30
but the data you need for your algorithms is not there.
32
90920
3336
"ืื‘ืœ ื”ื ืชื•ื ื™ื ืฉืืช ืฆืจื™ื›ื” ืœืืœื’ื•ืจื™ืชืžื™ื ืฉืœืš ืื™ื ื ืฉื.
01:34
It's the right idea but at the wrong time,
33
94280
2536
"ื–ื” ื”ืจืขื™ื•ืŸ ื”ื ื›ื•ืŸ ืื‘ืœ ื‘ื–ืžืŸ ื”ืœื ื ื›ื•ืŸ,
01:36
and the right idea at the wrong time
34
96840
2296
"ื•ื”ืจืขื™ื•ืŸ ื”ื ื›ื•ืŸ ื‘ื–ืžืŸ ื”ืœื ื ื›ื•ืŸ
01:39
is the wrong idea."
35
99160
1376
"ื–ื” ื”ืจืขื™ื•ืŸ ื”ืœื ื ื›ื•ืŸ."
01:40
(Laughter)
36
100560
1320
(ืฆื—ื•ืง)
01:42
Project over.
37
102960
1280
ืกื•ืฃ ื”ืคืจื•ื™ืงื˜.
01:45
I was crushed.
38
105120
1200
ื”ื™ื™ืชื™ ืฉื‘ื•ืจื”.
01:49
When I look back now
39
109000
1456
ื›ืฉืื ื™ ืžืกืชื›ืœืช ืื—ื•ืจื” ืขื›ืฉื™ื•
01:50
on that first summer in Rome
40
110480
1656
ืขืœ ืื•ืชื• ืงื™ืฅ ืจืืฉื•ืŸ ื‘ืจื•ืžื
01:52
and I see how much has changed over the past six years,
41
112160
2656
ื•ืจื•ืื” ืขื“ ื›ืžื” ื”ื“ื‘ืจื™ื ื”ืฉืชื ื• ื‘ืžืฉืš ืฉืฉ ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช,
01:54
it is an absolute transformation.
42
114840
2240
ื–ื” ืฉื™ื ื•ื™ ืžื•ื—ืœื˜.
01:57
It's a coming of age for bringing data into the humanitarian world.
43
117640
3400
ื”ื’ื™ืข ื”ื–ืžืŸ ืœื”ื‘ื™ื ื ืชื•ื ื™ื ืœืชื•ืš ื”ืขื•ืœื ื”ื”ื•ืžื ื™ื˜ืจื™.
02:02
It's exciting. It's inspiring.
44
122160
2656
ื–ื” ืžืจื’ืฉ. ื–ื” ืžืขื•ืจืจ ื”ืฉืจืื”.
02:04
But we're not there yet.
45
124840
1200
ืื‘ืœ ืื ื—ื ื• ืขื•ื“ ืœื ืฉื.
02:07
And brace yourself, executives,
46
127320
2296
ื•ื”ื—ื–ื™ืงื• ื—ื–ืง, ืžื ื”ืœื™ื,
02:09
because I'm going to be putting companies
47
129640
1976
ื›ื™ ืื ื™ ื”ื•ืœื›ืช ืœื”ื•ืฉื™ื‘ ื—ื‘ืจื•ืช
02:11
on the hot seat to step up and play the role that I know they can.
48
131640
3120
ื‘ื›ืกื ื”ื—ื, ื›ื“ื™ ืฉื™ืงื•ืžื• ื•ื™ืžืœืื• ืืช ื”ืชืคืงื™ื“ ืฉืœื“ืขืชื™ ื”ื ืžืกื•ื’ืœื™ื ืœืžืœื.
02:17
My experiences back in Rome prove
49
137520
2816
ื”ื ื™ืกื™ื•ืŸ ืฉืœื™ ื‘ืจื•ืžื ืžื•ื›ื™ื—
02:20
using data you can save lives.
50
140360
2080
ืฉื‘ืฉื™ืžื•ืฉ ื‘ื ืชื•ื ื™ื ื ื™ืชืŸ ืœื”ืฆื™ืœ ื—ื™ื™ื.
02:23
OK, not that first attempt,
51
143440
2456
ืื•ืงื™, ืœื ื”ื ื™ืกื™ื•ืŸ ื”ืจืืฉื•ืŸ ื”ื”ื•ื,
02:25
but eventually we got there.
52
145920
2576
ืื‘ืœ ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ ื”ื’ืขื ื• ืœืฉื.
02:28
Let me paint the picture for you.
53
148520
1736
ืชื ื• ืœื™ ืœืฆื™ื™ืจ ืœื›ื ืืช ื”ืชืžื•ื ื”.
02:30
Imagine that you have to plan breakfast, lunch and dinner
54
150280
2736
ื“ืžื™ื™ื ื• ืฉืืชื ืฆืจื™ื›ื™ื ืœืชื›ื ืŸ ืืจื•ื—ืช ื‘ื•ืงืจ, ืฆื”ืจื™ื™ื ื•ืขืจื‘
02:33
for 500,000 people,
55
153040
1616
ืขื‘ื•ืจ 500,000 ืื™ืฉ,
02:34
and you only have a certain budget to do it,
56
154680
2136
ื•ื™ืฉ ืœื›ื ืชืงืฆื™ื‘ ืžืกื•ื™ื™ื ื›ื“ื™ ืœืขืฉื•ืช ืืช ื–ื”.
02:36
say 6.5 million dollars per month.
57
156840
2240
ื ื’ื™ื“ 6.5 ืžื™ืœื™ื•ืŸ ื“ื•ืœืจ ืœื—ื•ื“ืฉ.
02:40
Well, what should you do? What's the best way to handle it?
58
160920
2762
ื•ื‘ื›ืŸ, ืžื” ืชืขืฉื•? ืžื” ื”ื“ืจืš ื”ื˜ื•ื‘ื” ื‘ื™ื•ืชืจ ืœื”ืชืžื•ื“ื“ ืขื ื–ื”?
02:44
Should you buy rice, wheat, chickpea, oil?
59
164280
2760
ื”ืื ื›ื“ืื™ ืฉืชืงื ื• ืื•ืจื–, ื—ื™ื˜ื”, ื—ื•ืžื•ืก, ืฉืžืŸ?
02:47
How much?
60
167760
1216
ื›ืžื”?
02:49
It sounds simple. It's not.
61
169000
2136
ื–ื” ื ืฉืžืข ืคืฉื•ื˜. ื–ื” ืœื.
02:51
You have 30 possible foods, and you have to pick five of them.
62
171160
3216
ื™ืฉ ืœื›ื 30 ืกื•ื’ื™ ืžื–ื•ื ื•ืช ืืคืฉืจื™ื™ื ื•ืืชื ืฆืจื™ื›ื™ื ืœื‘ื—ื•ืจ ื—ืžื™ืฉื” ืžื”ื.
02:54
That's already over 140,000 different combinations.
63
174400
3416
ื–ื” ื›ื‘ืจ ื™ื•ืชืจ ืž-140,000 ืฆื™ืจื•ืคื™ื ืฉื•ื ื™ื.
02:57
Then for each food that you pick,
64
177840
1696
ืื—ืจ ื›ืš, ืขื‘ื•ืจ ื›ืœ ืžื–ื•ืŸ ืฉืืชื ื‘ื•ื—ืจื™ื,
02:59
you need to decide how much you'll buy,
65
179560
1976
ืืชื ืฆืจื™ื›ื™ื ืœื”ื—ืœื™ื˜ ื›ืžื” ืžืžื ื• ืœืงื ื•ืช,
03:01
where you're going to get it from,
66
181560
1696
ืžืื™ืคื” ืœื”ืฉื™ื’ ืื•ืชื•,
03:03
where you're going to store it,
67
183280
1480
ืื™ืคื” ืœืื—ืกืŸ ืื•ืชื•,
03:05
how long it's going to take to get there.
68
185760
1976
ื›ืžื” ื–ืžืŸ ื™ืงื— ืœื• ืœื”ื’ื™ืข ืœืฉื.
03:07
You need to look at all of the different transportation routes as well.
69
187760
3336
ืืชื ื’ื ืฆืจื™ื›ื™ื ืœื‘ื—ื•ืŸ ืืช ื›ืœ ืžืกืœื•ืœื™ ื”ืฉื™ื ื•ืข ื”ืฉื•ื ื™ื.
03:11
And that's already over 900 million options.
70
191120
2080
ื–ื” ื›ื‘ืจ ืžืขืœ 900 ืžื™ืœื™ื•ืŸ ืืคืฉืจื•ื™ื•ืช.
03:14
If you considered each option for a single second,
71
194120
2376
ืื ืืชื ืฉื•ืงืœื™ื ื›ืœ ืืคืฉืจื•ืช ื‘ืžืฉืš ืฉื ื™ื” ืื—ืช,
03:16
that would take you over 28 years to get through.
72
196520
2336
ื™ืงื— ืœื›ื ื™ื•ืชืจ ืžืขืœ 28 ืฉื ื™ื ืœืขื‘ื•ืจ ืขืœ ื”ื›ืœ.
03:18
900 million options.
73
198880
1520
900 ืžื™ืœื™ื•ืŸ ืืคืฉืจื•ื™ื•ืช.
03:21
So we created a tool that allowed decisionmakers
74
201160
2456
ืื– ื™ืฆืจื ื• ื›ืœื™ ืฉืื™ืคืฉืจ ืœืžืงื‘ืœื™ ื”ื—ืœื˜ื•ืช
03:23
to weed through all 900 million options
75
203640
2616
ืœืคืœืก ืฉื‘ื™ืœ ื“ืจืš ื›ืœ 900 ืžื™ืœื™ื•ืŸ ื”ืืคืฉืจื•ื™ื•ืช
03:26
in just a matter of days.
76
206280
1360
ืชื•ืš ื™ืžื™ื ื‘ื•ื“ื“ื™ื ื‘ืœื‘ื“.
03:28
It turned out to be incredibly successful.
77
208560
2240
ื”ืกืชื‘ืจ ืฉื–ื” ื”ืฆืœื™ื— ื‘ืื•ืคืŸ ื‘ืœืชื™ ื™ืืžืŸ.
03:31
In an operation in Iraq,
78
211400
1256
ื‘ืžื‘ืฆืข ื‘ืขื™ืจืืง,
03:32
we saved 17 percent of the costs,
79
212680
2536
ื—ืกื›ื ื• 17 ืื—ื•ื– ืžื”ืขืœื•ื™ื•ืช,
03:35
and this meant that you had the ability to feed an additional 80,000 people.
80
215240
4136
ื•ื–ื” ืื•ืžืจ ืฉื™ื›ื•ืœื ื• ืœื”ืื›ื™ืœ 80,000 ืื™ืฉ ื ื•ืกืคื™ื.
03:39
It's all thanks to the use of data and modeling complex systems.
81
219400
4400
ื›ืœ ื–ื” ื”ื•ื“ื•ืช ืœืฉื™ืžื•ืฉ ื‘ื ืชื•ื ื™ื ื•ื‘ื ื™ื™ืช ืžื•ื“ืœื™ื ืฉืœ ืžืขืจื›ื•ืช ืžื•ืจื›ื‘ื•ืช.
03:44
But we didn't do it alone.
82
224800
1280
ืื‘ืœ ืœื ืขืฉื™ื ื• ืืช ื–ื” ืœื‘ื“ื ื•.
03:46
The unit that I worked with in Rome, they were unique.
83
226840
2736
ื‘ื™ื—ื™ื“ื” ืฉืื™ืชื” ืขื‘ื“ืชื™ ื‘ืจื•ืžื, ื”ื ื”ื™ื• ื™ื™ื—ื•ื“ื™ื™ื.
03:49
They believed in collaboration.
84
229600
1736
ื”ื ื”ืืžื™ื ื• ื‘ืฉื™ืชื•ืฃ ืคืขื•ืœื”.
03:51
They brought in the academic world.
85
231360
1696
ื”ื ื”ื‘ื™ืื• ืืช ื”ืขื•ืœื ื”ืืงื“ืžื™.
03:53
They brought in companies.
86
233080
1280
ื”ื ื”ื‘ื™ืื• ื—ื‘ืจื•ืช.
03:55
And if we really want to make big changes in big problems like world hunger,
87
235200
3616
ื•ืื ื‘ืืžืช ืื ื—ื ื• ืจื•ืฆื™ื ืœืขืฉื•ืช ืฉื™ื ื•ื™ื™ื ื‘ื‘ืขื™ื•ืช ื’ื“ื•ืœื•ืช ื›ืžื• ืจืขื‘ ืขื•ืœืžื™,
03:58
we need everybody to the table.
88
238840
2560
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืืช ื›ื•ืœื ืกื‘ื™ื‘ ื”ืฉื•ืœื—ืŸ.
04:02
We need the data people from humanitarian organizations
89
242040
2936
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืืช ืื ืฉื™ ื”ื ืชื•ื ื™ื ืžืื™ืจื’ื•ื ื™ื ื”ื•ืžื ื™ื˜ืจื™ื™ื
04:05
leading the way,
90
245000
1256
ืฉื™ื•ื‘ื™ืœื• ืืช ื”ื“ืจืš,
04:06
and orchestrating just the right types of engagements
91
246280
2576
ื•ื™ื ืฆื—ื• ืขืœ ื”ืฉื™ื“ื•ืš ื”ื ื›ื•ืŸ
04:08
with academics, with governments.
92
248880
1696
ืขื ืื ืฉื™ ืืงื“ืžื™ื” ื•ืžืžืฉืœื•ืช.
04:10
And there's one group that's not being leveraged in the way that it should be.
93
250600
3696
ื™ืฉ ืงื‘ื•ืฆื” ืื—ืช ืฉืœื ืžืžื•ื ืคืช ื‘ื“ืจืš ืฉื”ื™ื ืฆืจื™ื›ื” ืœื”ื™ื•ืช.
04:14
Did you guess it? Companies.
94
254320
2096
ื ื™ื—ืฉืชื ืžื™? ื—ื‘ืจื•ืช.
04:16
Companies have a major role to play in fixing the big problems in our world.
95
256440
3600
ืœื—ื‘ืจื•ืช ื™ืฉ ืชืคืงื™ื“ ืžืจื›ื–ื™ ื‘ืชื™ืงื•ืŸ ื”ื‘ืขื™ื•ืช ื”ื’ื“ื•ืœื•ืช ื‘ืขื•ืœืžื ื•.
04:20
I've been in the private sector for two years now.
96
260880
2416
ืื ื™ ืคื•ืขืœืช ื‘ืžื’ื–ืจ ื”ืคืจื˜ื™, ื›ื‘ืจ ืฉื ืชื™ื™ื.
04:23
I've seen what companies can do, and I've seen what companies aren't doing,
97
263320
3576
ืจืื™ืชื™ ืžื” ื—ื‘ืจื•ืช ื™ื›ื•ืœื•ืช ืœืขืฉื•ืช ื•ืจืื™ืชื™ ืžื” ื”ืŸ ืœื ืขื•ืฉื•ืช,
04:26
and I think there's three main ways that we can fill that gap:
98
266920
3376
ื•ืื ื™ ื—ื•ืฉื‘ืช ืฉื™ืฉ ืฉืœื•ืฉ ื“ืจื›ื™ื ืขื™ืงืจื™ื•ืช ืฉื‘ืืžืฆืขื•ืชืŸ ืืคืฉืจ ืœืกื’ื•ืจ ืืช ื”ืคืขืจ:
04:30
by donating data, by donating decision scientists
99
270320
3096
ืขืœ ื™ื“ื™ ืชืจื•ืžืช ื ืชื•ื ื™ื, ืขืœ ื™ื“ื™ ืชืจื•ืžืช ืžื“ืขื ื™ื ื”ืžืชืžื—ื™ื ื‘ืงื‘ืœืช ื”ื—ืœื˜ื•ืช
04:33
and by donating technology to gather new sources of data.
100
273440
3480
ื•ืชืจื•ืžืช ื˜ื›ื ื•ืœื•ื’ื™ื” ืœืื™ืกื•ืฃ ืžืงื•ืจื•ืช ื ืชื•ื ื™ื ื—ื“ืฉื™ื.
04:37
This is data philanthropy,
101
277920
1576
ื–ื• ื ื“ื‘ื ื•ืช ืฉืœ ื ืชื•ื ื™ื.
04:39
and it's the future of corporate social responsibility.
102
279520
2840
ื•ื–ื” ื”ืขืชื™ื“ ืฉืœ ืื—ืจื™ื•ืช ื—ื‘ืจืชื™ืช ืชืื’ื™ื“ื™ืช.
04:43
Bonus, it also makes good business sense.
103
283160
2600
ื›ื‘ื•ื ื•ืก, ื–ื” ื’ื ื”ื’ื™ื•ื ื™ ืžื‘ื—ื™ื ื” ืขืกืงื™ืช.
04:46
Companies today, they collect mountains of data,
104
286920
3216
ื—ื‘ืจื•ืช ื”ื™ื•ื ืื•ืกืคื•ืช ื”ืจืจื™ ื ืชื•ื ื™ื,
04:50
so the first thing they can do is start donating that data.
105
290160
2762
ืื– ื”ื“ื‘ืจ ื”ืจืืฉื•ืŸ ืฉื”ืŸ ื™ื›ื•ืœื•ืช ืœืขืฉื•ืช ื–ื” ืœืชืจื•ื ืืช ื”ื ืชื•ื ื™ื ื”ืืœื•.
04:52
Some companies are already doing it.
106
292946
2190
ื—ื‘ืจื•ืช ืื—ื“ื•ืช ื›ื‘ืจ ืขื•ืฉื•ืช ืืช ื–ื”.
04:55
Take, for example, a major telecom company.
107
295160
2416
ืงื—ื• ืœืžืฉืœ ื—ื‘ืจืช ืชืงืฉื•ืจืช ื’ื“ื•ืœื”.
04:57
They opened up their data in Senegal and the Ivory Coast
108
297600
2776
ื”ื ืคืชื—ื• ืืช ืžืื’ืจ ื”ื ืชื•ื ื™ื ืฉืœื”ื ื‘ืกื ื’ืœ ื•ื‘ื—ื•ืฃ ื”ืฉื ื”ื‘
05:00
and researchers discovered
109
300400
1976
ื•ื”ื—ื•ืงืจื™ื ื’ื™ืœื•
05:02
that if you look at the patterns in the pings to the cell phone towers,
110
302400
3334
ืฉืื ืืชื ืžืกืชื›ืœื™ื ืขืœ ื”ืชื‘ื ื™ื•ืช ืฉืœ ื”ืคื™ื ื’ื™ื ืœืขืžื•ื“ื™ ื”ื˜ืœืคื•ื ื™ื ื”ื ื™ื™ื“ื™ื,
05:05
you can see where people are traveling.
111
305758
1938
ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืœืืŸ ืื ืฉื™ื ื ื•ืกืขื™ื.
05:07
And that can tell you things like
112
307720
2176
ื•ื–ื” ื™ื›ื•ืœ ืœื•ืžืจ ืœื›ื ื“ื‘ืจื™ื ื›ืžื•
05:09
where malaria might spread, and you can make predictions with it.
113
309920
3096
ืื™ืคื” ื”ืžืœืจื™ื” ืขืœื•ืœื” ืœื”ืชืคืฉื˜ ื•ืืชื ื™ื›ื•ืœื™ื ืœื‘ื ื•ืช ืขื ื–ื” ืชื—ื–ื™ื•ืช.
05:13
Or take for example an innovative satellite company.
114
313040
2896
ืื• ืงื—ื• ืœืžืฉืœ ื—ื‘ืจืช ืœื•ื•ื™ื™ื ื™ื ื—ื“ืฉื ื™ืช.
05:15
They opened up their data and donated it,
115
315960
2016
ื”ื ืคืชื—ื• ื•ืชืจืžื• ืืช ื”ื ืชื•ื ื™ื ืฉืœื”ื
05:18
and with that data you could track
116
318000
1656
ื•ื‘ืืžืฆืขื•ืชื ืืชื ื™ื›ื•ืœื™ื ืœืขืงื•ื‘
05:19
how droughts are impacting food production.
117
319680
2040
ืื™ืš ื‘ืฆื•ืจื•ืช ืžืฉืคื™ืขื•ืช ืขืœ ื™ื™ืฆื•ืจ ืžื–ื•ืŸ.
05:22
With that you can actually trigger aid funding before a crisis can happen.
118
322920
3680
ื›ืš ืืคืฉืจ ืœื”ืชื ื™ืข ืžื™ืžื•ืŸ ืœืกื™ื•ืข ืœืคื ื™ ืฉื”ืžืฉื‘ืจ ืคื•ืจืฅ.
05:27
This is a great start.
119
327560
1280
ื–ืืช ื”ืชื—ืœื” ื ื”ื“ืจืช.
05:29
There's important insights just locked away in company data.
120
329840
2880
ื™ืฉ ืชื•ื‘ื ื•ืช ื—ืฉื•ื‘ื•ืช ืฉื ืขื•ืœื•ืช ื‘ื ืชื•ื ื™ื ืฉืœ ื—ื‘ืจื•ืช.
05:34
And yes, you need to be very careful.
121
334480
1816
ื•ื›ืŸ, ืืชื ืฆืจื™ื›ื™ื ืœื”ื™ื•ืช ืžืื“ ื–ื”ื™ืจื™ื.
05:36
You need to respect privacy concerns, for example by anonymizing the data.
122
336320
3576
ืืชื ืฆืจื™ื›ื™ื ืœื›ื‘ื“ ืขื ื™ื™ื ื™ ืคืจื˜ื™ื•ืช, ืœืžืฉืœ ืขืœ ื™ื“ื™ ื”ืคื™ื›ืช ื”ื ืชื•ื ื™ื ืœืื ื•ื ื™ืžื™ื™ื.
05:39
But even if the floodgates opened up,
123
339920
2776
ืื‘ืœ ืืคื™ืœื• ืื ืฉืขืจื™ ืฉืžื™ื™ื ื”ื™ื• ื ืคืชื—ื™ื,
05:42
and even if all companies donated their data
124
342720
2536
ื•ื›ืœ ื”ื—ื‘ืจื•ืช ื”ื™ื• ืชื•ืจืžื•ืช ืืช ื”ื ืชื•ื ื™ื ืฉืœื”ื
05:45
to academics, to NGOs, to humanitarian organizations,
125
345280
3256
ืœืื ืฉื™ ืืงื“ืžื™ื”, ืœื—ื‘ืจื•ืช ืœื ืžืžืฉืœืชื™ื•ืช, ืœืื™ืจื’ื•ื ื™ ืกื™ื•ืข ื”ื•ืžื ื™ื˜ืจื™ื™ื,
05:48
it wouldn't be enough to harness that full impact of data
126
348560
2976
ืœื ื”ื™ื” ืžืกืคื™ืง ืœืจืชื•ื ืืช ื›ืœ ืฉืคืข ื”ื ืชื•ื ื™ื
05:51
for humanitarian goals.
127
351560
1520
ืœืžื˜ืจื•ืช ื”ื•ืžื ื™ื˜ืจื™ื•ืช.
05:54
Why?
128
354320
1456
ืœืžื”?
05:55
To unlock insights in data, you need decision scientists.
129
355800
3240
ื›ื“ื™ ืœื”ื•ืฆื™ื ืชื•ื‘ื ื•ืช ืžื ืชื•ื ื™ื, ืฆืจื™ืš ืžื“ืขื ื™ื ืฉืžืชืžื—ื™ื ื‘ืงื‘ืœืช ื”ื—ืœื˜ื•ืช.
05:59
Decision scientists are people like me.
130
359760
2576
ืžื“ืขื ื™ื ืืœื• ื”ื ืื ืฉื™ื ื›ืžื•ื ื™.
06:02
They take the data, they clean it up,
131
362360
1816
ื”ื ืœื•ืงื—ื™ื ืืช ื”ื ืชื•ื ื™ื, ืžื ืงื™ื,
06:04
transform it and put it into a useful algorithm
132
364200
2256
ืžืฉื ื™ื ื•ืžื–ื™ื ื™ื ืื•ืชื ืœืชื•ืš ืืœื’ื•ืจื™ืชื ืฉื™ืžื•ืฉื™
06:06
that's the best choice to address the business need at hand.
133
366480
2840
ืฉื”ื•ื ื”ื‘ื—ื™ืจื” ื”ื˜ื•ื‘ื” ื‘ื™ื•ืชืจ ืœื˜ื™ืคื•ืœ ื‘ืฆื•ืจืš ื”ืขื™ืกืงื™ ืฉืขืœ ื”ืคืจืง.
06:09
In the world of humanitarian aid, there are very few decision scientists.
134
369800
3696
ื‘ืขื•ืœื ื”ืกื™ื•ืข ื”ื”ื•ืžื ื™ื˜ืจื™, ื™ืฉ ืžืขื˜ ืžืื“ ืžื“ืขื ื™ ื”ื—ืœื˜ื•ืช.
06:13
Most of them work for companies.
135
373520
1640
ืจื•ื‘ื ืขื•ื‘ื“ื™ื ืขื‘ื•ืจ ื—ื‘ืจื•ืช.
06:16
So that's the second thing that companies need to do.
136
376480
2496
ืœื›ืŸ ื–ื” ื”ื“ื‘ืจ ื”ืฉื ื™ ืฉื—ื‘ืจื•ืช ืฆืจื™ื›ื•ืช ืœืขืฉื•ืช.
06:19
In addition to donating their data,
137
379000
1696
ื‘ื ื•ืกืฃ ืœืชืจื•ืžืช ื”ื ืชื•ื ื™ื ืฉืœื”ื,
06:20
they need to donate their decision scientists.
138
380720
2160
ื”ื ืฆืจื™ื›ื™ื ืœืชืจื•ื ืืช ืžื“ืขื ื™ ื”ื”ื—ืœื˜ื•ืช ืฉืœื”ื.
06:23
Now, companies will say, "Ah! Don't take our decision scientists from us.
139
383520
5736
ืขื›ืฉื™ื•, ื—ื‘ืจื•ืช ื™ื’ื™ื“ื• "ืืœ ืชื™ืงื—ื• ืืช ื”ืžื“ืขื ื™ื ื”ืืœื” ืžืื™ืชื ื•.
06:29
We need every spare second of their time."
140
389280
2040
"ืื ื—ื ื• ืฆืจื™ื›ื™ื ื›ืœ ืฉื ื™ื” ืžื–ืžื ื".
06:32
But there's a way.
141
392360
1200
ืื‘ืœ ื™ืฉ ื“ืจืš.
06:35
If a company was going to donate a block of a decision scientist's time,
142
395200
3416
ืื ื—ื‘ืจื” ืชืชืจื•ื ื›ืžื•ืช ืžืกื•ื™ื™ืžืช ืฉืœ ื–ืžืŸ-ืžื“ืขื ื™ื,
06:38
it would actually make more sense to spread out that block of time
143
398640
3136
ื™ื”ื™ื” ืœืžืขืฉื” ื”ื’ื™ื•ืŸ ืจื‘ ื™ื•ืชืจ ื‘ืคืจื™ืกืช ื”ื–ืžืŸ ื”ื–ื”
06:41
over a long period, say for example five years.
144
401800
2200
ืœืื•ืจืš ืชืงื•ืคื” ืืจื•ื›ื”, ืœืžืฉืœ ื—ืžืฉ ืฉื ื™ื.
06:44
This might only amount to a couple of hours per month,
145
404600
3056
ื–ื” ื‘ืกืš ื”ื›ืœ ื™ืกืชื›ื ื‘ื›ืžื” ืฉืขื•ืช ื‘ื›ืœ ื—ื•ื“ืฉ,
06:47
which a company would hardly miss,
146
407680
2056
ืฉื—ื‘ืจื” ืชืจื’ื™ืฉ ื‘ืงื•ืฉื™ ื‘ื—ืกืจื•ื ืŸ,
06:49
but what it enables is really important: long-term partnerships.
147
409760
3480
ืื‘ืœ ื–ื” ื™ืืคืฉืจ ืžืฉื”ื• ื‘ืืžืช ื—ืฉื•ื‘: ืฉื•ืชืคื•ืช ืืจื•ื›ืช-ื˜ื•ื•ื—.
06:54
Long-term partnerships allow you to build relationships,
148
414920
2816
ืฉื•ืชืคื•ืช ืืจื•ื›ืช-ื˜ื•ื•ื— ืžืืคืฉืจืช ืœื›ื ืœื‘ื ื•ืช ื™ื—ืกื™ื,
06:57
to get to know the data, to really understand it
149
417760
2656
ืœื”ื›ื™ืจ ืืช ื”ื ืชื•ื ื™ื, ื‘ืืžืช ืœื”ื‘ื™ืŸ ืื•ืชื
07:00
and to start to understand the needs and challenges
150
420440
2416
ื•ืœื”ืชื—ื™ืœ ืœื”ื‘ื™ืŸ ืืช ื”ืฆืจื›ื™ื ื•ื”ืืชื’ืจื™ื
07:02
that the humanitarian organization is facing.
151
422880
2160
ืฉืื™ืจื’ื•ืŸ ื”ืกื™ื•ืข ื”ื”ื•ืžื ื™ื˜ืจื™ ืžืชืžื•ื“ื“ ืžื•ืœื.
07:06
In Rome, at the World Food Programme, this took us five years to do,
152
426345
3191
ื‘ืจื•ืžื, ื‘ืชื•ื›ื ื™ืช ื”ืžื–ื•ืŸ ื”ืขื•ืœืžื™ืช, ืœืงื— ืœื ื• ื—ืžืฉ ืฉื ื™ื ืœืขืฉื•ืช ืืช ื–ื”,
07:09
five years.
153
429560
1456
ื—ืžืฉ ืฉื ื™ื.
07:11
That first three years, OK, that was just what we couldn't solve for.
154
431040
3336
ืฉืœื•ืฉ ื”ืฉื ื™ื ื”ืจืืฉื•ื ื•ืช ืฉื”ื™ื• ืจืง ืขื‘ื•ืจ ืžื” ืฉืœื ื”ืฆืœื—ื ื• ืœืคืชื•ืจ.
07:14
Then there was two years after that of refining and implementing the tool,
155
434400
3496
ืื—ืจ ื›ืš ื”ื™ื• ืฉื ืชื™ื™ื ืฉืœ ืœื™ื˜ื•ืฉ ื•ื™ืฉื•ื ืฉืœ ื”ื›ืœื™,
07:17
like in the operations in Iraq and other countries.
156
437920
2800
ื›ืžื• ื‘ืžื‘ืฆืขื™ื ื‘ืขื™ืจืืง ื•ื‘ืžื“ื™ื ื•ืช ืื—ืจื•ืช.
07:21
I don't think that's an unrealistic timeline
157
441520
2096
ืื ื™ ืœื ื—ื•ืฉื‘ืช ืฉื–ื” ืœื•ื— ื–ืžื ื™ื ื‘ืœืชื™ ืžืฆื™ืื•ืชื™
07:23
when it comes to using data to make operational changes.
158
443640
2736
ื›ืฉื–ื” ื ื•ื’ืข ืœืฉื™ืžื•ืฉ ื‘ื ืชื•ื ื™ื ื›ื“ื™ ืœืขืฉื•ืช ืฉื™ื ื•ื™ื™ื ืชืคืขื•ืœื™ื™ื.
07:26
It's an investment. It requires patience.
159
446400
2400
ื–ืืช ื”ืฉืงืขื”. ื–ื” ื“ื•ืจืฉ ืกื‘ืœื ื•ืช.
07:29
But the types of results that can be produced are undeniable.
160
449760
3496
ืื‘ืœ ืœื ื ื™ืชืŸ ืœื”ืชื›ื—ืฉ ืœืชื•ืฆืื•ืช ืฉืืคืฉืจ ืœืงื‘ืœ.
07:33
In our case, it was the ability to feed tens of thousands more people.
161
453280
3560
ื‘ืžืงืจื” ืฉืœื ื•, ื–ืืช ื”ื™ืชื” ื”ื™ื›ื•ืœืช ืœื”ืื›ื™ืœ ืขืฉืจื•ืช ืืœืคื™ ืื ืฉื™ื ื ื•ืกืคื™ื.
07:39
So we have donating data, we have donating decision scientists,
162
459440
4336
ืื– ื™ืฉ ืœื ื• ืชืจื•ืžืช ื ืชื•ื ื™ื, ืชืจื•ืžืช ืžื“ืขื ื™ ื”ื—ืœื˜ื•ืช
07:43
and there's actually a third way that companies can help:
163
463800
2696
ื•ื™ืฉ ืœืžืขืฉื” ื“ืจืš ืฉืœื™ืฉื™ืช ืฉื‘ื” ื—ื‘ืจื•ืช ื™ื›ื•ืœื•ืช ืœืกื™ื™ืข:
07:46
donating technology to capture new sources of data.
164
466520
2976
ืชืจื•ืžืช ื˜ื›ื ื•ืœื•ื’ื™ื” ืœืื™ืกื•ืฃ ืžืงื•ืจื•ืช ื ืชื•ื ื™ื ื—ื“ืฉื™ื.
07:49
You see, there's a lot of things we just don't have data on.
165
469520
2840
ืชืจืื•, ื™ืฉ ืœื ื• ื”ืจื‘ื” ื“ื‘ืจื™ื ืฉืื™ืŸ ืœื ื• ื ืชื•ื ื™ื ืœื’ื‘ื™ื”ื.
07:52
Right now, Syrian refugees are flooding into Greece,
166
472960
2720
ื ื›ื•ืŸ ืœืขื›ืฉื™ื•, ืคืœื™ื˜ื™ื ืกื•ืจื™ื™ื ืžืฆื™ืคื™ื ืืช ื™ื•ื•ืŸ,
07:57
and the UN refugee agency, they have their hands full.
167
477120
2560
ื•ืกื•ื›ื ื•ืช ื”ืคืœื™ื˜ื™ื ืฉืœ ื”ืื•"ื ืขืžื•ืกื” ืžืขืœ ื”ืจืืฉ.
08:01
The current system for tracking people is paper and pencil,
168
481000
3056
ื”ืžืขืจื›ืช ื”ื ื•ื›ื—ื™ืช ืœื ื™ื˜ื•ืจ ืื ืฉื™ื ื”ื™ื ื ื™ื™ืจ ื•ืขื™ืคืจื•ืŸ
08:04
and what that means is
169
484080
1256
ื•ืžื” ืฉื–ื” ืื•ืžืจ ื”ื•ื
08:05
that when a mother and her five children walk into the camp,
170
485360
2856
ืฉื›ืฉืืžื ื•ื—ืžืฉืช ื”ื™ืœื“ื™ื ืฉืœื” ืฆื•ืขื“ื™ื ืœืชื•ืš ื”ืžื—ื ื”,
08:08
headquarters is essentially blind to this moment.
171
488240
2656
ื”ืžื˜ื” ืœืžืขืฉื” ืขื™ื•ื•ืจ ืœื’ื‘ื™ ื”ืจื’ืข ื”ื–ื”.
08:10
That's all going to change in the next few weeks,
172
490920
2336
ื›ืœ ื–ื” ื”ื•ืœืš ืœื”ืฉืชื ื•ืช ื‘ืฉื‘ื•ืขื•ืช ื”ืงืจื•ื‘ื™ื,
08:13
thanks to private sector collaboration.
173
493280
1880
ืชื•ื“ื•ืช ืœืฉื™ืชื•ืฃ ืคืขื•ืœื” ืขื ื”ืžื’ื–ืจ ื”ืคืจื˜ื™.
08:15
There's going to be a new system based on donated package tracking technology
174
495840
3656
ืชื”ื™ื” ืžืขืจื›ืช ื—ื“ืฉื” ืฉืžื‘ื•ืกืกืช ืขืœ ื˜ื›ื ื•ืœื•ื’ื™ื™ืช ื ื™ื˜ื•ืจ ื—ื‘ื™ืœื•ืช ืฉื ืชืจืžื”
08:19
from the logistics company that I work for.
175
499520
2040
ืขืœ ื™ื“ื™ ื—ื‘ืจืช ื”ืœื•ื’ื™ืกื˜ื™ืงื” ืฉืื ื™ ืขื•ื‘ื“ืช ืขื‘ื•ืจื”.
08:22
With this new system, there will be a data trail,
176
502120
2336
ื‘ืขื–ืจืช ื”ืžืขืจื›ืช ื”ื—ื“ืฉื” ื”ื–ืืช ื™ื”ื™ื” ื ืชื™ื‘ ืžื™ื“ืข,
08:24
so you know exactly the moment
177
504480
1456
ื›ืš ืฉืชื“ืขื• ื‘ืžื“ื•ื™ืง ืžื” ื”ืจื’ืข
08:25
when that mother and her children walk into the camp.
178
505960
2496
ื‘ื• ื”ืื ื•ื™ืœื“ื™ื” ืฆื•ืขื“ื™ื ืœืชื•ืš ื”ืžื—ื ื”.
08:28
And even more, you know if she's going to have supplies
179
508480
2616
ื•ื™ื•ืชืจ ืžื›ืš, ืชื“ืขื• ืื ื”ื™ื ืชืงื‘ืœ ืืกืคืงื”
08:31
this month and the next.
180
511120
1256
ื‘ื—ื•ื“ืฉ ื”ื–ื”, ื•ื‘ื–ื” ืฉืื—ืจื™ื•.
08:32
Information visibility drives efficiency.
181
512400
3016
ื ื™ืจืื•ืช ืฉืœ ืžื™ื“ืข ืžื ื™ืขื” ื™ืขื™ืœื•ืช.
08:35
For companies, using technology to gather important data,
182
515440
3256
ืขื‘ื•ืจ ื—ื‘ืจื•ืช, ืฉื™ืžื•ืฉ ื‘ื˜ื›ื ื•ืœื•ื’ื™ื” ืœืื™ืกื•ืฃ ื ืชื•ื ื™ื ื—ืฉื•ื‘ื™ื
08:38
it's like bread and butter.
183
518720
1456
ื”ื•ื ืœื—ื ื—ื•ืงื.
08:40
They've been doing it for years,
184
520200
1576
ื”ื ืขืฉื• ืืช ื–ื” ื‘ืžืฉืš ืฉื ื™ื
08:41
and it's led to major operational efficiency improvements.
185
521800
3256
ื•ื–ื” ื”ื‘ื™ื ืœืฉื™ืคื•ืจื™ื ืชื™ืคืขื•ืœื™ื™ื ื’ื“ื•ืœื™ื.
08:45
Just try to imagine your favorite beverage company
186
525080
2360
ื“ืžื™ื™ื ื• ืืช ื—ื‘ืจืช ื”ืžืฉืงืื•ืช ื”ืžื•ืขื“ืคืช ืขืœื™ื›ื
08:48
trying to plan their inventory
187
528280
1576
ืžื ืกื” ืœืชื›ื ืŸ ืืช ื”ืžืœืื™ ืฉืœื”
08:49
and not knowing how many bottles were on the shelves.
188
529880
2496
ืžื‘ืœื™ ืœื“ืขืช ื›ืžื” ื‘ืงื‘ื•ืงื™ื ื™ืฉ ืขืœ ื”ืžื“ืคื™ื.
08:52
It's absurd.
189
532400
1216
ื–ื” ืžื’ื•ื—ืš.
08:53
Data drives better decisions.
190
533640
1560
ื ืชื•ื ื™ื ืžื•ื‘ื™ืœื™ื ืœื”ื—ืœื˜ื•ืช ื˜ื•ื‘ื•ืช ื™ื•ืชืจ.
08:57
Now, if you're representing a company,
191
537800
2536
ืขื›ืฉื™ื•, ืื ืืชื ืžื™ื™ืฆื’ื™ื ื—ื‘ืจื”
09:00
and you're pragmatic and not just idealistic,
192
540360
3136
ื•ืืชื ืžืขืฉื™ื™ื ื•ืœื ืจืง ืื™ื“ืืœื™ืกื˜ื™ื,
09:03
you might be saying to yourself, "OK, this is all great, Mallory,
193
543520
3056
ืืชื ืขืฉื•ื™ื™ื ืœื•ืžืจ ืœืขืฆืžื›ื, "ืื•ืงื™, ื›ืœ ื–ื” ื˜ื•ื‘ ื•ื™ืคื”, ืžืœื•ืจื™,
09:06
but why should I want to be involved?"
194
546600
1840
"ืื‘ืœ ืœืžื” ืฉื ืจืฆื” ืœื”ื™ื•ืช ืžืขื•ืจื‘ื™ื?"
09:09
Well for one thing, beyond the good PR,
195
549000
2816
ื“ื‘ืจ ืจืืฉื•ืŸ, ืžืขื‘ืจ ืœื™ื—ืกื™ ืฆื™ื‘ื•ืจ ื˜ื•ื‘ื™ื,
09:11
humanitarian aid is a 24-billion-dollar sector,
196
551840
2776
ืกื™ื•ืข ื”ื•ืžื ื™ื˜ืจื™ ื–ื” ืฉื•ืง ืฉืœ 24 ืžื™ืœื™ืืจื“ ื“ื•ืœืจื™ื
09:14
and there's over five billion people, maybe your next customers,
197
554640
3056
ื•ื™ืฉ ื‘ื• ืžืขืœ 5 ืžื™ืœื™ืืจื“ ืื ืฉื™ื, ืฉื”ื ืื•ืœื™ ื”ืœืงื•ื—ื•ืช ื”ื‘ืื™ื ืฉืœื›ื,
09:17
that live in the developing world.
198
557720
1816
ืฉื—ื™ื™ื ื‘ืขื•ืœื ื”ืžืชืคืชื—.
09:19
Further, companies that are engaging in data philanthropy,
199
559560
3096
ื‘ื ื•ืกืฃ, ื—ื‘ืจื•ืช ืฉืžืขื•ืจื‘ื•ืช ื‘ืชืจื•ืžืช ื ืชื•ื ื™ื,
09:22
they're finding new insights locked away in their data.
200
562680
2976
ืžื•ืฆืื•ืช ืชื•ื‘ื ื•ืช ื—ื“ืฉื•ืช ืฉื ืขื•ืœื•ืช ื‘ื ืชื•ื ื™ื ืฉืœื”ื.
09:25
Take, for example, a credit card company
201
565680
2256
ืงื—ื• ืœืžืฉืœ, ื—ื‘ืจืช ืืฉืจืื™
09:27
that's opened up a center
202
567960
1336
ืฉืคืชื—ื” ืžืจื›ื–
09:29
that functions as a hub for academics, for NGOs and governments,
203
569320
3376
ืฉืžืชืคืงื“ ื›ืžืจื›ื– ืคืขื™ืœื•ืช ืœืื ืฉื™ ืืงื“ืžื™ื”, ืœื—ื‘ืจื•ืช ืœื ืžืžืฉืœืชื™ื•ืช ื•ืžืžืฉืœื•ืช,
09:32
all working together.
204
572720
1240
ืฉืขื•ื‘ื“ื™ื ื™ื—ื“.
09:35
They're looking at information in credit card swipes
205
575040
2736
ื”ื ืžืกืชื›ืœื™ื ืขืœ ืžื™ื“ืข ื‘ืขืกืงืื•ืช ืืฉืจืื™
09:37
and using that to find insights about how households in India
206
577800
2976
ื•ืžืฉืชืžืฉื™ื ื‘ื• ื›ื“ื™ ืœืžืฆื•ื ืชื•ื‘ื ื•ืช ืื™ืš ื‘ืชื™ ืื‘ ื‘ื”ื•ื“ื•
09:40
live, work, earn and spend.
207
580800
1720
ื—ื™ื™ื, ืขื•ื‘ื“ื™ื, ืžืฉืชื›ืจื™ื ื•ืžื•ืฆื™ืื™ื.
09:43
For the humanitarian world, this provides information
208
583680
2576
ืขื‘ื•ืจ ืขื•ืœื ื”ืกื™ื•ืข ื”ื”ื•ืžื ื™ื˜ืจื™ ื–ื” ืžืกืคืง ื ืชื•ื ื™ื
09:46
about how you might bring people out of poverty.
209
586280
2656
ืœืื•ืคืŸ ืฉื‘ื• ืืคืฉืจ ืœื”ื•ืฆื™ื ืื ืฉื™ื ืžืžืขื’ืœ ื”ืขื•ื ื™.
09:48
But for companies, it's providing insights about your customers
210
588960
3016
ืื‘ืœ ืขื‘ื•ืจ ื—ื‘ืจื•ืช, ื–ื” ืžืกืคืง ืชื•ื‘ื ื•ืช ืขืœ ื”ืœืงื•ื—ื•ืช ืฉืœื”ื
09:52
and potential customers in India.
211
592000
2040
ื•ืœืงื•ื—ื•ืช ืคื•ื˜ื ืฆื™ืืœื™ื ื‘ื”ื•ื“ื•.
09:54
It's a win all around.
212
594760
1800
ื–ื” ืžืฉืชืœื ืžื›ืœ ื”ื›ื™ื•ื•ื ื™ื.
09:57
Now, for me, what I find exciting about data philanthropy --
213
597960
3776
ืขื›ืฉื™ื•, ืขื‘ื•ืจื™, ืžื” ืฉืžืจื’ืฉ ืื•ืชื™ ื‘ืชืจื•ืžืช ื ืชื•ื ื™ื โ€“
10:01
donating data, donating decision scientists and donating technology --
214
601760
4336
ืชืจื•ืžืช ื ืชื•ื ื™ื, ืžื“ืขื ื™ ื”ื—ืœื˜ื•ืช ื•ื˜ื›ื ื•ืœื•ื’ื™ื” โ€“
10:06
it's what it means for young professionals like me
215
606120
2376
ื–ื• ื”ืžืฉืžืขื•ืช ืฉืœ ื–ื” ืขื‘ื•ืจ ืื ืฉื™ ืžืงืฆื•ืข ืฆืขื™ืจื™ื ื›ืžื•ื ื™
10:08
who are choosing to work at companies.
216
608520
1840
ืฉื‘ื•ื—ืจื™ื ืœืขื‘ื•ื“ ื‘ื—ื‘ืจื•ืช.
10:10
Studies show that the next generation of the workforce
217
610800
2656
ืžื—ืงืจื™ื ืžืจืื™ื ืฉืœื“ื•ืจ ื”ื‘ื ื‘ื›ื•ื— ื”ืขื‘ื•ื“ื”
10:13
care about having their work make a bigger impact.
218
613480
2560
ืื›ืคืช ืฉื”ืขื‘ื•ื“ื” ืฉืœื”ื ืชืฉืื™ืจ ื—ื•ืชื ื’ื“ื•ืœ ื™ื•ืชืจ.
10:16
We want to make a difference,
219
616920
2456
ืื ื—ื ื• ืจื•ืฆื™ื ืœื—ื•ืœืœ ืฉื™ื ื•ื™,
10:19
and so through data philanthropy,
220
619400
2416
ื•ืœื›ืŸ ื“ืจืš ืชืจื•ืžืช ื ืชื•ื ื™ื,
10:21
companies can actually help engage and retain their decision scientists.
221
621840
3936
ื—ื‘ืจื•ืช ื™ื›ื•ืœื•ืช ืœืฉืคืจ ืืช ืžืขื•ืจื‘ื•ืช ื•ืฉื™ืžื•ืจ ืžื“ืขื ื™ ืงื‘ืœืช ื”ื”ื—ืœื˜ื•ืช ืฉืœื”ื.
10:25
And that's a big deal for a profession that's in high demand.
222
625800
2880
ื•ื–ื” ืขื ื™ื™ืŸ ืจืฆื™ื ื™ ื‘ืžืงืฆื•ืข ืฉื™ืฉ ืœื• ื“ืจื™ืฉื” ื’ื‘ื•ื”ื”.
10:29
Data philanthropy makes good business sense,
223
629840
3120
ืชืจื•ืžืช ื ืชื•ื ื™ื ื”ื™ื ืฉื™ืงื•ืœ ืขื™ืกืงื™ ื ื›ื•ืŸ
10:34
and it also can help revolutionize the humanitarian world.
224
634200
3280
ื•ื”ื™ื ื’ื ื™ื›ื•ืœื” ืœืขื–ื•ืจ ืœื—ื•ืœืœ ืžื”ืคื›ื” ื‘ืขื•ืœื ื”ืกื™ื•ืข ื”ื”ื•ืžื ื™ื˜ืจื™.
10:39
If we coordinated the planning and logistics
225
639600
2096
ืื ื”ื™ื™ื ื• ืžืชืืžื™ื ืืช ื”ืชื™ื›ื ื•ืŸ ื•ื”ืœื•ื’ื™ืกื˜ื™ืงื”
10:41
across all of the major facets of a humanitarian operation,
226
641720
3376
ื‘ื›ืœ ื”ื”ื™ื‘ื˜ื™ื ื”ืขื™ืงืจื™ื™ื ืฉืœ ืžื‘ืฆืขื™ ื”ืกื™ื•ืข,
10:45
we could feed, clothe and shelter hundreds of thousands more people,
227
645120
3600
ื”ื™ื™ื ื• ื™ื›ื•ืœื™ื ืœื”ืื›ื™ืœ, ืœื”ืœื‘ื™ืฉ ื•ืœืชืช ืžื—ืกื” ืœืžืื•ืช ืืœืคื™ ืื ืฉื™ื ื ื•ืกืคื™ื,
10:49
and companies need to step up and play the role that I know they can
228
649440
4256
ื•ื—ื‘ืจื•ืช ืฆืจื™ื›ื•ืช ืœืงื•ื ื•ืœืžืœื ืืช ื”ืชืคืงื™ื“ ืฉืื ื™ ื™ื•ื“ืขืช ืฉื”ืŸ ื™ื›ื•ืœื•ืช
10:53
in bringing about this revolution.
229
653720
1880
ื‘ืžื™ืžื•ืฉ ื”ืžื”ืคื›ื” ื”ื–ืืช.
10:56
You've probably heard of the saying "food for thought."
230
656720
2936
ื‘ื˜ื— ืฉืžืขืชื ืืช ื”ื‘ื™ื˜ื•ื™ "ืžื–ื•ืŸ ืœืžื—ืฉื‘ื”".
10:59
Well, this is literally thought for food.
231
659680
2240
ื•ื‘ื›ืŸ, ื–ื” ื‘ืขืฆื ืžื—ืฉื‘ื” ืœืžื–ื•ืŸ.
11:03
It finally is the right idea at the right time.
232
663560
4136
ืกื•ืฃ ืกื•ืฃ, ื–ื” ื”ืจืขื™ื•ืŸ ื”ื ื›ื•ืŸ ื‘ื–ืžืŸ ื”ื ื›ื•ืŸ.
11:07
(Laughter)
233
667720
1216
(ืฆื—ื•ืง)
11:08
Trรจs magnifique.
234
668960
1576
ื˜ืจื” ืžื’ื ื™ืคื™ืง.
11:10
Thank you.
235
670560
1216
ืชื•ื“ื” ืœื›ื.
11:11
(Applause)
236
671800
2851
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7