Your company's data could help end world hunger | Mallory Freeman

53,447 views ・ 2016-11-29

TED


μ•„λž˜ μ˜λ¬Έμžλ§‰μ„ λ”λΈ”ν΄λ¦­ν•˜μ‹œλ©΄ μ˜μƒμ΄ μž¬μƒλ©λ‹ˆλ‹€.

λ²ˆμ—­: Jihyeon J. Kim κ²€ν† : Gichung Lee
00:12
June 2010.
0
12880
1760
2010λ…„ 6월에
00:15
I landed for the first time in Rome, Italy.
1
15760
2880
처음으둜 μ΄νƒˆλ¦¬μ•„ λ‘œλ§ˆμ— κ°”μŠ΅λ‹ˆλ‹€.
00:19
I wasn't there to sightsee.
2
19800
1896
κ΄€κ΄‘ν•˜λŸ¬ κ°„ 것이 μ•„λ‹ˆμ—ˆμŠ΅λ‹ˆλ‹€.
00:21
I was there to solve world hunger.
3
21720
3120
세계 κΈ°μ•„ 문제λ₯Ό ν•΄κ²°ν•˜λŸ¬ κ°”μ£ .
(μ›ƒμŒ)
00:25
(Laughter)
4
25160
2096
00:27
That's right.
5
27280
1216
λ§žμŠ΅λ‹ˆλ‹€.
25μ„Έ 박사과정 ν•™μƒμœΌλ‘œ
00:28
I was a 25-year-old PhD student
6
28520
2096
00:30
armed with a prototype tool developed back at my university,
7
30640
3096
λŒ€ν•™μ—μ„œ κ°œλ°œν•œ μ‹œμ œν’ˆ λ„κ΅¬λ‘œ 무μž₯ν•˜κ³ 
00:33
and I was going to help the World Food Programme fix hunger.
8
33760
3080
μ €λŠ” 세계 μ‹λŸ‰κΈ°κ΅¬κ°€ κΈ°μ•„λ₯Ό ν•΄κ²°ν•˜λ„λ‘ λ„μšΈ μ°Έμ΄μ—ˆμ£ .
00:37
So I strode into the headquarters building
9
37840
2736
μ €λŠ” λ³ΈλΆ€λ‘œ λ‹Ήλ‹Ήνžˆ λ“€μ–΄κ°”κ³ 
00:40
and my eyes scanned the row of UN flags,
10
40600
2816
제 λˆˆμ€ μœ μ—” κΉƒλ°œλ“€μ„ 훑어보며
00:43
and I smiled as I thought to myself,
11
43440
1960
혼자 μƒκ°ν•˜λ©° μ›ƒμ—ˆμŠ΅λ‹ˆλ‹€.
00:46
"The engineer is here."
12
46840
1616
"μ—”μ§€λ‹ˆμ–΄κ°€ μ—¬κΈ° μ™”λ‹€."
00:48
(Laughter)
13
48480
2216
(μ›ƒμŒ)
00:50
Give me your data.
14
50720
1776
데이터λ₯Ό μ£Όμ„Έμš”.
00:52
I'm going to optimize everything.
15
52520
2176
λͺ¨λ“  것을 μ΅œμ ν™” ν•˜κ² μŠ΅λ‹ˆλ‹€.
00:54
(Laughter)
16
54720
1736
(μ›ƒμŒ)
00:56
Tell me the food that you've purchased,
17
56480
1896
κ΅¬μž…ν•œ μ‹λŸ‰μ„ 말씀해 μ£Όμ„Έμš”.
00:58
tell me where it's going and when it needs to be there,
18
58400
2616
μ‹λŸ‰μ΄ μ–΄λ””λ‘œ κ°€κ³  μ–Έμ œ ν•„μš”ν•œμ§€ 말해 μ£Όμ„Έμš”.
그럼 κ°€μž₯ 짧고, λΉ λ₯΄κ³  μ €λ ΄ν•˜κ²Œ
01:01
and I'm going to tell you the shortest, fastest, cheapest,
19
61040
2736
01:03
best set of routes to take for the food.
20
63800
1936
μ‹λŸ‰μ„ 쑰달할 졜적의 루트λ₯Ό μ•Œλ €λ“œλ¦¬μ£ .
01:05
We're going to save money,
21
65760
1496
μžκΈˆμ„ μ ˆμ•½ν•  수 μžˆμ–΄μš”.
01:07
we're going to avoid delays and disruptions,
22
67280
2096
지연과 ν˜Όλž€μ„ ν”Όν•  κ²ƒμž…λ‹ˆλ‹€.
01:09
and bottom line, we're going to save lives.
23
69400
2736
κ°€μž₯ μ€‘μš”ν•œ 것은 생λͺ…을 ꡬ할 κ²λ‹ˆλ‹€.
뭐 이정도 κ°€μ§€κ³ μš”.
01:12
You're welcome.
24
72160
1216
01:13
(Laughter)
25
73400
1696
(μ›ƒμŒ)
μ €λŠ” 12κ°œμ›” 걸릴 거라 μƒκ°ν–ˆμ–΄μš”.
01:15
I thought it was going to take 12 months,
26
75120
1976
μ–΄μ©Œλ©΄ 13κ°œμ›”μ΄μš”.
01:17
OK, maybe even 13.
27
77120
1560
01:19
This is not quite how it panned out.
28
79800
2280
이게 잘 λ˜μ§€λŠ” μ•Šμ•˜μ–΄μš”.
01:23
Just a couple of months into the project, my French boss, he told me,
29
83600
3776
ν”„λ‘œμ νŠΈλ₯Ό μ‹œμž‘ν•œ 지 두어 달 됐을 λ•Œ 제 ν”„λž‘μŠ€μΈ 상사가 λ§ν•˜κΈΈ
01:27
"You know, Mallory,
30
87400
1816
"말둜리, μžˆμž–μ•„μš”.
01:29
it's a good idea,
31
89240
1656
쒋은 생각이긴 ν•œλ°
01:30
but the data you need for your algorithms is not there.
32
90920
3336
λ‹Ήμ‹ μ˜ μ•Œκ³ λ¦¬μ¦˜μ— ν•„μš”ν•œ 데이터가 μ—†μ–΄μš”.
01:34
It's the right idea but at the wrong time,
33
94280
2536
생각은 λ§žλŠ”λ° λ•Œκ°€ 잘λͺ» 된 κ±°μ˜ˆμš”.
01:36
and the right idea at the wrong time
34
96840
2296
λ•Œλ₯Ό 잘λͺ» λ§Œλ‚œ μ œλŒ€λ‘œ 된 생각은
잘λͺ»λœ μƒκ°μ΄μ—μš”."
01:39
is the wrong idea."
35
99160
1376
01:40
(Laughter)
36
100560
1320
(μ›ƒμŒ)
01:42
Project over.
37
102960
1280
ν”„λ‘œμ νŠΈκ°€ μ’…λ£Œλμ£ .
μ €λŠ” λ§₯이 λΉ μ‘ŒμŠ΅λ‹ˆλ‹€.
01:45
I was crushed.
38
105120
1200
λ‘œλ§ˆμ—μ„œμ˜ 첫 여름을 μ§€κΈˆ λ˜λŒμ•„ 보면
01:49
When I look back now
39
109000
1456
01:50
on that first summer in Rome
40
110480
1656
01:52
and I see how much has changed over the past six years,
41
112160
2656
μ§€λ‚œ 6λ…„κ°„ μ–Όλ§ˆλ‚˜ λ³€ν–ˆλŠ”μ§€ μ•Œ 수 μžˆμ–΄μš”.
01:54
it is an absolute transformation.
42
114840
2240
μ™„μ „ν•œ λŒ€λ³€μ‹ μž…λ‹ˆλ‹€.
01:57
It's a coming of age for bringing data into the humanitarian world.
43
117640
3400
μΈλ„μ£Όμ˜μ  세계에 데이터λ₯Ό μ“°λŠ” 게 λ‹Ήμ—°ν•΄μ‘ŒμŠ΅λ‹ˆλ‹€.
λ†€λžκ³ , κ³ λ¬΄μ μž…λ‹ˆλ‹€.
02:02
It's exciting. It's inspiring.
44
122160
2656
02:04
But we're not there yet.
45
124840
1200
ν•˜μ§€λ§Œ 아직 μ™„μ „ν•œ 것은 μ•„λ‹™λ‹ˆλ‹€.
02:07
And brace yourself, executives,
46
127320
2296
μž„μ› μ—¬λŸ¬λΆ„μ€ μ€€λΉ„ν•˜μ„Έμš”
02:09
because I'm going to be putting companies
47
129640
1976
νšŒμ‚¬κ°€ ν•  수 μžˆλŠ” 역할을 ν•˜λ„λ‘ μ œκ°€ λΆˆνŽΈν•˜κ²Œ λ§Œλ“€ ν…Œλ‹ˆκΉŒμš”.
02:11
on the hot seat to step up and play the role that I know they can.
48
131640
3120
02:17
My experiences back in Rome prove
49
137520
2816
λ‘œλ§ˆμ—μ„œμ˜ κ²½ν—˜μœΌλ‘œ λ³Ό λ•Œ
02:20
using data you can save lives.
50
140360
2080
데이터λ₯Ό 가지고 생λͺ…을 살릴 수 μžˆμŠ΅λ‹ˆλ‹€.
02:23
OK, not that first attempt,
51
143440
2456
κ·Έλž˜μš”, 첫 μ‹œλ„λ§Œμ— κ·Έλ ‡κ²Œ 된 건 μ•„λ‹ˆμ§€λ§Œ
02:25
but eventually we got there.
52
145920
2576
결ꡭ은 κ·Έλ ‡κ²Œ λμ–΄μš”.
02:28
Let me paint the picture for you.
53
148520
1736
전체 상황을 λ§μ”€λ“œλ¦¬κ² μŠ΅λ‹ˆλ‹€.
02:30
Imagine that you have to plan breakfast, lunch and dinner
54
150280
2736
μ—¬λŸ¬λΆ„μ΄ μ‚Όμ‹œ 세끼λ₯Ό κ³„νšν•œλ‹€κ³  상상해 λ³΄μ„Έμš”.
50만 λͺ… λΆ„μ„μš”.
02:33
for 500,000 people,
55
153040
1616
02:34
and you only have a certain budget to do it,
56
154680
2136
그런데 자금이 μ •ν•΄μ Έ μžˆλŠ” κ²λ‹ˆλ‹€.
02:36
say 6.5 million dollars per month.
57
156840
2240
κ°€λ Ή 맀달 650만 λ‹¬λŸ¬λΌκ³  ν•©μ‹œλ‹€.
02:40
Well, what should you do? What's the best way to handle it?
58
160920
2762
μ–΄λ–»κ²Œ ν•˜μ‹œκ² μ–΄μš”? μ–΄λ–€ 방법이 μ΅œμ„ μΌκΉŒμš”?
02:44
Should you buy rice, wheat, chickpea, oil?
59
164280
2760
μŒ€, λ°€, 콩, 기름을 μ‚¬μ‹œκ² μ–΄μš”?
02:47
How much?
60
167760
1216
μ–Όλ§ˆλ§ŒνΌμš”?
간단해 λ³΄μ΄μ§€λ§Œ 그렇지 μ•ŠμŠ΅λ‹ˆλ‹€.
02:49
It sounds simple. It's not.
61
169000
2136
κ°€λŠ₯ν•œ μŒμ‹μ΄ 30개인데 κ·Έ μ€‘μ—μ„œ 5개만 뽑아야 ν•©λ‹ˆλ‹€.
02:51
You have 30 possible foods, and you have to pick five of them.
62
171160
3216
02:54
That's already over 140,000 different combinations.
63
174400
3416
벌써 14만 가지 쑰합이 λ‚˜μ˜΅λ‹ˆλ‹€.
02:57
Then for each food that you pick,
64
177840
1696
μ„ λ³„ν•œ 각 μŒμ‹μ„
02:59
you need to decide how much you'll buy,
65
179560
1976
μ–Όλ§ˆλ‚˜ ꡬ맀할지
03:01
where you're going to get it from,
66
181560
1696
μ–΄λ””μ„œ κ°€μ Έμ˜¬μ§€
03:03
where you're going to store it,
67
183280
1480
어디에 μ €μž₯할지
03:05
how long it's going to take to get there.
68
185760
1976
μ‹œκ°„μ΄ μ–Όλ§ˆλ‚˜ 걸릴지 μ •ν•΄μ•Ό ν•©λ‹ˆλ‹€.
03:07
You need to look at all of the different transportation routes as well.
69
187760
3336
λͺ¨λ“  λ‹€μ–‘ν•œ μˆ˜μ†‘ κ²½λ‘œλ„ μ‚΄νŽ΄λ΄μ•Ό ν•©λ‹ˆλ‹€.
그럼 벌써 선택이 9μ–΅ 가지가 λ„˜μŠ΅λ‹ˆλ‹€.
03:11
And that's already over 900 million options.
70
191120
2080
각 선택을 1초라고 ν•œλ‹€λ©΄
03:14
If you considered each option for a single second,
71
194120
2376
03:16
that would take you over 28 years to get through.
72
196520
2336
λͺ¨λ‘ μ‚΄νŽ΄λ³΄λŠ”λ° 28년이 걸릴 κ²λ‹ˆλ‹€.
03:18
900 million options.
73
198880
1520
9μ–΅ 개의 μ„ νƒμ„μš”.
κ·Έλž˜μ„œ 저희가 μ˜μ‚¬κ²°μ •μžλ“€μ„ μœ„ν•΄
03:21
So we created a tool that allowed decisionmakers
74
201160
2456
03:23
to weed through all 900 million options
75
203640
2616
9μ–΅ 가지 선택을 κ±ΈλŸ¬μ„œ 단 λ©°μΉ  λ§Œμ— μ‚΄νŽ΄λ³Ό 도ꡬλ₯Ό λ§Œλ“€μ—ˆμŠ΅λ‹ˆλ‹€.
03:26
in just a matter of days.
76
206280
1360
03:28
It turned out to be incredibly successful.
77
208560
2240
λŒ€λ‹¨νžˆ μ„±κ³΅μ μ΄μ—ˆμŠ΅λ‹ˆλ‹€.
03:31
In an operation in Iraq,
78
211400
1256
이라크 λ―Έμ…˜μ—μ„œλŠ”
03:32
we saved 17 percent of the costs,
79
212680
2536
λΉ„μš©μ„ 17% μ ˆκ°ν–ˆλŠ”λ°
03:35
and this meant that you had the ability to feed an additional 80,000 people.
80
215240
4136
그것은 8만 λͺ…μ—κ²Œ μΆ”κ°€λ‘œ μ‹λŸ‰ 곡급을 ν•  수 μžˆλŠ” μ–‘μ΄μ—ˆμŠ΅λ‹ˆλ‹€.
03:39
It's all thanks to the use of data and modeling complex systems.
81
219400
4400
이게 λͺ¨λ‘ 데이터 μ‚¬μš©κ³Ό 볡합 μ‹œμŠ€ν…œ λͺ¨ν˜• λ•λΆ„μž…λ‹ˆλ‹€.
03:44
But we didn't do it alone.
82
224800
1280
저희듀이 λ‹€ ν•œ 게 μ•„λ‹ˆμ—ˆμŠ΅λ‹ˆλ‹€.
03:46
The unit that I worked with in Rome, they were unique.
83
226840
2736
μ œκ°€ λ‘œλ§ˆμ—μ„œ ν•¨κ»˜ μΌν–ˆλ˜ νŒ€μ΄ ν›Œλ₯­ν–ˆμŠ΅λ‹ˆλ‹€.
03:49
They believed in collaboration.
84
229600
1736
그듀은 ν˜‘λ ₯을 λ―Ώμ—ˆμŠ΅λ‹ˆλ‹€.
03:51
They brought in the academic world.
85
231360
1696
학계λ₯Ό λŒμ–΄λ“€μ˜€μŠ΅λ‹ˆλ‹€.
기업듀도 λŒμ–΄λ“€μ˜€μ£ .
03:53
They brought in companies.
86
233080
1280
03:55
And if we really want to make big changes in big problems like world hunger,
87
235200
3616
세계 기아와 같은 κ±°λŒ€ν•œ λ¬Έμ œμ— 큰 λ³€ν™”λ₯Ό μΌμœΌν‚€λ €λ©΄
03:58
we need everybody to the table.
88
238840
2560
λͺ¨λ“  μ‚¬λžŒμ΄ ν•¨κ»˜ 일해야 ν•©λ‹ˆλ‹€.
κ΅¬ν˜Έλ‹¨μ²΄μ˜ 데이터 κ΄€κ³„μžκ°€ μ£Όλ„ν•˜μ—¬
04:02
We need the data people from humanitarian organizations
89
242040
2936
04:05
leading the way,
90
245000
1256
04:06
and orchestrating just the right types of engagements
91
246280
2576
학계와 μ •λΆ€κ°€ ν•¨κ»˜ μ°Έμ—¬ν•  수 μžˆλŠ” μ λ‹Ήν•œ 일을 μ§€νœ˜ν•΄μ•Ό ν•©λ‹ˆλ‹€.
04:08
with academics, with governments.
92
248880
1696
04:10
And there's one group that's not being leveraged in the way that it should be.
93
250600
3696
ν•΄μ•Ό ν•˜λŠ” 만큼 κ΄€μ—¬ν•˜μ§€ μ•ŠλŠ” 단체 ν•˜λ‚˜κ°€ μžˆμŠ΅λ‹ˆλ‹€.
μ§μž‘ν•˜μ…¨λ‚˜μš”? λ°”λ‘œ κΈ°μ—…μž…λ‹ˆλ‹€.
04:14
Did you guess it? Companies.
94
254320
2096
04:16
Companies have a major role to play in fixing the big problems in our world.
95
256440
3600
기업듀은 μ„Έκ³„μ˜ μ€‘λŒ€ν•œ 문제λ₯Ό ν•΄κ²°ν•  핡심 역할을 맑고 있죠.
04:20
I've been in the private sector for two years now.
96
260880
2416
μ €λŠ” μ§€κΈˆκΉŒμ§€ 2λ…„κ°„ λ―Όκ°„ 뢀문에 μžˆμ—ˆμŠ΅λ‹ˆλ‹€.
04:23
I've seen what companies can do, and I've seen what companies aren't doing,
97
263320
3576
기업이 ν•  수 μžˆλŠ” 일을 μ•Œκ³  있고 기업이 ν•˜μ§€ μ•ŠλŠ” 일을 μ•Œκ³  μžˆμŠ΅λ‹ˆλ‹€.
04:26
and I think there's three main ways that we can fill that gap:
98
266920
3376
κ·Έ 간극을 λ©”μšΈ μ„Έ 가지 방법이 μžˆμŠ΅λ‹ˆλ‹€.
04:30
by donating data, by donating decision scientists
99
270320
3096
데이터λ₯Ό κΈ°μ¦ν•˜κ³  μ˜μ‚¬κ²°μ • κ³Όν•™μžλ₯Ό λ‚΄μ–΄μ£Όκ³ 
04:33
and by donating technology to gather new sources of data.
100
273440
3480
λ°μ΄ν„°μ˜ μƒˆλ‘œμš΄ μ†ŒμŠ€λ₯Ό λͺ¨μ„ κΈ°μˆ μ„ κΈ°λΆ€ν•˜λŠ” κ²λ‹ˆλ‹€.
04:37
This is data philanthropy,
101
277920
1576
이것이 데이터 μžμ„ μ‚¬μ—…μ΄λ©°
04:39
and it's the future of corporate social responsibility.
102
279520
2840
κΈ°μ—…μ˜ μ‚¬νšŒμ  μ±…μž„μ˜ 미래 λͺ¨μŠ΅μž…λ‹ˆλ‹€.
λ˜ν•œ 사업적 μΈ‘λ©΄μ—μ„œλ„ μ΄μΉ˜μ— λ§žμŠ΅λ‹ˆλ‹€.
04:43
Bonus, it also makes good business sense.
103
283160
2600
04:46
Companies today, they collect mountains of data,
104
286920
3216
μ˜€λŠ˜λ‚ μ˜ 기업은 μ—„μ²­λ‚œ 데이터λ₯Ό μˆ˜μ§‘ν•©λ‹ˆλ‹€.
기업이 제일 λ¨Όμ € ν•  수 μžˆλŠ” 일은 κ·Έ 데이터λ₯Ό κΈ°μ¦ν•˜λŠ” κ²λ‹ˆλ‹€.
04:50
so the first thing they can do is start donating that data.
105
290160
2762
04:52
Some companies are already doing it.
106
292946
2190
μ–΄λ–€ 기업듀은 이미 ν•˜κ³  μžˆμŠ΅λ‹ˆλ‹€.
μ£Όμš” 톡신 기업을 예둜 λ“€κ² μŠ΅λ‹ˆλ‹€.
04:55
Take, for example, a major telecom company.
107
295160
2416
04:57
They opened up their data in Senegal and the Ivory Coast
108
297600
2776
그듀은 μ„Έλ„€κ°ˆκ³Ό 아이보리 μ½”μŠ€νŠΈμ—μ„œ 데이터λ₯Ό κ°œλ°©ν•˜κ³ 
05:00
and researchers discovered
109
300400
1976
μ—°κ΅¬μžλ“€μ΄ λ°œκ²¬ν•˜κΈ°λ₯Ό
05:02
that if you look at the patterns in the pings to the cell phone towers,
110
302400
3334
νœ΄λŒ€ν° κΈ°μ§€μ˜ 접속 νŒ¨ν„΄μ„ μ‚΄νŽ΄λ³΄λ©΄
05:05
you can see where people are traveling.
111
305758
1938
μ‚¬λžŒλ“€μ΄ μ–΄λ””λ₯Ό μ—¬ν–‰ν•˜κ³  μžˆλŠ”μ§€ μ•Œ 수 μžˆμ–΄μš”
05:07
And that can tell you things like
112
307720
2176
κ·Έκ²ƒμœΌλ‘œ μ•Œ 수 μžˆλŠ” 것은
05:09
where malaria might spread, and you can make predictions with it.
113
309920
3096
κ°€λ Ή 말라리아 μ „νŒŒκ²½λ‘œλ₯Ό μ•Œμ•„μ„œ 미리 μ˜ˆμΈ‘ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
ν˜μ‹ μ μΈ μœ„μ„± νšŒμ‚¬λ₯Ό 예둜 λ“€μ–΄ λ³Όκ²Œμš”.
05:13
Or take for example an innovative satellite company.
114
313040
2896
05:15
They opened up their data and donated it,
115
315960
2016
데이터λ₯Ό κ°œλ°©ν•΄μ„œ κΈ°μ¦ν–ˆκ³ 
κ·Έ λ°μ΄ν„°λ‘œ
05:18
and with that data you could track
116
318000
1656
05:19
how droughts are impacting food production.
117
319680
2040
가뭄이 μ‹λŸ‰ 생산에 μ–΄λ–»κ²Œ 영ν–₯을 μ£ΌλŠ”μ§€ 좔적할 수 μžˆμŠ΅λ‹ˆλ‹€.
05:22
With that you can actually trigger aid funding before a crisis can happen.
118
322920
3680
κ·Έκ²ƒμœΌλ‘œ μœ„κΈ° λ°œμƒ 전에 κ΅¬ν˜ΈμžκΈˆμ„ λͺ¨μ„ 수 μžˆμŠ΅λ‹ˆλ‹€.
05:27
This is a great start.
119
327560
1280
ꡉμž₯ν•œ 좜발이죠.
05:29
There's important insights just locked away in company data.
120
329840
2880
κΈ°μ—… 데이터에 묢인 μ€‘μš”ν•œ λ‚΄μš©λ“€μ΄ μžˆμŠ΅λ‹ˆλ‹€.
05:34
And yes, you need to be very careful.
121
334480
1816
λ„€, μ•„μ£Ό 신쀑해야 ν•©λ‹ˆλ‹€.
05:36
You need to respect privacy concerns, for example by anonymizing the data.
122
336320
3576
κ°€λ Ή 데이터λ₯Ό 읡λͺ…μœΌλ‘œ ν•΄μ„œ κ°œμΈμ •λ³΄λ₯Ό 쑴쀑해야 ν•©λ‹ˆλ‹€.
05:39
But even if the floodgates opened up,
123
339920
2776
μ •λ³΄μ˜ 문이 μ—΄λ¦°λ‹€κ³  해도
05:42
and even if all companies donated their data
124
342720
2536
λͺ¨λ“  기업이 데이터λ₯Ό
05:45
to academics, to NGOs, to humanitarian organizations,
125
345280
3256
학계, NGO, 인ꢌ 단체에 κΈ°μ¦ν•œλ‹€κ³  해도
05:48
it wouldn't be enough to harness that full impact of data
126
348560
2976
인도적 λͺ©ν‘œλ₯Ό μœ„ν•΄ 데이터 μ΅œλŒ€ 효과λ₯Ό μ΄μš©ν•˜κΈ°μ—” μΆ©λΆ„μΉ˜ μ•ŠμŠ΅λ‹ˆλ‹€.
05:51
for humanitarian goals.
127
351560
1520
05:54
Why?
128
354320
1456
μ™œ κ·ΈλŸ΄κΉŒμš”?
05:55
To unlock insights in data, you need decision scientists.
129
355800
3240
데이터 μ†μ˜ 의미λ₯Ό ν’€λ €λ©΄ μ˜μ‚¬κ²°μ • κ³Όν•™μžκ°€ μžˆμ–΄μ•Ό ν•©λ‹ˆλ‹€.
05:59
Decision scientists are people like me.
130
359760
2576
μ˜μ‚¬κ²°μ • κ³Όν•™μžλŠ” μ € 같은 μ‚¬λžŒμ΄μ£ .
06:02
They take the data, they clean it up,
131
362360
1816
데이터λ₯Ό 가지고 마무리 ν•˜κ³ 
06:04
transform it and put it into a useful algorithm
132
364200
2256
μ „ν™˜ν•΄μ„œ μœ μš©ν•œ μ•Œκ³ λ¦¬μ¦˜μœΌλ‘œ λ§Œλ“€μ–΄
06:06
that's the best choice to address the business need at hand.
133
366480
2840
사업 ν•„μš”λ₯Ό λ°”λ‘œ μ±„μš°λŠ” 데 μ΅œμ„ μ˜ 선택이 되게 ν•©λ‹ˆλ‹€.
06:09
In the world of humanitarian aid, there are very few decision scientists.
134
369800
3696
인도적인 ꡬ호의 세계에선 μ˜μ‚¬κ²°μ • κ³Όν•™μžκ°€ 거의 μ—†μŠ΅λ‹ˆλ‹€.
06:13
Most of them work for companies.
135
373520
1640
λŒ€λΆ€λΆ„μ€ κΈ°μ—…μ—μ„œ μΌν•©λ‹ˆλ‹€.
06:16
So that's the second thing that companies need to do.
136
376480
2496
κ·Έλž˜μ„œ 그것이 기업이 ν•΄μ•Ό ν•  두 번째 μΌμž…λ‹ˆλ‹€.
데이터λ₯Ό 기증할 뿐만 μ•„λ‹ˆλΌ
06:19
In addition to donating their data,
137
379000
1696
06:20
they need to donate their decision scientists.
138
380720
2160
μ˜μ‚¬κ²°μ • κ³Όν•™μžλ„ μ œκ³΅ν•΄μ•Ό ν•©λ‹ˆλ‹€.
06:23
Now, companies will say, "Ah! Don't take our decision scientists from us.
139
383520
5736
μ•„λ§ˆ 기업은 μ΄λ ‡κ²Œ λ§ν•˜κ² μ£ . "μ˜μ‚¬κ²°μ • κ³Όν•™μžλ₯Ό 데렀가지 λ§ˆμ„Έμš”!
06:29
We need every spare second of their time."
140
389280
2040
우린 맀 μˆœκ°„ 그듀이 ν•„μš”ν•©λ‹ˆλ‹€."
06:32
But there's a way.
141
392360
1200
ν•˜μ§€λ§Œ 방법이 μžˆμŠ΅λ‹ˆλ‹€.
06:35
If a company was going to donate a block of a decision scientist's time,
142
395200
3416
기업이 μ˜μ‚¬κ²°μ • κ³Όν•™μžμ˜ μ‹œκ°„ λ‹¨μœ„λ₯Ό κΈ°μ¦ν•˜λ©΄
06:38
it would actually make more sense to spread out that block of time
143
398640
3136
κ·Έ μ‹œκ°„ λ‹¨μœ„λ₯Ό νŽΌμ³μ„œ μž₯기적으둜 μ“°λŠ” 게 μ‹€μ œλ‘œ 더 ν•©λ¦¬μ μž…λ‹ˆλ‹€.
06:41
over a long period, say for example five years.
144
401800
2200
κ°€λ Ή 5λ…„ 정도에 κ±Έμ³μ„œμš”.
06:44
This might only amount to a couple of hours per month,
145
404600
3056
κΈ°μ—… μž…μž₯μ—μ„œλŠ” 거의 ν”Όν•΄κ°€ μ—†λŠ” ν•œ 달에 두어 μ‹œκ°„ μ •λ„μ΄μ§€λ§Œ
06:47
which a company would hardly miss,
146
407680
2056
06:49
but what it enables is really important: long-term partnerships.
147
409760
3480
ꡉμž₯히 μ€‘μš”ν•œ 일을 ν•  수 μžˆμŠ΅λ‹ˆλ‹€. μž₯기적인 ν˜‘λ ₯관계죠.
06:54
Long-term partnerships allow you to build relationships,
148
414920
2816
μž₯기적 ν˜‘λ ₯κ΄€κ³„λŠ” 관계λ₯Ό ν˜•μ„±μ‹œμΌœ μ£Όκ³ 
06:57
to get to know the data, to really understand it
149
417760
2656
데이터λ₯Ό μ•Œκ²Œ ν•΄μ£Όλ©° μ‹€μ œλ‘œ μ΄ν•΄ν•˜κ²Œ ν•΄ μ€λ‹ˆλ‹€.
07:00
and to start to understand the needs and challenges
150
420440
2416
그리고 인도적 단체가 λ‹Ήλ©΄ν•œ ν•„μš”μ™€ 문제λ₯Ό μ΄ν•΄ν•˜κ²Œ ν•΄ μ€λ‹ˆλ‹€.
07:02
that the humanitarian organization is facing.
151
422880
2160
07:06
In Rome, at the World Food Programme, this took us five years to do,
152
426345
3191
둜마의 세계 μ‹λŸ‰ κΈ°κ΅¬μ—μ„œλŠ” 이 일이 5λ…„ κ±Έλ ΈμŠ΅λ‹ˆλ‹€.
07:09
five years.
153
429560
1456
5λ…„μ΄μš”.
처음 3년은 문제λ₯Ό ν•΄κ²°ν•  수 μ—†μ—ˆμŠ΅λ‹ˆλ‹€.
07:11
That first three years, OK, that was just what we couldn't solve for.
154
431040
3336
07:14
Then there was two years after that of refining and implementing the tool,
155
434400
3496
λ‹€μŒ 2λ…„ λ™μ•ˆ 방법을 닀듬고 μ‹€ν–‰ν–ˆμŠ΅λ‹ˆλ‹€.
07:17
like in the operations in Iraq and other countries.
156
437920
2800
이라크와 λ‹€λ₯Έ λ‚˜λΌμ—μ„œμ˜ λ―Έμ…˜μ—μ„œμ™€ κ°™μ΄μš”.
07:21
I don't think that's an unrealistic timeline
157
441520
2096
μ €λŠ” λΉ„ν˜„μ‹€μ μΈ μ‹œκ°„κ³„μ‚°μ΄ μ•„λ‹ˆλΌκ³  λ΄…λ‹ˆλ‹€.
07:23
when it comes to using data to make operational changes.
158
443640
2736
싀행적인 λ³€ν™”λ₯Ό μœ„ν•΄ 데이터λ₯Ό μ‚¬μš©ν•˜λŠ” λ°μš”.
07:26
It's an investment. It requires patience.
159
446400
2400
그건 투자이고, 인내심이 ν•„μš”ν•©λ‹ˆλ‹€.
07:29
But the types of results that can be produced are undeniable.
160
449760
3496
λ§Œλ“€μ–΄μ§€λŠ” 결과의 ν˜•νƒœλŠ” λΆ€μ •ν•  수 μ—†μŠ΅λ‹ˆλ‹€.
07:33
In our case, it was the ability to feed tens of thousands more people.
161
453280
3560
저희 κ²½μš°λŠ”, 수 만λͺ…μ—κ²Œ μ‹λŸ‰ 곡급을 더 ν•  수 μžˆμ—ˆμŠ΅λ‹ˆλ‹€.
07:39
So we have donating data, we have donating decision scientists,
162
459440
4336
μ €ν¬λŠ” 데이터와 μ˜μ‚¬κ²°μ • κ³Όν•™μžλ₯Ό 기증해 μ™”κ³ 
07:43
and there's actually a third way that companies can help:
163
463800
2696
이제 기업이 λ„μšΈ 수 μžˆλŠ” μ„Έ 번째 방법이 μžˆμŠ΅λ‹ˆλ‹€.
07:46
donating technology to capture new sources of data.
164
466520
2976
μƒˆλ‘œμš΄ 데이터 μ†ŒμŠ€λ₯Ό λͺ¨μ„ κΈ°μˆ μ„ κΈ°μ¦ν•˜λŠ” κ²λ‹ˆλ‹€.
07:49
You see, there's a lot of things we just don't have data on.
165
469520
2840
데이터가 μ—†λŠ” λ§Žμ€ 것듀이 μžˆμŠ΅λ‹ˆλ‹€.
07:52
Right now, Syrian refugees are flooding into Greece,
166
472960
2720
λ‹Ήμž₯ μ‹œλ¦¬μ•„ λ‚œλ―Όλ“€μ΄ 그리슀둜 λͺ°λ €λ“€κ³  μžˆλŠ”λ°
μœ μ—” λ‚œλ―ΌκΈ°κ΅¬λŠ” 일손이 λΆ€μ‘±ν•©λ‹ˆλ‹€.
07:57
and the UN refugee agency, they have their hands full.
167
477120
2560
μ‚¬λžŒλ“€μ€ μΆ”μ ν•˜λŠ” ν˜„μž¬ μ‹œμŠ€ν…œμ€ 쒅이와 μ—°ν•„μž…λ‹ˆλ‹€.
08:01
The current system for tracking people is paper and pencil,
168
481000
3056
그게 무슨 λœ»μ΄λƒλ©΄
08:04
and what that means is
169
484080
1256
μ—„λ§ˆμ™€ μžλ…€ λ‹€μ„― λͺ…이 λ‚œλ―Ό 캠프에 와도
08:05
that when a mother and her five children walk into the camp,
170
485360
2856
λ³ΈλΆ€μ—μ„œλŠ” 이 상황에 λŒ€ν•΄ μ „ν˜€ λͺ¨λ¦…λ‹ˆλ‹€.
08:08
headquarters is essentially blind to this moment.
171
488240
2656
08:10
That's all going to change in the next few weeks,
172
490920
2336
그런 상황이 λͺ‡ μ£Ό λ’€λ©΄ λ°”λ€” κ²λ‹ˆλ‹€.
08:13
thanks to private sector collaboration.
173
493280
1880
λ―Όκ°„ λΆ€λ¬Έμ—μ„œ ν˜‘λ ₯ν•œ λ•λΆ„μž…λ‹ˆλ‹€.
08:15
There's going to be a new system based on donated package tracking technology
174
495840
3656
기증받은 좔적 κΈ°μˆ μ— κ·Όκ±°ν•΄μ„œ μƒˆλ‘œμš΄ μ‹œμŠ€ν…œμ΄ 생길 κ²λ‹ˆλ‹€.
08:19
from the logistics company that I work for.
175
499520
2040
μ œκ°€ μΌν•˜λŠ” λ¬Όλ₯˜ νšŒμ‚¬μ—μ„œ λ°›μ•˜μŠ΅λ‹ˆλ‹€.
μƒˆ μ‹œμŠ€ν…œμœΌλ‘œ 데이터 흐름이 μƒκ²¨μ„œ
08:22
With this new system, there will be a data trail,
176
502120
2336
08:24
so you know exactly the moment
177
504480
1456
λ°”λ‘œ μ•Œκ²Œ λ©λ‹ˆλ‹€.
08:25
when that mother and her children walk into the camp.
178
505960
2496
μ—„λ§ˆμ™€ μžλ…€λ“€μ΄ 캠프에 λ“€μ–΄μ˜€λŠ” μˆœκ°„μš”.
κ²Œλ‹€κ°€ κ·Έλ…€κ°€ 이달과 λ‹€μŒλ‹¬μ— ꡬ호물자λ₯Ό 받을 것인지도 μ•Œκ²Œ λ©λ‹ˆλ‹€.
08:28
And even more, you know if she's going to have supplies
179
508480
2616
08:31
this month and the next.
180
511120
1256
08:32
Information visibility drives efficiency.
181
512400
3016
정보 κ°€μ‹œμ„±μ€ νš¨μœ¨μ„±μ„ μ˜¬λ¦½λ‹ˆλ‹€.
08:35
For companies, using technology to gather important data,
182
515440
3256
κΈ°μ—… μž…μž₯μ—μ„œλŠ” μ€‘μš” 데이터 μˆ˜μ§‘μ„ μœ„ν•΄ κΈ°μˆ μ„ μ“°λŠ” 건
08:38
it's like bread and butter.
183
518720
1456
λ—„ 수 μ—†λŠ” μΌμž…λ‹ˆλ‹€.
08:40
They've been doing it for years,
184
520200
1576
수 λ…„κ°„ 기업듀을 이런 일을 ν•΄μ™”κ³ 
08:41
and it's led to major operational efficiency improvements.
185
521800
3256
μ£Όμš” μ‹€ν–‰ νš¨μœ¨μ„± ν–₯상을 κ°€μ Έμ™”μŠ΅λ‹ˆλ‹€.
μ—¬λŸ¬λΆ„μ΄ 제일 μ’‹μ•„ν•˜λŠ” 음료 νšŒμ‚¬κ°€
08:45
Just try to imagine your favorite beverage company
186
525080
2360
08:48
trying to plan their inventory
187
528280
1576
재고 κ³„νšμ„ μ„Έμš°λ©΄μ„œλ„
08:49
and not knowing how many bottles were on the shelves.
188
529880
2496
음료수 λͺ‡ 병이 μŒ“μ—¬μžˆλŠ”μ§€ λͺ¨λ₯Έλ‹€κ³  생각해 λ³΄μ„Έμš”.
08:52
It's absurd.
189
532400
1216
말도 μ•ˆ 되죠.
08:53
Data drives better decisions.
190
533640
1560
λ°μ΄ν„°λŠ” 더 λ‚˜μ€ 결정을 ν•˜κ²Œ ν•©λ‹ˆλ‹€.
08:57
Now, if you're representing a company,
191
537800
2536
λ§Œμ•½ μ—¬λŸ¬λΆ„μ΄ νšŒμ‚¬λ₯Ό λŒ€ν‘œν•œλ‹€λ©΄
09:00
and you're pragmatic and not just idealistic,
192
540360
3136
μ‹€μš©μ μ΄λ©° 마λƒ₯ 이상적이진 μ•Šλ‹€λ©΄
09:03
you might be saying to yourself, "OK, this is all great, Mallory,
193
543520
3056
이런 생각을 ν•˜μ‹œκ² μ£ , "κ·Έλž˜μš”, λ‹€ μ’‹μ•„μš”, 말둜리
09:06
but why should I want to be involved?"
194
546600
1840
ν•˜μ§€λ§Œ μ œκ°€ μ™œ κ΄€μ—¬ν•΄μ•Ό ν•˜μ§€μš”?"
ν•œ κ°€μ§€λŠ” ν›Œλ₯­ν•œ 홍보λ₯Ό λ„˜μ–΄μ„œ
09:09
Well for one thing, beyond the good PR,
195
549000
2816
09:11
humanitarian aid is a 24-billion-dollar sector,
196
551840
2776
μΈλ„μ£Όμ˜μ  κ΅¬ν˜ΈλŠ” 240μ–΅ λ‹¬λŸ¬ 규λͺ¨μ΄κ³ 
09:14
and there's over five billion people, maybe your next customers,
197
554640
3056
50μ–΅ λͺ… 이상이 μ—¬λŸ¬λΆ„μ˜ λ‹€μŒ 고객일 수 μžˆμŠ΅λ‹ˆλ‹€.
09:17
that live in the developing world.
198
557720
1816
κ°œλ°œλ„μƒκ΅­μ— μ‚΄κ³  있죠.
09:19
Further, companies that are engaging in data philanthropy,
199
559560
3096
λ‚˜μ•„κ°€μ„œ 데이터 μžμ„ μ‚¬μ—…μ— μ°Έμ—¬ν•˜λŠ” νšŒμ‚¬λ“€μ€
09:22
they're finding new insights locked away in their data.
200
562680
2976
λ°μ΄ν„°μ—μ„œ λ²—μ–΄λ‚˜ μƒˆλ‘œμš΄ κΉ¨λ‹¬μŒμ„ μ–»μŠ΅λ‹ˆλ‹€.
09:25
Take, for example, a credit card company
201
565680
2256
쀑심에 개μž₯ν•œ μ‹ μš©μΉ΄λ“œ νšŒμ‚¬λ₯Ό 예둜 λ“€λ©΄
09:27
that's opened up a center
202
567960
1336
09:29
that functions as a hub for academics, for NGOs and governments,
203
569320
3376
NGOλ‚˜ μ •λΆ€, ν•™κ³„μ˜ 쀑좔역할을 ν•˜λŠ” κ±°μ£ .
09:32
all working together.
204
572720
1240
λͺ¨λ‘ ν˜‘λ ₯ν•˜λŠ” κ²λ‹ˆλ‹€.
그듀은 μ‹ μš©μΉ΄λ“œ ꡬ맀 정보λ₯Ό 보고
09:35
They're looking at information in credit card swipes
205
575040
2736
09:37
and using that to find insights about how households in India
206
577800
2976
인도 κ°€μ •μ˜ μƒν™œ, 일, μˆ˜μž…κ³Ό μ§€μΆœ ν˜•νƒœμ˜ 의미λ₯Ό 찾으렀고 ν•©λ‹ˆλ‹€.
09:40
live, work, earn and spend.
207
580800
1720
09:43
For the humanitarian world, this provides information
208
583680
2576
인도적 μ„Έκ³„μ—μ„œλŠ” 이것이
09:46
about how you might bring people out of poverty.
209
586280
2656
λΉˆκ³€νƒˆμΆœ 방법에 λŒ€ν•œ 정보λ₯Ό μ€λ‹ˆλ‹€.
09:48
But for companies, it's providing insights about your customers
210
588960
3016
ν•˜μ§€λ§Œ κΈ°μ—…μ—κ²ŒλŠ” 고객듀과
μΈλ„μ˜ 잠재적 κ³ κ°λ“€μ˜ 정보λ₯Ό μ£Όμ£ .
09:52
and potential customers in India.
211
592000
2040
09:54
It's a win all around.
212
594760
1800
λͺ¨λ‘μ—κ²Œ 득이 λ˜λŠ” κ²λ‹ˆλ‹€.
09:57
Now, for me, what I find exciting about data philanthropy --
213
597960
3776
μ œκ°€ λ°œκ²¬ν•œ 데이터 μžμ„ μ‚¬μ—…μ΄ ν₯λΆ„λ˜λŠ” 점은
10:01
donating data, donating decision scientists and donating technology --
214
601760
4336
데이터, μ˜μ‚¬κ²°μ • κ³Όν•™μžμ™€ κΈ°μˆ μ„ κΈ°μ¦ν•˜λŠ” κ²λ‹ˆλ‹€.
저같은 κΈ°μ—…μ—μ„œ μΌν•˜λ €λŠ” μ Šμ€ μ „λ¬Έκ°€λ“€μ—κ²ŒλŠ” 그런 μ˜λ―Έμž…λ‹ˆλ‹€.
10:06
it's what it means for young professionals like me
215
606120
2376
10:08
who are choosing to work at companies.
216
608520
1840
10:10
Studies show that the next generation of the workforce
217
610800
2656
μ—°κ΅¬μ—μ„œλŠ” 노동λ ₯의 λ‹€μŒ μ„ΈλŒ€λŠ”
10:13
care about having their work make a bigger impact.
218
613480
2560
일둜 더 큰 영ν–₯λ ₯을 λΌμΉ˜λŠ” 데 μ‹ κ²½μ“΄λ‹€κ³  ν•©λ‹ˆλ‹€.
10:16
We want to make a difference,
219
616920
2456
μš°λ¦¬λŠ” λ³€ν™”λ₯Ό λ§Œλ“€κ³  μ‹Άκ³ 
10:19
and so through data philanthropy,
220
619400
2416
데이터 μžμ„ μ‚¬μ—…μ„ ν†΅ν•΄μ„œλ„ κ·Έλ ‡μŠ΅λ‹ˆλ‹€.
10:21
companies can actually help engage and retain their decision scientists.
221
621840
3936
기업듀은 μ‹€μ œλ‘œ μ°Έμ—¬ν•˜λ©΄μ„œλ„ μ˜μ‚¬κ²°μ • κ³Όν•™μžλ“€μ„ μœ μ§€ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
10:25
And that's a big deal for a profession that's in high demand.
222
625800
2880
κ³ μˆ˜μš” μ§μ’…μ—κ²ŒλŠ” μ€‘μš”ν•œ 일이죠.
10:29
Data philanthropy makes good business sense,
223
629840
3120
데이터 μžμ„ μ‚¬μ—…μ€ μ‚¬μ—…μ μœΌλ‘œ ν•©λ¦¬μ μž…λ‹ˆλ‹€.
10:34
and it also can help revolutionize the humanitarian world.
224
634200
3280
인도적 세계λ₯Ό λŒ€λ³€ν˜ν•˜λ„λ‘ λ„μšΈ 수 μžˆκ³ μš”.
10:39
If we coordinated the planning and logistics
225
639600
2096
μš°λ¦¬κ°€ κ³„νšκ³Ό μš΄μ†‘μ„
10:41
across all of the major facets of a humanitarian operation,
226
641720
3376
ꡬ호 μž‘μ „μ˜ μ£Όμš” 방면을 톡틀어 μ‘°μ •ν•œλ‹€λ©΄
수 μ‹­λ§Œ λͺ…을 더 먹이고, μž…νžˆκ³  λ³΄ν˜Έν•  수 μžˆμŠ΅λ‹ˆλ‹€.
10:45
we could feed, clothe and shelter hundreds of thousands more people,
227
645120
3600
10:49
and companies need to step up and play the role that I know they can
228
649440
4256
기업이 λ‚˜μ„œμ„œ 이런 혁λͺ…을 뢈러올 기ꡬλ₯Ό κ΅¬μ„±ν•˜κ³  역할을 ν•΄μ•Όν•©λ‹ˆλ‹€.
10:53
in bringing about this revolution.
229
653720
1880
10:56
You've probably heard of the saying "food for thought."
230
656720
2936
μ—¬λŸ¬λΆ„μ€ "생각할 거리"λž€ 말을 듀어보셨을 κ²λ‹ˆλ‹€.
10:59
Well, this is literally thought for food.
231
659680
2240
이건 말 κ·ΈλŒ€λ‘œ μŒμ‹μ„ μœ„ν•œ μƒκ°μž…λ‹ˆλ‹€.
11:03
It finally is the right idea at the right time.
232
663560
4136
이것은 λ§ˆμΉ¨λ‚΄ 제 λ•Œμ˜ μ œλŒ€λ‘œ 된 μ•„μ΄λ””μ–΄μž…λ‹ˆλ‹€.
11:07
(Laughter)
233
667720
1216
(μ›ƒμŒ)
11:08
Très magnifique.
234
668960
1576
μ•„μ£Ό λ©‹μ§‘λ‹ˆλ‹€.(ν”„λž‘μŠ€μ–΄)
11:10
Thank you.
235
670560
1216
κ°μ‚¬ν•©λ‹ˆλ‹€.
11:11
(Applause)
236
671800
2851
(λ°•μˆ˜)
이 μ›Ήμ‚¬μ΄νŠΈ 정보

이 μ‚¬μ΄νŠΈλŠ” μ˜μ–΄ ν•™μŠ΅μ— μœ μš©ν•œ YouTube λ™μ˜μƒμ„ μ†Œκ°œν•©λ‹ˆλ‹€. μ „ 세계 졜고의 μ„ μƒλ‹˜λ“€μ΄ κ°€λ₯΄μΉ˜λŠ” μ˜μ–΄ μˆ˜μ—…μ„ 보게 될 κ²ƒμž…λ‹ˆλ‹€. 각 λ™μ˜μƒ νŽ˜μ΄μ§€μ— ν‘œμ‹œλ˜λŠ” μ˜μ–΄ μžλ§‰μ„ 더블 ν΄λ¦­ν•˜λ©΄ κ·Έκ³³μ—μ„œ λ™μ˜μƒμ΄ μž¬μƒλ©λ‹ˆλ‹€. λΉ„λ””μ˜€ μž¬μƒμ— 맞좰 μžλ§‰μ΄ μŠ€ν¬λ‘€λ©λ‹ˆλ‹€. μ˜κ²¬μ΄λ‚˜ μš”μ²­μ΄ μžˆλŠ” 경우 이 문의 양식을 μ‚¬μš©ν•˜μ—¬ λ¬Έμ˜ν•˜μ‹­μ‹œμ˜€.

https://forms.gle/WvT1wiN1qDtmnspy7