How AI can bring on a second Industrial Revolution | Kevin Kelly

340,981 views ・ 2017-01-12

TED


请双击下面的英文字幕来播放视频。

00:00
Translator: Leslie Gauthier Reviewer: Camille Martínez
0
0
7000
翻译人员: Jiamin Zhao 校对人员: Hong Li
00:14
I'm going to talk a little bit about where technology's going.
1
14966
3817
我打算谈一谈技术的发展趋势。
00:19
And often technology comes to us,
2
19509
2671
当(新的)技术到来时,
00:22
we're surprised by what it brings.
3
22566
1865
常常会令我们感到惊讶。
00:24
But there's actually a large aspect of technology
4
24455
3683
但事实上,技术在很大程度上
00:28
that's much more predictable,
5
28162
1802
是能够被预见的。
00:29
and that's because technological systems of all sorts have leanings,
6
29988
4088
这是因为所有的技术 都有某种倾向性,
00:34
they have urgencies,
7
34100
1175
有某种冲动,
00:35
they have tendencies.
8
35299
1561
有某种趋势。
00:36
And those tendencies are derived from the very nature of the physics,
9
36884
4932
这些趋势是由电线、开关、以及电子的
00:41
chemistry of wires and switches and electrons,
10
41840
3150
物理和化学本质所决定的,
00:45
and they will make reoccurring patterns again and again.
11
45659
3602
并且呈现出不断重复的模式。
00:49
And so those patterns produce these tendencies, these leanings.
12
49745
4874
或者说,这些模式形成了 某种趋势、某种倾向。
00:54
You can almost think of it as sort of like gravity.
13
54643
2831
你可以把它看成类似于重力的东西。
00:57
Imagine raindrops falling into a valley.
14
57498
2319
想象雨点汇入山谷:
00:59
The actual path of a raindrop as it goes down the valley
15
59841
3088
一滴雨点流入山谷的实际路径
01:02
is unpredictable.
16
62953
1169
是无法预测的。
01:04
We cannot see where it's going,
17
64651
1518
我们并不知道它的具体走向,
01:06
but the general direction is very inevitable:
18
66193
2277
但大方向是很显然的:
01:08
it's downward.
19
68494
1234
它往下流。
01:10
And so these baked-in tendencies and urgencies
20
70377
4572
因此,这些内在趋势和冲动,
01:14
in technological systems
21
74973
1476
深深扎根于技术系统中,
01:17
give us a sense of where things are going at the large form.
22
77051
3609
使我们能够感知它们的大体方向。
01:21
So in a large sense,
23
81149
1401
具体点说,
01:22
I would say that telephones were inevitable,
24
82574
3361
电话是必然的,
01:27
but the iPhone was not.
25
87005
1342
但 iPhone 不是;
01:29
The Internet was inevitable,
26
89094
1478
因特网是必然的,
01:31
but Twitter was not.
27
91274
1286
但推特不是。
01:33
So we have many ongoing tendencies right now,
28
93036
3928
同样道理, 当下有许多正在发生的趋势,
01:36
and I think one of the chief among them
29
96988
2720
而我认为其中最重要的一个
01:39
is this tendency to make things smarter and smarter.
30
99732
3722
是让物体变得越来越聪明。
01:44
I call it cognifying -- cognification --
31
104041
2212
我称之为“知化”,
01:46
also known as artificial intelligence, or AI.
32
106783
2782
也就是人们常说的 人工智能,或者 AI。
01:50
And I think that's going to be one of the most influential developments
33
110025
3746
我认为在未来二十年中,
01:53
and trends and directions and drives in our society in the next 20 years.
34
113795
5575
这将是社会中最具影响力的 发展趋势和驱动力。
当然,它已经发生了。
02:00
So, of course, it's already here.
35
120021
1985
02:02
We already have AI,
36
122030
2204
我们已经有了 AI,
02:04
and often it works in the background,
37
124258
2398
它们通常都隐身在后台工作,
02:06
in the back offices of hospitals,
38
126680
1586
在医院里,
02:08
where it's used to diagnose X-rays better than a human doctor.
39
128290
4686
AI 分析 X 光片的水准 比人类医生还要棒。
02:13
It's in legal offices,
40
133000
1726
在律所里,
02:14
where it's used to go through legal evidence
41
134750
2368
AI 核查证物的本事
02:17
better than a human paralawyer.
42
137142
1855
比人类助理律师还要强。
02:19
It's used to fly the plane that you came here with.
43
139506
3656
我们乘坐的飞机是由 AI 在驾驶。
02:24
Human pilots only flew it seven to eight minutes,
44
144165
2381
人类驾驶员只飞个七、八分钟而已;
02:26
the rest of the time the AI was driving.
45
146570
1953
其他时间都是 AI 在操控。
02:28
And of course, in Netflix and Amazon,
46
148547
2173
当然,在 Netflix 和亚马逊网站,
02:30
it's in the background, making those recommendations.
47
150744
2530
是AI在后台进行推荐。
这些都是我们已经实现的。
02:33
That's what we have today.
48
153298
1261
02:34
And we have an example, of course, in a more front-facing aspect of it,
49
154583
4801
我们也有一些更前沿的例子,
02:39
with the win of the AlphaGo, who beat the world's greatest Go champion.
50
159408
6629
比如“阿尔法狗”战胜了 人类最强的围棋世界冠军。
02:46
But it's more than that.
51
166478
4053
但还不止于此。
02:50
If you play a video game, you're playing against an AI.
52
170555
2642
我们打电玩时,对手往往是 AI。
不过最近,谷歌教会了他们的 AI
02:53
But recently, Google taught their AI
53
173221
4538
02:57
to actually learn how to play video games.
54
177783
2412
自己学习如何打电子游戏。
03:00
Again, teaching video games was already done,
55
180686
2709
教(AI)打游戏 已经不是什么新鲜事了,
03:03
but learning how to play a video game is another step.
56
183419
3897
但(AI)自己学习 打游戏则是另一个境界。
03:07
That's artificial smartness.
57
187340
1678
这就是人工智慧。
03:10
What we're doing is taking this artificial smartness
58
190571
4522
我们正在以此为起点,
03:15
and we're making it smarter and smarter.
59
195117
2423
让它变得越来越聪明。
03:18
There are three aspects to this general trend
60
198710
3895
在这个大趋势中,
我认为有三点尚未被充分认识;
03:22
that I think are underappreciated;
61
202629
1689
03:24
I think we would understand AI a lot better
62
204342
2277
如果我们能理解这三点,
03:26
if we understood these three things.
63
206643
2301
就能更好的理解 AI,
03:28
I think these things also would help us embrace AI,
64
208968
3283
并更加全身心的拥抱 AI。
03:32
because it's only by embracing it that we actually can steer it.
65
212275
3008
只有拥抱 AI,才能控制AI。
03:35
We can actually steer the specifics by embracing the larger trend.
66
215887
3157
我们可以通过拥抱 大趋势来控制细节。
03:39
So let me talk about those three different aspects.
67
219467
2979
所以,请允许我谈谈这三点。
03:42
The first one is: our own intelligence has a very poor understanding
68
222470
3673
第一点,我们自己尚未很好的理解
03:46
of what intelligence is.
69
226167
1490
什么是智能。
03:48
We tend to think of intelligence as a single dimension,
70
228110
3653
我们通常认为智能是单维度的,
03:51
that it's kind of like a note that gets louder and louder.
71
231787
2750
就像一个越来越响的音符。
03:54
It starts like with IQ measurement.
72
234561
2607
我们用智商来衡量它。
03:57
It starts with maybe a simple low IQ in a rat or mouse,
73
237192
4092
老鼠的智商较低,
04:01
and maybe there's more in a chimpanzee,
74
241308
2134
猩猩的智商较高,
04:03
and then maybe there's more in a stupid person,
75
243887
2191
接下来是比较笨的人,
然后是像我一样的普通人,
04:06
and then maybe an average person like myself,
76
246102
2096
再往上是天才。
04:08
and then maybe a genius.
77
248222
1290
04:09
And this single IQ intelligence is getting greater and greater.
78
249536
4433
智商越高,智能就越高。
04:14
That's completely wrong.
79
254516
1151
这种看法是完全错误的。
04:15
That's not what intelligence is -- not what human intelligence is, anyway.
80
255691
3608
这根本就不是智能, 人类智能也并非如此。
04:19
It's much more like a symphony of different notes,
81
259673
4506
智能更像由不同音符 组成的交响乐,
04:24
and each of these notes is played on a different instrument of cognition.
82
264203
3609
每个音符由不同的认知乐器来奏响。
04:27
There are many types of intelligences in our own minds.
83
267836
3701
人类的心智包含了多种智能。
04:31
We have deductive reasoning,
84
271561
3048
我们可以进行演绎推理,
04:34
we have emotional intelligence,
85
274633
2221
我们具备情绪智力,
04:36
we have spatial intelligence;
86
276878
1393
我们有空间智能。
04:38
we have maybe 100 different types that are all grouped together,
87
278295
4021
我们可能有一百种 不同的智能集合在一起,
04:42
and they vary in different strengths with different people.
88
282340
3905
它们在不同人的身上也 体现得强弱不一。
04:46
And of course, if we go to animals, they also have another basket --
89
286269
4526
而动物们则可能是另一套体系——
04:50
another symphony of different kinds of intelligences,
90
290819
2541
由其他智能组成的另一首交响乐,
04:53
and sometimes those same instruments are the same that we have.
91
293384
3566
当然,有些乐器与人类是相同的。
04:56
They can think in the same way, but they may have a different arrangement,
92
296974
3561
可能思考的方式相同但侧重点不同,
某些方面可能还强于人类,
05:00
and maybe they're higher in some cases than humans,
93
300559
2467
像松鼠的长期记忆就很了不得,
05:03
like long-term memory in a squirrel is actually phenomenal,
94
303050
2837
05:05
so it can remember where it buried its nuts.
95
305911
2287
能清楚记得坚果的埋藏之所。
05:08
But in other cases they may be lower.
96
308222
1987
但在另外一些方面可能不如人类。
05:10
When we go to make machines,
97
310233
2730
当我们制造机器时,
05:12
we're going to engineer them in the same way,
98
312987
2196
也会用同样的方式来设计它们,
它们在某些方面会比我们聪明得多,
05:15
where we'll make some of those types of smartness much greater than ours,
99
315207
5010
05:20
and many of them won't be anywhere near ours,
100
320241
2571
而在其他方面则远远不如我们,
05:22
because they're not needed.
101
322836
1544
因为根本没必要。
05:24
So we're going to take these things,
102
324404
2203
我们会用这些东西,
05:26
these artificial clusters,
103
326631
2081
这些人造的功能组合,
05:28
and we'll be adding more varieties of artificial cognition to our AIs.
104
328736
5362
为我们的 AI 添加 各种各样的人工认知。
05:34
We're going to make them very, very specific.
105
334507
4071
我们会让它们(的功能)非常具体。
05:38
So your calculator is smarter than you are in arithmetic already;
106
338602
6542
比方说,计算器在数学运算上 要比我们聪明得多;
05:45
your GPS is smarter than you are in spatial navigation;
107
345168
3697
GPS 的空间导航能力远胜过我们;
05:49
Google, Bing, are smarter than you are in long-term memory.
108
349337
4258
谷歌、必应在长期记忆上完胜我们。
05:54
And we're going to take, again, these kinds of different types of thinking
109
354339
4530
然后我们再把这些不同类型的智能
05:58
and we'll put them into, like, a car.
110
358893
1933
塞到……比如说汽车里, 实现自动行驶。
06:00
The reason why we want to put them in a car so the car drives,
111
360850
3057
我们之所以这么做, 正是因为它的驾驶方式
06:03
is because it's not driving like a human.
112
363931
2302
跟我们不一样。
06:06
It's not thinking like us.
113
366257
1396
它不像我们那样思考。
06:07
That's the whole feature of it.
114
367677
1920
这恰恰是它的特点。
06:09
It's not being distracted,
115
369621
1535
它不会分心,
06:11
it's not worrying about whether it left the stove on,
116
371180
2754
不会担心是否忘记了关炉子,
06:13
or whether it should have majored in finance.
117
373958
2138
不会纠结要不要选金融专业。
它只知道开车。
06:16
It's just driving.
118
376120
1153
06:17
(Laughter)
119
377297
1142
(笑声)
06:18
Just driving, OK?
120
378463
1841
它会专心开车,对吧?
06:20
And we actually might even come to advertise these
121
380328
2937
我们甚至可以把这个做为卖点,
06:23
as "consciousness-free."
122
383289
1545
叫做“无意识”。
06:24
They're without consciousness,
123
384858
1774
它们没有意识,
06:26
they're not concerned about those things,
124
386656
2104
不会东想西想,
06:28
they're not distracted.
125
388784
1156
不会分心。
06:29
So in general, what we're trying to do
126
389964
2966
所以,我们应该尽我们所能
06:32
is make as many different types of thinking as we can.
127
392954
4500
制造各种各样的思考(机器)。
06:37
We're going to populate the space
128
397804
2083
我们应该去尝试
06:39
of all the different possible types, or species, of thinking.
129
399911
4159
所有可能的思考方式。
06:44
And there actually may be some problems
130
404094
2068
在商业和科学上,
06:46
that are so difficult in business and science
131
406186
2800
我们会遇到一些难题,
06:49
that our own type of human thinking may not be able to solve them alone.
132
409010
4042
单凭人类自身的思考无法解决。
06:53
We may need a two-step program,
133
413076
1992
我们可能需要分两步走,
06:55
which is to invent new kinds of thinking
134
415092
4203
先发明出新的思考方式,
06:59
that we can work alongside of to solve these really large problems,
135
419692
3734
再与它们一起解决这些真正的难题,
07:03
say, like dark energy or quantum gravity.
136
423450
2918
比如暗能量和量子引力。
07:08
What we're doing is making alien intelligences.
137
428496
2646
我们实际上是在创造异形智能。
07:11
You might even think of this as, sort of, artificial aliens
138
431166
4069
某种意义上,甚至可以将它们看作
人造异形。
07:15
in some senses.
139
435259
1207
07:16
And they're going to help us think different,
140
436490
2300
它们将帮助我们用不同的方式思考,
07:18
because thinking different is the engine of creation
141
438814
3632
而换一种思考方式是创造的源泉,
07:22
and wealth and new economy.
142
442470
1867
是财富和新经济的引擎。
07:25
The second aspect of this is that we are going to use AI
143
445835
4923
第二点是,我们将用 AI
07:30
to basically make a second Industrial Revolution.
144
450782
2950
推动第二次工业革命。
07:34
The first Industrial Revolution was based on the fact
145
454135
2773
在第一次工业革命中,
07:36
that we invented something I would call artificial power.
146
456932
3462
人类发明了我称之为 “人造能源”的东西。
07:40
Previous to that,
147
460879
1150
在此之前,
07:42
during the Agricultural Revolution,
148
462053
2034
在农业革命时期,
07:44
everything that was made had to be made with human muscle
149
464111
3702
制造业靠人力驱动,
07:47
or animal power.
150
467837
1307
或者靠畜力。
07:49
That was the only way to get anything done.
151
469565
2063
除此之外别无他法。
07:51
The great innovation during the Industrial Revolution was,
152
471652
2945
工业革命时期的伟大发明就是
07:54
we harnessed steam power, fossil fuels,
153
474621
3109
人们利用化石燃料和蒸汽
07:57
to make this artificial power that we could use
154
477754
3856
所产生的“人造能源”来做
08:01
to do anything we wanted to do.
155
481634
1669
我们想做的任何事情。
08:03
So today when you drive down the highway,
156
483327
2772
今天,当我们开车行驶在高速上,
08:06
you are, with a flick of the switch, commanding 250 horses --
157
486571
4525
只需轻轻拨弄开关, 就能驾驭 250 匹马——
08:11
250 horsepower --
158
491120
1572
或者说,250 匹马的马力——
08:12
which we can use to build skyscrapers, to build cities, to build roads,
159
492716
4692
我们可以建造高楼大厦, 修建道路,建设城市,
08:17
to make factories that would churn out lines of chairs or refrigerators
160
497432
5789
开办工厂,源源不断地 生产桌椅或冰箱,
08:23
way beyond our own power.
161
503245
1654
这些都远远超出了人力所为。
08:24
And that artificial power can also be distributed on wires on a grid
162
504923
6111
这种“人造能源” 还可以通过电网和电线
08:31
to every home, factory, farmstead,
163
511058
3199
输送到家庭、工厂和农庄,
08:34
and anybody could buy that artificial power,
164
514281
4191
任何人都可以 购买这种“人造能源”,
08:38
just by plugging something in.
165
518496
1472
只需插上插头就可以使用。
08:39
So this was a source of innovation as well,
166
519992
2439
它也带来了很多创新,
08:42
because a farmer could take a manual hand pump,
167
522455
3418
农民可以为手动泵通上电,
08:45
and they could add this artificial power, this electricity,
168
525897
2916
加上这种“人造能源”,
08:48
and he'd have an electric pump.
169
528837
1497
就变成了电泵。
08:50
And you multiply that by thousands or tens of thousands of times,
170
530358
3318
类似的改造成千上万,
08:53
and that formula was what brought us the Industrial Revolution.
171
533700
3159
这个(人力器械+人造能源的) 公式造就了工业革命。
08:56
All the things that we see, all this progress that we now enjoy,
172
536883
3585
今天我们看到的所有事物, 享受的所有服务,
09:00
has come from the fact that we've done that.
173
540492
2063
几乎都来源于此。
09:02
We're going to do the same thing now with AI.
174
542579
2348
现在我们要用 AI 做同样的事情。
09:04
We're going to distribute that on a grid,
175
544951
2075
我们用网路传输 AI,
09:07
and now you can take that electric pump.
176
547050
2374
把 AI 加载到
09:09
You can add some artificial intelligence,
177
549448
2968
诸如电泵之类的东西上,
09:12
and now you have a smart pump.
178
552440
1481
就得到了聪明的电泵。
09:13
And that, multiplied by a million times,
179
553945
1928
类似的改造做上几百万次,
09:15
is going to be this second Industrial Revolution.
180
555897
2363
就会掀起第二次工业革命。
09:18
So now the car is going down the highway,
181
558284
2382
那么将来汽车行驶在高速上,
09:20
it's 250 horsepower, but in addition, it's 250 minds.
182
560690
4294
它不仅有 250倍马力, 还有 250倍的脑力。
这就是自动驾驶汽车。
09:25
That's the auto-driven car.
183
565008
1769
09:26
It's like a new commodity;
184
566801
1389
它是一种新的商品,
09:28
it's a new utility.
185
568214
1303
是一种新的基础设施。
09:29
The AI is going to flow across the grid -- the cloud --
186
569541
3041
AI 将会在网络、在云端传输,
09:32
in the same way electricity did.
187
572606
1567
就像电一样。
09:34
So everything that we had electrified,
188
574197
2380
所以凡是可以用电的地方,
09:36
we're now going to cognify.
189
576601
1723
都可以用 AI。
09:38
And I would suggest, then,
190
578693
1385
而我可以建议说,
09:40
that the formula for the next 10,000 start-ups
191
580102
3732
未来一万家创业公司的秘诀
09:43
is very, very simple,
192
583858
1162
其实非常非常简单:
09:45
which is to take x and add AI.
193
585044
3167
拿来某样东西,加上 AI。
09:49
That is the formula, that's what we're going to be doing.
194
589100
2812
这个公式就是我们将要不断践行的。
09:51
And that is the way in which we're going to make
195
591936
3306
我们将以这种方式
09:55
this second Industrial Revolution.
196
595266
1858
来掀起第二次工业革命。
09:57
And by the way -- right now, this minute,
197
597148
2154
顺便说一句,就在此时,
09:59
you can log on to Google
198
599326
1169
你可以登录谷歌,
10:00
and you can purchase AI for six cents, 100 hits.
199
600519
3882
购买 AI:用6美分 购买100次服务。
10:04
That's available right now.
200
604758
1604
这个服务现在就能用。
10:06
So the third aspect of this
201
606386
2286
第三点是,
10:09
is that when we take this AI and embody it,
202
609315
2678
我们将AI实体化,
10:12
we get robots.
203
612017
1173
就得到了机器人。
10:13
And robots are going to be bots,
204
613214
1703
机器人可以帮助我们,
10:14
they're going to be doing many of the tasks that we have already done.
205
614941
3328
完成许多曾经需要 我们亲力亲为的任务。
10:20
A job is just a bunch of tasks,
206
620357
1528
而工作就是一系列的任务,
10:21
so they're going to redefine our jobs
207
621909
1762
我们的工作将会被重新定义,
10:23
because they're going to do some of those tasks.
208
623695
2259
一部分任务将交给机器人来完成。
10:25
But they're also going to create whole new categories,
209
625978
3197
与此同时,也将产生一大批
10:29
a whole new slew of tasks
210
629199
2247
不同种类的新任务,
10:31
that we didn't know we wanted to do before.
211
631470
2457
一批以往我们没有意识到 要去做的任务。
10:33
They're going to actually engender new kinds of jobs,
212
633951
3637
它们甚至有可能催生出新的职业,
10:37
new kinds of tasks that we want done,
213
637612
2271
我们感兴趣的新工作,
10:39
just as automation made up a whole bunch of new things
214
639907
3405
就像自动化带来的许多新事物,
10:43
that we didn't know we needed before,
215
643336
1834
我们之前并不知道会需要它们,
10:45
and now we can't live without them.
216
645194
1956
但今天我们已经离不开它们了。
10:47
So they're going to produce even more jobs than they take away,
217
647174
3956
所以机器人带来的 工作机会比它们抢走的要多。
10:51
but it's important that a lot of the tasks that we're going to give them
218
651154
3434
更重要的是,我们交给它们的
10:54
are tasks that can be defined in terms of efficiency or productivity.
219
654612
4572
都是需要效率或生产率的任务。
10:59
If you can specify a task,
220
659676
1828
如果一个任务,
11:01
either manual or conceptual,
221
661528
2235
不管是体力的还是脑力的,
11:03
that can be specified in terms of efficiency or productivity,
222
663787
4780
可以用效率或生产率来衡量,
11:08
that goes to the bots.
223
668591
1777
那么就应该交给机器人来完成。
11:10
Productivity is for robots.
224
670758
2178
需要效率的事情交给机器人好了。
11:12
What we're really good at is basically wasting time.
225
672960
3070
我们真正擅长的是浪费时间。
11:16
(Laughter)
226
676054
1028
(笑声)
我们最擅长做那些没有效率的事情。
11:17
We're really good at things that are inefficient.
227
677106
2316
11:19
Science is inherently inefficient.
228
679446
3025
科学从本质上来说是低效的。
11:22
It runs on that fact that you have one failure after another.
229
682816
2906
我们一次又一次的失败,
11:25
It runs on the fact that you make tests and experiments that don't work,
230
685746
3424
很多试验和尝试都徒劳无功,
否则我们也学不到什么东西。
11:29
otherwise you're not learning.
231
689194
1442
11:30
It runs on the fact
232
690660
1162
事实就是,
11:31
that there is not a lot of efficiency in it.
233
691846
2083
科学研究没有什么效率。
11:33
Innovation by definition is inefficient,
234
693953
2779
创新从定义上来说就是低效的。
11:36
because you make prototypes,
235
696756
1391
毕竟我们需要制作原型,
11:38
because you try stuff that fails, that doesn't work.
236
698171
2707
需要做各种尝试,经历各种失败。
11:40
Exploration is inherently inefficiency.
237
700902
3112
探索是低效的。
11:44
Art is not efficient.
238
704038
1531
艺术是低效的。
11:45
Human relationships are not efficient.
239
705593
2127
人际关系也是低效的。
11:47
These are all the kinds of things we're going to gravitate to,
240
707744
2940
这些都是我们喜欢做的事情,
11:50
because they're not efficient.
241
710708
1475
因为它们都是低效的。
11:52
Efficiency is for robots.
242
712207
2315
高效是机器人的使命。
11:55
We're also going to learn that we're going to work with these AIs
243
715338
4123
还要认识到,我们将和 AI 一起工作,
11:59
because they think differently than us.
244
719485
1997
因为它们的思维方式与我们不同。
12:02
When Deep Blue beat the world's best chess champion,
245
722005
4314
在“深蓝”战胜国际象棋的世界冠军后,
12:06
people thought it was the end of chess.
246
726343
1929
人们以为国际象棋没什么玩头了。
但事实上,目前世界上 最厉害的国际象棋冠军
12:08
But actually, it turns out that today, the best chess champion in the world
247
728296
4402
12:12
is not an AI.
248
732722
1557
并不是 AI,
12:14
And it's not a human.
249
734906
1181
也不是人类,
12:16
It's the team of a human and an AI.
250
736111
2715
而是由人类和 AI 组成的团队。
12:18
The best medical diagnostician is not a doctor, it's not an AI,
251
738850
4000
最棒的医学诊疗师 既不是医生,也不是 AI,
12:22
it's the team.
252
742874
1176
而是他们组成的团队。
也就是说我们将和 AI 一起工作,
12:24
We're going to be working with these AIs,
253
744074
2149
12:26
and I think you'll be paid in the future
254
746247
1995
你将来的薪酬,
12:28
by how well you work with these bots.
255
748266
2391
很可能取决于 你跟机器人合作得如何。
12:31
So that's the third thing, is that they're different,
256
751026
4257
这就是我想说的第三点: AI 是不同于我们的,
12:35
they're utility
257
755307
1165
它们是技术设备,
12:36
and they are going to be something we work with rather than against.
258
756496
3816
我们将与它们合作,
12:40
We're working with these rather than against them.
259
760336
2639
而非竞争。
12:42
So, the future:
260
762999
1477
那么,
未来会如何?
12:44
Where does that take us?
261
764500
1420
12:45
I think that 25 years from now, they'll look back
262
765944
3567
我想,25年后我们回头再看
12:49
and look at our understanding of AI and say,
263
769535
3125
今天对 AI 的理解,我们会说:
12:52
"You didn't have AI. In fact, you didn't even have the Internet yet,
264
772684
3300
“你们那都不叫 AI。 你们甚至都还没有真正的因特网,
25年后的因特网才能叫因特网呢。“
12:56
compared to what we're going to have 25 years from now."
265
776008
2741
12:59
There are no AI experts right now.
266
779849
3047
我们也还没有真正的 AI 专家。
13:02
There's a lot of money going to it,
267
782920
1699
而大量的资本正涌向这个领域,
13:04
there are billions of dollars being spent on it;
268
784643
2268
动辄数十亿美金,
13:06
it's a huge business,
269
786935
2164
这是一个巨大的产业。
13:09
but there are no experts, compared to what we'll know 20 years from now.
270
789123
4272
但我们尚未拥有真正的 AI 专家—— 如果跟20年后相比的话。
13:14
So we are just at the beginning of the beginning,
271
794064
2885
我们还处在最初的起步阶段,
13:16
we're in the first hour of all this.
272
796973
2163
所有一切才刚刚开始。
13:19
We're in the first hour of the Internet.
273
799160
1935
因特网的历史才刚刚开始。
美好的未来才刚刚开始。
13:21
We're in the first hour of what's coming.
274
801119
2040
未来20年最受欢迎的 AI 产品,
13:23
The most popular AI product in 20 years from now,
275
803183
4153
13:27
that everybody uses,
276
807360
1444
最普及的 AI 产品,
13:29
has not been invented yet.
277
809499
1544
还没有被发明呢。
13:32
That means that you're not late.
278
812464
2467
也就是说,你们还有机会。
13:35
Thank you.
279
815684
1151
谢谢!
13:36
(Laughter)
280
816859
1026
(笑声)
13:37
(Applause)
281
817909
2757
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7