How AI can bring on a second Industrial Revolution | Kevin Kelly

341,599 views ใƒป 2017-01-12

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

00:00
Translator: Leslie Gauthier Reviewer: Camille Martรญnez
0
0
7000
ืžืชืจื’ื: Shlomo Adam ืžื‘ืงืจ: Sigal Tifferet
00:14
I'm going to talk a little bit about where technology's going.
1
14966
3817
ืื“ื‘ืจ ืžืขื˜ ืขืœ ืขืชื™ื“ื” ืฉืœ ื”ื˜ื›ื ื•ืœื•ื’ื™ื”.
00:19
And often technology comes to us,
2
19509
2671
ืœืขืชื™ื ืงืจื•ื‘ื•ืช, ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ืžื’ื™ืขื” ืืœื™ื ื•
00:22
we're surprised by what it brings.
3
22566
1865
ื•ืื ื• ืžื•ืคืชืขื™ื ืžืžื” ืฉื”ื™ื ืžื‘ื™ืื” ืขื™ืžื”.
00:24
But there's actually a large aspect of technology
4
24455
3683
ืื‘ืœ ื™ืฉ ืœืžืขืฉื” ื”ื™ื‘ื˜ ืจื—ื‘ ืฉืœ ื”ื˜ื›ื ื•ืœื•ื’ื™ื”
00:28
that's much more predictable,
5
28162
1802
ืฉื”ื•ื ื”ืจื‘ื” ื™ื•ืชืจ ืฆืคื•ื™,
00:29
and that's because technological systems of all sorts have leanings,
6
29988
4088
ื›ื™ ืœืžืขืจื›ื•ืช ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ืžื›ืœ ื”ืžื™ื ื™ื ื™ืฉ ืžื’ืžื•ืช,
00:34
they have urgencies,
7
34100
1175
ื™ืฉ ืœื”ืŸ ืชื—ื•ืžื™ ื“ื—ื™ืคื•ืช,
00:35
they have tendencies.
8
35299
1561
ื™ืฉ ืœื”ืŸ ื ื˜ื™ื•ืช.
00:36
And those tendencies are derived from the very nature of the physics,
9
36884
4932
ื•ื”ื ื˜ื™ื•ืช ื”ืืœื” ื ื•ื‘ืขื•ืช ืžืขืฆื ืื•ืคื™ื” ืฉืœ ื”ืคื™ื–ื™ืงื”,
00:41
chemistry of wires and switches and electrons,
10
41840
3150
ืฉืœ ื”ื›ื™ืžื™ื” ื‘ื™ืŸ ื›ื‘ืœื™ื, ืžืชื’ื™ื ื•ืืœืงื˜ืจื•ื ื™ื,
00:45
and they will make reoccurring patterns again and again.
11
45659
3602
ืฉื™ื™ืฆืจื• ื“ืคื•ืกื™ื ื—ื•ื–ืจื™ื ื•ื ืฉื ื™ื.
00:49
And so those patterns produce these tendencies, these leanings.
12
49745
4874
ื•ื”ื“ืคื•ืกื™ื ื”ืืœื” ืžื ื™ื‘ื™ื ืืช ื”ื ื˜ื™ื•ืช ื•ื”ืžื’ืžื•ืช ื”ืืœื”.
00:54
You can almost think of it as sort of like gravity.
13
54643
2831
ืืคืฉืจ ืœื—ืฉื•ื‘ ืขืœ ื–ื” ื›ืขืœ ื›ื•ื— ื›ื‘ื™ื“ื”.
00:57
Imagine raindrops falling into a valley.
14
57498
2319
ืชืืจื• ืœืขืฆืžื›ื ื˜ื™ืคื•ืช ื’ืฉื ื”ื ื•ืคืœื•ืช ืœืชื•ืš ืขืžืง.
00:59
The actual path of a raindrop as it goes down the valley
15
59841
3088
ื ืชื™ื‘ื” ืฉืœ ื˜ื™ืคืช ื”ื’ืฉื ื‘ืžื•ืจื“ ื”ืขืžืง
01:02
is unpredictable.
16
62953
1169
ืื™ื ื ื• ื ื™ืชืŸ ืœื—ื™ื–ื•ื™.
01:04
We cannot see where it's going,
17
64651
1518
ืื™ื ื ื• ื™ื›ื•ืœื™ื ืœื“ืขืช ืœืืŸ ื”ื™ื ืคื•ื ื”,
01:06
but the general direction is very inevitable:
18
66193
2277
ืื‘ืœ ื”ื›ื™ื•ื•ืŸ ื”ื›ืœืœื™ ืžืื“ ื‘ืœืชื™-ื ืžื ืข:
01:08
it's downward.
19
68494
1234
ืœืžื˜ื”.
01:10
And so these baked-in tendencies and urgencies
20
70377
4572
ื›ืš ืฉื”ื ื˜ื™ื•ืช ื•ื”ืžื’ืžื•ืช ื”ืžื•ื‘ึฐื ื•ืช ื”ืืœื”
01:14
in technological systems
21
74973
1476
ื‘ืžืขืจื›ื•ืช ื˜ื›ื ื•ืœื•ื’ื™ื•ืช
01:17
give us a sense of where things are going at the large form.
22
77051
3609
ื ื•ืชื ื•ืช ืœื ื• ืžื•ืฉื’ ืœื’ื‘ื™ ื”ื›ื™ื•ื•ืŸ ื”ื›ืœืœื™ ืฉืœ ื”ื“ื‘ืจื™ื.
01:21
So in a large sense,
23
81149
1401
ืื– ื‘ืžื•ื‘ืŸ ื”ืจื—ื‘,
01:22
I would say that telephones were inevitable,
24
82574
3361
ื”ื™ื™ืชื™ ืื•ืžืจ ืฉื˜ืœืคื•ื ื™ื ื”ื™ื• ื“ื‘ืจ ื‘ืœืชื™-ื ืžื ืข,
01:27
but the iPhone was not.
25
87005
1342
ืื‘ืœ ืœื ื›ืŸ ื”"ืื™ื™ืคื•ืŸ".
01:29
The Internet was inevitable,
26
89094
1478
ื”ืื™ื ื˜ืจื ื˜ ื”ื™ื” ื‘ืœืชื™-ื ืžื ืข,
01:31
but Twitter was not.
27
91274
1286
ืื‘ืœ ืœื ื›ืš "ื˜ื•ื•ื™ื˜ืจ".
01:33
So we have many ongoing tendencies right now,
28
93036
3928
ืื– ื™ืฉ ืœื ื• ื›ื™ื•ื ื ื˜ื™ื•ืช ืจื‘ื•ืช ื‘ืขื™ืฆื•ืžืŸ,
01:36
and I think one of the chief among them
29
96988
2720
ื•ืœื“ืขืชื™, ืื—ืช ื”ืขื™ืงืจื™ื•ืช ืฉื‘ื”ืŸ
01:39
is this tendency to make things smarter and smarter.
30
99732
3722
ื”ื™ื ื”ื ื˜ื™ื” ืœืขืฉื•ืช ืืช ื”ื“ื‘ืจื™ื ื—ื›ืžื™ื ื™ื•ืชืจ ื•ื™ื•ืชืจ.
01:44
I call it cognifying -- cognification --
31
104041
2212
ืื ื™ ืžื›ื ื” ื–ืืช "ื™ืฆื™ืจืช ืชื•ื“ืขื”",
01:46
also known as artificial intelligence, or AI.
32
106783
2782
ื•ื–ื” ืžื•ื›ืจ ื’ื ื›ืชื‘ื•ื ื” ืžืœืื›ื•ืชื™ืช.
01:50
And I think that's going to be one of the most influential developments
33
110025
3746
ื•ืœื“ืขืชื™ ื–ืืช ืขืชื™ื“ื” ืœื”ื™ื•ืช ืื—ืช ื”ื”ืชืคืชื—ื•ื™ื•ืช ื”ื›ื™ ืžืฉืคื™ืขื•ืช,
01:53
and trends and directions and drives in our society in the next 20 years.
34
113795
5575
ืื—ื“ ื”ื˜ืจื ื“ื™ื, ื”ื›ื™ื•ื•ื ื™ื ื•ื”ืžื ื™ืขื™ื ื”ื›ื™ ืžืฉืคื™ืขื™ื ื‘ื—ื‘ืจื” ืฉืœื ื• ื‘-20 ื”ืฉื ื” ื”ื‘ืื•ืช.
02:00
So, of course, it's already here.
35
120021
1985
ื•ื›ืžื•ื‘ืŸ, ื–ื” ื›ื‘ืจ ื›ืืŸ.
02:02
We already have AI,
36
122030
2204
ื›ื‘ืจ ื™ืฉ ืœื ื• ืชื‘ื•ื ื” ืžืœืื›ื•ืชื™ืช,
02:04
and often it works in the background,
37
124258
2398
ื•ืœืขืชื™ื ืงืจื•ื‘ื•ืช ื”ื™ื ืคื•ืขืœืช ื‘ืจืงืข,
02:06
in the back offices of hospitals,
38
126680
1586
ื‘ืžืฉืจื“ื™ื ื”ืื—ื•ืจื™ื™ื ื‘ื‘ืชื™ ื”ื—ื•ืœื™ื,
02:08
where it's used to diagnose X-rays better than a human doctor.
39
128290
4686
ืฉื ื”ื™ื ืžืฉืžืฉืช ืœืื‘ื—ื•ืŸ ืฆื™ืœื•ืžื™ ืจื ื˜ื’ืŸ ื˜ื•ื‘ ื‘ื”ืจื‘ื” ืžื”ืจื•ืคื ื”ืื ื•ืฉื™.
02:13
It's in legal offices,
40
133000
1726
ื”ื™ื ืงื™ื™ืžืช ื‘ืชื—ื•ื ื”ื—ื•ืง,
02:14
where it's used to go through legal evidence
41
134750
2368
ื•ืžืฉืžืฉืช ืœืขื‘ื•ืจ ืขืœ ืจืื™ื•ืช ืžืฉืคื˜ื™ื•ืช
02:17
better than a human paralawyer.
42
137142
1855
ื˜ื•ื‘ ื™ื•ืชืจ ืžื”ืขื•ื–ืจ ื”ืžืฉืคื˜ื™ ื”ืื ื•ืฉื™.
02:19
It's used to fly the plane that you came here with.
43
139506
3656
ื”ื™ื ืฉื™ืžืฉื” ืœื”ื˜ืกืช ื”ืžื˜ื•ืก ืฉื”ื‘ื™ื ืืชื›ื ืœื›ืืŸ.
02:24
Human pilots only flew it seven to eight minutes,
44
144165
2381
ื”ื˜ื™ื™ืกื™ื ื”ืื ื•ืฉื™ื™ื ื”ื˜ื™ืกื• ืื•ืชื• ื‘ืžืฉืš 7-8 ื“ืงื•ืช ื‘ืœื‘ื“,
02:26
the rest of the time the AI was driving.
45
146570
1953
ื‘ื™ืชืจ ื”ื–ืžืŸ ืื—ื–ื” ื‘ื”ื’ืื™ื ื”ืชื‘ื•ื ื” ื”ืžืœืื›ื•ืชื™ืช.
02:28
And of course, in Netflix and Amazon,
46
148547
2173
ื•ื›ืžื•ื‘ืŸ, ื’ื ื‘"ื ื˜ืคืœื™ืงืก" ื•ื‘"ืืžื–ื•ืŸ",
02:30
it's in the background, making those recommendations.
47
150744
2530
ื”ื™ื ื ืžืฆืืช ื‘ืจืงืข, ื•ืžืกืคืงืช ืœื›ื ื”ืžืœืฆื•ืช.
ื–ื” ืžื” ืฉื™ืฉ ืœื ื• ื”ื™ื•ื.
02:33
That's what we have today.
48
153298
1261
02:34
And we have an example, of course, in a more front-facing aspect of it,
49
154583
4801
ื•ื™ืฉ ืœื ื• ื›ืžื•ื‘ืŸ ื“ื•ื’ืžื” ื’ื ืžื”ื™ื‘ื˜ ืžื•ื›ืจ ื™ื•ืชืจ ืฉืœื”,
02:39
with the win of the AlphaGo, who beat the world's greatest Go champion.
50
159408
6629
ื‘ื ืฆื—ื•ืŸ ืฉืœ "ืืœืคื-ื’ื•", ืฉื–ื›ื” ื‘ืืœื™ืคื•ืช ื”ื’ื• ื”ื’ื“ื•ืœื” ื‘ืขื•ืœื.
02:46
But it's more than that.
51
166478
4053
ืื‘ืœ ืžื“ื•ื‘ืจ ื‘ื™ื•ืชืจ ืžื›ืš.
02:50
If you play a video game, you're playing against an AI.
52
170555
2642
ื›ืฉืืชื ืžืฉื—ืงื™ื ื‘ืžืฉื—ืง ืžื—ืฉื‘ ืืชื ืžืฉื—ืงื™ื ื ื’ื“ ืชื‘ื•ื ื” ืžืœืื›ื•ืชื™ืช.
ืืš ืœืื—ืจื•ื ื”, "ื’ื•ื’ืœ" ืœื™ืžื“ื” ืืช ื”ืชื‘ื•ื ื” ื”ืžืœืื›ื•ืชื™ืช ืฉืœื”
02:53
But recently, Google taught their AI
53
173221
4538
02:57
to actually learn how to play video games.
54
177783
2412
ืœืœืžื•ื“ ืœืฉื—ืง ืžืฉื—ืงื™ ืžื—ืฉื‘.
03:00
Again, teaching video games was already done,
55
180686
2709
ืฉื•ื‘, ื”ื•ืจืืช ืžืฉื—ืงื™ ื”ืžื—ืฉื‘ ื›ื‘ืจ ื‘ื•ืฆืขื” ื‘ืขื‘ืจ,
03:03
but learning how to play a video game is another step.
56
183419
3897
ืื‘ืœ ืœืœืžื•ื“ ืœืฉื—ืง ืžืฉื—ืงื™ ืžื—ืฉื‘ ื”ื™ื ืขืœื™ื™ืช ืžื“ืจื’ื”.
03:07
That's artificial smartness.
57
187340
1678
ื–ืืช ื”ื—ื•ื›ืžื” ื”ืžืœืื›ื•ืชื™ืช.
03:10
What we're doing is taking this artificial smartness
58
190571
4522
ืื ื• ื‘ืขืฆื ืœื•ืงื—ื™ื ืืช ื”ื—ื•ื›ืžื” ื”ืžืœืื›ื•ืชื™ืช
03:15
and we're making it smarter and smarter.
59
195117
2423
ื•ืขื•ืฉื™ื ืื•ืชื” ื—ื›ืžื” ื™ื•ืชืจ ื•ื™ื•ืชืจ.
03:18
There are three aspects to this general trend
60
198710
3895
ื•ื™ืฉ ืฉืœื•ืฉื” ื”ื™ื‘ื˜ื™ื ืœืžื’ืžื” ื”ื›ืœืœื™ืช ื”ื–ืืช
03:22
that I think are underappreciated;
61
202629
1689
ืฉืœื“ืขืชื™ ื–ื•ื›ื™ื ืœืžืขื˜ ืžื“ื™ ื”ืขืจื›ื”.
03:24
I think we would understand AI a lot better
62
204342
2277
ื•ืœื“ืขืชื™ ื ื‘ื™ืŸ ื˜ื•ื‘ ื™ื•ืชืจ ืืช ื”ืชื‘ื•ื ื” ื”ืžืœืื›ื•ืชื™ืช
03:26
if we understood these three things.
63
206643
2301
ืื ื ื‘ื™ืŸ ืืช ืฉืœื•ืฉืช ื”ื“ื‘ืจื™ื ื”ืืœื”.
03:28
I think these things also would help us embrace AI,
64
208968
3283
ืœื“ืขืชื™ ื”ื ื’ื ื™ืขื–ืจื• ืœื ื• ืœืืžืฅ ืืช ื”ืชื‘ื•ื ื” ื”ืžืœืื›ื•ืชื™ืช,
03:32
because it's only by embracing it that we actually can steer it.
65
212275
3008
ื›ื™ ืจืง ืื ื ืืžืฅ ืื•ืชื” ื ื•ื›ืœ ืœื›ื•ื•ืŸ ืืช ืžื”ืœื›ื™ื”.
03:35
We can actually steer the specifics by embracing the larger trend.
66
215887
3157
ืื ื• ื™ื›ื•ืœื™ื ืœื›ื•ื•ืŸ ืืช ื”ืคืจื˜ื™ื ืข"ื™ ืื™ืžื•ืฅ ื”ืžื’ืžื” ื”ื›ืœืœื™ืช.
03:39
So let me talk about those three different aspects.
67
219467
2979
ื”ื‘ื” ื•ืื“ื‘ืจ ืขืœ ืฉืœื•ืฉืช ื”ื”ื™ื‘ื˜ื™ื ื”ืืœื”.
03:42
The first one is: our own intelligence has a very poor understanding
68
222470
3673
ื”ืจืืฉื•ืŸ ื”ื•ื: ืœืชื‘ื•ื ื” ืฉืœื ื• ื™ืฉ ื”ื‘ื ื” ืขืœื•ื‘ื” ื‘ื™ื•ืชืจ
03:46
of what intelligence is.
69
226167
1490
ื‘ืืฉืจ ืœืžื”ื•ืชื” ืฉืœ ื”ืชื‘ื•ื ื”.
03:48
We tend to think of intelligence as a single dimension,
70
228110
3653
ืื ื• ื ื•ื˜ื™ื ืœืจืื•ืช ื‘ืชื‘ื•ื ื” ืžื™ืžื“ ืื—ื“ ื•ื™ื—ื™ื“,
03:51
that it's kind of like a note that gets louder and louder.
71
231787
2750
ืฉื”ื™ื ื›ืžื• ืชื• ืฉืขื•ืฆืžืชื• ื”ื•ืœื›ืช ื•ื’ื•ื‘ืจืช.
03:54
It starts like with IQ measurement.
72
234561
2607
ื›ืžื• ื‘ืžื“ื™ื“ืช ืžื ืช ืžืฉื›ืœ.
03:57
It starts with maybe a simple low IQ in a rat or mouse,
73
237192
4092
ืฉื–ื” ืžืชื—ื™ืœ ืžืžื ืช ืžืฉื›ืœ ื ืžื•ื›ื” ืฉืœ ื—ื•ืœื“ื” ืื• ืขื›ื‘ืจ,
04:01
and maybe there's more in a chimpanzee,
74
241308
2134
ื•ืื– ืงืฆืช ื™ื•ืชืจ, ื›ืžื• ืฉืœ ืฉื™ืžืคื ื–ื”,
04:03
and then maybe there's more in a stupid person,
75
243887
2191
ื•ืื– ืขื•ื“ ื™ื•ืชืจ, ื›ืžื• ืืฆืœ ืื“ื ื˜ื™ืคืฉ,
04:06
and then maybe an average person like myself,
76
246102
2096
ื•ืื– ื›ืžื• ืืฆืœ ืื“ื ืžืžื•ืฆืข, ื›ืžื•ื ื™,
ื•ืื—ืจ ื›ืžื• ืืฆืœ ื’ืื•ืŸ.
04:08
and then maybe a genius.
77
248222
1290
04:09
And this single IQ intelligence is getting greater and greater.
78
249536
4433
ื•ืฉืชื‘ื•ื ื” ื–ื• ืฉืœ ืžื ืช ื”ืžืฉื›ืœ ื”ื•ืœื›ืช ื•ื’ื“ืœื”.
04:14
That's completely wrong.
79
254516
1151
ื–ื” ืžื•ื˜ืขื” ืœื—ืœื•ื˜ื™ืŸ.
04:15
That's not what intelligence is -- not what human intelligence is, anyway.
80
255691
3608
ืœื ื›ื–ื• ื”ื™ื ื”ืชื‘ื•ื ื”, ื‘ื›ืœ ืื•ืคืŸ, ืœื ื”ืชื‘ื•ื ื” ื”ืื ื•ืฉื™ืช.
04:19
It's much more like a symphony of different notes,
81
259673
4506
ื–ื” ื“ื•ืžื” ื™ื•ืชืจ ืœืกื™ืžืคื•ื ื™ื” ืฉืœ ืชื•ื•ื™ื ืฉื•ื ื™ื,
04:24
and each of these notes is played on a different instrument of cognition.
82
264203
3609
ืฉื›ืœ ืื—ื“ ืžืชื•ื•ื™ื ืืœื” ืžื ื•ื’ืŸ ืข"ื™ ื›ืœื™ ืฉื•ื ื” ืฉืœ ื”ื”ื›ืจื”.
04:27
There are many types of intelligences in our own minds.
83
267836
3701
ื›ืš ืฉื™ืฉ ืกื•ื’ื™ ืชื‘ื•ื ื•ืช ืจื‘ื™ื ื‘ืžื•ื—ื•ืชื™ื ื•.
04:31
We have deductive reasoning,
84
271561
3048
ื™ืฉ ืœื ื• ื™ื›ื•ืœืช ื”ื™ืงืฉ ืžื”ื›ืœืœ ืืœ ื”ืคืจื˜,
04:34
we have emotional intelligence,
85
274633
2221
ื™ืฉ ืœื ื• ืชื‘ื•ื ื” ืจื’ืฉื™ืช,
04:36
we have spatial intelligence;
86
276878
1393
ื™ืฉ ืœื ื• ืชื‘ื•ื ื” ืžืจื—ื‘ื™ืช,
04:38
we have maybe 100 different types that are all grouped together,
87
278295
4021
ื™ืฉ ืœื ื• ื›-100 ืกื•ื’ื™ื ืžืงื•ื‘ืฆื™ื ื™ื—ื“,
04:42
and they vary in different strengths with different people.
88
282340
3905
ื•ื”ื ื ืžืฆืื™ื ื‘ืจืžื•ืช ืฉื•ื ื•ืช ืืฆืœ ืื ืฉื™ื ืฉื•ื ื™ื.
04:46
And of course, if we go to animals, they also have another basket --
89
286269
4526
ื•ื›ืžื•ื‘ืŸ, ืื ื ืกืชื›ืœ ืขืœ ื—ื™ื•ืช, ื’ื ืืฆืœืŸ ื™ืฉ ืื•ืกืฃ, ืื•ืกืฃ ืฉื•ื ื” โ€“
04:50
another symphony of different kinds of intelligences,
90
290819
2541
ืกื™ืžืคื•ื ื™ื” ืื—ืจืช ืฉืœ ืกื•ื’ื™ ืชื‘ื•ื ื” ืฉื•ื ื™ื,
04:53
and sometimes those same instruments are the same that we have.
91
293384
3566
ื•ืœืคืขืžื™ื ืืœื• ืื•ืชื ื”ื›ืœื™ื ื›ืžื• ืืฆืœื ื•.
04:56
They can think in the same way, but they may have a different arrangement,
92
296974
3561
ื”ืŸ ืžืกื•ื’ืœื•ืช ืœื—ืฉื•ื‘ ื›ืžื•ื ื•, ืื‘ืœ ื”ืกื™ื“ื•ืจ ืืฆืœืŸ ืฉื•ื ื”,
ื•ื‘ื“ื‘ืจื™ื ืžืกื•ื™ืžื™ื ื”ืŸ ืื•ืœื™ ื˜ื•ื‘ื•ืช ื™ื•ืชืจ ืžืืฉืจ ื‘ื ื™ ื”ืื“ื,
05:00
and maybe they're higher in some cases than humans,
93
300559
2467
05:03
like long-term memory in a squirrel is actually phenomenal,
94
303050
2837
ื›ืžื• ื”ื–ื›ืจื•ืŸ ืืจื•ืš ื”ื˜ื•ื•ื— ื”ืžื•ืคืœื ืฉืœ ื”ืกื ืื™,
05:05
so it can remember where it buried its nuts.
95
305911
2287
ืฉืžืืคืฉืจ ืœื• ืœื–ื›ื•ืจ ื”ื™ื›ืŸ ื”ื˜ืžื™ืŸ ืืช ื”ืื’ื•ื–ื™ื ืฉืœื•.
05:08
But in other cases they may be lower.
96
308222
1987
ืืš ื‘ืžืงืจื™ื ืื—ืจื™ื ื”ืŸ ื ื—ื•ืชื•ืช ื™ื•ืชืจ.
05:10
When we go to make machines,
97
310233
2730
ื•ื›ืฉืื ื• ืžื‘ืงืฉื™ื ืœื™ื™ืฆืจ ืžื›ื•ื ื•ืช
05:12
we're going to engineer them in the same way,
98
312987
2196
ื ืชื›ื ืŸ ืื•ืชืŸ ื‘ืื•ืชื• ื”ืื•ืคืŸ,
05:15
where we'll make some of those types of smartness much greater than ours,
99
315207
5010
ื›ืœื•ืžืจ, ื ืขืฉื” ืกื•ื’ื™ื ืžืกื•ื™ืžื™ื ื—ื›ืžื™ื ื‘ื”ืจื‘ื” ืžืื™ืชื ื•,
05:20
and many of them won't be anywhere near ours,
100
320241
2571
ื•ืื™ืœื• ืจื‘ื™ื ืื—ืจื™ื ืืคื™ืœื• ืœื ื™ืชืงืจื‘ื• ืœื™ื›ื•ืœืช ืฉืœื ื•,
05:22
because they're not needed.
101
322836
1544
ื›ื™ ื–ื” ืœื ื™ื”ื™ื” ื ื—ื•ืฅ.
05:24
So we're going to take these things,
102
324404
2203
ืื– ืื ื• ื ื™ืงื— ืืช ื”ื“ื‘ืจื™ื ื”ืืœื”,
05:26
these artificial clusters,
103
326631
2081
ืืช ื”ืฆื‘ื™ืจื™ื ื”ืžืœืื›ื•ืชื™ื™ื ื”ืœืœื•,
05:28
and we'll be adding more varieties of artificial cognition to our AIs.
104
328736
5362
ื•ื ื•ืกื™ืฃ ืขื•ื“ ืกื•ื’ื™ื ืฉืœ ื”ื›ืจื” ืžืœืื›ื•ืชื™ืช ืœืžื•ืฆืจื™ ื”ืชื‘ื•ื ื” ื”ืžืœืื›ื•ืชื™ืช ืฉืœื ื•.
05:34
We're going to make them very, very specific.
105
334507
4071
ื ืขืฉื” ืื•ืชื ื™ื™ื—ื•ื“ื™ื™ื ืžืื“.
05:38
So your calculator is smarter than you are in arithmetic already;
106
338602
6542
ืœืžืฉืœ, ื›ื‘ืจ ืขื›ืฉื™ื•, ื”ืžื—ืฉื‘ื•ืŸ ืฉืœื›ื ื—ื›ื ื™ื•ืชืจ ืžื›ื ื‘ื—ืฉื‘ื•ืŸ,
05:45
your GPS is smarter than you are in spatial navigation;
107
345168
3697
ื”ืื™ื›ื•ืŸ ื”ืœื•ื•ื™ื™ื ื™ ื—ื›ื ืžื›ื ื‘ื ื™ื•ื•ื˜ ืžืจื—ื‘ื™,
05:49
Google, Bing, are smarter than you are in long-term memory.
108
349337
4258
"ื’ื•ื’ืœ" ื•"ื‘ื™ื ื’" ื—ื›ืžื™ื ืžื›ื ื‘ื–ื›ืจื•ืŸ ืืจื•ืš-ื˜ื•ื•ื—.
05:54
And we're going to take, again, these kinds of different types of thinking
109
354339
4530
ื•ืื– ื ื™ืงื—, ืฉื•ื‘, ืืช ืกื•ื’ื™ ื”ื—ืฉื™ื‘ื” ื”ืืœื”
05:58
and we'll put them into, like, a car.
110
358893
1933
ื•ื ื›ื ื™ืก ืื•ืชื ืœืžื›ื•ื ื™ืช, ืœืžืฉืœ.
06:00
The reason why we want to put them in a car so the car drives,
111
360850
3057
ื”ืกื™ื‘ื” ืœื›ืš ืฉื ืจืฆื” ืœื”ื›ื ื™ืก ืื•ืชื ืœืžื›ื•ื ื™ืช
06:03
is because it's not driving like a human.
112
363931
2302
ื”ื™ื ืžืฉื•ื ืฉื”ืžื›ื•ื ื™ืช ืื™ื ื” ื ื•ื”ื’ืช ื›ืžื• ื‘ืŸ-ืื“ื.
06:06
It's not thinking like us.
113
366257
1396
ื”ื™ื ืœื ื—ื•ืฉื‘ืช ื›ืžื•ื ื•.
06:07
That's the whole feature of it.
114
367677
1920
ื–ื• ื”ืžื”ื•ืช ืฉืœื”.
06:09
It's not being distracted,
115
369621
1535
ื“ืขืชื” ืื™ื ื ื” ืžื•ืกื—ืช,
06:11
it's not worrying about whether it left the stove on,
116
371180
2754
ื”ื™ื ืœื ื“ื•ืื’ืช ืฉืžื ื”ืฉืื™ืจื” ืืช ื”ืชื ื•ืจ ื“ื•ืœืง,
06:13
or whether it should have majored in finance.
117
373958
2138
ืื• ืื ื”ื™ื” ืœื” ื›ื“ืื™ ืœืขืฉื•ืช ืชื•ืืจ ื‘ืคื™ื ื ืกื™ื.
06:16
It's just driving.
118
376120
1153
ื”ื•ื ืจืง ื ื•ื”ื’ืช.
06:17
(Laughter)
119
377297
1142
(ืฆื—ื•ืง)
06:18
Just driving, OK?
120
378463
1841
ืจืง ื ื•ื”ื’ืช, ื›ืŸ?
06:20
And we actually might even come to advertise these
121
380328
2937
ื•ืื•ืœื™ ืืคื™ืœื• ื ืคืจืกื ืืช ื”ืžื›ื•ื ื™ื•ืช ื”ืืœื”
06:23
as "consciousness-free."
122
383289
1545
ื›"ื ื˜ื•ืœื•ืช ืžื•ื“ืขื•ืช".
06:24
They're without consciousness,
123
384858
1774
ืื™ืŸ ืœื”ืŸ ืžื•ื“ืขื•ืช,
06:26
they're not concerned about those things,
124
386656
2104
ื”ืŸ ืœื ืžื•ื˜ืจื“ื•ืช ืžื”ื“ื‘ืจื™ื ื”ืืœื”,
06:28
they're not distracted.
125
388784
1156
ื“ืขืชืŸ ืื™ื ื” ืžื•ืกื—ืช.
06:29
So in general, what we're trying to do
126
389964
2966
ืื– ื‘ืื•ืคืŸ ื›ืœืœื™, ืžื” ืฉืื ื• ืžื ืกื™ื ืœืขืฉื•ืช
06:32
is make as many different types of thinking as we can.
127
392954
4500
ื”ื•ื ืœื™ื™ืฆืจ ื›ืžื” ืฉื™ื•ืชืจ ืกื•ื’ื™ ื—ืฉื™ื‘ื”.
06:37
We're going to populate the space
128
397804
2083
ืื ื• ืขืชื™ื“ื™ื ืœืื›ืœืก ืืช ื”ืžืจื—ื‘
06:39
of all the different possible types, or species, of thinking.
129
399911
4159
ื‘ื›ืœ ืกื•ื’ื™ ืื• ืžื™ื ื™ ื”ื—ืฉื™ื‘ื” ื”ืืคืฉืจื™ื™ื.
06:44
And there actually may be some problems
130
404094
2068
ื•ื™ื™ืชื›ื ื• ื‘ืขื™ื•ืช ืžืกื•ื™ืžื•ืช
06:46
that are so difficult in business and science
131
406186
2800
ื‘ืขื™ื•ืช ืงืฉื•ืช ื‘ืžื™ื•ื—ื“ ื‘ืขืกืงื™ื ื•ื‘ืžื“ืข
06:49
that our own type of human thinking may not be able to solve them alone.
132
409010
4042
ืฉืกื•ื’ื™ ื”ื—ืฉื™ื‘ื” ื”ืื ื•ืฉื™ืช ืฉืœื ื• ืœื ื™ื•ื›ืœื• ืœืคืชื•ืจ ืื•ืชืŸ ื‘ืขืฆืžื.
06:53
We may need a two-step program,
133
413076
1992
ืื•ืœื™ ื ื–ื“ืงืง ืœืชื›ื ื™ืช ื“ื•-ืฉืœื‘ื™ืช,
06:55
which is to invent new kinds of thinking
134
415092
4203
ื›ืœื•ืžืจ, ืœื”ืžืฆื™ื ืกื•ื’ื™ ื—ืฉื™ื‘ื” ื—ื“ืฉื™ื
06:59
that we can work alongside of to solve these really large problems,
135
419692
3734
ืฉื ื•ื›ืœ ืœืขื‘ื•ื“ ืขื™ืžืŸ ื›ื“ื™ ืœืคืชื•ืจ ืืช ื”ื‘ืขื™ื•ืช ื”ื’ื“ื•ืœื•ืช ื”ืืœื”,
07:03
say, like dark energy or quantum gravity.
136
423450
2918
ืœืžืฉืœ, ื”ืื ืจื’ื™ื” ื”ืืคืœื” ืื• ื›ื‘ื™ื“ื” ืงื•ื•ื ื˜ื™ืช.
07:08
What we're doing is making alien intelligences.
137
428496
2646
ืื– ืื ื• ื‘ืขืฆื ื™ื•ืฆืจื™ื ืชื‘ื•ื ื•ืช ื—ื™ื™ื–ืจื™ื•ืช.
07:11
You might even think of this as, sort of, artificial aliens
138
431166
4069
ืืคืฉืจ ืœืจืื•ืช ื‘ื”ืŸ ืžืขื™ืŸ ื—ื™ื™ื–ืจื™ื ืžืœืื›ื•ืชื™ื™ื,
07:15
in some senses.
139
435259
1207
ื‘ืžื•ื‘ื ื™ื ืžืกื•ื™ืžื™ื.
07:16
And they're going to help us think different,
140
436490
2300
ืฉื™ืขื–ืจื• ืœื ื• ืœื—ืฉื•ื‘ ืื—ืจืช,
07:18
because thinking different is the engine of creation
141
438814
3632
ื›ื™ ื”ื—ืฉื™ื‘ื” ื”ืฉื•ื ื” ื”ื™ื ืžืงื•ืจ ื”ื™ืฆื™ืจื”,
07:22
and wealth and new economy.
142
442470
1867
ื”ืขื•ืฉืจ ื•ื”ื›ืœื›ืœื” ื”ื—ื“ืฉื”.
07:25
The second aspect of this is that we are going to use AI
143
445835
4923
ื”ื”ื™ื‘ื˜ ื”ืฉื ื™ ืฉืœ ื–ื” ื”ื•ื ืฉื ืฉืชืžืฉ ื‘ืชื‘ื•ื ื” ื”ืžืœืื›ื•ืชื™ืช
07:30
to basically make a second Industrial Revolution.
144
450782
2950
ืœื™ืฆื™ืจืช ืžื”ืคื›ื” ืชืขืฉื™ื™ืชื™ืช ืฉื ื™ื”.
07:34
The first Industrial Revolution was based on the fact
145
454135
2773
ื”ืžื”ืคื›ื” ื”ืชืขืฉื™ื™ืชื™ืช ื”ืจืืฉื•ื ื” ื”ืชื‘ืกืกื” ืขืœ ื”ืขื•ื‘ื“ื”
07:36
that we invented something I would call artificial power.
146
456932
3462
ืฉื”ืžืฆืื ื• ืžืฉื”ื• ืฉื”ื™ื™ืชื™ ืžื›ื ื” "ื›ื•ื— ืžืœืื›ื•ืชื™".
07:40
Previous to that,
147
460879
1150
ืขื“ ืื–,
07:42
during the Agricultural Revolution,
148
462053
2034
ื‘ื–ืžืŸ ื”ืžื”ืคื›ื” ื”ื—ืงืœืื™ืช,
07:44
everything that was made had to be made with human muscle
149
464111
3702
ื”ื›ืœ ื”ื™ื” ืฆืจื™ืš ืœื”ื™ืขืฉื•ืช ื‘ื›ื•ื— ื”ืฉืจื™ืจ ื”ืื ื•ืฉื™
07:47
or animal power.
150
467837
1307
ืื• ื‘ื›ื•ื— ืฉืจื™ืจื™ ื”ื—ื™ื”.
07:49
That was the only way to get anything done.
151
469565
2063
ื–ืืช ื”ื™ืชื” ื”ื“ืจืš ื”ื™ื—ื™ื“ื” ืœื‘ืฆืข ืžืฉื”ื•.
07:51
The great innovation during the Industrial Revolution was,
152
471652
2945
ื•ื”ื”ืžืฆืื” ื”ื’ื“ื•ืœื” ื‘ื™ื•ืชืจ ื‘ืžื”ืคื›ื” ื”ืชืขืฉื™ื™ืชื™ืช
07:54
we harnessed steam power, fossil fuels,
153
474621
3109
ื”ื™ืชื” ื›ืฉืจืชืžื ื• ืืช ื›ื•ื— ื”ืงื™ื˜ื•ืจ, ืืช ื“ืœืงื™ ื”ืžืื•ื‘ื ื™ื,
07:57
to make this artificial power that we could use
154
477754
3856
ื›ื“ื™ ืœื™ื™ืฆืจ ืืช ื”ื›ื•ื— ื”ืžืœืื›ื•ืชื™ ืฉื‘ื• ื™ื›ื•ืœื ื• ืœื”ืฉืชืžืฉ
08:01
to do anything we wanted to do.
155
481634
1669
ื›ื“ื™ ืœื‘ืฆืข ืืช ื›ืœ ืžื” ืฉืจืฆื™ื ื•.
08:03
So today when you drive down the highway,
156
483327
2772
ืื– ื”ื™ื•ื, ื›ืฉืืชื ื ื•ืกืขื™ื ื‘ื›ื‘ื™ืฉ,
08:06
you are, with a flick of the switch, commanding 250 horses --
157
486571
4525
ื‘ื”ืกื˜ืช ืžืชื’ ืืชื ืžื’ื™ื™ืกื™ื 250 ืกื•ืกื™ื,
08:11
250 horsepower --
158
491120
1572
250 ื›ื•ื—ื•ืช ืกื•ืก โ€“
08:12
which we can use to build skyscrapers, to build cities, to build roads,
159
492716
4692
ืฉื‘ืขื–ืจืชื ืืคืฉืจ ืœื‘ื ื•ืช ื’ื•ืจื“ื™ ืฉื—ืงื™ื, ืขืจื™ื, ื“ืจื›ื™ื,
08:17
to make factories that would churn out lines of chairs or refrigerators
160
497432
5789
ืžืคืขืœื™ื ืขื ืงื•ื•ื™ ื™ื™ืฆื•ืจ ืจื•ืขืฉื™ื ืฉืœ ื›ืกืื•ืช ืื• ืžืงืจืจื™ื,
08:23
way beyond our own power.
161
503245
1654
ื”ืจื‘ื” ืžืขื‘ืจ ืœื›ื•ื—ื•ืชื™ื ื• ืื ื•.
08:24
And that artificial power can also be distributed on wires on a grid
162
504923
6111
ื•ืืช ื”ื›ื•ื— ื”ืžืœืื›ื•ืชื™ ื”ื–ื” ืืคืฉืจ ื’ื ืœื”ืคื™ืฅ ื‘ื›ื‘ืœื™ื ื•ื‘ืจืฉืช
08:31
to every home, factory, farmstead,
163
511058
3199
ืœื›ืœ ื‘ื™ืช, ืžืคืขืœ, ืžืฉืง,
08:34
and anybody could buy that artificial power,
164
514281
4191
ื•ื›ื•ืœื ื™ื›ื•ืœื™ื ืœืงื ื•ืช ืืช ื”ื›ื•ื— ื”ืžืœืื›ื•ืชื™ ื”ื–ื”,
08:38
just by plugging something in.
165
518496
1472
ื‘ืชื—ื™ื‘ื” ืคืฉื•ื˜ื” ืฉืœ ืชืงืข ืœืฉืงืข.
08:39
So this was a source of innovation as well,
166
519992
2439
ืื– ื’ื ื–ื” ื”ื™ื” ืžืงื•ืจ ืฉืœ ื—ื“ืฉื ื•ืช,
08:42
because a farmer could take a manual hand pump,
167
522455
3418
ื›ื™ ื”ื—ืงืœืื™ ื™ื›ื•ืœ ื”ื™ื” ืœืงื—ืช ืžืฉืื‘ื” ื™ื“ื ื™ืช,
08:45
and they could add this artificial power, this electricity,
168
525897
2916
ื•ืœื—ื‘ืจ ืืœื™ื” ืืช ื”ื›ื•ื— ื”ืžืœืื›ื•ืชื™, ืืช ื”ื—ืฉืžืœ ื”ื–ื”,
08:48
and he'd have an electric pump.
169
528837
1497
ื•ืœืงื‘ืœ ืžืฉืื‘ื” ื—ืฉืžืœื™ืช.
08:50
And you multiply that by thousands or tens of thousands of times,
170
530358
3318
ื•ืืช ื–ื” ืžื›ืคื™ืœื™ื ื‘ืืœืคื™ื ืื• ื‘ืขืฉืจื•ืช ืืœืคื™ื,
08:53
and that formula was what brought us the Industrial Revolution.
171
533700
3159
ื•ื–ืืช ื”ื ื•ืกื—ื” ืฉื ืชื ื” ืœื ื• ืืช ืžื”ืคื›ื” ื”ืชืขืฉื™ื™ืชื™ืช.
08:56
All the things that we see, all this progress that we now enjoy,
172
536883
3585
ื•ื›ืœ ืžื” ืฉืื ื• ืจื•ืื™ื, ื›ืœ ื”ืงื“ืžื” ืฉืžืžื ื” ืื ื• ื ื”ื ื™ื,
09:00
has come from the fact that we've done that.
173
540492
2063
ื ื•ื‘ืขืช ืžื›ืš ืฉืขืฉื™ื ื• ืืช ื–ื”.
09:02
We're going to do the same thing now with AI.
174
542579
2348
ื›ืขืช ื ื—ื–ื•ืจ ืขืœ ื›ืš ืขื ื”ืชื‘ื•ื ื” ื”ืžืœืื›ื•ืชื™ืช.
09:04
We're going to distribute that on a grid,
175
544951
2075
ื ืคื™ืฅ ืื•ืชื” ื‘ืจืฉืช ื—ืฉืžืœ,
09:07
and now you can take that electric pump.
176
547050
2374
ื•ืื– ืชื•ื›ืœื• ืœืงื—ืช ืืช ืื•ืชื” ืžืฉืื‘ื” ื—ืฉืžืœื™ืช,
09:09
You can add some artificial intelligence,
177
549448
2968
ืœืฆืจืฃ ืืœื™ื” ืงืฆืช ืชื‘ื•ื ื” ืžืœืื›ื•ืชื™ืช,
09:12
and now you have a smart pump.
178
552440
1481
ื•ืœืงื‘ืœ ืžืฉืื‘ื” ื—ื›ืžื”.
09:13
And that, multiplied by a million times,
179
553945
1928
ื•ื–ื”, ื›ืคื•ืœ ืžื™ืœื™ื•ืŸ,
09:15
is going to be this second Industrial Revolution.
180
555897
2363
ื™ื”ื•ื•ื” ืืช ื”ืžื”ืคื›ื” ื”ืชืขืฉื™ื™ืชื™ืช ื”ืฉื ื™ื”.
09:18
So now the car is going down the highway,
181
558284
2382
ืขื›ืฉื™ื• ืœืžื›ื•ื ื™ืช ืฉื ื•ืกืขืช ื‘ื›ื‘ื™ืฉ
09:20
it's 250 horsepower, but in addition, it's 250 minds.
182
560690
4294
ื™ืฉ 250 ื›ื•ื—ื•ืช ืกื•ืก, ื•ื‘ื ื•ืกืฃ, ื’ื 250 ืžื•ื—ื•ืช.
09:25
That's the auto-driven car.
183
565008
1769
ืžื“ื•ื‘ืจ ื‘ืžื›ื•ื ื™ืช ื”ื ื”ื™ื’ื” ื”ืขืฆืžื™ืช.
09:26
It's like a new commodity;
184
566801
1389
ื–ื” ื›ืžื• ืžื•ืฆืจ ื—ื“ืฉ.
09:28
it's a new utility.
185
568214
1303
ื–ืืช ืชืฉืชื™ืช ืฆื™ื‘ื•ืจื™ืช ื—ื“ืฉื”.
09:29
The AI is going to flow across the grid -- the cloud --
186
569541
3041
ื”ืชื‘ื•ื ื” ื”ืžืœืื›ื•ืชื™ืช ืชื–ืจื•ื ื‘ืจืฉืช, ื‘ืขื ืŸ,
09:32
in the same way electricity did.
187
572606
1567
ืžืžืฉ ื›ืžื• ื”ื—ืฉืžืœ.
09:34
So everything that we had electrified,
188
574197
2380
ื›ืœื•ืžืจ, ืœื›ืœ ืžื” ืฉื—ื™ื‘ืจื ื• ืœื—ืฉืžืœ,
09:36
we're now going to cognify.
189
576601
1723
ื ื™ืชืŸ ืžืขืชื” ื’ื ืžื•ื“ืขื•ืช.
09:38
And I would suggest, then,
190
578693
1385
ื•ืื ื™ ืžืฆื™ืข ืœื›ืŸ
09:40
that the formula for the next 10,000 start-ups
191
580102
3732
ืฉื”ื ื•ืกื—ื” ืฉื‘ื™ืกื•ื“ 10,000 ืžื™ื–ืžื™ ื”ื”ื–ื ืง ื”ื‘ืื™ื
09:43
is very, very simple,
192
583858
1162
ื•ื”ื™ื ืคืฉื•ื˜ื” ื‘ื™ื•ืชืจ:
09:45
which is to take x and add AI.
193
585044
3167
ืœืงื—ืช ืžืฉื”ื• ื•ืœื”ื•ืกื™ืฃ ืœื• ืชื‘ื•ื ื” ืžืœืื›ื•ืชื™ืช.
09:49
That is the formula, that's what we're going to be doing.
194
589100
2812
ื–ืืช ื”ื ื•ืกื—ื”. ื–ื” ืžื” ืฉืื ื• ืขืชื™ื“ื™ื ืœืขืฉื•ืช.
09:51
And that is the way in which we're going to make
195
591936
3306
ื•ื‘ื“ืจืš ื–ืืช ื ื™ืฆื•ืจ
09:55
this second Industrial Revolution.
196
595266
1858
ืืช ื”ืžื”ืคื›ื” ื”ืชืขืฉื™ื™ืชื™ืช ื”ืฉื ื™ื”.
09:57
And by the way -- right now, this minute,
197
597148
2154
ื•ืื’ื‘, ืžืžืฉ ืขื›ืฉื™ื•, ื‘ืจื’ืข ื–ื”,
09:59
you can log on to Google
198
599326
1169
ืืชื ื™ื›ื•ืœื™ื ืœื”ื™ื›ื ืก ืœ"ื’ื•ื’ืœ"
10:00
and you can purchase AI for six cents, 100 hits.
199
600519
3882
ื•ืœืจื›ื•ืฉ ืชื‘ื•ื ื” ืžืœืื›ื•ืชื™ืช: ืชืžื•ืจืช 6 ืกื ื˜ื™ื, ืœืงื‘ืœ 100 ืคื’ื™ืขื•ืช.
10:04
That's available right now.
200
604758
1604
ื–ื” ื–ืžื™ืŸ ืžืžืฉ ืขื›ืฉื™ื•.
10:06
So the third aspect of this
201
606386
2286
ื”ื”ื™ื‘ื˜ ื”ืฉืœื™ืฉื™ ืฉืœ ื–ื”
10:09
is that when we take this AI and embody it,
202
609315
2678
ื”ื•ื ื›ืฉื ื™ืงื— ืืช ื”ืชื‘ื•ื ื” ื”ืžืœืื›ื•ืชื™ืช ื•ื ื™ืชืŸ ืœื” ื’ื•ืฃ,
10:12
we get robots.
203
612017
1173
ื ืงื‘ืœ ืจื•ื‘ื•ื˜ื™ื.
10:13
And robots are going to be bots,
204
613214
1703
ื•ื”ืจื•ื‘ื•ื˜ื™ื ื™ื”ื™ื• ื‘ื•ื˜ื™ื,
10:14
they're going to be doing many of the tasks that we have already done.
205
614941
3328
ื”ื ื™ื‘ืฆืขื• ื”ืจื‘ื” ืžื”ืžื˜ืœื•ืช ืฉื›ื‘ืจ ื‘ื™ืฆืขื ื•.
10:20
A job is just a bunch of tasks,
206
620357
1528
ืขื‘ื•ื“ื” ื”ื™ื ืจืง ืื•ืกืฃ ืฉืœ ืžื˜ืœื•ืช,
10:21
so they're going to redefine our jobs
207
621909
1762
ืื– ื”ื ื™ื’ื“ื™ืจื• ืžื—ื“ืฉ ืืช ื”ืขื‘ื•ื“ื•ืช ืฉืœื ื•
10:23
because they're going to do some of those tasks.
208
623695
2259
ื›ื™ ื”ื ื™ื‘ืฆืขื• ื—ืœืง ืžื”ืžื˜ืœื•ืช ื”ืืœื”.
10:25
But they're also going to create whole new categories,
209
625978
3197
ืื‘ืœ ื”ื ื’ื ื™ื™ืฆืจื• ืงื˜ื’ื•ืจื™ื•ืช ื—ื“ืฉื•ืช ืœื’ืžืจื™,
10:29
a whole new slew of tasks
210
629199
2247
ื‘ืงืฉืช ื—ื“ืฉื” ืœื’ืžืจื™ ืฉืœ ืžื˜ืœื•ืช
10:31
that we didn't know we wanted to do before.
211
631470
2457
ืฉืงื•ื“ื ืœื›ืŸ ื‘ื›ืœืœ ืœื ื™ื“ืขื ื• ืฉืื ื• ืจื•ืฆื™ื ืœื‘ืฆืข.
10:33
They're going to actually engender new kinds of jobs,
212
633951
3637
ื”ื ื‘ืขืฆื ื™ื•ืœื™ื“ื• ืขื‘ื•ื“ื•ืช ืžืกื•ื’ื™ื ื—ื“ืฉื™ื,
10:37
new kinds of tasks that we want done,
213
637612
2271
ืกื•ื’ื™ ืžื˜ืœื•ืช ื—ื“ืฉื™ื ืฉื ืจืฆื” ืฉื™ื‘ื•ืฆืขื•.
10:39
just as automation made up a whole bunch of new things
214
639907
3405
ื‘ื“ื™ื•ืง ื›ืคื™ ืฉื”ืื•ื˜ื•ืžืฆื™ื” ื™ืฆืจื” ื”ืžื•ืŸ ื“ื‘ืจื™ื ื—ื“ืฉื™ื
10:43
that we didn't know we needed before,
215
643336
1834
ืฉืงื•ื“ื ืœื ื™ื“ืขื ื• ืฉื”ื ื ื—ื•ืฆื™ื ืœื ื•,
10:45
and now we can't live without them.
216
645194
1956
ื•ื›ืขืช ืื™ื ื ื• ื™ื›ื•ืœื™ื ืœื—ื™ื•ืช ื‘ืœืขื“ื™ื”ื.
10:47
So they're going to produce even more jobs than they take away,
217
647174
3956
ืื– ื”ื ื™ื™ืฆืจื• ืžืงื•ืžื•ืช ืขื‘ื•ื“ื” ื—ื“ืฉื™ื ื™ื•ืชืจ ืžืืœื” ืฉื™ื‘ื˜ืœื•,
10:51
but it's important that a lot of the tasks that we're going to give them
218
651154
3434
ืื‘ืœ ื—ืฉื•ื‘ ืฉื”ืจื‘ื” ืžื”ืžื˜ืœื•ืช ืฉื ื˜ื™ืœ ืขืœื™ื”ื
10:54
are tasks that can be defined in terms of efficiency or productivity.
219
654612
4572
ืชื”ื™ื™ื ื” ื›ืืœื” ืฉื ื™ืชืŸ ืœื”ื’ื“ื™ืจ ื‘ืžื•ื ื—ื™ ื™ืขื™ืœื•ืช ืื• ืคืจื™ื•ืŸ.
10:59
If you can specify a task,
220
659676
1828
ืื ืืคืฉืจ ืœื”ื’ื“ื™ืจ ืžื˜ืœื”,
11:01
either manual or conceptual,
221
661528
2235
ื™ื“ื ื™ืช ืื• ืชืคื™ืฉืชื™ืช,
11:03
that can be specified in terms of efficiency or productivity,
222
663787
4780
ื•ืืคืฉืจ ื’ื ืœื”ื’ื“ื™ืจ ืื•ืชื” ืžื‘ื—ื™ื ืช ื”ื™ืขื™ืœื•ืช ืื• ื”ืคืจื™ื•ืŸ ืฉืœื”.
11:08
that goes to the bots.
223
668591
1777
ื”ื™ื ืชื•ืขื‘ืจ ืœื‘ื•ื˜ื™ื.
11:10
Productivity is for robots.
224
670758
2178
ืคืจื™ื•ืŸ ื”ื•ื ืชื—ื•ื ืฉืžื™ื•ืขื“ ืœืจื•ื‘ื•ื˜ื™ื.
11:12
What we're really good at is basically wasting time.
225
672960
3070
ืื ื• ื˜ื•ื‘ื™ื ื‘ืขื™ืงืจ ื‘ื‘ื–ื‘ื•ื– ื–ืžืŸ.
11:16
(Laughter)
226
676054
1028
(ืฆื—ื•ืง)
11:17
We're really good at things that are inefficient.
227
677106
2316
ืื ื• ื˜ื•ื‘ื™ื ืžืื“ ื‘ื“ื‘ืจื™ื ื‘ืœืชื™-ื™ืขื™ืœื™ื.
11:19
Science is inherently inefficient.
228
679446
3025
ื”ืžื“ืข ืžื˜ื‘ืขื• ืื™ื ื ื• ื™ืขื™ืœ.
11:22
It runs on that fact that you have one failure after another.
229
682816
2906
ื”ื•ื ืžื‘ื•ืกืก ืขืœ ื›ืฉืœื•ื ื•ืช ื—ื•ื–ืจื™ื ื•ื ืฉื ื™ื.
11:25
It runs on the fact that you make tests and experiments that don't work,
230
685746
3424
ื”ื•ื ืžื‘ื•ืกืก ืขืœ ืžื‘ื“ืงื™ื ื•ื ื™ืกื•ื™ื™ื ืฉื ื›ืฉืœื™ื,
ืื—ืจืช ืœื ืœื•ืžื“ื™ื.
11:29
otherwise you're not learning.
231
689194
1442
ื”ื•ื ืžื‘ื•ืกืก ืขืœ ื”ืขื•ื‘ื“ื”
11:30
It runs on the fact
232
690660
1162
11:31
that there is not a lot of efficiency in it.
233
691846
2083
ืฉืื™ืŸ ื‘ื• ื”ืจื‘ื” ื™ืขื™ืœื•ืช.
11:33
Innovation by definition is inefficient,
234
693953
2779
ื”ื—ื“ืฉื ื•ืช, ื‘ื”ื’ื“ืจื”, ืื™ื ื ื” ื™ืขื™ืœื”,
11:36
because you make prototypes,
235
696756
1391
ื›ื™ ืžื™ื™ืฆืจื™ื ืื‘ื•ืช ื˜ื™ืคื•ืก,
11:38
because you try stuff that fails, that doesn't work.
236
698171
2707
ื•ืžื ืกื™ื ื“ื‘ืจื™ื ืฉื ื›ืฉืœื™ื, ืฉืื™ื ื ืขื•ื‘ื“ื™ื.
11:40
Exploration is inherently inefficiency.
237
700902
3112
ื”ืžื—ืงืจ ืžื˜ื‘ืขื• ืื™ื ื ื• ื™ืขื™ืœ.
11:44
Art is not efficient.
238
704038
1531
ื”ืืžื ื•ืช ืื™ื ื ื” ื™ืขื™ืœื”.
11:45
Human relationships are not efficient.
239
705593
2127
ื™ื—ืกื™ ืื ื•ืฉ ืื™ื ื ื™ืขื™ืœื™ื.
11:47
These are all the kinds of things we're going to gravitate to,
240
707744
2940
ื›ืœ ืืœื” ื”ื ื“ื‘ืจื™ื ืฉื ื™ืžืฉืš ืืœื™ื”ื,
11:50
because they're not efficient.
241
710708
1475
ืžืฉื•ื ืฉืื™ื ื ื™ืขื™ืœื™ื.
11:52
Efficiency is for robots.
242
712207
2315
ื”ื™ืขื™ืœื•ืช ื ื•ืขื“ื” ืœืจื•ื‘ื•ื˜ื™ื.
11:55
We're also going to learn that we're going to work with these AIs
243
715338
4123
ืื ื• ืขืชื™ื“ื™ื ื’ื ืœืœืžื•ื“ ืœืฉืชืฃ ืคืขื•ืœื” ืขื ืกื•ื’ื™ ื”ืชื‘ื•ื ื” ื”ืžืœืื›ื•ืชื™ืช ื”ืืœื”
11:59
because they think differently than us.
244
719485
1997
ืžืฉื•ื ืฉื”ื ื—ื•ืฉื‘ื™ื ืื—ืจืช ืžืื™ืชื ื•.
12:02
When Deep Blue beat the world's best chess champion,
245
722005
4314
ื›ืฉ"ื›ื—ื•ืœ ืขืžื•ืง" ื”ื‘ื™ืก ืืช ืืœื•ืฃ ื”ืขื•ืœื ื‘ืฉื—ืžื˜,
12:06
people thought it was the end of chess.
246
726343
1929
ื—ืฉื‘ื• ืฉื–ื” ืกื•ืคื• ืฉืœ ื”ืฉื—ืžื˜.
ืื‘ืœ ื‘ืคื•ืขืœ ื”ืชื‘ืจืจ ืฉื›ื™ื•ื, ืืœื•ืฃ ื”ืขื•ืœื ื‘ืฉื—ืžื˜
12:08
But actually, it turns out that today, the best chess champion in the world
247
728296
4402
12:12
is not an AI.
248
732722
1557
ืื™ื ื ื• ื™ืฆื•ืจ ืฉืœ ืชื‘ื•ื ื” ืžืœืื›ื•ืชื™ืช
12:14
And it's not a human.
249
734906
1181
ื•ื’ื ืœื ื™ืฆื•ืจ ืื ื•ืฉื™.
12:16
It's the team of a human and an AI.
250
736111
2715
ื–ื”ื• ืฆื•ื•ืช ืฉืœ ื‘ื ื™-ืื“ื ื•ืชื‘ื•ื ื” ืžืœืื›ื•ืชื™ืช.
12:18
The best medical diagnostician is not a doctor, it's not an AI,
251
738850
4000
ื”ืžืื‘ื—ืŸ ื”ืจืคื•ืื™ ื”ื˜ื•ื‘ ื‘ื™ื•ืชืจ ืื™ื ื ื• ืจื•ืคื ื•ืœื ืชื‘ื•ื ื” ืžืœืื›ื•ืชื™ืช,
12:22
it's the team.
252
742874
1176
ืืœื ืฆื•ื•ืช.
ืื– ื ืขื‘ื•ื“ ื™ื—ื“ ืขื ื”ืชื‘ื•ื ื•ืช ื”ืžืœืื›ื•ืชื™ื•ืช ื”ืืœื”,
12:24
We're going to be working with these AIs,
253
744074
2149
12:26
and I think you'll be paid in the future
254
746247
1995
ื•ืœื“ืขืชื™, ื‘ืขืชื™ื“ ื”ืฉื›ืจ ืฉืœื›ื ื™ืชื‘ืกืก
12:28
by how well you work with these bots.
255
748266
2391
ืขืœ ื˜ื™ื‘ ืขื‘ื•ื“ืชื›ื ื™ื—ื“ ืขื ื”ื‘ื•ื˜ื™ื ื”ืืœื”.
12:31
So that's the third thing, is that they're different,
256
751026
4257
ืื– ื–ื”ื• ื”ื“ื‘ืจ ื”ืฉืœื™ืฉื™, ื”ื ืฉื•ื ื™ื,
12:35
they're utility
257
755307
1165
ื”ื ืฉื™ืจื•ืชื™ ืชืฉืชื™ืช,
12:36
and they are going to be something we work with rather than against.
258
756496
3816
ื•ื”ื ื™ื”ื™ื• ืžืฉื”ื• ืฉื ืขื‘ื•ื“ ืื™ืชื• ื•ืœื ื ื’ื“ื•.
12:40
We're working with these rather than against them.
259
760336
2639
ื ืขื‘ื•ื“ ืื™ืชื ื•ืœื ื ื’ื“ื.
12:42
So, the future:
260
762999
1477
ื”ืขืชื™ื“, ืื ื›ืŸ:
12:44
Where does that take us?
261
764500
1420
ืœืืŸ ื–ื” ืœื•ืงื— ืื•ืชื ื•?
12:45
I think that 25 years from now, they'll look back
262
765944
3567
ืœื“ืขืชื™, ื‘ืขื•ื“ 25 ืฉื ื™ื ื ื‘ื™ื˜ ืœืื—ื•ืจ
12:49
and look at our understanding of AI and say,
263
769535
3125
ื ื‘ื—ืŸ ื›ื™ืฆื“ ืชืคืฉื ื• ืืช ื”ืชื‘ื•ื ื” ื”ืžืœืื›ื•ืชื™ืช ื•ื ืืžืจ,
12:52
"You didn't have AI. In fact, you didn't even have the Internet yet,
264
772684
3300
"ื‘ื›ืœืœ ืœื ื”ื™ืชื” ืœื›ื ืชื‘ื•ื ื” ืžืœืื›ื•ืชื™ืช, ื•ื‘ืขืฆื, ืืคื™ืœื• ืœื ืื™ื ื˜ืจื ื˜,
"ื‘ื”ืฉื•ื•ืื” ืœืžื” ืฉื™ื”ื™ื” ืœื ื• ื‘ืขื•ื“ 25 ืฉื ื”."
12:56
compared to what we're going to have 25 years from now."
265
776008
2741
12:59
There are no AI experts right now.
266
779849
3047
ื”ื™ื•ื ืื™ืŸ ืžื•ืžื—ื™ื ืœืชื‘ื•ื ื” ืžืœืื›ื•ืชื™ืช.
13:02
There's a lot of money going to it,
267
782920
1699
ืžื•ืงืฆื” ืœื›ืš ื”ืžื•ืŸ ื›ืกืฃ, ืžื•ืฉืงืขื™ื ื‘ื›ืš ืžื™ืœื™ืืจื“ื™ ื“ื•ืœืจื™ื,
13:04
there are billions of dollars being spent on it;
268
784643
2268
13:06
it's a huge business,
269
786935
2164
ื–ื”ื• ืขืกืง ืขื ืงื™,
13:09
but there are no experts, compared to what we'll know 20 years from now.
270
789123
4272
ืื‘ืœ ืื™ืŸ ืžื•ืžื—ื™ื, ืœืขื•ืžืช ืžื” ืฉื ื›ื™ืจ ื‘ืขื•ื“ 20 ืฉื ื”.
13:14
So we are just at the beginning of the beginning,
271
794064
2885
ื›ืœื•ืžืจ, ืื ื• ืจืง ื‘ืจืืฉื™ืช ืฉืœ ื”ื”ืชื—ืœื”,
13:16
we're in the first hour of all this.
272
796973
2163
ืื ื• ืขื•ืžื“ื™ื ื‘ืฉืขื” ื”ืจืืฉื•ื ื” ืฉืœ ื›ืœ ื–ื”.
13:19
We're in the first hour of the Internet.
273
799160
1935
ื–ืืช ื”ืฉืขื” ื”ืจืืฉื•ื ื” ืฉืœ ื”ืื™ื ื˜ืจื ื˜.
ื”ืฉืขื” ื”ืจืืฉื•ื ื” ืฉืœ ืžื” ืฉืขืชื™ื“ ืœื‘ื•ื.
13:21
We're in the first hour of what's coming.
274
801119
2040
ื•ืžื•ืฆืจ ื”ืชื‘ื•ื ื” ื”ืžืœืื›ื•ืชื™ืช ื”ื›ื™ ืคื•ืคื•ืœืจื™ ื‘ืขื•ื“ 20 ืฉื ื”,
13:23
The most popular AI product in 20 years from now,
275
803183
4153
13:27
that everybody uses,
276
807360
1444
ืฉื›ื•ืœื ื™ืฉืชืžืฉื• ื‘ื•,
13:29
has not been invented yet.
277
809499
1544
ื˜ืจื ื”ื•ืžืฆื.
13:32
That means that you're not late.
278
812464
2467
ื–ื” ืื•ืžืจ ืฉืื™ื ื›ื ืžืื—ืจื™ื ืืช ื”ืจื›ื‘ืช.
13:35
Thank you.
279
815684
1151
ืชื•ื“ื” ืœื›ื.
13:36
(Laughter)
280
816859
1026
(ืฆื—ื•ืง)
13:37
(Applause)
281
817909
2757
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7