How AI can bring on a second Industrial Revolution | Kevin Kelly

340,702 views ใƒป 2017-01-12

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

00:00
Translator: Leslie Gauthier Reviewer: Camille Martรญnez
0
0
7000
๋ฒˆ์—ญ: SeoBin Yoon ๊ฒ€ํ† : keun_young Lee
00:14
I'm going to talk a little bit about where technology's going.
1
14966
3817
์˜ค๋Š˜ ์ €๋Š” ๊ธฐ์ˆ ์ด ์–ด๋–ค ๋ฐฉํ–ฅ์œผ๋กœ ๊ฐ€๊ณ  ์žˆ๋Š”์ง€์— ๋Œ€ํ•ด ์–˜๊ธฐํ•ด๋ณผ๊นŒ ํ•ฉ๋‹ˆ๋‹ค.
00:19
And often technology comes to us,
2
19509
2671
ํ”ํžˆ, ๊ธฐ์ˆ ์„ ์ฒ˜์Œ ์ ‘ํ•  ๋•Œ
00:22
we're surprised by what it brings.
3
22566
1865
์šฐ๋ฆฌ๋Š” ๊ธฐ์ˆ ์ด ๊ฐ€์ ธ๋‹ค ์ฃผ๋Š” ๊ฒƒ์— ๋Œ€ํ•ด ๋†€๋ผ๊ณค ํ•ฉ๋‹ˆ๋‹ค.
00:24
But there's actually a large aspect of technology
4
24455
3683
ํ•˜์ง€๋งŒ ์‚ฌ์‹ค ๊ธฐ์ˆ ์˜ ๋Œ€๋ถ€๋ถ„์€
์˜ˆ์ธก์ด ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค.
00:28
that's much more predictable,
5
28162
1802
00:29
and that's because technological systems of all sorts have leanings,
6
29988
4088
์ด๋Š” ๋ชจ๋“  ์ข…๋ฅ˜์˜ ๊ธฐ์ˆ  ์‹œ์Šคํ…œ์ด ๊ฐ๊ฐ์˜ ์„ฑํ–ฅ์„ ๊ฐ€์ง€๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
๊ธฐ์ˆ ๋งˆ๋‹ค ๊ธด๊ธ‰ํ•œ ๋ถ€๋ถ„์ด ์žˆ๊ณ 
00:34
they have urgencies,
7
34100
1175
00:35
they have tendencies.
8
35299
1561
์ผ์ •ํ•œ ๊ฒฝํ–ฅ์„ฑ์„ ๋„๊ธฐ ๋งˆ๋ จ์ž…๋‹ˆ๋‹ค.
00:36
And those tendencies are derived from the very nature of the physics,
9
36884
4932
๊ทธ๋ฆฌ๊ณ  ๊ทธ๋Ÿฐ ๊ฒฝํ–ฅ๋“ค์€ ๋ฌผ๋ฆฌํ•™์˜ ๋ณธ์งˆ์ด๋‚˜
00:41
chemistry of wires and switches and electrons,
10
41840
3150
์„ ๊ณผ ์Šค์œ„์น˜ ๊ฐ„์˜ ํ™”ํ•™ ,๊ทธ๋ฆฌ๊ณ  ์ „์ž๋“ฑ์œผ๋กœ๋ถ€ํ„ฐ ์œ ๋ž˜๋˜๊ณ 
00:45
and they will make reoccurring patterns again and again.
11
45659
3602
์ด๋Š” ๋ฐ˜๋ณต๋˜๋Š” ํŒจํ„ด์„ ๋Š์ž„์—†์ด ๋งŒ๋“ค์–ด๋ƒ…๋‹ˆ๋‹ค.
00:49
And so those patterns produce these tendencies, these leanings.
12
49745
4874
๊ทธ๋ž˜์„œ ๊ทธ ํŒจํ„ด๋“ค์€ ๊ฒฝํ–ฅ์„ฑ๊ณผ ์„ฑํ–ฅ์„ ๋งŒ๋“ญ๋‹ˆ๋‹ค.
00:54
You can almost think of it as sort of like gravity.
13
54643
2831
์—ฌ๋Ÿฌ๋ถ„์€ ์ด๋ฅผ ์ค‘๋ ฅ๊ณผ ๋น„์Šทํ•˜๋‹ค๊ณ  ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
00:57
Imagine raindrops falling into a valley.
14
57498
2319
๊ณ„๊ณก์— ๋น—๋ฐฉ์šธ ๋–จ์–ด์ง€๋Š” ๋ชจ์Šต์„ ์ƒ์ƒํ•ด๋ณด์„ธ์š”.
00:59
The actual path of a raindrop as it goes down the valley
15
59841
3088
๊ณ„๊ณก์„ ๋‚ด๋ ค๊ฐ€๋Š” ๋น—๋ฐฉ์šธ์˜ ์‹ค์ œ ๊ฒฝ๋กœ๋Š”
01:02
is unpredictable.
16
62953
1169
์˜ˆ์ธกํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.
01:04
We cannot see where it's going,
17
64651
1518
์šฐ๋ฆฌ๋Š” ๊ทธ๋“ค์ด ์–ด๋””๋กœ ๊ฐ€๋Š”์ง€ ์•Œ ์ˆ˜ ์—†์ง€๋งŒ
01:06
but the general direction is very inevitable:
18
66193
2277
๋Œ€๋žต์ ์ธ ๋ฐฉํ–ฅ์€ ํ•„์—ฐ์ ์ž…๋‹ˆ๋‹ค.
01:08
it's downward.
19
68494
1234
๋ฐ”๋กœ ์•„๋ž˜ ์ชฝ์ด์ง€์š”.
01:10
And so these baked-in tendencies and urgencies
20
70377
4572
์ด์ฒ˜๋Ÿผ ๊ธฐ์ˆ  ์‹œ์Šคํ…œ์— ๋‚ด์žฅ๋œ
01:14
in technological systems
21
74973
1476
๊ฒฝํ–ฅ์„ฑ๊ณผ ์ด‰๋ฐœ์„ฑ์€
์šฐ๋ฆฌ์—๊ฒŒ ์‚ฌ๊ฑด์ด ๋Œ€๋žต์ ์œผ๋กœ ์–ด๋–ป๊ฒŒ ์ง„ํ–‰๋˜๋Š”์ง€์— ๋Œ€ํ•ด ์•Œ๋ ค์ค๋‹ˆ๋‹ค.
01:17
give us a sense of where things are going at the large form.
22
77051
3609
๊ทธ๋ž˜์„œ ํฌ๊ฒŒ ๋ดค์„ ๋•Œ
01:21
So in a large sense,
23
81149
1401
01:22
I would say that telephones were inevitable,
24
82574
3361
์ „ํ™”๊ธฐ์˜ ๋ฐœ๋ช…์€ ํ•„์—ฐ์ ์ด์—ˆ๋‹ค๊ณ  ๋ด…๋‹ˆ๋‹ค.
๊ทธ๋Ÿฌ๋‚˜ ์•„์ดํฐ์€ ์•„๋‹ˆ์—ˆ์ฃ .
01:27
but the iPhone was not.
25
87005
1342
์ธํ„ฐ๋„ท์˜ ๋ฐœ๋ช…๋„ ํ•„์—ฐ์ ์ด์—ˆ์ง€๋งŒ
01:29
The Internet was inevitable,
26
89094
1478
01:31
but Twitter was not.
27
91274
1286
ํŠธ์œ„ํ„ฐ๋Š” ์•„๋‹ˆ์—ˆ์Šต๋‹ˆ๋‹ค.
๊ทธ๋ž˜์„œ ํ˜„์žฌ ์—ฌ๋Ÿฌ ํ๋ฆ„์ด ์กด์žฌํ•˜๋Š”๋ฐ
01:33
So we have many ongoing tendencies right now,
28
93036
3928
01:36
and I think one of the chief among them
29
96988
2720
์ €๋Š” ๊ทธ ์ค‘์— ๊ฐ€์žฅ ์ค‘์š”ํ•œ ๊ฒƒ์ด
01:39
is this tendency to make things smarter and smarter.
30
99732
3722
๋Š์ž„์—†์ด ๋”์šฑ ๋” ์ง€๋Šฅ์  ์œผ๋กœ ๊ณ ๋„ํ™”๋˜๋Š” ๊ฒฝํ–ฅ์„ฑ์ž…๋‹ˆ๋‹ค.
๊ทธ๊ฒƒ์„ 'cognification' ์ด๋ผ ํ•ฉ๋‹ˆ๋‹ค. ์ œ๊ฐ€ ๋ถ™์ธ ๊ฒ๋‹ˆ๋‹ค.
01:44
I call it cognifying -- cognification --
31
104041
2212
01:46
also known as artificial intelligence, or AI.
32
106783
2782
์ด ๊ฒƒ์€ ์ธ๊ณต์ง€๋Šฅ ํ˜น์€ AI๋ผ๊ณ ๋„ ๋ถˆ๋ฆฝ๋‹ˆ๋‹ค.
๊ทธ๋ฆฌ๊ณ  ์ €๋Š” ์ด๊ฒƒ์ด ์•ž์œผ๋กœ 20๋…„ ๋™์•ˆ ์šฐ๋ฆฌ ์‚ฌํšŒ ๊ฐ€์žฅ ์˜ํ–ฅ๋ ฅ์žˆ๋Š”
01:50
And I think that's going to be one of the most influential developments
33
110025
3746
01:53
and trends and directions and drives in our society in the next 20 years.
34
113795
5575
๋ฐœ์ „์ด์ž ์œ ํ–‰, ๊ทธ๋ฆฌ๊ณ  ๋ฐฉํ–ฅ๊ณผ ์ถ”๋™๋ ฅ์ด๋ผ๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
๋ฌผ๋ก , ์ด๋ฏธ ํฐ ์˜ํ–ฅ์„ ๋ฏธ์น˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
02:00
So, of course, it's already here.
35
120021
1985
์šฐ๋ฆฌ๋Š” ์ด๋ฏธ ์ธ๊ณต์ง€๋Šฅ์„ ๊ฐ–๊ณ  ์žˆ์–ด์š”.
02:02
We already have AI,
36
122030
2204
02:04
and often it works in the background,
37
124258
2398
์ด๋“ค์€ ์ฃผ๋กœ ๋ณด์ด์ง€ ์•Š๋Š” ๊ณณ์—์„œ ์ผํ•˜์ง€์š”.
02:06
in the back offices of hospitals,
38
126680
1586
๋ณ‘์› ์‚ฌ๋ฌด์‹ค ๋’ทํŽธ์—์„œ
02:08
where it's used to diagnose X-rays better than a human doctor.
39
128290
4686
X์„ ์„ ์˜์‚ฌ๋ณด๋‹ค ๋” ์ž˜ ์ง„๋‹จํ•ฉ๋‹ˆ๋‹ค.
๋˜ํ•œ ๋ฒ•๋ฅ ์‚ฌ๋ฌด์†Œ์—์„œ
02:13
It's in legal offices,
40
133000
1726
02:14
where it's used to go through legal evidence
41
134750
2368
๋ฒ•์  ์ฆ๊ฑฐ ๊ฒ€ํ† ๋ฅผ
์ธ๊ฐ„ ์ค€๋ฒ•๋ฅ ๊ฐ€๋ณด๋‹ค ํ›จ์”ฌ ์ž˜ ์ˆ˜ํ–‰ํ•˜์ฃ .
02:17
better than a human paralawyer.
42
137142
1855
02:19
It's used to fly the plane that you came here with.
43
139506
3656
AI๋Š” ์—ฌ๋Ÿฌ๋ถ„์ด ํƒ€๊ณ  ์˜จ ๋น„ํ–‰๊ธฐ ๋ฅผ ๋„์šฐ๊ธฐ ์œ„ํ•ด์„œ๋„ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค.
์‹ค์ œ ์กฐ์ข…์‚ฌ๋Š” ์‚ฌ์‹ค 7๋ถ„์—์„œ 8๋ถ„ ์ •๋„ ๋ฐ–์— ์šด์ „ํ•˜์ง€ ์•Š๊ณ 
02:24
Human pilots only flew it seven to eight minutes,
44
144165
2381
02:26
the rest of the time the AI was driving.
45
146570
1953
๊ทธ ์™ธ๋Š” ๋ชจ๋‘ AI๊ฐ€ ์šดํ–‰ํ•ฉ๋‹ˆ๋‹ค.
02:28
And of course, in Netflix and Amazon,
46
148547
2173
๊ทธ๋ฆฌ๊ณ  ์ฃผ์ง€ํ•˜๋“ฏ ๋„ทํ”Œ๋ฆญ์Šค๋‚˜ ์•„๋งˆ์กด์—์„ 
02:30
it's in the background, making those recommendations.
47
150744
2530
๋’ค์—์„œ ํ™œ๋™ํ•˜๋ฉฐ ์ถ”์ฒœ์„ ๋งŽ์ด ํ•ฉ๋‹ˆ๋‹ค.
02:33
That's what we have today.
48
153298
1261
๊ทธ๊ฒŒ ๋ฐ”๋กœ ์˜ค๋Š˜๋‚ ์˜ AI์ž…๋‹ˆ๋‹ค.
02:34
And we have an example, of course, in a more front-facing aspect of it,
49
154583
4801
๋„ˆ๋ฌด๋‚˜ ๋Œ€ํ‘œ์ ์ด๊ณ  ๋‹น์—ฐํ•œ ์˜ˆ์‹œ๋กœ๋Š”
02:39
with the win of the AlphaGo, who beat the world's greatest Go champion.
50
159408
6629
์„ธ๊ณ„ ์ตœ๊ณ ์˜ ๋ฐ”๋‘‘ ์„ ์ˆ˜๋ฅผ ์ด๊ธด ์•ŒํŒŒ๊ณ ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
02:46
But it's more than that.
51
166478
4053
ํ•˜์ง€๋งŒ ๊ทธ๊ฒƒ์ด ๋‹ค๊ฐ€ ์•„๋‹™๋‹ˆ๋‹ค.
02:50
If you play a video game, you're playing against an AI.
52
170555
2642
๋งŒ์•ฝ ๋น„๋””์˜ค ๊ฒŒ์ž„์„ ํ•œ๋‹ค๋ฉด, ์—ฌ๋Ÿฌ๋ถ„์€ ์ธ๊ณต์ง€๋Šฅ์„ ์ƒ๋Œ€๋กœ ๊ฒŒ์ž„ ํ•˜๋Š” ๊ฒ๋‹ˆ๋‹ค.
02:53
But recently, Google taught their AI
53
173221
4538
ํ•˜์ง€๋งŒ ์ตœ๊ทผ์— ๊ตฌ๊ธ€์—์„œ ์ธ๊ณต์ง€๋Šฅ์—๊ฒŒ
02:57
to actually learn how to play video games.
54
177783
2412
๋น„๋””์˜ค ๊ฒŒ์ž„ ํ•˜๋Š” ๋ฒ•์„ ๋ฐฐ์šฐ๋„๋ก ๊ฐ€๋ฅด์ณค์Šต๋‹ˆ๋‹ค.
03:00
Again, teaching video games was already done,
55
180686
2709
๋‹ค์‹œ ๋งํ•˜์ž๋ฉด ๋น„๋””์˜ค ๊ฒŒ์ž„ ์ž์ฒด ๋ฅผ ๊ฐ€๋ฅด์น˜๋Š” ๊ฑด ๊ธฐ์„ฑ์ทจ๋˜์—ˆ์ง€๋งŒ
03:03
but learning how to play a video game is another step.
56
183419
3897
๋น„๋””์˜ค ๊ฒŒ์ž„ ํ•˜๋Š” ๋ฒ•์„ ๋ฐฐ์šฐ๋Š” ๊ฒƒ์€ ํ•œ๊ฑธ์Œ ๋” ๋‚˜์•„๊ฐ„ ๊ฒƒ ์ž…๋‹ˆ๋‹ค.
03:07
That's artificial smartness.
57
187340
1678
๊ทธ๊ฒƒ์ด ๋ฐ”๋กœ ์ธ๊ณต์ ์ธ ์ด๋ช…์ž…๋‹ˆ๋‹ค.
03:10
What we're doing is taking this artificial smartness
58
190571
4522
์šฐ๋ฆฌ๊ฐ€ ์ง€๊ธˆ ํ•˜๊ณ ์žˆ๋Š”๊ฒƒ์€ ์ด ์ธ๊ณต์ ์ธ ์ด๋ช…์„ ๊ฐ€์ง€๊ณ 
๋” ๋˜‘๋˜‘ํ•˜๊ฒŒ ๋งŒ๋“œ๋Š” ๊ฒƒ ์ž…๋‹ˆ๋‹ค.
03:15
and we're making it smarter and smarter.
59
195117
2423
03:18
There are three aspects to this general trend
60
198710
3895
์ €๋Š” ์š”์ฆ˜์˜ ํŠธ๋ Œ๋“œ์—์„œ ์„ธ ๊ฐ€์ง€ ๋ถ€๋ถ„์ด
03:22
that I think are underappreciated;
61
202629
1689
๊ณผ์†Œํ‰๊ณผ ๋˜๊ณ ์žˆ๋‹ค๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
03:24
I think we would understand AI a lot better
62
204342
2277
์šฐ๋ฆฌ๊ฐ€ ์ด ์„ธ๊ฐ€์ง€๋ฅผ ์ดํ•ดํ•œ๋‹ค๋ฉด
03:26
if we understood these three things.
63
206643
2301
์ธ๊ณต์ง€๋Šฅ์— ๋Œ€ํ•˜์—ฌ ๋” ์ž˜ ์ดํ•ดํ•˜๊ฒŒ ๋ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
03:28
I think these things also would help us embrace AI,
64
208968
3283
๋˜ํ•œ, ์ด๊ฒƒ๋“ค์€ ์šฐ๋ฆฌ๊ฐ€ ์ธ๊ณต์ง€๋Šฅ ์„ ์ˆ˜์šฉํ•˜๋Š”๋ฐ ๋„์›€์„ ์ค„๊ฒƒ์ž…๋‹ˆ๋‹ค.
03:32
because it's only by embracing it that we actually can steer it.
65
212275
3008
์™œ๋ƒํ•˜๋ฉด ์ธ๊ณต์ง€๋Šฅ์„ ๋ฐ›์•„๋“ค์—ฌ์•ผ๋งŒ ๊ทธ๋ฅผ ์ง„์ •์œผ๋กœ ์กฐ์ข…ํ•  ์ˆ˜ ์žˆ์œผ๋‹ˆ๊นŒ์š”.
03:35
We can actually steer the specifics by embracing the larger trend.
66
215887
3157
๋” ํฐ ์ถ”์„ธ๋ฅผ ๋ฐ›์•„๋“ค์ž„์œผ๋กœ์จ ์„ธ๋ถ€์ ์ธ ์ธก๋ฉด๊นŒ์ง€ ์กฐ์ข…ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
03:39
So let me talk about those three different aspects.
67
219467
2979
๊ทธ ๋•Œ๋ฌธ์— ์ด ์„ธ๊ฐ€์ง€ ์ธก๋ฉด์— ๋Œ€ํ•ด ์„ค๋ช…์„ ํ•ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.
03:42
The first one is: our own intelligence has a very poor understanding
68
222470
3673
์ฒซ ๋ฒˆ์งธ, ์šฐ๋ฆฌ์˜ ์ง€๋Šฅ์€ ์ง€๋Šฅ์ด ๋ฌด์—‡์ธ์ง€์— ๋Œ€ํ•ด
์ œ๋Œ€๋กœ ์ดํ•ดํ•˜๊ณ  ์žˆ์ง€ ๋ชปํ•˜๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค.
03:46
of what intelligence is.
69
226167
1490
์šฐ๋ฆฌ๋Š” ์ง€๋Šฅ์ด๋ผ๋Š” ๊ฒƒ์„ 1์ฐจ์›์œผ๋กœ ์ƒ๊ฐํ•˜๊ธฐ ์‰ฝ์ƒ์ด์–ด์„œ
03:48
We tend to think of intelligence as a single dimension,
70
228110
3653
03:51
that it's kind of like a note that gets louder and louder.
71
231787
2750
๋งˆ์น˜ ์Œํ‘œ์†Œ๋ฆฌ๊ฐ€ ์ ์  ์ปค์ ธ ๊ฐ€๋Š” ๊ฒƒ๊ณผ ๋น„์Šทํ•˜๊ฒŒ ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
03:54
It starts like with IQ measurement.
72
234561
2607
๋Œ€ํ‘œ์ ์ธ ์˜ˆ์‹œ๋กœ IQ ๊ฒ€์‚ฌ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
03:57
It starts with maybe a simple low IQ in a rat or mouse,
73
237192
4092
์ฅ์˜ ์•„๋งˆ ๊ฐ„๋‹จํ•˜๊ณ  ๋‚ฎ์€ ์•„์ดํ๋ถ€ํ„ฐ ์‹œ์ž‘ํ•ด์„œ
04:01
and maybe there's more in a chimpanzee,
74
241308
2134
์นจํŒฌ์ง€๋Š” ๋” ๋†’์„๊ฒƒ์ด๊ณ 
04:03
and then maybe there's more in a stupid person,
75
243887
2191
๊ทธ๋ฆฌ๊ณ  ๋ฐ”๋ณด๋Š” ์•„๋งˆ ๊ทธ๊ฒƒ ๋ณด๋‹ค ๋†’์„ ๊ฒƒ์œผ๋กœ ์ถ”์ธกํ•ฉ๋‹ˆ๋‹ค.
์ €์™€ ๊ฐ™์€ ํ‰๊ท ์ ์ธ ์‚ฌ๋žŒ์ด ๊ทธ ๋‹ค์Œ
04:06
and then maybe an average person like myself,
76
246102
2096
04:08
and then maybe a genius.
77
248222
1290
๊ทธ๋ฆฌ๊ณ  ๋‹ค์Œ์€ ์ฒœ์žฌ์ผ ๊ฒ๋‹ˆ๋‹ค.
04:09
And this single IQ intelligence is getting greater and greater.
78
249536
4433
๋‹จ์ˆ˜์˜ ์ง€๋Šฅ์ด ์ ์  ๋ณต์ˆ˜์˜ IQ๋กœ ์ฆ๊ฐ€ํ•œ๋‹ค๋Š” ๊ฒƒ์€
04:14
That's completely wrong.
79
254516
1151
์‚ฌ์‹ค ์™„์ „ํžˆ ํ‹€๋ฆฐ ๊ด€๋…์ž…๋‹ˆ๋‹ค.
04:15
That's not what intelligence is -- not what human intelligence is, anyway.
80
255691
3608
๊ทธ๊ฑด ์ง€๋Šฅ์ด ์•„๋‹™๋‹ˆ๋‹ค. ๋ฌผ๋ก  ์ธ๊ฐ„์ด ์ง€๋‹Œ ์ง€๋Šฅ์€ ์•„๋‹ˆ์ฃ .
04:19
It's much more like a symphony of different notes,
81
259673
4506
์ง€๋Šฅ์€ ๋‹จ์ผ์Œ๊ณ„๊ฐ€ ์•„๋‹ˆ๋ผ ๋‹ค์–‘ํ•œ ์ธ์ง€์˜ ์•…๊ธฐ๊ฐ€ ์—ฐ์ฃผํ•˜๋Š”
04:24
and each of these notes is played on a different instrument of cognition.
82
264203
3609
๋งŽ์€ ์Œํ‘œ์˜ ๊ตํ–ฅ๊ณก๊ณผ ๋” ์œ ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
04:27
There are many types of intelligences in our own minds.
83
267836
3701
์šฐ๋ฆฌ ์•ˆ์—๋Š” ๋‹ค์–‘ํ•œ ์œ ํ˜•์˜ ์ง€๋Šฅ์ด ์กด์žฌํ•ฉ๋‹ˆ๋‹ค.
04:31
We have deductive reasoning,
84
271561
3048
์—ฐ์—ญ ์ถ”๋ฆฌ๋Šฅ๋ ฅ
04:34
we have emotional intelligence,
85
274633
2221
์ •์„œ ์ง€๋Šฅ
04:36
we have spatial intelligence;
86
276878
1393
๊ณต๊ฐ„ ๊ฐ๊ฐ ๋“ฑ์ด ์žˆ์ฃ .
04:38
we have maybe 100 different types that are all grouped together,
87
278295
4021
์šฐ๋ฆฌ ์•ˆ์—๋Š” ๋Œ€๋žต 100๊ฐ€์ง€๋„ ๋„˜๋Š” ์œ ํ˜•์˜ ์ง€๋Šฅ์ด ํ•จ๊ป˜ ๋ฌถ์—ฌ ์žˆ๊ณ 
04:42
and they vary in different strengths with different people.
88
282340
3905
์ด๋Š” ๋‹ค์–‘ํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚˜ ์‚ฌ๋žŒ๋งˆ๋‹ค ๋‹ค๋ฅธ ์žฅ์ ์„ ๊ฐ€์ง‘๋‹ˆ๋‹ค.
04:46
And of course, if we go to animals, they also have another basket --
89
286269
4526
๋™๋ฌผ๋“ค์˜ ๊ฒฝ์šฐ๋„ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ๊ทธ ๊ทธ๋ฆ‡์˜ ์ง€๋Šฅ๋‚ด์šฉ์ด ๋‹ค๋ฅด๊ณ 
04:50
another symphony of different kinds of intelligences,
90
290819
2541
๋‹ค๋ฅธ ์ข…๋ฅ˜์˜ ์ง€๋Šฅ์„ ๊ฐ€์ง„ ๋‹ค๋ฅธ ๊ตํ–ฅ๊ณก์„ ๊ฐ–๊ณ  ์žˆ์„ ๊ฒƒ์ด๊ณ 
04:53
and sometimes those same instruments are the same that we have.
91
293384
3566
๋ช‡๋ช‡ ์•…๊ธฐ๋Š” ์šฐ๋ฆฌ์™€ ๊ฐ™์€ ๊ฒƒ์ด๊ฒ ์ฃ .
04:56
They can think in the same way, but they may have a different arrangement,
92
296974
3561
๊ฐ™์€ ๋ฐฉ์‹์œผ๋กœ ์ƒ๊ฐ์„ ํ•˜์ง€๋งŒ ๋‹ค๋ฅธ ๋ฐฉ์‹์œผ๋กœ ๋ฐฐ์—ดํ•  ์ˆ˜๋„ ์žˆ๊ณ 
05:00
and maybe they're higher in some cases than humans,
93
300559
2467
์–ด์ฉŒ๋ฉด ํŠน์ • ๋ถ€๋ถ„์—์„œ๋Š” ์‚ฌ๋žŒ๋ณด๋‹ค ๋” ๋˜‘๋˜‘ํ•  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
์˜ˆ๋ฅผ๋“ค์–ด ๋งˆ์น˜ ๋‹ค๋žŒ์ฅ์˜ ์žฅ๊ธฐ๊ธฐ์–ต๋ ฅ์€ ์ฒœ์žฌ์— ๊ฐ€๊นŒ์›Œ์„œ
05:03
like long-term memory in a squirrel is actually phenomenal,
94
303050
2837
05:05
so it can remember where it buried its nuts.
95
305911
2287
์–ด๋”” ๋จน์ด๋ฅผ ํŒŒ๋ฌป์—ˆ๋‚˜ ๊ธฐ์–ตํ•˜๋Š”๋ฐ ์“ฐ์ž…๋‹ˆ๋‹ค.
05:08
But in other cases they may be lower.
96
308222
1987
๊ทธ๋Ÿฌ๋‚˜ ๋‹ค๋ฅธ ๋ถ€๋ถ„์—์„œ๋Š” ์‚ฌ๋žŒ๋ณด๋‹ค ๋‚ฎ์„ ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
05:10
When we go to make machines,
97
310233
2730
์šฐ๋ฆฌ๋Š” ๊ธฐ๊ณ„๋ฅผ ๋งŒ๋“ค ๋•Œ
05:12
we're going to engineer them in the same way,
98
312987
2196
๊ธฐ๊ณ„๋ฅผ ์ด๋Ÿฐ ๋ฐฉ๋ฒ•์œผ๋กœ ์ œ์ž‘ํ•˜๋ ค ํ•ฉ๋‹ˆ๋‹ค.
05:15
where we'll make some of those types of smartness much greater than ours,
99
315207
5010
์šฐ๋ฆฌ๋ณด๋‹ค ํ›จ์”ฌ ๋” ๋†’์€ ์ฐจ์›์˜ ์ง€๋Šฅ์„ ๊ฐ€์ง€๋„๋ก ํ•˜์ง€๋งŒ
05:20
and many of them won't be anywhere near ours,
100
320241
2571
๊ทธ ์ง€๋Šฅ์˜ ์ˆ˜์ค€์€ ๋Œ€๋ถ€๋ถ„ ์ธ๊ฐ„๋ณด๋‹ค ํ›จ์”ฌ ๋ชปํ•ฉ๋‹ˆ๋‹ค.
05:22
because they're not needed.
101
322836
1544
์ด๋Š” ๊ทธ๊ฒƒ๋“ค์ด ํ•„์š”ํ•˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์ด์ฃ .
05:24
So we're going to take these things,
102
324404
2203
๋”ฐ๋ผ์„œ ์šฐ๋ฆฌ๋Š” ์ด๋Ÿฐ ๊ฒƒ์„ ์—ผ๋‘์— ๋‘๊ณ 
05:26
these artificial clusters,
103
326631
2081
์ฆ‰, ์ด ์ธ๊ณต์  ํด๋Ÿฌ์Šคํ„ฐ๋ฅผ ๊ณ ๋ คํ•ด์„œ
05:28
and we'll be adding more varieties of artificial cognition to our AIs.
104
328736
5362
์ธ๊ณต์ง€๋Šฅ์— ๋” ๋‹ค์–‘ํ•œ ์ข…๋ฅ˜์˜ ์ธ์ง€๋ ฅ์„ ์ถ”๊ฐ€ํ•ด์•ผํ•ฉ๋‹ˆ๋‹ค.
05:34
We're going to make them very, very specific.
105
334507
4071
์šฐ๋ฆฌ๋Š” ์ด๋ฅผ ์•„์ฃผ ๊ตฌ์ฒด์ ์œผ๋กœ ๋งŒ๋“ค์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
05:38
So your calculator is smarter than you are in arithmetic already;
106
338602
6542
๊ทธ๋ž˜์„œ ์—ฌ๋Ÿฌ๋ถ„์˜ ๊ณ„์‚ฐ๊ธฐ๋Š” ์—ฌ๋Ÿฌ๋ถ„์˜ ์‚ฐ์ˆ˜๋Šฅ๋ ฅ๋ณด๋‹ค ์ด๋ฏธ ๋” ๋˜‘๋˜‘ํ•˜์ฃ .
GPS๋Š” ์šฐ๋ฆฌ๋ณด๋‹ค ํ›จ์”ฌ ๊ธธ์„ ์ž˜ ์ฐพ๊ณ 
05:45
your GPS is smarter than you are in spatial navigation;
107
345168
3697
05:49
Google, Bing, are smarter than you are in long-term memory.
108
349337
4258
๊ตฌ๊ธ€๊ณผ ๋น™์€ ์šฐ๋ฆฌ๋ณด๋‹ค ํ›จ์”ฌ ๊ธด ์žฅ๊ธฐ๊ธฐ์–ต์„ ๊ฐ€์ง‘๋‹ˆ๋‹ค.
05:54
And we're going to take, again, these kinds of different types of thinking
109
354339
4530
์šฐ๋ฆฌ๋Š” ์ด๋Ÿฐ ์ƒ๊ฐ์„ ๋˜ ๋‹ค์‹œ ๋‹ค๋ฅธ ์œ ํ˜•์—๋„ ์ ์šฉํ• ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
05:58
and we'll put them into, like, a car.
110
358893
1933
์˜ˆ๋ฅผ ๋“ค์–ด ์ž๋™์ฐจ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
06:00
The reason why we want to put them in a car so the car drives,
111
360850
3057
์šฐ๋ฆฌ๊ฐ€ ์ธ๊ณต์ง€๋Šฅ์„ ์ฐจ ์•ˆ์— ๋„ฃ์–ด ์ฐจ๊ฐ€ ์Šค์Šค๋กœ ์šด์ „ํ•˜๊ฒŒ ํ•˜๊ณ ์ž ํ•˜๋Š” ์ด์œ ๋Š”
06:03
is because it's not driving like a human.
112
363931
2302
์ฐจ๊ฐ€ ์ธ๊ฐ„์ฒ˜๋Ÿผ ์šด์ „ํ•˜์ง€ ์•Š๋Š”๋‹ค๋Š” ์  ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
06:06
It's not thinking like us.
113
366257
1396
์ฐจ๋Š” ์šฐ๋ฆฌ์ฒ˜๋Ÿผ ์ƒ๊ฐ์„ ํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
06:07
That's the whole feature of it.
114
367677
1920
์ด๊ฒŒ ์ฐจ์˜ ํŠน์ง•์ž…๋‹ˆ๋‹ค.
06:09
It's not being distracted,
115
369621
1535
์ฆ‰, ๋‹ค๋ฅธ ๊ฒƒ์— ์ •์‹ ์ด ๋ถ„์‚ฐ ๋˜์ง€ ์•Š๋Š”๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
06:11
it's not worrying about whether it left the stove on,
116
371180
2754
๊ฐ€์Šค๋ ˆ์ธ์ง€๋ฅผ ์ผœ๊ณ  ๋‚˜์™”๋Š”์ง€
06:13
or whether it should have majored in finance.
117
373958
2138
ํ˜น์€ ๊ธˆ์œต ์ „๊ณต์„ ํ• ์ง€ ๋ง์ง€ ๋“ฑ์— ๊ณ ๋ฏผํ•˜์ง€ ์•Š๊ณ 
๊ทธ๋ƒฅ ์šด์ „๋งŒ ํ•ฉ๋‹ˆ๋‹ค.
06:16
It's just driving.
118
376120
1153
06:17
(Laughter)
119
377297
1142
(์›ƒ์Œ)
06:18
Just driving, OK?
120
378463
1841
๊ทธ๋ƒฅ ์šด์ „๋งŒ์ด์š”! ์•Œ๊ฒ ๋‚˜์š”?
06:20
And we actually might even come to advertise these
121
380328
2937
๊ทธ๋ฆฌ๊ณ  ์šฐ๋ฆฌ๋Š” ์ด๋Ÿฐ ํŠน์ง•์„ ๊ด‘๊ณ ํ• ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค!
06:23
as "consciousness-free."
122
383289
1545
"์ƒ๊ฐ์ด ์—†๋‹ค"๋Š” ์‹์œผ๋กœ์š”.
06:24
They're without consciousness,
123
384858
1774
๊ทธ๋“ค์€ ์ž๊ฐ์ด ์—†๊ณ 
06:26
they're not concerned about those things,
124
386656
2104
๊ทธ๋Ÿฐ ์ข…๋ฅ˜์˜ ๊ฑฑ์ •์„ ํ•˜์ง€ ์•Š์œผ๋ฉฐ
06:28
they're not distracted.
125
388784
1156
๋‹ค๋ฅธ ๊ฒƒ์— ์ •์‹ ์ด ํŒ”๋ฆฌ์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
06:29
So in general, what we're trying to do
126
389964
2966
์ด์ฒ˜๋Ÿผ ๋Œ€๋ถ€๋ถ„์˜ ๊ฒฝ์šฐ์—์„œ ์šฐ๋ฆฌ๊ฐ€ ํ•˜๋ ค๋Š” ๊ฒƒ์€
06:32
is make as many different types of thinking as we can.
127
392954
4500
์šฐ๋ฆฌ๊ฐ€ ํ•  ์ˆ˜ ์žˆ๋Š” ์ƒ๊ฐ์˜ ๋‹ค์–‘ํ•œ ํ˜•ํƒœ๋ฅผ ๋ชจ๋‘ ๋งŒ๋“œ๋Š” ๊ฒ๋‹ˆ๋‹ค.
06:37
We're going to populate the space
128
397804
2083
์šฐ๋ฆฌ๋Š” ๊ฐ€๋Šฅํ•œ ๋ชจ๋“  ํ˜•ํƒœ, ์ข…๋ฅ˜์˜ ๋‹ค์–‘ํ•œ ์ƒ๊ฐ๋“ค์˜
06:39
of all the different possible types, or species, of thinking.
129
399911
4159
์˜์—ญ์„ ๋ชจ๋‘ ๋ฐ์ดํ„ฐํ™” ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
์‚ฌ์‹ค ๋ช‡๋ช‡ ๋ฌธ์ œ๋“ค์€
06:44
And there actually may be some problems
130
404094
2068
06:46
that are so difficult in business and science
131
406186
2800
๊ณผํ•™์ ์œผ๋กœ ํž˜๋“ค๊ฑฐ๋‚˜ ํ˜น์€ ์‹œ์žฅํ˜„์‹ค์— ๋งž์ง€ ์•Š์•„
์ธ๊ฐ„์˜ ์‚ฌ๊ณ ๋ ฅ๋งŒ์œผ๋กœ๋Š” ํ’€ ์ˆ˜ ์—†์„ ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
06:49
that our own type of human thinking may not be able to solve them alone.
132
409010
4042
๊ทธ๋ž˜์„œ 2๋‹จ๊ณ„์˜ ํ”„๋กœ๊ทธ๋žจ์ด ํ•„์š”ํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
06:53
We may need a two-step program,
133
413076
1992
๋จผ์ € ์ƒˆ๋กœ์šด ์ข…๋ฅ˜์˜ ์ƒ๊ฐ์„ ์ฐฝ์กฐํ•ด๋‚ด
06:55
which is to invent new kinds of thinking
134
415092
4203
06:59
that we can work alongside of to solve these really large problems,
135
419692
3734
์šฐ๋ฆฌ๊ฐ€ ํ•จ๊ป˜ ์ด ํฐ ๋ฌธ์ œ๋ฅผ ํ’€์–ด๊ฐ€๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
07:03
say, like dark energy or quantum gravity.
136
423450
2918
์˜ˆ๋ฅผ๋“ค์–ด, ์•”ํ‘๋ฌผ์งˆ๊ณผ ์–‘์ž์ค‘๋ ฅ์ฒ˜๋Ÿผ์š”.
07:08
What we're doing is making alien intelligences.
137
428496
2646
์ด๋Ÿฐ ์ž‘์—…์€ ์™ธ๊ณ„์ง€์„ฑ์ฒด๋ฅผ ๋งŒ๋“œ๋Š” ๊ฒƒ๊ณผ ๋‹ค๋ฅผ๋ฐ”๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.
์•„๋งˆ ์—ฌ๋Ÿฌ๋ถ„๊ป˜ ์ด ์ผ์„ ์™ธ๊ณ„์ธ์ฒ˜๋Ÿผ
07:11
You might even think of this as, sort of, artificial aliens
138
431166
4069
07:15
in some senses.
139
435259
1207
๋‚ฏ์„ค๊ฒŒ ๋Š๋‚„์ˆ˜๋„ ์žˆ์–ด์š”.
07:16
And they're going to help us think different,
140
436490
2300
๊ทธ๋ฆฌ๊ณ  ์ด๋Š” ์šฐ๋ฆฌ๊ฐ€ ๋‹ค๋ฅด๊ฒŒ ์‚ฌ๊ณ ํ•  ์ˆ˜ ์žˆ๋„๋ก ๋„์™€์ค„๊ฒƒ์ž…๋‹ˆ๋‹ค.
07:18
because thinking different is the engine of creation
141
438814
3632
์ƒ‰๋‹ค๋ฅธ ์ƒ๊ฐ์€ ์ฐฝ์กฐ์˜ ์—”์ง„์ด์ž
07:22
and wealth and new economy.
142
442470
1867
๋ถ€์™€ ๊ฒฝ์ œ์˜ ์ƒˆ๋กœ์šด ์‹œ์ž‘์„ ์—ด๊ฒŒ ํ•˜๋‹ˆ๊นŒ์š”.
07:25
The second aspect of this is that we are going to use AI
143
445835
4923
์ด์–ด์„œ ๋‘ ๋ฒˆ์งธ ์ธก๋ฉด์€ ์šฐ๋ฆฌ๊ฐ€ 2์ฐจ ์‚ฐ์—…ํ˜๋ช…์„ ๋ฐœ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด
07:30
to basically make a second Industrial Revolution.
144
450782
2950
์ธ๊ณต์ง€๋Šฅ์„ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
์ œ1์ฐจ ์‚ฐ์—…ํ˜๋ช…์€ ์šฐ๋ฆฌ๊ฐ€ ์†Œ์œ„ ์ธ๊ณต์ ์ธ ํž˜์ด๋ผ๋Š”๊ฑธ
07:34
The first Industrial Revolution was based on the fact
145
454135
2773
07:36
that we invented something I would call artificial power.
146
456932
3462
๋งŒ๋“ค์—ˆ๋‹ค๋Š” ์‚ฌ์‹ค์— ๊ธฐ๋ฐ˜์„ ๋’€์Šต๋‹ˆ๋‹ค.
07:40
Previous to that,
147
460879
1150
์ด์ „์—๋Š”
์ฆ‰, ๋†์—… ํ˜๋ช…๋™์•ˆ์€
07:42
during the Agricultural Revolution,
148
462053
2034
๋ชจ๋“  ๊ฒƒ์ด ์‚ฌ๋žŒ์˜ ๋…ธ๋™๋ ฅ์œผ๋กœ ๋งŒ๋“ค์–ด์กŒ์•ผ ํ–ˆ์Šต๋‹ˆ๋‹ค.
07:44
everything that was made had to be made with human muscle
149
464111
3702
07:47
or animal power.
150
467837
1307
์•„๋‹ˆ๋ฉด ๋™๋ฌผ์˜ ํž˜์œผ๋กœ์š”.
07:49
That was the only way to get anything done.
151
469565
2063
์–ด๋– ํ•œ ๋ชฉ์ ์ด๋“ ์ง€ ์ธ๊ฐ„๊ณผ ๋™๋ฌผ์˜ ์œก์ฒด์  ๋…ธ๋™์€ ๋ถˆ๊ฐ€ํ”ผํ–ˆ์Šต๋‹ˆ๋‹ค.
07:51
The great innovation during the Industrial Revolution was,
152
471652
2945
์‚ฐ์—…ํ˜๋ช… ๋™์•ˆ ์ผ์–ด๋‚œ ํ˜์‹ ์ ์ธ ๋ณ€ํ™”๋Š”
07:54
we harnessed steam power, fossil fuels,
153
474621
3109
์šฐ๋ฆฌ๊ฐ€ ์ฆ๊ธฐ๊ธฐ๊ด€๊ณผ ํ™”์„์—ฐ๋ฃŒ๋ฅผ ์‚ฌ์šฉํ•ด
07:57
to make this artificial power that we could use
154
477754
3856
์ธ๊ฐ„์ด ์›ํ–ˆ๋˜ ๋ชจ๋“  ๊ฒƒ์— ์“ธ ์ˆ˜ ์žˆ๋Š”
08:01
to do anything we wanted to do.
155
481634
1669
์ธ๊ณต์ ์ธ ํž˜์„ ๋งŒ๋“ค์—ˆ๋‹ค๋Š” ๊ฒ๋‹ˆ๋‹ค.
08:03
So today when you drive down the highway,
156
483327
2772
๊ทธ๋ž˜์„œ ์˜ค๋Š˜๋‚  ์—ฌ๋Ÿฌ๋ถ„์ด ๊ณ ์†๋„๋กœ ์ฃผํ–‰์‹œ
08:06
you are, with a flick of the switch, commanding 250 horses --
157
486571
4525
๋‹จ์ˆœํžˆ ์Šค์œ„์น˜๋ฅผ ๋งŒ์ง€๋Š” ๊ฒƒ์œผ๋กœ 250๋งˆ๋ฆฌ์˜ ๋ง์˜ ์ง€ํœ˜ํšจ๊ณผ๋ฅผ ๊ฐ€์ง‘๋‹ˆ๋‹ค.
250 ๋งˆ๋ ฅ์€
08:11
250 horsepower --
158
491120
1572
08:12
which we can use to build skyscrapers, to build cities, to build roads,
159
492716
4692
๊ณ ์ธต ๊ฑด๋ฌผ์„ ์ง“๊ณ  ๋„์‹œ๋ฅผ ์„ธ์šฐ๋ฉฐ ๋„๋กœ๋ฅผ ๋‹ฆ๋Š”๋ฐ ์“ธ ์ˆ˜ ์žˆ๊ณ 
08:17
to make factories that would churn out lines of chairs or refrigerators
160
497432
5789
์˜์ž๋‚˜ ๋ƒ‰์žฅ๊ณ ๋ฅผ ๋งŒ๋“œ๋Š” ๊ณต์žฅ๋“ค์ด ๋Œ์•„๊ฐ€๊ฒŒ ๋งŒ๋“œ๋Š”,
08:23
way beyond our own power.
161
503245
1654
์ธ๊ฐ„์„ ํ•œ์ฐธ ๋„˜์–ด์„œ๋Š” ํž˜์ž…๋‹ˆ๋‹ค.
08:24
And that artificial power can also be distributed on wires on a grid
162
504923
6111
๊ทธ๋ฆฌ๊ณ  ์ด๋Ÿฐ ์ธ๊ณต์ ์ธ ํž˜์€
๋ชจ๋“  ์ง‘๊ณผ, ๊ณต์žฅ, ๋†๊ฐ€ ๋“ฑ์œผ๋กœ ๊ทธ๋ฆฌ๋“œ์ƒ์—์„œ ๋ถ„๋ฐฐ๋ฉ๋‹ˆ๋‹ค.
08:31
to every home, factory, farmstead,
163
511058
3199
08:34
and anybody could buy that artificial power,
164
514281
4191
๋ˆ„๊ตฌ๋‚˜ ์ธ๊ณต์ ์ธ ํž˜์„ ํ”Œ๋Ÿฌ๊ทธ๋ฅผ ๊ผฝ๊ธฐ๋งŒ ํ•˜๋ฉด ์‚ด ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
08:38
just by plugging something in.
165
518496
1472
08:39
So this was a source of innovation as well,
166
519992
2439
๊ทธ๋ž˜์„œ ์ด๋Š” ํ˜์‹ ์˜ ๊ทผ์›์ด์—ˆ์Šต๋‹ˆ๋‹ค.
08:42
because a farmer could take a manual hand pump,
167
522455
3418
์™œ๋ƒํ•˜๋ฉด ๋†๋ถ€๊ฐ€ ์ˆ˜๋™์‹ ํŽŒํ”„์—
08:45
and they could add this artificial power, this electricity,
168
525897
2916
์ด ์ธ๊ณต์ ์ธ ํž˜, ๋ฐ”๋กœ ์ „๊ธฐ๋ฅผ ์ ์šฉํ•˜์—ฌ
08:48
and he'd have an electric pump.
169
528837
1497
์ž๋™์‹ ํŽŒํ”„๋ฅผ ๊ฐ€์งˆ ์ˆ˜ ์žˆ์œผ๋‹ˆ๊นŒ์š”.
08:50
And you multiply that by thousands or tens of thousands of times,
170
530358
3318
์ด๋Ÿฐ ๊ฒฝ์šฐ๊ฐ€ ๋ช‡ ์ฒœ, ๋ช‡ ๋งŒ๋ฒˆ ๋ฐ˜๋ณต๋˜๊ณ 
08:53
and that formula was what brought us the Industrial Revolution.
171
533700
3159
๊ทธ๋ ‡๊ฒŒ ์ƒ๊ธฐ๋Š” ๊ณต์‹์ด ์šฐ๋ฆฌ๋ฅผ ์‚ฐ์—…ํ˜๋ช…์œผ๋กœ ์ด๋Œ์—ˆ์Šต๋‹ˆ๋‹ค.
08:56
All the things that we see, all this progress that we now enjoy,
172
536883
3585
์šฐ๋ฆฌ๊ฐ€ ๋ณด๋Š” ๋ชจ๋“ ๊ฒƒ๊ณผ ์šฐ๋ฆฌ๊ฐ€ ์ฆ๊ธฐ๋Š” ๋ชจ๋“  ๊ณผ์ •์€
09:00
has come from the fact that we've done that.
173
540492
2063
์šฐ๋ฆฌ๊ฐ€ ๊ทธ๋ฅผ ํ•ด๋ƒˆ๋‹ค๋Š” ์‚ฌ์‹ค๋กœ๋ถ€ํ„ฐ ๋น„๋กฏ๋ฉ๋‹ˆ๋‹ค.
09:02
We're going to do the same thing now with AI.
174
542579
2348
์šฐ๋ฆฌ๋Š” ์ธ๊ณต์ง€๋Šฅ์˜ ๊ฒฝ์šฐ ์—๋„ ์ด๋ฅผ ์ ์šฉํ•ด๋ณผ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
09:04
We're going to distribute that on a grid,
175
544951
2075
๋ฐฐ์ „๋ง์„ ํ†ตํ•ด ์ธ๊ณต์ง€๋Šฅ์„ ๋ถ„๋ฐฐํ•˜์—ฌ
์—ฌ๋Ÿฌ๋ถ„์€ ์ธ๊ณต์ ์ธ ํž˜์ด ๋”ํ•ด์ง„ ์ž๋™ํŽŒํ”„์—
09:07
and now you can take that electric pump.
176
547050
2374
09:09
You can add some artificial intelligence,
177
549448
2968
์ธ๊ณต์ ์ธ ์ง€๋Šฅ์„ ๋”ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
09:12
and now you have a smart pump.
178
552440
1481
๊ทธ๋ ‡๋‹ค๋ฉด ์—ฌ๋Ÿฌ๋ถ„์€ ์Šค๋งˆํŠธ ํŽŒํ”„๋ฅผ ๊ฐ€์งˆ์ˆ˜ ์žˆ์ฃ .
09:13
And that, multiplied by a million times,
179
553945
1928
๊ทธ๋ฆฌ๊ณ  ๋‹ค์‹œ ์ด๋ฅผ ์ˆ˜ ์—†์ด ๋ฐ˜๋ณตํ•˜์—ฌ
09:15
is going to be this second Industrial Revolution.
180
555897
2363
์ œ 2์ฐจ ์‚ฐ์—…ํ˜๋ช…์œผ๋กœ ๋‚˜์•„๊ฐˆ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
09:18
So now the car is going down the highway,
181
558284
2382
๊ทธ์— ๋”ฐ๋ผ์„œ, ์ด์ œ ๊ณ ์†๋„๋กœ๋ฅผ ๋‹ฌ๋ฆฌ๋Š” ์ฐจ๋Š”
09:20
it's 250 horsepower, but in addition, it's 250 minds.
182
560690
4294
250 ๋งˆ๋ ฅ์—๋‹ค๊ฐ€ 250๊ฐœ์˜ ์ƒ๊ฐ๊นŒ์ง€ ๊ฐ–์ถ˜
๋ฐ”๋กœ ์ž๋™์ฃผํ–‰ ์ž๋™์ฐจ๊ฐ€ ๋˜๊ฒ ์ง€์š”.
09:25
That's the auto-driven car.
183
565008
1769
09:26
It's like a new commodity;
184
566801
1389
์ด๊ฑด ๊ฑฐ์˜ ์ƒˆ๋กœ์šด ์ƒํ’ˆ์ž…๋‹ˆ๋‹ค.
09:28
it's a new utility.
185
568214
1303
์ƒˆ๋กœ์šด ์šฉ๋„์ด๋‹ˆ๊นŒ์š”.
09:29
The AI is going to flow across the grid -- the cloud --
186
569541
3041
์ธ๊ณต์ง€๋Šฅ์€ ์ด์ œ ์ƒ๊ณต์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ๊ธธ์„ ๋”ฐ๋ผ
09:32
in the same way electricity did.
187
572606
1567
์ „๊ธฐ๊ฐ€ ๊ทธ๋žฌ๋“ฏ ํผ์ ธ๋‚˜๊ฐˆ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
09:34
So everything that we had electrified,
188
574197
2380
๊ทธ๋Ÿผ์œผ๋กœ์จ ์ „๊ธฐ๋กœ ์ž‘๋™ํ•˜๋˜ ๋ชจ๋“  ๊ฒƒ์„
09:36
we're now going to cognify.
189
576601
1723
์ธ๊ณต์ง€๋Šฅํ™”(cognify)ํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
09:38
And I would suggest, then,
190
578693
1385
๊ทธ๋ฆฌ๊ณ  ์˜ˆ์–ธํ•˜๊ฑด๋ฐ,
๋ฏธ๋ž˜์— ๋งŽ์€ ์Šคํƒ€ํŠธ์—… ์‚ฌ์—…์˜ ์‹œ์ž‘์„ ์—ด ๊ณต์‹์€
09:40
that the formula for the next 10,000 start-ups
191
580102
3732
09:43
is very, very simple,
192
583858
1162
๋งค์šฐ ๊ฐ„๊ฒฐํ•ฉ๋‹ˆ๋‹ค.
๋ณ€์ˆ˜ x์— ์ธ๊ณต์ง€๋Šฅ์„ ๋”ํ•˜๋Š” ๊ฒƒ์ด์ฃ .
09:45
which is to take x and add AI.
193
585044
3167
์ด๊ฒŒ ๊ณต์‹์ด๊ณ  ๋ฐ”๋กœ ์šฐ๋ฆฌ๊ฐ€ ํ•  ์ผ์ž…๋‹ˆ๋‹ค.
09:49
That is the formula, that's what we're going to be doing.
194
589100
2812
09:51
And that is the way in which we're going to make
195
591936
3306
์ด๋ฅผ ํ†ตํ•ด ์šฐ๋ฆฌ๋Š”
09:55
this second Industrial Revolution.
196
595266
1858
2์ฐจ ์‚ฐ์—…ํ˜๋ช…์„ ์ผ์œผํ‚ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
๊ทธ๋‚˜์ €๋‚˜, ์—ฌ๋Ÿฌ๋ถ„์€ ์ง€๊ธˆ ๋‹น์žฅ, ๋ฐ”๋กœ ์—ฌ๊ธฐ์„œ
09:57
And by the way -- right now, this minute,
197
597148
2154
09:59
you can log on to Google
198
599326
1169
๊ตฌ๊ธ€์— ๋กœ๊ทธ์ธ ํ•ด์„œ
10:00
and you can purchase AI for six cents, 100 hits.
199
600519
3882
์ธ๊ณต์ง€๋Šฅ์„ 6์„ผํŠธ์— 100๋ฒˆ ์“ธ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
10:04
That's available right now.
200
604758
1604
์ด๊ฒŒ ์ง€๊ธˆ ๋‹น์žฅ ๊ฐ€๋Šฅ ํ•œ ๊ฑฐ๋ž€ ๋ง์ด์ฃ .
10:06
So the third aspect of this
201
606386
2286
์ด์— ๋Œ€ํ•œ ์„ธ ๋ฒˆ์งธ ์ธก๋ฉด์€
10:09
is that when we take this AI and embody it,
202
609315
2678
์šฐ๋ฆฌ๊ฐ€ ์ธ๊ณต์ง€๋Šฅ์„ ๊ตฌ์ฒดํ™”์‹œํ‚ค๊ณ 
๋กœ๋ด‡์„ ๋งŒ๋“ค์—ˆ์„ ๋•Œ์ž…๋‹ˆ๋‹ค.
10:12
we get robots.
203
612017
1173
10:13
And robots are going to be bots,
204
613214
1703
๋กœ๋ด‡์€ ์ˆ˜์กฑ์ด ๋  ๊ฒƒ์ด๊ณ 
10:14
they're going to be doing many of the tasks that we have already done.
205
614941
3328
๊ทธ๋“ค์€ ์šฐ๋ฆฌ๊ฐ€ ํ–ˆ๋˜ ์ผ๋“ค์„ ํ•˜๊ฒŒ ๋˜์ฃ .
10:20
A job is just a bunch of tasks,
206
620357
1528
์ง์—…์€ ์ผ์˜ ๋ญ‰ํ……์ด์ด๊ธฐ ๋•Œ๋ฌธ์—
10:21
so they're going to redefine our jobs
207
621909
1762
๋กœ๋ด‡์€ ์šฐ๋ฆฌ์˜ ์ง์—…์— ๋Œ€ํ•œ ๊ฐœ๋…์„ ์žฌ์ •๋ฆฝํ• ๊ฒ๋‹ˆ๋‹ค.
10:23
because they're going to do some of those tasks.
208
623695
2259
๊ทธ๋“ค์ด ๋ฐ”๋กœ ๊ทธ ์ผ์„ ๋งก๊ฒŒ ๋  ๊ฒƒ์ด๊ธฐ ๋•Œ๋ฌธ์ด์ฃ .
10:25
But they're also going to create whole new categories,
209
625978
3197
ํ•œํŽธ, ๋กœ๋ด‡์€ ์šฐ๋ฆฌ๊ฐ€ ์ „์—๋Š” ์›ํ–ˆ๋Š”์ง€์กฐ์ฐจ ๋ชฐ๋ž๋˜
10:29
a whole new slew of tasks
210
629199
2247
์ผ์˜ ์™„์ „ํžˆ ์ƒˆ๋กœ์šด ์ข…๋ฅ˜, ๋˜ ์™„์ „ํžˆ ์ƒˆ๋กœ์šด ์—…๋ฌด๋ฅผ
10:31
that we didn't know we wanted to do before.
211
631470
2457
๋งŒ๋“ค์–ด ๋‚ผ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
10:33
They're going to actually engender new kinds of jobs,
212
633951
3637
์ฆ‰, ๋กœ๋ด‡์˜ ํƒ„์ƒ์€ ์ƒˆ๋กœ์šด ์ง์—…๊ตฐ๊ณผ
10:37
new kinds of tasks that we want done,
213
637612
2271
์ธ๊ฐ„์ด ๋‹ฌ์„ฑํ•˜๊ณ  ์‹ถ์–ดํ•  ๊ณผ์ œ๋ฅผ ์ƒˆ๋กญ๊ฒŒ ๋งŒ๋“ค์–ด๋‚ผ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
๋งˆ์น˜ ์ž๋™ํ™”๋œ ๊ธฐ๊ธฐ๊ฐ€ ๊ณผ๊ฑฐ์—๋Š”
10:39
just as automation made up a whole bunch of new things
214
639907
3405
10:43
that we didn't know we needed before,
215
643336
1834
ํ•„์š”ํ–ˆ๋Š”์ง€ ์กฐ์ฐจ๋„ ๋ชฐ๋ž๋˜ ๊ฒƒ๋“ค์„ ๋งŒ๋“ค์–ด ๋ƒˆ๊ณ 
10:45
and now we can't live without them.
216
645194
1956
์ด์ œ๋Š” ์šฐ๋ฆฌ๊ฐ€ ๊ทธ๋“ค ์—†์ด๋Š” ์‚ด ์ˆ˜ ์—†๋Š” ๊ฒƒ์ฒ˜๋Ÿผ์š”.
๊ทธ๋ž˜์„œ ๋กœ๋ด‡๋“ค์€ ๊ทธ๋“ค์ด ์ฐจ์ง€ํ•œ ์ง์—…๋ณด๋‹ค ๋” ๋งŽ์€ ์ง์—…์„ ์–‘์ƒํ•ด ๋‚ผ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
10:47
So they're going to produce even more jobs than they take away,
217
647174
3956
๊ทธ๋Ÿฌ๋‚˜ ์ค‘์š”ํ•œ ์ ์€ ์šฐ๋ฆฌ๊ฐ€ ๊ทธ๋“ค์—๊ฒŒ ํ• ๋‹นํ•˜๋Š” ์—…๋ฌด๋“ค์˜ ๋Œ€๋ถ€๋ถ„์ด
10:51
but it's important that a lot of the tasks that we're going to give them
218
651154
3434
10:54
are tasks that can be defined in terms of efficiency or productivity.
219
654612
4572
ํšจ์œจ์„ฑ๊ณผ ์ƒ์‚ฐ์„ฑ์ด๋ผ๋Š” ๊ฐ€์น˜๋กœ ์ •์˜๋ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
10:59
If you can specify a task,
220
659676
1828
๋งŒ์•ฝ ๋‹น์‹ ์ด ์ผ์„ ๊ตฌ์ฒด์ ์œผ๋กœ ์„ค๋ช…ํ• ์ˆ˜ ์žˆ๋‹ค๋ฉด
11:01
either manual or conceptual,
221
661528
2235
์œก์ฒด์  ๋…ธ๋™์ด๋“  ์ •์‹ ์  ๋…ธ๋™์ด๋“ 
11:03
that can be specified in terms of efficiency or productivity,
222
663787
4780
๊ทธ ์ผ์€ ํšจ์œจ์„ฑ๊ณผ ์ƒ์‚ฐ์„ฑ์˜ ๊ด€์ ์—์„œ
11:08
that goes to the bots.
223
668591
1777
๋กœ๋ด‡์ด ๋Œ€์‹  ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ๋ถ„๋ฅ˜ ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
11:10
Productivity is for robots.
224
670758
2178
์ƒ์‚ฐ์„ฑ์€ ๋กœ๋ด‡์˜ ๋ชซ์ด๋ผ๋Š” ๊ฒ๋‹ˆ๋‹ค.
11:12
What we're really good at is basically wasting time.
225
672960
3070
์šฐ๋ฆฌ๊ฐ€ ๋กœ๋ด‡๋ณด๋‹ค ํ›จ์”ฌ ์ž˜ํ•˜๋Š” ๊ฑด ์†Œ์œ„ ์‹œ๊ฐ„์„ ๋‚ญ๋น„ํ•˜๋Š” ๊ฒƒ์ผํ…Œ๋‹ˆ๊นŒ์š”.
(์›ƒ์Œ)
11:16
(Laughter)
226
676054
1028
์‹ค์ œ๋กœ ์šฐ๋ฆฌ๋Š” ๋น„ํšจ์œจ์ ์ธ ๊ฑธ ์ž˜ํ•ฉ๋‹ˆ๋‹ค.
11:17
We're really good at things that are inefficient.
227
677106
2316
11:19
Science is inherently inefficient.
228
679446
3025
๊ณผํ•™์€ ๋ณธ์งˆ์ ์œผ๋กœ ๋น„ํšจ์œจ์ ์ด์ฃ .
11:22
It runs on that fact that you have one failure after another.
229
682816
2906
๊ณผํ•™์€ ์—ฌ๋Ÿฌ ๋ฒˆ ์‹คํŒจํ–ˆ๋‹ค๋Š” ์ ์— ๊ธฐ๋ฐ˜ํ•ฉ๋‹ˆ๋‹ค.
11:25
It runs on the fact that you make tests and experiments that don't work,
230
685746
3424
์—ฌ๋Ÿฌ๋ถ„์ด ์„ฑ๊ณตํ•˜์ง€ ๋ชปํ•œ ์‹คํ—˜๊ณผ ์‹œํ—˜์„ ํ–ˆ๋‹ค๋Š” ์‚ฌ์‹ค์— ๊ทผ๊ฑฐํ•ฉ๋‹ˆ๋‹ค.
11:29
otherwise you're not learning.
231
689194
1442
๊ทธ๋ ‡์ง€ ์•Š๋‹ค๋ฉด, ์ƒˆ๋กœ์šด ๊ฑธ ๋ฐฐ์šธ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.
11:30
It runs on the fact
232
690660
1162
๊ณผํ•™์€ ์ด์ฒ˜๋Ÿผ ํšจ์œจ์„ฑ์ด ๋งŽ์ด ๋ถ€์กฑํ•˜๋‹ค๋Š”
11:31
that there is not a lot of efficiency in it.
233
691846
2083
์ ์— ๊ธฐ๋ฐ˜์„ ๋‘ก๋‹ˆ๋‹ค.
11:33
Innovation by definition is inefficient,
234
693953
2779
ํ˜์‹ ์„ ์ •์˜ํ•˜์ž๋ฉด ๋ฐ”๋กœ ๋น„ํšจ์œจ์ผ ๊ฒ๋‹ˆ๋‹ค.
11:36
because you make prototypes,
235
696756
1391
์™œ๋ƒํ•˜๋ฉด ์—ฌ๋Ÿฌ๋ถ„์€ ์‹œ์ œํ’ˆ์„ ๋งŒ๋“ค ๊ฒƒ์ด๊ณ 
์‹คํŒจํ•˜๊ฑฐ๋‚˜ ์ž‘๋™ํ•˜์ง€ ์•Š์„ ๋ฌด์–ธ๊ฐ€๋ฅผ ์‹œ๋„ํ•ด๋ณด๊ฒ ์ฃ .
11:38
because you try stuff that fails, that doesn't work.
236
698171
2707
11:40
Exploration is inherently inefficiency.
237
700902
3112
๋ชจํ—˜๋„ ๊ทผ๋ณธ์  ๋น„ํšจ์œจ์„ฑ์„ ๊ฐ€์ง‘๋‹ˆ๋‹ค.
์˜ˆ์ˆ ๋„ ํšจ์œจ์ ์ด์ง€ ์•Š์•„์š”.
11:44
Art is not efficient.
238
704038
1531
11:45
Human relationships are not efficient.
239
705593
2127
์ธ๊ฐ„๊ด€๊ณ„ ๋˜ํ•œ ํšจ์œจ์ ์ด์ง€ ๋ชปํ•ฉ๋‹ˆ๋‹ค.
11:47
These are all the kinds of things we're going to gravitate to,
240
707744
2940
์ด๋Ÿฐ ๊ฒƒ๋“ค์€ ์šฐ๋ฆฌ๊ฐ€ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ๋Œ๋ฆฌ๋Š” ์ผ๋“ค์ž…๋‹ˆ๋‹ค.
11:50
because they're not efficient.
241
710708
1475
๋ฐ”๋กœ ๊ทธ๋“ค์ด ๋น„ํšจ์œจ์ ์ด๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
11:52
Efficiency is for robots.
242
712207
2315
ํšจ์œจ์„ฑ์€ ์ธ๊ฐ„์ด ์•„๋‹ˆ๋ผ ๋กœ๋ด‡๋“ค์—๊ฒŒ ์ค‘์š”ํ•œ ๊ฒƒ์ด์ฃ .
11:55
We're also going to learn that we're going to work with these AIs
243
715338
4123
์šฐ๋ฆฌ๋Š” ์•ž์œผ๋กœ ์ด ์ธ๊ณต์ง€๋Šฅ๋“ค๊ณผ ํ•จ๊ป˜ ์ผํ•ด์•ผ ํ•˜๋Š” ๊ฒƒ์— ๋Œ€ํ•ด ๋ฐฐ์›Œ์•ผํ•ฉ๋‹ˆ๋‹ค.
11:59
because they think differently than us.
244
719485
1997
๊ทธ๋“ค์€ ์šฐ๋ฆฌ๋ณด๋‹ค ๋‹ค๋ฅด๊ฒŒ ์ƒ๊ฐํ•˜๋‹ˆ๊นŒ์š”.
๋”ฅ ๋ธ”๋ฃจ๊ฐ€ ์„ธ๊ณ„ ์ œ์ผ์˜ ์ฒด์Šค ์ฑ”ํ”ผ์–ธ์—๊ฒŒ ์ด๊ฒผ์„ ๋•Œ
12:02
When Deep Blue beat the world's best chess champion,
245
722005
4314
12:06
people thought it was the end of chess.
246
726343
1929
์‚ฌ๋žŒ๋“ค์€ ๊ทธ๊ฒƒ์ด ์ฒด์Šค์˜ ๋์ด๋ผ๊ณ  ์ƒ๊ฐํ–ˆ์Šต๋‹ˆ๋‹ค.
12:08
But actually, it turns out that today, the best chess champion in the world
247
728296
4402
ํ•˜์ง€๋งŒ ์‹ค์ œ๋กœ๋Š”, ์š”์ฆ˜ ์„ธ๊ณ„์ œ์ผ์˜ ์ฒด์Šค ์ฑ”ํ”ผ์–ธ์€
12:12
is not an AI.
248
732722
1557
์ธ๊ณต์ง€๋Šฅ์ด ์•„๋‹™๋‹ˆ๋‹ค.
12:14
And it's not a human.
249
734906
1181
์ธ๊ฐ„๋„ ์•„๋‹™๋‹ˆ๋‹ค.
๋ฐ”๋กœ ์ธ๊ณต์ง€๋Šฅ๊ณผ ์ธ๊ฐ„์˜ ํŒ€์ด์ฃ .
12:16
It's the team of a human and an AI.
250
736111
2715
12:18
The best medical diagnostician is not a doctor, it's not an AI,
251
738850
4000
์ œ์ผ์˜ ์˜๋ฃŒ๋ถ„์„๊ฐ€๋Š” ์˜์‚ฌ๋„ ์•„๋‹ˆ๊ณ  ์ธ๊ณต์ง€๋Šฅ๋„ ์•„๋‹Œ
12:22
it's the team.
252
742874
1176
๋ฐ”๋กœ ์˜์‚ฌ์™€ ์ธ๊ณต์ง€๋Šฅ์˜ ํŒ€์ž…๋‹ˆ๋‹ค.
์šฐ๋ฆฌ๋Š” ์•ž์œผ๋กœ ์ด๋Ÿฐ ์ธ๊ณต์ง€๋Šฅ๋“ค๊ณผ ์ผํ•˜๊ฒŒ ๋  ๊ฒ๋‹ˆ๋‹ค.
12:24
We're going to be working with these AIs,
253
744074
2149
12:26
and I think you'll be paid in the future
254
746247
1995
๊ทธ๋ฆฌ๊ณ  ์—ฌ๋Ÿฌ๋ถ„์ด ๋ฏธ๋ž˜์— ์–ผ๋งˆ๋‚˜ ๋กœ๋ด‡๊ณผ ์ผ์„ ์ž˜ ํ• ์ˆ˜ ์žˆ๋Š”์ง€์— ๋”ฐ๋ผ
12:28
by how well you work with these bots.
255
748266
2391
์—ฐ๋ด‰์ด ๊ฒฐ์ •๋ ๊ฑฐ๋ผ๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
์ €์˜ ์„ธ๋ฒˆ์งธ ํฌ์ธํŠธ๋Š” ๋ฐ”๋กœ ์ด๊ฒ๋‹ˆ๋‹ค. ๊ทธ๋“ค์ด ๋‹ค๋ฅด๋‹ค๋Š” ๊ฒƒ.
12:31
So that's the third thing, is that they're different,
256
751026
4257
12:35
they're utility
257
755307
1165
๊ทธ๋“ค์€ ๋„๊ตฌ์˜ˆ์š”.
12:36
and they are going to be something we work with rather than against.
258
756496
3816
๊ทธ๋ž˜์„œ ๊ทธ๋“ค์€ ์šฐ๋ฆฌ๊ฐ€ ์ ๋Œ€์‹ฌ์„ ๊ฐ€์ง€๋Š” ๊ฒŒ ์•„๋‹ˆ๋ผ ํ•จ๊ป˜ ํ•  ์กด์žฌ์ž…๋‹ˆ๋‹ค.
12:40
We're working with these rather than against them.
259
760336
2639
์šฐ๋ฆฌ๋Š” ๊ทธ๋“ค์„ ๊ฑฐ๋ถ€ํ•˜์ง€ ์•Š๊ณ  ํ•จ๊ป˜ ์ผํ•˜๋ ค๊ณ  ํ•ด์•ผํ•ฉ๋‹ˆ๋‹ค.
12:42
So, the future:
260
762999
1477
๊ทธ๋ž˜์„œ ๋ฏธ๋ž˜์—๋Š”
12:44
Where does that take us?
261
764500
1420
์ด ๋ฏธ๋ž˜์— ์šฐ๋ฆฌ๋Š” ์–ด๋–ป๊ฒŒ ๋ ๊นŒ์š”?
12:45
I think that 25 years from now, they'll look back
262
765944
3567
์ €๋Š” 25๋…„ ํ›„์— ์ง€๊ธˆ์„ ๋Œ์•„๋ดค์„ ๋•Œ
12:49
and look at our understanding of AI and say,
263
769535
3125
์ธ๊ณต์ง€๋Šฅ์— ๋Œ€ํ•œ ์šฐ๋ฆฌ์˜ ์ดํ•ด๋ฅผ ๋ณด๊ณค ์ด๋Ÿฐ ๋ง์„ ํ•  ๊ฑฐ๋ผ๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
12:52
"You didn't have AI. In fact, you didn't even have the Internet yet,
264
772684
3300
"๋„ˆํฌ๋Š” AI๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์ง€ ์•Š์•„. ์†”์งํžˆ ๋งํ•˜์ž๋ฉด ๋„ˆํฌ๊ฐ€ ๊ฐ€์ง„ ๊ฑด
์•ž์œผ๋กœ 25๋…„ ๊ฐ„ ์žˆ์„ ๊ฒƒ์— ๋น„ํ•˜๋ฉด ์ธํ„ฐ๋„ท ์ •๋„๋„ ์•ˆ๋ผ."
12:56
compared to what we're going to have 25 years from now."
265
776008
2741
12:59
There are no AI experts right now.
266
779849
3047
์ง€๊ธˆ ๋‹น์žฅ์€ ์ธ๊ณต์ง€๋Šฅ ์ „๋ฌธ๊ฐ€๊ฐ€ ๋‹จ ํ•˜๋‚˜๋„ ์—†์Šต๋‹ˆ๋‹ค.
13:02
There's a lot of money going to it,
267
782920
1699
ํ˜„์žฌ ๋งŽ์€ ๋ˆ์ด ์ธ๊ณต์ง€๋Šฅ์— ์“ฐ์ด๊ณ  ์žˆ์–ด์š”.
13:04
there are billions of dollars being spent on it;
268
784643
2268
์ˆ˜์‹ญ์–ต ๋‹ฌ๋Ÿฌ์ฏค์€ ํˆฌ์ž๋˜๊ณ  ์žˆ๋Š”
13:06
it's a huge business,
269
786935
2164
๋งค์šฐ ํฐ ์‚ฌ์—…์ด์ฃ .
ํ•˜์ง€๋งŒ, 20๋…„ ํ›„์™€ ๋น„๊ตํ•˜๋ฉด ์ „๋ฌธ๊ฐ€๋ผ๊ณ  ํ• ๋งŒํ•œ๊ฒŒ ์—†์ฃ .
13:09
but there are no experts, compared to what we'll know 20 years from now.
270
789123
4272
๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๋Š” ์ง€๊ธˆ ์ •๋ง ์•„์ฃผ ์ดˆ๊ธฐ ๋‹จ๊ณ„์— ์žˆ์Šต๋‹ˆ๋‹ค.
13:14
So we are just at the beginning of the beginning,
271
794064
2885
13:16
we're in the first hour of all this.
272
796973
2163
์ด ๋ชจ๋“ ๊ฒƒ์˜ ์‹œ์ž‘์ ์— ์žˆ๋Š” ๊ฒƒ์ด์ฃ .
์šฐ๋ฆฌ๋Š” ์ธํ„ฐ๋„ท์˜ ์‹œ์ž‘์ ์— ์žˆ๊ณ .
13:19
We're in the first hour of the Internet.
273
799160
1935
์•ž์œผ๋กœ ๋‹ฅ์ณ์˜ฌ ๊ฒƒ์˜ ์‹œ์ž‘์ ์— ์žˆ์Šต๋‹ˆ๋‹ค.
13:21
We're in the first hour of what's coming.
274
801119
2040
13:23
The most popular AI product in 20 years from now,
275
803183
4153
20๋…„ ํ›„ ๋ชจ๋‘๊ฐ€ ์‚ฌ์šฉํ•˜๊ณ  ์žˆ์„
13:27
that everybody uses,
276
807360
1444
๊ฐ€์žฅ ์˜ํ–ฅ๋ ฅ์žˆ๋Š” ์ธ๊ณต์ง€๋Šฅ์€
13:29
has not been invented yet.
277
809499
1544
์•„์ง์€ ๋ฐœ๋ช…๋˜์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค.
13:32
That means that you're not late.
278
812464
2467
๊ทธ๊ฑด ์—ฌ๋Ÿฌ๋ถ„์ด ๋Šฆ์ง€ ์•Š์•˜๋‹จ ๊ฑธ ๋œปํ•ฉ๋‹ˆ๋‹ค.
13:35
Thank you.
279
815684
1151
๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
13:36
(Laughter)
280
816859
1026
(์›ƒ์Œ)
13:37
(Applause)
281
817909
2757
(๋ฐ•์ˆ˜)
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7