3 ways to spot a bad statistic | Mona Chalabi

250,041 views ・ 2017-04-17

TED


Please double-click on the English subtitles below to play the video.

Prevodilac: Ivana Krivokuća Lektor: Tijana Mihajlović
00:12
I'm going to be talking about statistics today.
0
12704
2763
Danas ću govoriti o statistici.
00:15
If that makes you immediately feel a little bit wary, that's OK,
1
15491
3138
Ako se zbog toga odmah osećate pomalo obazrivo, to je u redu;
00:18
that doesn't make you some kind of crazy conspiracy theorist,
2
18653
2859
to vas ne čini ludim teoretičarem zavere,
00:21
it makes you skeptical.
3
21536
1296
već vas čini skeptičnim.
00:22
And when it comes to numbers, especially now, you should be skeptical.
4
22856
3886
A kada se radi o brojevima, pogotovo sada, treba da budete skeptični.
00:26
But you should also be able to tell which numbers are reliable
5
26766
3011
Ali, takođe bi trebalo da možete da prepoznate
koji brojevi su pouzdani, a koji nisu.
00:29
and which ones aren't.
6
29801
1160
00:30
So today I want to try to give you some tools to be able to do that.
7
30985
3206
Danas želim da probam da vam pružim izvesna pomagala da biste to umeli.
00:34
But before I do,
8
34215
1169
Pre nego što to uradim,
00:35
I just want to clarify which numbers I'm talking about here.
9
35408
2839
želim samo da razjasnim o kojim brojevima ovde govorim.
00:38
I'm not talking about claims like,
10
38271
1635
Ne govorim o tvrdnjama poput:
00:39
"9 out of 10 women recommend this anti-aging cream."
11
39930
2449
„Devet od deset žena preporučuje ovu kremu protiv bora.“
00:42
I think a lot of us always roll our eyes at numbers like that.
12
42403
2972
Mislim da veliki broj nas uvek prevrće očima na takve brojeve.
00:45
What's different now is people are questioning statistics like,
13
45399
2984
Ono što je sada drugačije je što ljudi dovode u pitanje podatke poput:
00:48
"The US unemployment rate is five percent."
14
48407
2014
„Nezaposlenost u SAD je pet procenata.“
00:50
What makes this claim different is it doesn't come from a private company,
15
50445
3516
Ono po čemu je ova tvrdnja drugačija je to što ne proističe iz privatne firme,
00:53
it comes from the government.
16
53985
1388
već iz vlade.
Oko četiri od deset Amerikanaca ne veruje ekonomskim podacima
00:55
About 4 out of 10 Americans distrust the economic data
17
55397
3336
00:58
that gets reported by government.
18
58757
1573
o kojima izveštava vlast.
01:00
Among supporters of President Trump it's even higher;
19
60354
2491
Među pristalicama predsednika Trampa, taj broj je još veći; oko sedam od deset.
01:02
it's about 7 out of 10.
20
62869
1633
01:04
I don't need to tell anyone here
21
64526
1804
Ne treba nikome ovde da pričam
01:06
that there are a lot of dividing lines in our society right now,
22
66354
3011
da u našem društvu danas postoji mnogo linija razdvajanja,
01:09
and a lot of them start to make sense,
23
69389
1825
a mnoge počinju da imaju smisla
kada razumete odnos ljudi prema tim vladinim brojevima.
01:11
once you understand people's relationships with these government numbers.
24
71238
3687
01:14
On the one hand, there are those who say these statistics are crucial,
25
74949
3336
Sa jedne strane, tu su oni koji kažu da su ovi podaci od ključnog značaja,
01:18
that we need them to make sense of society as a whole
26
78309
2630
da su nam potrebni da bi nam društvo kao celina imalo smisla,
01:20
in order to move beyond emotional anecdotes
27
80963
2164
kako bismo prevazišli emocionale anegdote
01:23
and measure progress in an [objective] way.
28
83151
2410
i merili napredak na objektivan način.
01:25
And then there are the others,
29
85585
1467
Zatim, tu su oni drugi,
koji kažu da su ovi podaci elitistički,
01:27
who say that these statistics are elitist,
30
87076
2156
01:29
maybe even rigged;
31
89256
1208
možda čak i namešteni;
01:30
they don't make sense and they don't really reflect
32
90488
2394
da nemaju smisla i ne odražavaju zaista
01:32
what's happening in people's everyday lives.
33
92906
2296
ono što se dešava u svakodnevnom životu ljudi.
01:35
It kind of feels like that second group is winning the argument right now.
34
95226
3487
Nekako deluje da druga grupa trenutno pobeđuje u raspravi.
01:38
We're living in a world of alternative facts,
35
98737
2108
Živimo u svetu alternativnih činjenica,
01:40
where people don't find statistics this kind of common ground,
36
100869
2935
gde ljudi ne smatraju statističke podatke nekom vrstom zajedničke osnove,
01:43
this starting point for debate.
37
103828
1636
početnom tačkom za debatu.
01:45
This is a problem.
38
105488
1286
To je problem.
01:46
There are actually moves in the US right now
39
106798
2067
Trenutno zapravo postoje pokreti u SAD
01:48
to get rid of some government statistics altogether.
40
108889
2861
da se potpuno otarasimo nekih vladinih statističkih podataka.
01:51
Right now there's a bill in congress about measuring racial inequality.
41
111774
3387
Baš sada postoji predlog zakona u kongresu o merenju rasne nejednakosti.
01:55
The draft law says that government money should not be used
42
115185
2801
Nacrt zakona kaže da novac vlade ne treba koristiti
za prikupljanje podataka o rasnoj segregaciji.
01:58
to collect data on racial segregation.
43
118010
1902
01:59
This is a total disaster.
44
119936
1885
To je potpuna katastrofa.
02:01
If we don't have this data,
45
121845
1748
Ako nemamo ove podatke,
02:03
how can we observe discrimination,
46
123617
1778
kako možemo da posmatramo diskriminaciju,
02:05
let alone fix it?
47
125419
1278
a kamoli da je popravimo?
02:06
In other words:
48
126721
1188
Drugim rečima,
02:07
How can a government create fair policies
49
127933
2059
kako vlast može da stvara pravednu politiku
ako ne može da izmeri trenutni nivo nepravednosti?
02:10
if they can't measure current levels of unfairness?
50
130016
2771
02:12
This isn't just about discrimination,
51
132811
1794
Ovde se ne radi samo o diskriminaciji, već o svemu; razmislite o tome.
02:14
it's everything -- think about it.
52
134629
1670
Kako možemo donositi zakone o zdravstvenoj zaštiti
02:16
How can we legislate on health care
53
136323
1690
02:18
if we don't have good data on health or poverty?
54
138037
2271
ako nemamo dobre podatke o zdravlju ili siromaštvu?
02:20
How can we have public debate about immigration
55
140332
2198
Kako možemo javno debatovati o imigraciji ako se ne možemo makar složiti
02:22
if we can't at least agree
56
142554
1250
02:23
on how many people are entering and leaving the country?
57
143828
2643
oko toga koliko ljudi ulazi u zemlju i izlazi iz nje?
02:26
Statistics come from the state; that's where they got their name.
58
146495
3058
Statistički podaci proističu iz države; tako su dobili svoje ime.
02:29
The point was to better measure the population
59
149577
2157
Poenta je bila da se dobiju bolje mere stanovništva
02:31
in order to better serve it.
60
151758
1357
kako bi mu se bolje služilo.
02:33
So we need these government numbers,
61
153139
1725
Dakle, potrebni su nam ti vladini brojevi,
02:34
but we also have to move beyond either blindly accepting
62
154888
2647
ali treba i da prevaziđemo njihovo slepo prihvatanje,
02:37
or blindly rejecting them.
63
157559
1268
kao i slepo odbacivanje.
02:38
We need to learn the skills to be able to spot bad statistics.
64
158851
2997
Potrebne su nam veštine da bismo mogli da uočimo loše podatke.
02:41
I started to learn some of these
65
161872
1528
Počela sam da ih stičem
02:43
when I was working in a statistical department
66
163424
2166
kada sam radila na odeljenju za statistiku
02:45
that's part of the United Nations.
67
165614
1643
koje je deo Ujedinjenih nacija.
02:47
Our job was to find out how many Iraqis had been forced from their homes
68
167281
3406
Naš posao je bio da saznamo koliko Iračana je proterano iz svojih domova
02:50
as a result of the war,
69
170711
1158
kao posledica rata
02:51
and what they needed.
70
171893
1158
i šta im je potrebno.
To je bio zaista važan posao, ali, takođe, neverovatno težak.
02:53
It was really important work, but it was also incredibly difficult.
71
173075
3178
Svakoga dana smo donosili odluke
02:56
Every single day, we were making decisions
72
176277
2018
koje su uticale na tačnost naših brojeva -
02:58
that affected the accuracy of our numbers --
73
178319
2157
03:00
decisions like which parts of the country we should go to,
74
180500
2744
odluke poput toga u koje delove zemlje bi trebalo da idemo,
03:03
who we should speak to,
75
183268
1156
sa kim treba da razgovaramo, koja pitanja treba da postavljamo.
03:04
which questions we should ask.
76
184448
1568
03:06
And I started to feel really disillusioned with our work,
77
186040
2680
Počela sam da se osećam zaista razočarano u vezi sa našim radom,
03:08
because we thought we were doing a really good job,
78
188744
2518
jer smo mislili da zaista dobro obavljamo posao,
03:11
but the one group of people who could really tell us were the Iraqis,
79
191286
3278
ali ona grupa ljudi koja bi stvarno mogla da nam ispriča stvari bili su Iračani,
03:14
and they rarely got the chance to find our analysis, let alone question it.
80
194588
3540
a oni su retko imali priliku da naiđu na našu analizu,
a kamoli da je preispituju.
03:18
So I started to feel really determined
81
198152
1831
Zato sam postala zaista odlučna
03:20
that the one way to make numbers more accurate
82
200007
2311
da je jedini način da postignemo da brojevi budu tačniji
03:22
is to have as many people as possible be able to question them.
83
202342
3053
da omogućimo da što više ljudi može da ih preispituje.
03:25
So I became a data journalist.
84
205419
1434
Tako sam postala novinarka koja se bavi podacima.
03:26
My job is finding these data sets and sharing them with the public.
85
206877
3904
Moj posao je da pronađem skupove podataka i podelim ih sa javnošću.
03:30
Anyone can do this, you don't have to be a geek or a nerd.
86
210805
3173
Bilo ko to može, ne morate biti štreber ili bubalica.
Možete zanemariti te reči; koriste ih ljudi
03:34
You can ignore those words; they're used by people
87
214002
2355
koji pokušavaju da kažu da su pametni dok se pretvaraju da su skromni.
03:36
trying to say they're smart while pretending they're humble.
88
216381
2822
Apsolutno svako to može.
03:39
Absolutely anyone can do this.
89
219227
1589
03:40
I want to give you guys three questions
90
220840
2067
Htela bih da vam postavim tri pitanja
03:42
that will help you be able to spot some bad statistics.
91
222931
3005
koja će vam pomoći da možete da primetite loše statističke podatke.
03:45
So, question number one is: Can you see uncertainty?
92
225960
3507
Dakle, pitanje broj jedan glasi: možete li da uočite nepouzdanost?
03:49
One of things that's really changed people's relationship with numbers,
93
229491
3364
Jedna od stvari koja je zaista promenila odnos ljudi prema brojevima,
03:52
and even their trust in the media,
94
232879
1641
pa čak i njihovo poverenje u medije,
03:54
has been the use of political polls.
95
234544
2258
bilo je korišćenje političkih anketa.
03:56
I personally have a lot of issues with political polls
96
236826
2538
Lično imam mnogo problema sa političkim anketama
03:59
because I think the role of journalists is actually to report the facts
97
239388
3376
jer smatram da je uloga novinara da izveštava o činjenicama,
04:02
and not attempt to predict them,
98
242788
1553
a ne da pokušava da ih predvidi,
04:04
especially when those predictions can actually damage democracy
99
244365
2996
naročito kada ta previđanja mogu da naškode demokratiji
davanjem signala ljudima da se ne trude da glasaju za nekog
04:07
by signaling to people: don't bother to vote for that guy,
100
247385
2732
jer nema šanse.
04:10
he doesn't have a chance.
101
250141
1205
Stavimo to po strani za sada i popričajmo o preciznosti ovog nastojanja.
04:11
Let's set that aside for now and talk about the accuracy of this endeavor.
102
251370
3654
Na osnovu državnih izbora
04:15
Based on national elections in the UK, Italy, Israel
103
255048
4608
u Ujedinjenom Kraljevstvu, Italiji, Izraelu
04:19
and of course, the most recent US presidential election,
104
259680
2764
i, naravno, najskorijih predsedničkih izbora u SAD,
04:22
using polls to predict electoral outcomes
105
262468
2137
korišćenje anketa za predviđanje ishoda izbora
04:24
is about as accurate as using the moon to predict hospital admissions.
106
264629
3812
otprilike je tačno kao korišćenje meseca za predviđanje prijema u bolnice.
04:28
No, seriously, I used actual data from an academic study to draw this.
107
268465
4200
Ne, ozbiljno, koristila sam stvarne podatke iz akademske studije
da bih ovo nacrtala.
04:32
There are a lot of reasons why polling has become so inaccurate.
108
272689
3727
Postoji mnogo razloga zašto je anketiranje postalo tako netačno.
04:36
Our societies have become really diverse,
109
276440
1970
Naša društva su postala veoma raznolika,
04:38
which makes it difficult for pollsters to get a really nice representative sample
110
278434
3821
što otežava anketarima da dobiju fini reprezentativni uzorak stanovništva
04:42
of the population for their polls.
111
282279
1627
za svoje ankete.
04:43
People are really reluctant to answer their phones to pollsters,
112
283930
3006
Ljudi se nerado javljaju na telefon anketarima,
04:46
and also, shockingly enough, people might lie.
113
286960
2276
a, takođe, ko bi rekao, ljudi mogu da slažu.
04:49
But you wouldn't necessarily know that to look at the media.
114
289260
2811
Međutim, to nećete nužno znati pogledavši medije.
04:52
For one thing, the probability of a Hillary Clinton win
115
292095
2761
Između ostalog, o verovatnoći pobede Hilari Klinton
04:54
was communicated with decimal places.
116
294880
2791
izveštavano je pomoću decimalnih brojeva.
04:57
We don't use decimal places to describe the temperature.
117
297695
2621
Ne koristimo decimale da izrazimo temperaturu.
05:00
How on earth can predicting the behavior of 230 million voters in this country
118
300340
4228
Kako, pobogu, predviđanje ponašanja 230 miliona glasača u ovoj zemlji
05:04
be that precise?
119
304592
1829
može biti tako precizno?
05:06
And then there were those sleek charts.
120
306445
2002
Zatim, tu su bili oni doterani grafikoni.
05:08
See, a lot of data visualizations will overstate certainty, and it works --
121
308471
3973
Vidite, mnogo vizualizacije podataka će prenaglasiti sigurnost, i to deluje -
05:12
these charts can numb our brains to criticism.
122
312468
2620
ovi grafikoni mogu da otupe naš mozak za kriticizam.
05:15
When you hear a statistic, you might feel skeptical.
123
315112
2558
Kada čujete podatak, možda ćete biti skeptični.
05:17
As soon as it's buried in a chart,
124
317694
1635
Čim je upakovan u grafikon,
05:19
it feels like some kind of objective science,
125
319353
2129
čini se kao nekakva objektivna nauka,
05:21
and it's not.
126
321506
1249
a nije.
05:22
So I was trying to find ways to better communicate this to people,
127
322779
3103
Zato sam pokušavala da pronađem načine da ovo bolje prenesem ljudima,
05:25
to show people the uncertainty in our numbers.
128
325906
2504
da im pokažem nesigurnost u našim brojevima.
05:28
What I did was I started taking real data sets,
129
328434
2246
Počela sam da uzimam stvarne skupove podataka
05:30
and turning them into hand-drawn visualizations,
130
330704
2652
i pretvaram ih u vizualizacije nacrtane rukom,
05:33
so that people can see how imprecise the data is;
131
333380
2672
tako da ljudi mogu da vide koliko su podaci neprecizni;
tako da mogu da vide da je to uradilo ljudsko biće,
05:36
so people can see that a human did this,
132
336076
1996
05:38
a human found the data and visualized it.
133
338096
1972
čovek je našao podatke i vizualizovao ih.
05:40
For example, instead of finding out the probability
134
340092
2672
Na primer, umesto saznavanja verovatnoće
05:42
of getting the flu in any given month,
135
342788
2126
da dobijete grip u bilo kom mesecu,
05:44
you can see the rough distribution of flu season.
136
344938
2792
možete videti grubu raspodelu sezone gripa.
05:47
This is --
137
347754
1167
Ovo je -
05:48
(Laughter)
138
348945
1018
(Smeh)
05:49
a bad shot to show in February.
139
349987
1486
loš grafikon za pokazivanje u februaru.
05:51
But it's also more responsible data visualization,
140
351497
2455
Međutim, takođe je odgovornija vizualizacija podataka,
05:53
because if you were to show the exact probabilities,
141
353976
2455
jer ako biste pokazali tačne verovatnoće,
možda bi to podstaklo ljude da dobiju vakcine protiv gripa
05:56
maybe that would encourage people to get their flu jabs
142
356455
2592
u pogrešno vreme.
05:59
at the wrong time.
143
359071
1456
06:00
The point of these shaky lines
144
360983
1693
Svrha ovih nesigurnih linija
06:02
is so that people remember these imprecisions,
145
362700
2911
je da ljudi upamte te nepreciznosti,
06:05
but also so they don't necessarily walk away with a specific number,
146
365635
3227
ali i da ne ponesu nužno sa sobom određeni broj,
06:08
but they can remember important facts.
147
368886
1866
već da mogu zapamtiti važne činjenice.
06:10
Facts like injustice and inequality leave a huge mark on our lives.
148
370776
4024
Činjenice poput toga da nepravde i nejednakosti
ostavljaju veliki trag u našem životu.
06:14
Facts like Black Americans and Native Americans have shorter life expectancies
149
374824
4189
Činjenice poput toga da američki crnci i Indijanci imaju kraći životni vek
od pripadnika drugih rasa,
06:19
than those of other races,
150
379037
1400
06:20
and that isn't changing anytime soon.
151
380461
2138
a to se neće u skorije vreme promeniti.
06:22
Facts like prisoners in the US can be kept in solitary confinement cells
152
382623
3901
Činjenice poput toga da se zatvorenici u SAD mogu držati u samicama
06:26
that are smaller than the size of an average parking space.
153
386548
3342
koje su manje od veličine prosečnog mesta za parkiranje.
06:30
The point of these visualizations is also to remind people
154
390355
3335
Svrha ovih vizualizacija takođe je da se ljudi podsete
06:33
of some really important statistical concepts,
155
393714
2350
nekih veoma važnih statističkih koncepata,
06:36
concepts like averages.
156
396088
1636
kao što su prosečne vrednosti.
06:37
So let's say you hear a claim like,
157
397748
1668
Recimo da čujete tvrdnju kao što je:
06:39
"The average swimming pool in the US contains 6.23 fecal accidents."
158
399440
4434
„Prosečan bazen u SAD sadrži 6,23 fekalnih nezgoda.“
06:43
That doesn't mean every single swimming pool in the country
159
403898
2797
To ne znači da svaki bazen u zemlji
sadrži tačno 6,23 komada izmeta.
06:46
contains exactly 6.23 turds.
160
406719
2194
06:48
So in order to show that,
161
408937
1417
Kako bih to pokazala,
okrenula sam se prvobitnim podacima iz Centra za kontrolu i prevenciju bolesti
06:50
I went back to the original data, which comes from the CDC,
162
410378
2841
06:53
who surveyed 47 swimming facilities.
163
413243
2065
koji je izvršio procenu 47 objekata za plivanje.
06:55
And I just spent one evening redistributing poop.
164
415332
2391
A ja sam samo provela jedno veče u preraspodeli kake.
06:57
So you can kind of see how misleading averages can be.
165
417747
2682
Tako da možete videti kako prosek može da obmane.
07:00
(Laughter)
166
420453
1282
(Smeh)
07:01
OK, so the second question that you guys should be asking yourselves
167
421759
3901
U redu, drugo pitanje koje treba da postavite sebi
07:05
to spot bad numbers is:
168
425684
1501
da biste uočili loše brojeve
je da li vidite sebe u podacima.
07:07
Can I see myself in the data?
169
427209
1967
07:09
This question is also about averages in a way,
170
429200
2913
Ovo pitanje se na neki način odnosi i na prosečne vrednosti,
07:12
because part of the reason why people are so frustrated
171
432137
2605
jer je deo razloga zašto ljude toliko frustriraju
07:14
with these national statistics,
172
434766
1495
ovi nacionalni statistički podaci
to što ne iznose priču o tome ko pobeđuje a ko je na gubitku
07:16
is they don't really tell the story of who's winning and who's losing
173
436285
3273
usled državne politike.
07:19
from national policy.
174
439582
1156
Lako je razumeti zašto ljude frustriraju globalne prosečne vrednosti
07:20
It's easy to understand why people are frustrated with global averages
175
440762
3318
kada se ne poklapaju sa njihovim ličnim iskustvom.
07:24
when they don't match up with their personal experiences.
176
444104
2679
Htela sam da pokažem ljudima
07:26
I wanted to show people the way data relates to their everyday lives.
177
446807
3263
kako podaci imaju veze sa njihovim svakodnevnim životom.
Pokrenula sam rubriku za savete pod nazivom „Draga Mona“,
07:30
I started this advice column called "Dear Mona,"
178
450094
2246
07:32
where people would write to me with questions and concerns
179
452364
2726
gde bi mi ljudi pisali i iznosili svoja pitanja i probleme,
a ja bih pokušala da im odgovorim pomoću podataka.
07:35
and I'd try to answer them with data.
180
455114
1784
07:36
People asked me anything.
181
456922
1200
Ljudi su me svašta pitali,
07:38
questions like, "Is it normal to sleep in a separate bed to my wife?"
182
458146
3261
na primer: „Da li je normalno da spavam u odvojenom krevetu od svoje žene?“
07:41
"Do people regret their tattoos?"
183
461431
1591
„Da li se ljudi kaju zbog svojih tetovaža?“
07:43
"What does it mean to die of natural causes?"
184
463046
2164
„Šta znači umreti prirodnom smrću?“
07:45
All of these questions are great, because they make you think
185
465234
2966
Sva ta pitanja su sjajna, jer vas teraju da razmislite
07:48
about ways to find and communicate these numbers.
186
468224
2336
o tome kako da saznate i saopštite ove brojeve.
07:50
If someone asks you, "How much pee is a lot of pee?"
187
470584
2503
Ako vas neko pita: „Koliko piškenja je mnogo?“,
što je pitanje koje sam ja dobila,
07:53
which is a question that I got asked,
188
473111
2458
07:55
you really want to make sure that the visualization makes sense
189
475593
2980
želite da se postarate da vizualizacija ima smisla
za što je više ljudi moguće.
07:58
to as many people as possible.
190
478597
1747
08:00
These numbers aren't unavailable.
191
480368
1575
Ovi brojevi nisu nedostupni.
08:01
Sometimes they're just buried in the appendix of an academic study.
192
481967
3507
Ponekad su samo zakopani u prilogu akademske studije.
08:05
And they're certainly not inscrutable;
193
485498
1839
A svakako nisu nedokučivi;
ako zaista želite da proverite ove brojeve o količini mokrenja,
08:07
if you really wanted to test these numbers on urination volume,
194
487361
2975
08:10
you could grab a bottle and try it for yourself.
195
490360
2257
možete uzeti bočicu i pokušati sami.
08:12
(Laughter)
196
492641
1008
(Smeh)
08:13
The point of this isn't necessarily
197
493673
1694
Suština ovoga nije nužno
da svaki skup podataka mora da se izričito odnosi na vas.
08:15
that every single data set has to relate specifically to you.
198
495391
2877
Mene zanima koliko žena je dobilo novčanu kaznu u Francuskoj
08:18
I'm interested in how many women were issued fines in France
199
498292
2880
za nošenje vela na licu, ili nikaba,
08:21
for wearing the face veil, or the niqab,
200
501196
1959
čak iako ne živim u Francuskoj niti nosim veo preko lica.
08:23
even if I don't live in France or wear the face veil.
201
503179
2618
08:25
The point of asking where you fit in is to get as much context as possible.
202
505821
3835
Poenta postavljanja pitanja gde se vi uklapate
je da dobijete što je više konteksta moguće.
08:29
So it's about zooming out from one data point,
203
509680
2191
Dakle, radi se o tome da umanjite sliku sa jednog podataka,
08:31
like the unemployment rate is five percent,
204
511895
2104
na primer, stopa nezaposlenosti je 5%
08:34
and seeing how it changes over time,
205
514023
1757
i vidite kako se menja tokom vremena,
08:35
or seeing how it changes by educational status --
206
515804
2650
ili da vidite kako se menja s obzirom na status obrazovanja -
08:38
this is why your parents always wanted you to go to college --
207
518478
3104
zato su roditelji uvek želeli da idete na fakultet -
08:41
or seeing how it varies by gender.
208
521606
2032
ili da vidite kako varira s obzirom na pol.
08:43
Nowadays, male unemployment rate is higher
209
523662
2127
Danas je stopa nezaposlenosti muškaraca viša
08:45
than the female unemployment rate.
210
525813
1700
nego stopa nezaposlenosti žena.
08:47
Up until the early '80s, it was the other way around.
211
527537
2695
Do ranih '80-ih godina, bilo je obrnuto.
08:50
This is a story of one of the biggest changes
212
530256
2117
Ovo je priča o jednoj od najvećih promena
08:52
that's happened in American society,
213
532397
1720
koja se dogodila u američkom društvu.
i sve je na tom grafikonu, kada sagledate stvari izvan proseka.
08:54
and it's all there in that chart, once you look beyond the averages.
214
534141
3276
08:57
The axes are everything;
215
537441
1165
Sve je u osama;
08:58
once you change the scale, you can change the story.
216
538630
2669
kada promenite nivo sagledavanja, možete promeniti priču.
09:01
OK, so the third and final question that I want you guys to think about
217
541323
3380
U redu, treće i poslednje pitanje o kojem želim da razmišljate
09:04
when you're looking at statistics is:
218
544727
1819
kada posmatrate statističke podatke
je kako su podaci prikupljeni.
09:06
How was the data collected?
219
546570
1873
09:09
So far, I've only talked about the way data is communicated,
220
549487
2939
Do sada sam govorila samo o načinu na koji se podaci saopštavaju,
09:12
but the way it's collected matters just as much.
221
552450
2276
ali način njihovog prikupljanja podjednako je bitan.
09:14
I know this is tough,
222
554750
1167
Znam da je ovo teško,
09:15
because methodologies can be opaque and actually kind of boring,
223
555941
3081
jer metodologija može biti nejasna i nekako dosadna,
ali postoje jednostavni koraci pomoću kojih možete ovo proveriti.
09:19
but there are some simple steps you can take to check this.
224
559046
2873
09:21
I'll use one last example here.
225
561943
1839
Ovde ću upotrebiti jedan poslednji primer.
09:24
One poll found that 41 percent of Muslims in this country support jihad,
226
564129
3887
Jedna anketa je otkrila da 41 odsto muslimana u ovoj zemlji podržava džihad,
što je očigledno prilično zastrašujuće
09:28
which is obviously pretty scary,
227
568040
1525
09:29
and it was reported everywhere in 2015.
228
569589
2642
i o tome se izveštavalo svuda 2015. godine.
09:32
When I want to check a number like that,
229
572255
2615
Kada hoću da proverim takvu brojku,
09:34
I'll start off by finding the original questionnaire.
230
574894
2501
počeću pronalaženjem originalnog upitnika.
09:37
It turns out that journalists who reported on that statistic
231
577419
2926
Ispostavilo se da su novinari koji su izveštavali o tom podatku
09:40
ignored a question lower down on the survey
232
580369
2231
zanemarili pitanje nešto niže na anketi
09:42
that asked respondents how they defined "jihad."
233
582624
2346
koje je pitalo ispitanike kako definišu „džihad“,
09:44
And most of them defined it as,
234
584994
1981
a većina njih ga je definisala
09:46
"Muslims' personal, peaceful struggle to be more religious."
235
586999
3942
kao „ličnu, mirnu borbu muslimana da budu religiozniji“.
09:50
Only 16 percent defined it as, "violent holy war against unbelievers."
236
590965
4194
Samo 16 procenata ga je definisalo kao „nasilan sveti rat protiv nevernika“.
09:55
This is the really important point:
237
595183
2430
To je zaista bitan deo;
09:57
based on those numbers, it's totally possible
238
597637
2155
na osnovu tih brojeva, sasvim je moguće
09:59
that no one in the survey who defined it as violent holy war
239
599816
3105
da niko ko ga je u istraživanju definisao kao nasilni sveti rat
10:02
also said they support it.
240
602945
1332
nije rekao i da ga podržava.
10:04
Those two groups might not overlap at all.
241
604301
2208
Te dve grupe se možda uopšte ne preklapaju.
10:06
It's also worth asking how the survey was carried out.
242
606942
2637
Takođe, vredi pitati kako je istraživanje sprovedeno.
10:09
This was something called an opt-in poll,
243
609603
1998
Ovo je bilo nešto što se zove opciona anketa,
10:11
which means anyone could have found it on the internet and completed it.
244
611625
3402
što znači da je bilo ko mogao da je nađe na internetu i popuni je.
Nema načina da se sazna da li se ti ljudi uopšte identifikuju kao muslimani.
10:15
There's no way of knowing if those people even identified as Muslim.
245
615051
3339
10:18
And finally, there were 600 respondents in that poll.
246
618414
2612
Naposletku, u toj anketi je bilo 600 ispitanika.
U ovoj zemlji ima približno tri miliona muslimana,
10:21
There are roughly three million Muslims in this country,
247
621050
2654
10:23
according to Pew Research Center.
248
623728
1607
prema Centru za istraživanje Pju.
To znači da se anketa obraćala otprilike jednom od svakih 5 000 muslimana
10:25
That means the poll spoke to roughly one in every 5,000 Muslims
249
625359
2993
10:28
in this country.
250
628376
1168
u ovoj zemlji.
10:29
This is one of the reasons
251
629568
1266
To je jedan od razloga
10:30
why government statistics are often better than private statistics.
252
630858
3607
zašto su vladini statistički podaci često bolji od privatnih.
10:34
A poll might speak to a couple hundred people, maybe a thousand,
253
634489
3035
Anketa se može obratiti par stotina ljudi, možda hiljadu,
10:37
or if you're L'Oreal, trying to sell skin care products in 2005,
254
637548
3058
ili ako ste Loreal i pokušavate da prodate proizvode za negu kože 2005. godine,
10:40
then you spoke to 48 women to claim that they work.
255
640630
2417
onda ste razgovarali sa 48 žena da biste tvrdili da deluju.
10:43
(Laughter)
256
643071
1026
(Smeh)
10:44
Private companies don't have a huge interest in getting the numbers right,
257
644121
3556
Privatne kompanije nemaju veliki interes da dobiju ispravne brojeve,
10:47
they just need the right numbers.
258
647701
1755
već su im samo potrebni odgovarajući brojevi.
10:49
Government statisticians aren't like that.
259
649480
2020
Vladini statističari nisu takvi.
10:51
In theory, at least, they're totally impartial,
260
651524
2447
Makar u teoriji, sasvim su nepristrasni,
10:53
not least because most of them do their jobs regardless of who's in power.
261
653995
3501
ne samo zato što većina njih obavlja svoj posao
bez obzira na to ko je na vlasti.
10:57
They're civil servants.
262
657520
1162
Oni su državni službenici.
10:58
And to do their jobs properly,
263
658706
1964
A da bi valjano radili svoj posao,
11:00
they don't just speak to a couple hundred people.
264
660694
2363
ne govore samo sa par stotina ljudi.
Oni brojevi vezani za nezaposlenost na koje se uporno pozivam
11:03
Those unemployment numbers I keep on referencing
265
663081
2318
11:05
come from the Bureau of Labor Statistics,
266
665423
2004
su iz odeljenja za statistiku Ministarstva za rad,
11:07
and to make their estimates,
267
667451
1335
a da bi izvršili svoje procene,
11:08
they speak to over 140,000 businesses in this country.
268
668810
3489
oni se obraćaju preko 140 000 firmi u ovoj zemlji.
11:12
I get it, it's frustrating.
269
672323
1725
Kapiram, to frustrira.
Ako želite da proverite podatke koji dolaze iz privatne kompanije,
11:14
If you want to test a statistic that comes from a private company,
270
674072
3115
11:17
you can buy the face cream for you and a bunch of friends, test it out,
271
677211
3361
možete da kupite kremu za lice za sebe i gomilu prijatelja, isprobate,
11:20
if it doesn't work, you can say the numbers were wrong.
272
680596
2591
a ako ne deluje, možete reći da su brojevi bili pogrešni.
11:23
But how do you question government statistics?
273
683211
2146
Međutim, kako da preispitate vladine podatke?
11:25
You just keep checking everything.
274
685381
1630
Samo uporno sve proveravajte.
Saznajte kako su prikupili brojeve.
11:27
Find out how they collected the numbers.
275
687035
1913
11:28
Find out if you're seeing everything on the chart you need to see.
276
688972
3125
Otkrijte da li na grafikonu vidite sve što treba da vidite.
Ali, ne odustajte sasvim od brojeva, jer ako odustanete,
11:32
But don't give up on the numbers altogether, because if you do,
277
692121
2965
donosićemo odluke o javnoj politici u neznanju,
11:35
we'll be making public policy decisions in the dark,
278
695110
2439
isključivo koristeći lične interese kao smernice.
11:37
using nothing but private interests to guide us.
279
697573
2262
11:39
Thank you.
280
699859
1166
Hvala.
(Aplauz)
11:41
(Applause)
281
701049
2461
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7