3 ways to spot a bad statistic | Mona Chalabi

250,041 views ・ 2017-04-17

TED


請雙擊下方英文字幕播放視頻。

譯者: 易帆 余 審譯者: Wilde Luo
00:12
I'm going to be talking about statistics today.
0
12704
2763
今天我要來談談統計。
00:15
If that makes you immediately feel a little bit wary, that's OK,
1
15491
3138
如果讓你感覺到 一點點的焦慮,沒關係,
00:18
that doesn't make you some kind of crazy conspiracy theorist,
2
18653
2859
這場演講不會讓你變成 瘋狂的陰謀論者,
00:21
it makes you skeptical.
3
21536
1296
它能讓你學會懷疑。
00:22
And when it comes to numbers, especially now, you should be skeptical.
4
22856
3886
一提到數據,特別是現在, 你更要懷疑。
00:26
But you should also be able to tell which numbers are reliable
5
26766
3011
但你也必須要有能力 判讀哪些數據是可靠的,
00:29
and which ones aren't.
6
29801
1160
哪些是不可靠的。
00:30
So today I want to try to give you some tools to be able to do that.
7
30985
3206
所以我今天要教大家 一些判斷的工具。
00:34
But before I do,
8
34215
1169
但在這之前,
00:35
I just want to clarify which numbers I'm talking about here.
9
35408
2839
我想要先說明 我所談論的是哪一種數據。
00:38
I'm not talking about claims like,
10
38271
1635
我並不是要談類似這樣的數據:
00:39
"9 out of 10 women recommend this anti-aging cream."
11
39930
2449
「十位女性當中有九位 會推薦這款抗老化乳液」
00:42
I think a lot of us always roll our eyes at numbers like that.
12
42403
2972
我們很多人聽到那樣的說法 會不相信而翻眼珠。
00:45
What's different now is people are questioning statistics like,
13
45399
2984
但是我現在要談的, 是人們會質疑的一些統計數據,
例如「美國的失業率是 5% 」。
00:48
"The US unemployment rate is five percent."
14
48407
2014
00:50
What makes this claim different is it doesn't come from a private company,
15
50445
3516
兩者的差異在於後者這宣稱 (失業率)並非來自私人企業,
00:53
it comes from the government.
16
53985
1388
而是來自政府機構。
00:55
About 4 out of 10 Americans distrust the economic data
17
55397
3336
實際上,如今每十個美國人當中
就有四個人根本不相信 政府公布的經濟數據。
00:58
that gets reported by government.
18
58757
1573
01:00
Among supporters of President Trump it's even higher;
19
60354
2491
而川普總統的支持者當中, 不相信的比例更高,
01:02
it's about 7 out of 10.
20
62869
1633
大約十個人裡面會有七個。
01:04
I don't need to tell anyone here
21
64526
1804
我並不想在這裡解釋
01:06
that there are a lot of dividing lines in our society right now,
22
66354
3011
在目前社會中的許多分界線;
01:09
and a lot of them start to make sense,
23
69389
1825
一旦你了解政府公佈的數據 與民眾之間的關係,
01:11
once you understand people's relationships with these government numbers.
24
71238
3687
這些分界線就開始變得有意義了。
01:14
On the one hand, there are those who say these statistics are crucial,
25
74949
3336
一方面,有些人認為 這些數據是至關重要的,
01:18
that we need them to make sense of society as a whole
26
78309
2630
這些數據能讓我們 瞭解整個社會的狀況,
01:20
in order to move beyond emotional anecdotes
27
80963
2164
為了就是要避免 各種情感上的糾葛,
01:23
and measure progress in an [objective] way.
28
83151
2410
並且以客觀的方式 衡量政策的發展。
01:25
And then there are the others,
29
85585
1467
另外一群人則認為,
01:27
who say that these statistics are elitist,
30
87076
2156
這些統計數據 都是來自菁英份子,
01:29
maybe even rigged;
31
89256
1208
甚至可能是受到操縱的;
01:30
they don't make sense and they don't really reflect
32
90488
2394
這些數據沒有意義, 而且根本無法真正反映
01:32
what's happening in people's everyday lives.
33
92906
2296
一般民眾的日常生活狀況。
01:35
It kind of feels like that second group is winning the argument right now.
34
95226
3487
目前看來,主張第二種觀點的人 似乎是對的。
01:38
We're living in a world of alternative facts,
35
98737
2108
我們生活的世界中 胡說八道已成常態,
01:40
where people don't find statistics this kind of common ground,
36
100869
2935
民眾對這些數據沒有基本共識,
01:43
this starting point for debate.
37
103828
1636
也不會把這些數據 視為爭論時的基準點。
01:45
This is a problem.
38
105488
1286
這會是個問題。
01:46
There are actually moves in the US right now
39
106798
2067
實際上,目前有一股風潮 正在席捲美國,
01:48
to get rid of some government statistics altogether.
40
108889
2861
他們認為應該要全面擺脫 政府統計數據的束縛。
01:51
Right now there's a bill in congress about measuring racial inequality.
41
111774
3387
目前國會正在審查一項有關 評估種族不平等的法案。
01:55
The draft law says that government money should not be used
42
115185
2801
草案中主張, 政府不應該把經費運用於
01:58
to collect data on racial segregation.
43
118010
1902
收集各種有關種族隔離的資料上。
01:59
This is a total disaster.
44
119936
1885
這簡直是一場災難。
02:01
If we don't have this data,
45
121845
1748
如果我們缺乏這樣的資料,
02:03
how can we observe discrimination,
46
123617
1778
我們要如何觀察種族歧視現象?
02:05
let alone fix it?
47
125419
1278
更不用提要如何修正它?
02:06
In other words:
48
126721
1188
換句話說:
02:07
How can a government create fair policies
49
127933
2059
如果政府無法衡量 目前不公的程度,
02:10
if they can't measure current levels of unfairness?
50
130016
2771
他們要如何制訂公平的政策?
02:12
This isn't just about discrimination,
51
132811
1794
這也不只是攸關歧視的問題,
02:14
it's everything -- think about it.
52
134629
1670
也會牽扯到所有的事情,各位想想:
02:16
How can we legislate on health care
53
136323
1690
如果我們沒有 健康或貧困的正確數據,
02:18
if we don't have good data on health or poverty?
54
138037
2271
我們要如何制訂 衛生保健的相關法案?
02:20
How can we have public debate about immigration
55
140332
2198
如果我們連有多少人正要移入、 遷出我們的國家,
02:22
if we can't at least agree
56
142554
1250
都缺乏一致的共識,
02:23
on how many people are entering and leaving the country?
57
143828
2643
我們要如何對於移民政策 進行公開的辯論?
02:26
Statistics come from the state; that's where they got their name.
58
146495
3058
統計(Statistics) 這個字, 就是源自於國家事務(State)。
02:29
The point was to better measure the population
59
149577
2157
重點是,要更精確地 測量人口的分布,
02:31
in order to better serve it.
60
151758
1357
才能為社會大眾提供更好的服務。
02:33
So we need these government numbers,
61
153139
1725
所以我們需要政府的數據,
02:34
but we also have to move beyond either blindly accepting
62
154888
2647
但我們也需要摒除全盤接受
02:37
or blindly rejecting them.
63
157559
1268
或是全盤否定的迷思。
02:38
We need to learn the skills to be able to spot bad statistics.
64
158851
2997
我們需要學會 辨識劣質統計數據的方法。
02:41
I started to learn some of these
65
161872
1528
當我在聯合國的統計部門工作時,
02:43
when I was working in a statistical department
66
163424
2166
我開始學會了一些辨識的技巧。
02:45
that's part of the United Nations.
67
165614
1643
02:47
Our job was to find out how many Iraqis had been forced from their homes
68
167281
3406
我們的工作是要了解 有多少伊拉克人民
因為戰爭而被迫離開家鄉,
02:50
as a result of the war,
69
170711
1158
02:51
and what they needed.
70
171893
1158
並且了解他們的需求。
02:53
It was really important work, but it was also incredibly difficult.
71
173075
3178
這是很重要的工作, 但也非常困難。
02:56
Every single day, we were making decisions
72
176277
2018
我們每天所作的決策,
02:58
that affected the accuracy of our numbers --
73
178319
2157
都會影響數據的準確性,
03:00
decisions like which parts of the country we should go to,
74
180500
2744
像是我們應該要前往 這個國家的哪些地區、
03:03
who we should speak to,
75
183268
1156
我們要與誰談話、
03:04
which questions we should ask.
76
184448
1568
應該問哪些問題...等等。
03:06
And I started to feel really disillusioned with our work,
77
186040
2680
但我對於工作的幻想 很快就破滅了,
03:08
because we thought we were doing a really good job,
78
188744
2518
因為我們自認這項工作很有意義,
03:11
but the one group of people who could really tell us were the Iraqis,
79
191286
3278
但是能夠告訴我們 真實情況的伊拉克民眾,
03:14
and they rarely got the chance to find our analysis, let alone question it.
80
194588
3540
他們根本沒機會看到我們的分析, 更別說是提出質疑了。
03:18
So I started to feel really determined
81
198152
1831
所以我愈來愈確信,
03:20
that the one way to make numbers more accurate
82
200007
2311
要讓數據更為準確的方法,
03:22
is to have as many people as possible be able to question them.
83
202342
3053
就是盡量讓更多人對數據提出質疑。
03:25
So I became a data journalist.
84
205419
1434
所以我變成一位數據記者。
03:26
My job is finding these data sets and sharing them with the public.
85
206877
3904
我的工作就是找到這些資料, 並且公開分享給社會大眾。
03:30
Anyone can do this, you don't have to be a geek or a nerd.
86
210805
3173
任何人都能做得到, 你不需要是個技術極客或是怪咖。
03:34
You can ignore those words; they're used by people
87
214002
2355
你不用理會這些名詞;
這是某些人想要表現聰明, 卻假裝謙虛時所用的字眼。
03:36
trying to say they're smart while pretending they're humble.
88
216381
2822
任何人絕對都可以做到。
03:39
Absolutely anyone can do this.
89
219227
1589
03:40
I want to give you guys three questions
90
220840
2067
所以我想給各位三個問題,
03:42
that will help you be able to spot some bad statistics.
91
222931
3005
它們可以幫助你辨識出 劣質的統計數據。
03:45
So, question number one is: Can you see uncertainty?
92
225960
3507
問題一: 你是否能看出數據的不確定性?
03:49
One of things that's really changed people's relationship with numbers,
93
229491
3364
有件事真正會改變 民眾與數據的關係,
03:52
and even their trust in the media,
94
232879
1641
甚至改變對媒體的信任,
03:54
has been the use of political polls.
95
234544
2258
其中一個方式就是 對選舉民調的濫用。
03:56
I personally have a lot of issues with political polls
96
236826
2538
我個人對選舉民調的 報導方式很有意見,
03:59
because I think the role of journalists is actually to report the facts
97
239388
3376
因為我認為記者扮演的角色, 就只是報導事實,
04:02
and not attempt to predict them,
98
242788
1553
而不是嘗試著預測結果,
04:04
especially when those predictions can actually damage democracy
99
244365
2996
特別是那些會傷害民主 的選舉預測,
像是暗示選民說: 別再費心給那個傢伙投票了,
04:07
by signaling to people: don't bother to vote for that guy,
100
247385
2732
他根本沒機會當選。
04:10
he doesn't have a chance.
101
250141
1205
我們把這個話題擺一邊, 先來談談這樣做的效果如何。
04:11
Let's set that aside for now and talk about the accuracy of this endeavor.
102
251370
3654
根據幾個國家的選舉, 像是英國、義大利、以色列,
04:15
Based on national elections in the UK, Italy, Israel
103
255048
4608
04:19
and of course, the most recent US presidential election,
104
259680
2764
當然還有最近的美國總統大選,
04:22
using polls to predict electoral outcomes
105
262468
2137
可以看到運用民調來預測選舉結果,
04:24
is about as accurate as using the moon to predict hospital admissions.
106
264629
3812
準確度就像觀測天象來預測 是否應該住院,同樣的不可靠。
04:28
No, seriously, I used actual data from an academic study to draw this.
107
268465
4200
說真的,我用了一份學術研究報告 的真實資料,畫出這張圖。
04:32
There are a lot of reasons why polling has become so inaccurate.
108
272689
3727
民調變得不準確,有很多原因。
04:36
Our societies have become really diverse,
109
276440
1970
我們的社會已經變得相當多元化,
04:38
which makes it difficult for pollsters to get a really nice representative sample
110
278434
3821
讓從事民意調查的人很難挑選出
真正能代表選民意願的樣本。
04:42
of the population for their polls.
111
282279
1627
04:43
People are really reluctant to answer their phones to pollsters,
112
283930
3006
人們已經很厭倦回答民調電話,
04:46
and also, shockingly enough, people might lie.
113
286960
2276
而且令人震驚的是, 受訪者還可能會說謊。
04:49
But you wouldn't necessarily know that to look at the media.
114
289260
2811
但是你在媒體報導中 不會知道這些事情。
04:52
For one thing, the probability of a Hillary Clinton win
115
292095
2761
例如希拉蕊·柯林頓 贏得選舉的機率,
04:54
was communicated with decimal places.
116
294880
2791
竟然可以精確到小數點?
04:57
We don't use decimal places to describe the temperature.
117
297695
2621
我們描述氣溫都不會這麽精確。
05:00
How on earth can predicting the behavior of 230 million voters in this country
118
300340
4228
所以怎麼可能對於全國 二億三千萬選民的行為,
05:04
be that precise?
119
304592
1829
能夠做出如此精確的預測?
05:06
And then there were those sleek charts.
120
306445
2002
還有一些看似井然有條的圖表,
05:08
See, a lot of data visualizations will overstate certainty, and it works --
121
308471
3973
各位知道嗎,有許多的視覺化設計,
會誇大資料的準確性,而且很有效。
05:12
these charts can numb our brains to criticism.
122
312468
2620
這些圖表會麻痺我們的大腦, 讓我們無法做出判斷。
05:15
When you hear a statistic, you might feel skeptical.
123
315112
2558
當你聽到一個統計數據, 你可能會覺得懷疑。
05:17
As soon as it's buried in a chart,
124
317694
1635
但是當數據變成了圖表,
05:19
it feels like some kind of objective science,
125
319353
2129
看起來就成為客觀的科學調查結果,
05:21
and it's not.
126
321506
1249
但實際上並非如此。
05:22
So I was trying to find ways to better communicate this to people,
127
322779
3103
所以,我試著找出一些方法, 清楚地告訴大家這些事,
05:25
to show people the uncertainty in our numbers.
128
325906
2504
讓大家知道數據本身的不確定性。
05:28
What I did was I started taking real data sets,
129
328434
2246
而我所做的,就是把這些數據
05:30
and turning them into hand-drawn visualizations,
130
330704
2652
用手繪的視覺化設計來呈現,
05:33
so that people can see how imprecise the data is;
131
333380
2672
好讓人們可以看到 資料是如此的不精確;
05:36
so people can see that a human did this,
132
336076
1996
所以大家會看到, 有人作了這個調查,
05:38
a human found the data and visualized it.
133
338096
1972
然後有人找到這些數據, 並且將它視覺化。
05:40
For example, instead of finding out the probability
134
340092
2672
舉個例子,
我們不去找出每個月 民眾患流行性感冒的機率,
05:42
of getting the flu in any given month,
135
342788
2126
05:44
you can see the rough distribution of flu season.
136
344938
2792
而是得到整個流感季節 的大致分布情形。
05:47
This is --
137
347754
1167
就是這一張圖。
05:48
(Laughter)
138
348945
1018
05:49
a bad shot to show in February.
139
349987
1486
(笑聲)
正值二月,這數據真不適時宜。
05:51
But it's also more responsible data visualization,
140
351497
2455
但這樣的視覺化呈現方式 是比較可靠的,
05:53
because if you were to show the exact probabilities,
141
353976
2455
因為如果你是用精確的機率來呈現,
05:56
maybe that would encourage people to get their flu jabs
142
356455
2592
也許會誤導民眾
在錯誤的時間注射疫苗。
05:59
at the wrong time.
143
359071
1456
06:00
The point of these shaky lines
144
360983
1693
重點是這些歪七扭八的線條,
06:02
is so that people remember these imprecisions,
145
362700
2911
能讓人們記得「數據的不精確性」,
06:05
but also so they don't necessarily walk away with a specific number,
146
365635
3227
人們不應該滿足於 一個鷄肋的數字,
06:08
but they can remember important facts.
147
368886
1866
而是要能夠記得重要的事實。
06:10
Facts like injustice and inequality leave a huge mark on our lives.
148
370776
4024
有些不正義和不公平的事實, 在我們生活中造成了巨大的影響。
06:14
Facts like Black Americans and Native Americans have shorter life expectancies
149
374824
4189
像是美國黑人及原住民的預期壽命
比其他族群來的短,
06:19
than those of other races,
150
379037
1400
06:20
and that isn't changing anytime soon.
151
380461
2138
而且這是短時間內難以改變的事實。
06:22
Facts like prisoners in the US can be kept in solitary confinement cells
152
382623
3901
還有像是美國監獄中, 囚犯的個人牢房空間
06:26
that are smaller than the size of an average parking space.
153
386548
3342
比一般停車位的平均面積 還要小的事實。
06:30
The point of these visualizations is also to remind people
154
390355
3335
這些視覺化圖像的重點 就是為了要提醒大家,
06:33
of some really important statistical concepts,
155
393714
2350
關注一些真正重要的統計概念,
06:36
concepts like averages.
156
396088
1636
像是關於「平均數」的概念。
06:37
So let's say you hear a claim like,
157
397748
1668
例如你聽到有人說:
06:39
"The average swimming pool in the US contains 6.23 fecal accidents."
158
399440
4434
「在美國,每座游泳池裡面 平均有 6.23 次大便」。
06:43
That doesn't mean every single swimming pool in the country
159
403898
2797
它的意思不是說,每一座游泳池
06:46
contains exactly 6.23 turds.
160
406719
2194
都有剛剛好 6.23 次大便。
06:48
So in order to show that,
161
408937
1417
為了說明這件事,
06:50
I went back to the original data, which comes from the CDC,
162
410378
2841
我找到疾病管制局的原始資料,
06:53
who surveyed 47 swimming facilities.
163
413243
2065
他們總共調查了47 座游泳池。
06:55
And I just spent one evening redistributing poop.
164
415332
2391
我花了一個晚上「重新分配大便」。
06:57
So you can kind of see how misleading averages can be.
165
417747
2682
所以你就可以看出, 平均數如何地誤導大家。
07:00
(Laughter)
166
420453
1282
(笑聲)
07:01
OK, so the second question that you guys should be asking yourselves
167
421759
3901
好,第二個辨識 劣質統計數據的方法,
07:05
to spot bad numbers is:
168
425684
1501
就是你要問自己:
07:07
Can I see myself in the data?
169
427209
1967
我自己的情況體現在這份數據內嗎?
07:09
This question is also about averages in a way,
170
429200
2913
這個問題也與平均數有關,
07:12
because part of the reason why people are so frustrated
171
432137
2605
因為民眾會對於國家的統計數據
07:14
with these national statistics,
172
434766
1495
產生失望的一部份原因,
07:16
is they don't really tell the story of who's winning and who's losing
173
436285
3273
是因為在國家的政策中,
他們無法完全地看出 誰是贏家、誰是輸家。
07:19
from national policy.
174
439582
1156
07:20
It's easy to understand why people are frustrated with global averages
175
440762
3318
很容易理解, 為什麼當全球的平均數字
與民眾的個人經驗不一致時, 他們會感到失望不已。
07:24
when they don't match up with their personal experiences.
176
444104
2679
07:26
I wanted to show people the way data relates to their everyday lives.
177
446807
3263
我想告訴人們與我們 日常生活相關的數據。
07:30
I started this advice column called "Dear Mona,"
178
450094
2246
我開設了一個專欄《親愛的夢娜》,
07:32
where people would write to me with questions and concerns
179
452364
2726
人們會寫信詢問一些 他們所關心的事情,
我會試著用數據回答他們。
07:35
and I'd try to answer them with data.
180
455114
1784
07:36
People asked me anything.
181
456922
1200
人們會問我任何事情,
像是「跟老婆分床睡是正常的嗎?」
07:38
questions like, "Is it normal to sleep in a separate bed to my wife?"
182
458146
3261
07:41
"Do people regret their tattoos?"
183
461431
1591
「人們會對身上的刺青覺得後悔嗎?」
07:43
"What does it mean to die of natural causes?"
184
463046
2164
「自然死亡」是甚麼意思?
07:45
All of these questions are great, because they make you think
185
465234
2966
所有的問題都很棒, 因為這些問題會讓你思考,
用什麼方法尋找並傳達這些數字。
07:48
about ways to find and communicate these numbers.
186
468224
2336
07:50
If someone asks you, "How much pee is a lot of pee?"
187
470584
2503
如果有人問你,「尿多少尿才算太多?」
07:53
which is a question that I got asked,
188
473111
2458
我真的曾經被問過這個問題,
07:55
you really want to make sure that the visualization makes sense
189
475593
2980
你會很想用視覺化圖像來表達,
07:58
to as many people as possible.
190
478597
1747
這樣可以盡量讓更多人理解。
08:00
These numbers aren't unavailable.
191
480368
1575
這些數字不是找不到。
08:01
Sometimes they're just buried in the appendix of an academic study.
192
481967
3507
有時候,數據只是被埋沒在 學術研究的附錄裡。
08:05
And they're certainly not inscrutable;
193
485498
1839
但是它們並非難以理解的;
08:07
if you really wanted to test these numbers on urination volume,
194
487361
2975
如果你真的想要檢驗 這些有關尿量的數據,
你自己拿個瓶子試試就知道了。
08:10
you could grab a bottle and try it for yourself.
195
490360
2257
08:12
(Laughter)
196
492641
1008
(笑聲)
08:13
The point of this isn't necessarily
197
493673
1694
重點是,這些數據
08:15
that every single data set has to relate specifically to you.
198
495391
2877
並不是每樣都要與你有關。
08:18
I'm interested in how many women were issued fines in France
199
498292
2880
我對於「法國有多少女人 因為戴面紗與頭巾而被罰款」
08:21
for wearing the face veil, or the niqab,
200
501196
1959
這樣的議題很感興趣,
即使我不住法國也不戴面紗。
08:23
even if I don't live in France or wear the face veil.
201
503179
2618
08:25
The point of asking where you fit in is to get as much context as possible.
202
505821
3835
問自己是否符合數據當中的情況, 是為了儘量得到更多的事件脈絡。
08:29
So it's about zooming out from one data point,
203
509680
2191
所以我們要更宏觀地觀察數據,
08:31
like the unemployment rate is five percent,
204
511895
2104
像是失業率 5% 這類的數據,
08:34
and seeing how it changes over time,
205
514023
1757
可以觀察它如何隨著時間而變化,
08:35
or seeing how it changes by educational status --
206
515804
2650
或看看它在不同教育程度的差異──
08:38
this is why your parents always wanted you to go to college --
207
518478
3104
這也許是爸媽希望你進大學的原因──
08:41
or seeing how it varies by gender.
208
521606
2032
或是看它在不同性別上的表現。
08:43
Nowadays, male unemployment rate is higher
209
523662
2127
如今,男性的失業率
08:45
than the female unemployment rate.
210
525813
1700
已經比女性高了。
08:47
Up until the early '80s, it was the other way around.
211
527537
2695
但是在 80 年代初期之前, 情況是相反的。
08:50
This is a story of one of the biggest changes
212
530256
2117
這是美國社會到目前為止,
08:52
that's happened in American society,
213
532397
1720
其中一項最大的改變,
08:54
and it's all there in that chart, once you look beyond the averages.
214
534141
3276
一旦你眼光放遠,不被平均數字侷限, 這些訊息都存在圖表當中。
08:57
The axes are everything;
215
537441
1165
軸線能呈現數據的各種意義;
08:58
once you change the scale, you can change the story.
216
538630
2669
當你改變觀察的尺度, 你就能得到新的結論。
09:01
OK, so the third and final question that I want you guys to think about
217
541323
3380
好,第三個也是最後一個問題,
當你觀察統計數據時 我希望各位去思考的是:
09:04
when you're looking at statistics is:
218
544727
1819
09:06
How was the data collected?
219
546570
1873
這些數據是如何收集而來的?
09:09
So far, I've only talked about the way data is communicated,
220
549487
2939
目前為止,我只談論到 呈現數據的方式,
但收集資料的方式也同樣重要。
09:12
but the way it's collected matters just as much.
221
552450
2276
我知道這很困難,
09:14
I know this is tough,
222
554750
1167
09:15
because methodologies can be opaque and actually kind of boring,
223
555941
3081
因為收集數據的方法, 經常是不透明而且有些無聊的,
但有一些步驟 可以給各位用來檢視數據。
09:19
but there are some simple steps you can take to check this.
224
559046
2873
09:21
I'll use one last example here.
225
561943
1839
這裡我要舉最後一個例子。
09:24
One poll found that 41 percent of Muslims in this country support jihad,
226
564129
3887
一份民調指出,國內有 41% 的 穆斯林支持伊斯蘭聖戰,
09:28
which is obviously pretty scary,
227
568040
1525
聽起來相當嚇人,
09:29
and it was reported everywhere in 2015.
228
569589
2642
這份調查在 2015 年被大肆報導。
09:32
When I want to check a number like that,
229
572255
2615
當我想檢驗這樣的數據時,
09:34
I'll start off by finding the original questionnaire.
230
574894
2501
我會先尋找原始的問卷。
09:37
It turns out that journalists who reported on that statistic
231
577419
2926
結果發現,報導這則新聞的記者,
09:40
ignored a question lower down on the survey
232
580369
2231
忽略了問卷當中的一個問題,
09:42
that asked respondents how they defined "jihad."
233
582624
2346
題目中詢問了受訪者 「如何定義伊斯蘭聖戰?」
09:44
And most of them defined it as,
234
584994
1981
大多數人的定義是:
09:46
"Muslims' personal, peaceful struggle to be more religious."
235
586999
3942
「為了更虔誠的信仰,穆斯林所進行 個人的、和平的內心鬥爭」。
09:50
Only 16 percent defined it as, "violent holy war against unbelievers."
236
590965
4194
只有 16% 的人認為是 「對抗不信教者的暴力神聖戰爭」。
09:55
This is the really important point:
237
595183
2430
所以真正的重點是:
09:57
based on those numbers, it's totally possible
238
597637
2155
根據原本的數據,很有可能
09:59
that no one in the survey who defined it as violent holy war
239
599816
3105
那些將聖戰 定義為暴力神聖戰爭的人,
10:02
also said they support it.
240
602945
1332
根本不支持聖戰。
10:04
Those two groups might not overlap at all.
241
604301
2208
這兩群人可能沒有根本重疊。
10:06
It's also worth asking how the survey was carried out.
242
606942
2637
問卷調查的進行方式 也值得我們探討。
10:09
This was something called an opt-in poll,
243
609603
1998
這次的民調是一種稱為 「自願參與」的調查方式,
10:11
which means anyone could have found it on the internet and completed it.
244
611625
3402
意思就是,任何人都可以上網 找到並且參與這項調查。
你沒有辦法得知參與者 是否真的是穆斯林。
10:15
There's no way of knowing if those people even identified as Muslim.
245
615051
3339
10:18
And finally, there were 600 respondents in that poll.
246
618414
2612
而且最後只有 600 個人 參與了那份民調。
10:21
There are roughly three million Muslims in this country,
247
621050
2654
根據皮尤研究中心的資料,
我們國內大約有三百萬名 伊斯蘭教信徒。
10:23
according to Pew Research Center.
248
623728
1607
10:25
That means the poll spoke to roughly one in every 5,000 Muslims
249
625359
2993
意思就是國內每五千名穆斯林當中,
大約只有一位填寫了那份問卷。
10:28
in this country.
250
628376
1168
10:29
This is one of the reasons
251
629568
1266
這也是為什麼政府的統計數據,
10:30
why government statistics are often better than private statistics.
252
630858
3607
通常比私人機構的調查 更為準確的原因之一。
10:34
A poll might speak to a couple hundred people, maybe a thousand,
253
634489
3035
一項民調可能訪談了幾百或一千人,
10:37
or if you're L'Oreal, trying to sell skin care products in 2005,
254
637548
3058
或者以萊雅公司在 2005 年 嘗試銷售護膚產品為例,
10:40
then you spoke to 48 women to claim that they work.
255
640630
2417
只訪談了 48 位 認為產品有效的女性就好了。
10:43
(Laughter)
256
643071
1026
(笑聲)
10:44
Private companies don't have a huge interest in getting the numbers right,
257
644121
3556
私人公司沒多少興趣 去追求數據的正確性,
10:47
they just need the right numbers.
258
647701
1755
他們只需要「對」的數字。
10:49
Government statisticians aren't like that.
259
649480
2020
但是政府的統計人員可不能如此。
10:51
In theory, at least, they're totally impartial,
260
651524
2447
至少在理論上,他們必須完全公正,
10:53
not least because most of them do their jobs regardless of who's in power.
261
653995
3501
特別是因為他們大多數都很盡職, 不受掌權者所影響。
10:57
They're civil servants.
262
657520
1162
他們都是人民的公僕。
10:58
And to do their jobs properly,
263
658706
1964
而為了做好份內的事,
11:00
they don't just speak to a couple hundred people.
264
660694
2363
他們不能只調查幾百人。
11:03
Those unemployment numbers I keep on referencing
265
663081
2318
我所引用的失業率數字
11:05
come from the Bureau of Labor Statistics,
266
665423
2004
來自美國勞動統計局,
11:07
and to make their estimates,
267
667451
1335
為了這項估計,
11:08
they speak to over 140,000 businesses in this country.
268
668810
3489
他們調查超過 14 萬家國內企業。
11:12
I get it, it's frustrating.
269
672323
1725
我懂,聽到這些很令人沮喪。
11:14
If you want to test a statistic that comes from a private company,
270
674072
3115
如果你想檢驗私人企業的 統計數據是否正確,
你可以替自己或其他朋友 買面霜來試用,
11:17
you can buy the face cream for you and a bunch of friends, test it out,
271
677211
3361
如果覺得沒有效果, 你就可以說他們的數據有誤。
11:20
if it doesn't work, you can say the numbers were wrong.
272
680596
2591
但是你要如何 對政府的統計數據提出質疑呢?
11:23
But how do you question government statistics?
273
683211
2146
你需要檢查這些數據的方方面面。
11:25
You just keep checking everything.
274
685381
1630
找出他們是如何收集這些數據的。
11:27
Find out how they collected the numbers.
275
687035
1913
找出圖表中是否有你需要的全部訊息。
11:28
Find out if you're seeing everything on the chart you need to see.
276
688972
3125
但是也不要完全放棄數據, 因為如果你放棄了,
11:32
But don't give up on the numbers altogether, because if you do,
277
692121
2965
我們就會受私人利益的誤導,
11:35
we'll be making public policy decisions in the dark,
278
695110
2439
在無知的狀態下, 制訂出錯誤的公共政策。
11:37
using nothing but private interests to guide us.
279
697573
2262
11:39
Thank you.
280
699859
1166
謝謝各位。
(掌聲)
11:41
(Applause)
281
701049
2461
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7