How algorithms shape our world | Kevin Slavin

484,482 views ・ 2011-07-21

TED


Please double-click on the English subtitles below to play the video.

Prevodilac: Sofija Dorotic Lektor: Ivana Korom
00:15
This is a photograph
0
15260
2000
Ovo je fotografija
00:17
by the artist Michael Najjar,
1
17260
2000
umetnika Mihaela Najara
00:19
and it's real,
2
19260
2000
i ona je stvarna
00:21
in the sense that he went there to Argentina
3
21260
2000
u smislu da je on otišao u Argentinu
00:23
to take the photo.
4
23260
2000
da bi napravio ovu fotografiju.
00:25
But it's also a fiction. There's a lot of work that went into it after that.
5
25260
3000
Ali je i izmišljenja. Uloženo je mnogo rada u nju nakon fotografisanja.
00:28
And what he's done
6
28260
2000
On ju je
00:30
is he's actually reshaped, digitally,
7
30260
2000
digitalno preoblikovao,
00:32
all of the contours of the mountains
8
32260
2000
tako da vrhovi planina
00:34
to follow the vicissitudes of the Dow Jones index.
9
34260
3000
prate kretanje Dau Džons (Dow Jones) indeksa.
00:37
So what you see,
10
37260
2000
Dakle, to što vidite,
00:39
that precipice, that high precipice with the valley,
11
39260
2000
ova provalija, duboka provalija sa dolinom,
00:41
is the 2008 financial crisis.
12
41260
2000
je finansijska kriza iz 2008.
00:43
The photo was made
13
43260
2000
Ova fotografija je napravljena
00:45
when we were deep in the valley over there.
14
45260
2000
kada smo bili duboko u finansijskoj provaliji.
00:47
I don't know where we are now.
15
47260
2000
Ne znam gde se sada nalazimo.
00:49
This is the Hang Seng index
16
49260
2000
Ovo je Hang Seng indeks
00:51
for Hong Kong.
17
51260
2000
berze u Hong Kongu.
00:53
And similar topography.
18
53260
2000
I slična topografija.
00:55
I wonder why.
19
55260
2000
Pitam se zašto?
00:57
And this is art. This is metaphor.
20
57260
3000
Ovo je umetnost. Ovo je metafora.
01:00
But I think the point is
21
60260
2000
Ali poenta je u tome
01:02
that this is metaphor with teeth,
22
62260
2000
da je ovo metafora sa zubima.
01:04
and it's with those teeth that I want to propose today
23
64260
3000
I sa tim metaforičkim zubima želim danas da predložim
01:07
that we rethink a little bit
24
67260
2000
da malo porazmislimo
01:09
about the role of contemporary math --
25
69260
3000
o ulozi savremene matematike,
01:12
not just financial math, but math in general.
26
72260
3000
ne samo finansijske matematike, već generalno matematike.
01:15
That its transition
27
75260
2000
Njena tranzicija
01:17
from being something that we extract and derive from the world
28
77260
3000
od nečega što smo uzeli od sveta,
01:20
to something that actually starts to shape it --
29
80260
3000
do nečega što stvarno počinje da ga oblikuje --
01:23
the world around us and the world inside us.
30
83260
3000
svet oko nas i svet u nama.
01:26
And it's specifically algorithms,
31
86260
2000
I njegovi specifični algoritmi
01:28
which are basically the math
32
88260
2000
koji su u suštini matematika
01:30
that computers use to decide stuff.
33
90260
3000
koju kompjuteri koriste da donesu odluke.
01:33
They acquire the sensibility of truth
34
93260
2000
Oni zahtevaju osećaj za istinu
01:35
because they repeat over and over again,
35
95260
2000
jer se stalno ponavljaju.
01:37
and they ossify and calcify,
36
97260
3000
I oni okoštavaju i kalcifikuju se
01:40
and they become real.
37
100260
2000
i postaju stvarni.
01:42
And I was thinking about this, of all places,
38
102260
3000
Od svih mesta, ja sam o ovome razmišljao
01:45
on a transatlantic flight a couple of years ago,
39
105260
3000
na preko-okeanskom letu pre par godina
01:48
because I happened to be seated
40
108260
2000
jer su me smestili
01:50
next to a Hungarian physicist about my age
41
110260
2000
pored mađarskog fizičara koji je bio mojih godina
01:52
and we were talking
42
112260
2000
i razgovarali smo
01:54
about what life was like during the Cold War
43
114260
2000
o tome kakav je bio život fizičara
01:56
for physicists in Hungary.
44
116260
2000
u Mađarskoj za vreme Hladnog rata.
01:58
And I said, "So what were you doing?"
45
118260
2000
Upitao sam ga: "Šta ste Vi radili?"
02:00
And he said, "Well we were mostly breaking stealth."
46
120260
2000
A on je rekao: "Pa, uglavnom smo pokušavali da prokljuvimo nevidljivost lovačkih aviona."
02:02
And I said, "That's a good job. That's interesting.
47
122260
2000
Rekao sam: "To zvuči kao dobar posao. To je interesantno"
02:04
How does that work?"
48
124260
2000
Kako to funkcioniše?"
02:06
And to understand that,
49
126260
2000
Da bi razumeli to,
02:08
you have to understand a little bit about how stealth works.
50
128260
3000
morate da razumete kako funkcioniše nevidljivost aviona.
02:11
And so -- this is an over-simplification --
51
131260
3000
Ovo je jako prosto objašnjenje
02:14
but basically, it's not like
52
134260
2000
ali u suštini, ne možete tako jednostavno
02:16
you can just pass a radar signal
53
136260
2000
da prođete radarskim signalom
02:18
right through 156 tons of steel in the sky.
54
138260
3000
kroz 156 tona čelika na nebu.
02:21
It's not just going to disappear.
55
141260
3000
Objekat neće tek tako nestati.
02:24
But if you can take this big, massive thing,
56
144260
3000
Ali možete uzeti tu veliku, masivnu stvar,
02:27
and you could turn it into
57
147260
3000
i pretvoriti je u
02:30
a million little things --
58
150260
2000
milion malih stvari --
02:32
something like a flock of birds --
59
152260
2000
nesto poput jata ptica --
02:34
well then the radar that's looking for that
60
154260
2000
tada radar koji ga traži
02:36
has to be able to see
61
156260
2000
mora biti u mogućnosti i da vidi
02:38
every flock of birds in the sky.
62
158260
2000
svako jato ptica na nebu.
02:40
And if you're a radar, that's a really bad job.
63
160260
4000
Ako ste radar, to je jako naporan posao.
02:44
And he said, "Yeah." He said, "But that's if you're a radar.
64
164260
3000
"Da", reče on, "samo ako si radar".
02:47
So we didn't use a radar;
65
167260
2000
Tako da nismo koristili radar;
02:49
we built a black box that was looking for electrical signals,
66
169260
3000
napravili smo crnu kutiju koja je tražila električne signale,
02:52
electronic communication.
67
172260
3000
elektronsku komunikaciju.
02:55
And whenever we saw a flock of birds that had electronic communication,
68
175260
3000
I kad god smo videli jato ptica koje komunicira elektronski
02:58
we thought, 'Probably has something to do with the Americans.'"
69
178260
3000
pomislili smo da to sigurno ima veze sa Amerikancima."
03:01
And I said, "Yeah.
70
181260
2000
Rekao sam: "Da.
03:03
That's good.
71
183260
2000
To je dobro
03:05
So you've effectively negated
72
185260
2000
"Vi ste dakle efektivno negirali
03:07
60 years of aeronautic research.
73
187260
2000
60 godina aeronautičkih istraživanja."
03:09
What's your act two?
74
189260
2000
Šta je vaš drugi čin?
03:11
What do you do when you grow up?"
75
191260
2000
Šta ćete raditi kada odrastete?"
03:13
And he said,
76
193260
2000
I on reče,
03:15
"Well, financial services."
77
195260
2000
Pa... finansijske usluge.
03:17
And I said, "Oh."
78
197260
2000
"Oh", rekoh ja na to.
03:19
Because those had been in the news lately.
79
199260
3000
O tome se nedavno govorilo u vestima.
03:22
And I said, "How does that work?"
80
202260
2000
"Kako to funkcioniše?", pitao sam.
03:24
And he said, "Well there's 2,000 physicists on Wall Street now,
81
204260
2000
A on je odgovorio, "Na Vol Stritu imaš trenutno 2000 fizičara
03:26
and I'm one of them."
82
206260
2000
i ja sam jedan od njih."
03:28
And I said, "What's the black box for Wall Street?"
83
208260
3000
"Šta je crna kutija Vol Strita?", upitah ga.
03:31
And he said, "It's funny you ask that,
84
211260
2000
A on reče: "Zanimljivo je što to pitate,
03:33
because it's actually called black box trading.
85
213260
3000
jer se to zapravo zove trgovanje iz crne kutije".
03:36
And it's also sometimes called algo trading,
86
216260
2000
A ponekad se zove i algo trgovanje,
03:38
algorithmic trading."
87
218260
3000
algoritamsko trgovanje."
03:41
And algorithmic trading evolved in part
88
221260
3000
Algoritamsko trgovanje se razvilo
03:44
because institutional traders have the same problems
89
224260
3000
jer su institucionalni trgovci imali isti problem
03:47
that the United States Air Force had,
90
227260
3000
kao i Američka vazdušna avijacija.
03:50
which is that they're moving these positions --
91
230260
3000
Oni su menjali svoje vlasničke pozicije --
03:53
whether it's Proctor & Gamble or Accenture, whatever --
92
233260
2000
bilo da su Proctor & Gamble ili Accenture ili neko drugi --
03:55
they're moving a million shares of something
93
235260
2000
menjali vlasništvo nad milionima
03:57
through the market.
94
237260
2000
deonica nečega na tržištu.
03:59
And if they do that all at once,
95
239260
2000
I ako oni to urade odjednom,
04:01
it's like playing poker and going all in right away.
96
241260
2000
to je kao da svi sve ulože u prvom delenju u pokeru
04:03
You just tip your hand.
97
243260
2000
Samo odate karte.
04:05
And so they have to find a way --
98
245260
2000
Tako da su morali da nađu način --
04:07
and they use algorithms to do this --
99
247260
2000
i za to koriste algoritme --
04:09
to break up that big thing
100
249260
2000
da podele tu jednu veliku transakciju
04:11
into a million little transactions.
101
251260
2000
u milion malih transakcija.
04:13
And the magic and the horror of that
102
253260
2000
Magija i horor toga
04:15
is that the same math
103
255260
2000
je što ta ista matematika
04:17
that you use to break up the big thing
104
257260
2000
koju koristite da biste razbili tu veliku stvar
04:19
into a million little things
105
259260
2000
na milion manjih delova
04:21
can be used to find a million little things
106
261260
2000
može da koristi da nađete milion malih delova
04:23
and sew them back together
107
263260
2000
i spojite ih nazad u jednu celinu
04:25
and figure out what's actually happening in the market.
108
265260
2000
i tako otkrijete šta se dešava na tržištu.
04:27
So if you need to have some image
109
267260
2000
Ako vam treba slika o tome
04:29
of what's happening in the stock market right now,
110
269260
3000
šta se dešava na berzi deonica trenutno,
04:32
what you can picture is a bunch of algorithms
111
272260
2000
možete da zamislite kao veliki broj algoritama
04:34
that are basically programmed to hide,
112
274260
3000
koji su u suštini programirani da prikriju transakcije,
04:37
and a bunch of algorithms that are programmed to go find them and act.
113
277260
3000
i mnogo algoritama koji su programirani da ih nađu i deluju.
04:40
And all of that's great, and it's fine.
114
280260
3000
I sve je to u redu.
04:43
And that's 70 percent
115
283260
2000
Dok ne saznate da oni čine 70 posto
04:45
of the United States stock market,
116
285260
2000
prometa na berzama u Sjedinjenim Državama,
04:47
70 percent of the operating system
117
287260
2000
70% operativnog sistema,
04:49
formerly known as your pension,
118
289260
3000
formalno poznatog kao vaša penzija,
04:52
your mortgage.
119
292260
3000
vaša hipoteka.
04:55
And what could go wrong?
120
295260
2000
A šta je moglo da krene po zlu?
04:57
What could go wrong
121
297260
2000
Ono što je krenulo po zlu
04:59
is that a year ago,
122
299260
2000
je da je pre godinu dana
05:01
nine percent of the entire market just disappears in five minutes,
123
301260
3000
devet posto ukupnog tržišta nestalo za pet minuta,
05:04
and they called it the Flash Crash of 2:45.
124
304260
3000
i to nazivaju "Blic lom u 2:45"
05:07
All of a sudden, nine percent just goes away,
125
307260
3000
Iz čista mira, devet procenata je nestalo,
05:10
and nobody to this day
126
310260
2000
i do današnjeg dana se niko
05:12
can even agree on what happened
127
312260
2000
ne može složiti oko toga šta se desilo,
05:14
because nobody ordered it, nobody asked for it.
128
314260
3000
jer niko to nije naredio, niti tražio.
05:17
Nobody had any control over what was actually happening.
129
317260
3000
Niko nije imao kontrolu nad tim.
05:20
All they had
130
320260
2000
Sve što su imali je bio monitor
05:22
was just a monitor in front of them
131
322260
2000
ispred sebe
05:24
that had the numbers on it
132
324260
2000
sa brojevima
05:26
and just a red button
133
326260
2000
i crveno dugme
05:28
that said, "Stop."
134
328260
2000
na kojem je pisalo, "Stop."
05:30
And that's the thing,
135
330260
2000
Stvar je u tome
05:32
is that we're writing things,
136
332260
2000
da mi pišemo stvari,
05:34
we're writing these things that we can no longer read.
137
334260
3000
pišemo stvari koje nismo u stanju više da pročitamo.
05:37
And we've rendered something
138
337260
2000
Dobili smo nešto
05:39
illegible,
139
339260
2000
nečitko.
05:41
and we've lost the sense
140
341260
3000
I izgubili smo ideju
05:44
of what's actually happening
141
344260
2000
o tome šta se stvarno dešava
05:46
in this world that we've made.
142
346260
2000
u svetu koji smo napravili.
05:48
And we're starting to make our way.
143
348260
2000
I počeli smo da radimo po sopstvenom nahođenju.
05:50
There's a company in Boston called Nanex,
144
350260
3000
U Bostonu postoji kompanija koja se zove Nanex,
05:53
and they use math and magic
145
353260
2000
i oni koriste matematiku i magiju
05:55
and I don't know what,
146
355260
2000
i ne znam šta još sve ne,
05:57
and they reach into all the market data
147
357260
2000
i pristupaju svim podacima tržišta
05:59
and they find, actually sometimes, some of these algorithms.
148
359260
3000
i pronalaze, ponekad, neke od tih algoritama.
06:02
And when they find them they pull them out
149
362260
3000
Tu gde ih nađu oni ih izvuku
06:05
and they pin them to the wall like butterflies.
150
365260
3000
i zakače na zid kao leptire u insektarijumu.
06:08
And they do what we've always done
151
368260
2000
Oni rade ono što mi oduvek radimo
06:10
when confronted with huge amounts of data that we don't understand --
152
370260
3000
kada smo suočeni sa velikom količinom podataka koje ne razumemo,
06:13
which is that they give them a name
153
373260
2000
a to je da im daju imena
06:15
and a story.
154
375260
2000
i priču.
06:17
So this is one that they found,
155
377260
2000
Ovo je jedna koju su našli,
06:19
they called the Knife,
156
379260
4000
i nazvali je "Nož",
06:23
the Carnival,
157
383260
2000
"Karneval",
06:25
the Boston Shuffler,
158
385260
4000
"Bostonski mešač",
06:29
Twilight.
159
389260
2000
"Sumrak".
06:31
And the gag is
160
391260
2000
Stvar je u tome da,
06:33
that, of course, these aren't just running through the market.
161
393260
3000
naravno, oni nisu ograničeni samo na tržište.
06:36
You can find these kinds of things wherever you look,
162
396260
3000
Možete ih naći gde god pogledate,
06:39
once you learn how to look for them.
163
399260
2000
kada naučite da ih tražite.
06:41
You can find it here: this book about flies
164
401260
3000
Možete ih naći ovde: u ovoj knjizi o muvama,
06:44
that you may have been looking at on Amazon.
165
404260
2000
koju ste tražili na Amazonu.
06:46
You may have noticed it
166
406260
2000
Možda ste primetili
06:48
when its price started at 1.7 million dollars.
167
408260
2000
kada je njena cena bila 1,7 miliona dolara.
06:50
It's out of print -- still ...
168
410260
2000
Knjiga nije više u štampi, ali...
06:52
(Laughter)
169
412260
2000
(Smeh)
06:54
If you had bought it at 1.7, it would have been a bargain.
170
414260
3000
Da ste je kupili po ceni od 1,7 miliona, to bi bilo skoro besplatno.
06:57
A few hours later, it had gone up
171
417260
2000
Nekoliko sati kasnije, cena je porasla
06:59
to 23.6 million dollars,
172
419260
2000
na 23,6 miliona dolara,
07:01
plus shipping and handling.
173
421260
2000
plus troškovi slanja i obrade pošiljke.
07:03
And the question is:
174
423260
2000
Pitanje je sledeće:
07:05
Nobody was buying or selling anything; what was happening?
175
425260
2000
Niko nije ništa kupovao niti prodavao; šta se dešavalo?
07:07
And you see this behavior on Amazon
176
427260
2000
Možete uočiti takve pojave na Amazonu
07:09
as surely as you see it on Wall Street.
177
429260
2000
kao što ih možete uočiti na Volstritu.
07:11
And when you see this kind of behavior,
178
431260
2000
Kada vidite ovakvo ponašanje,
07:13
what you see is the evidence
179
433260
2000
to što vidite je dokaz
07:15
of algorithms in conflict,
180
435260
2000
algoritamskog konflikta,
07:17
algorithms locked in loops with each other,
181
437260
2000
algoritama koji su zapetljani jedan u drugi
07:19
without any human oversight,
182
439260
2000
bez ljudskog nadzora,
07:21
without any adult supervision
183
441260
3000
bez nadzora odrasle osobe,
07:24
to say, "Actually, 1.7 million is plenty."
184
444260
3000
nekoga ko bi rekao, "1,7 miliona je mnogo."
07:27
(Laughter)
185
447260
3000
(smeh)
07:30
And as with Amazon, so it is with Netflix.
186
450260
3000
Sa Netfliksom je isto kao sa Amazonom.
07:33
And so Netflix has gone through
187
453260
2000
Netfliks je prošao
07:35
several different algorithms over the years.
188
455260
2000
kroz mnoge različite algoritme tokom godina.
07:37
They started with Cinematch, and they've tried a bunch of others --
189
457260
3000
Počeli su sa Cinematch algoritmom i probali još mnoge druge.
07:40
there's Dinosaur Planet; there's Gravity.
190
460260
2000
"Planetu dinosaurusa" i "Gravitaciju".
07:42
They're using Pragmatic Chaos now.
191
462260
2000
Trenutno koriste "Pragmatični haos".
07:44
Pragmatic Chaos is, like all of Netflix algorithms,
192
464260
2000
"Pragmatični haos" je sličan "Netfliks" algoritmu,
07:46
trying to do the same thing.
193
466260
2000
pokušava da uradi istu stvar.
07:48
It's trying to get a grasp on you,
194
468260
2000
Pokušava da vas razume,
07:50
on the firmware inside the human skull,
195
470260
2000
kao operativni sistem u vašoj lobanji,
07:52
so that it can recommend what movie
196
472260
2000
kako bi vam predložio koji biste
07:54
you might want to watch next --
197
474260
2000
sledeći film mogli da pogledate
07:56
which is a very, very difficult problem.
198
476260
3000
što je veoma, veoma težak problem.
07:59
But the difficulty of the problem
199
479260
2000
Poteškoća kod ovog problema
08:01
and the fact that we don't really quite have it down,
200
481260
3000
i činjenice da ga ne razumemo najbolje,
08:04
it doesn't take away
201
484260
2000
ne umanjuje značaj
08:06
from the effects Pragmatic Chaos has.
202
486260
2000
efekta "Pragmatičnog haosa".
08:08
Pragmatic Chaos, like all Netflix algorithms,
203
488260
3000
"Pragmatični haos", kao i svi "Netfliks" algoritmi,
08:11
determines, in the end,
204
491260
2000
određuje, na kraju,
08:13
60 percent
205
493260
2000
60 procenata
08:15
of what movies end up being rented.
206
495260
2000
svih filmova koji se iznajmljuju.
08:17
So one piece of code
207
497260
2000
Tako da je jedan program
08:19
with one idea about you
208
499260
3000
sa jednom idejom o Vama
08:22
is responsible for 60 percent of those movies.
209
502260
3000
odgovoran za 60 procenata filmova koje pogledate.
08:25
But what if you could rate those movies
210
505260
2000
Ali šta ako biste mogli oceniti te filmove
08:27
before they get made?
211
507260
2000
pre nego li budu snimljeni?
08:29
Wouldn't that be handy?
212
509260
2000
Da li bi to bilo korisno?
08:31
Well, a few data scientists from the U.K. are in Hollywood,
213
511260
3000
Nekoliko informacionih naučnika iz Velike Britanije je u Holivudu,
08:34
and they have "story algorithms" --
214
514260
2000
i imalu algoritme za scenarije --
08:36
a company called Epagogix.
215
516260
2000
kompanija koja se zove Epagogix.
08:38
And you can run your script through there,
216
518260
3000
Možete ubaciti svoj scenario kroz njihov program
08:41
and they can tell you, quantifiably,
217
521260
2000
i on vam može reći, kvantitativno,
08:43
that that's a 30 million dollar movie
218
523260
2000
da je to film koji će zaraditi 30 miliona dolara
08:45
or a 200 million dollar movie.
219
525260
2000
ili 200 miliona dolara.
08:47
And the thing is, is that this isn't Google.
220
527260
2000
Stvar je u tome da to nije Google.
08:49
This isn't information.
221
529260
2000
To nije informacija.
08:51
These aren't financial stats; this is culture.
222
531260
2000
To nisu finansijske statistike; to je kultura.
08:53
And what you see here,
223
533260
2000
I ovo što vidite,
08:55
or what you don't really see normally,
224
535260
2000
tj što normalno ne vidite,
08:57
is that these are the physics of culture.
225
537260
4000
je fizika kulture.
09:01
And if these algorithms,
226
541260
2000
I ako bi ovi algoritmi,
09:03
like the algorithms on Wall Street,
227
543260
2000
kao oni na Volstritu,
09:05
just crashed one day and went awry,
228
545260
3000
pali i nestali,
09:08
how would we know?
229
548260
2000
kako ćemo znati,
09:10
What would it look like?
230
550260
2000
kako će to izgledati?
09:12
And they're in your house. They're in your house.
231
552260
3000
A oni su i u vašoj kući. Oni su u vašoj kući.
09:15
These are two algorithms competing for your living room.
232
555260
2000
Ovo su dva konkurentna algoritma za vašu dnevnu sobu.
09:17
These are two different cleaning robots
233
557260
2000
Ovo su dva različita robota za čišćenje
09:19
that have very different ideas about what clean means.
234
559260
3000
koji imaju različite ideje šta znači čišćenje.
09:22
And you can see it
235
562260
2000
To možete da vidite
09:24
if you slow it down and attach lights to them,
236
564260
3000
ako ih usporite i zakačite svetlo na njih.
09:27
and they're sort of like secret architects in your bedroom.
237
567260
3000
Oni su kao tajne arhitekte u vašoj spavaćoj sobi.
09:30
And the idea that architecture itself
238
570260
3000
Ideja da je i sama arhitektura
09:33
is somehow subject to algorithmic optimization
239
573260
2000
na neki način subjekt algoritamske optimizacije
09:35
is not far-fetched.
240
575260
2000
nij nerealna.
09:37
It's super-real and it's happening around you.
241
577260
3000
Veoma je stvarna i dešava se oko vas.
09:40
You feel it most
242
580260
2000
Najviše je osetite
09:42
when you're in a sealed metal box,
243
582260
2000
kada se nalazite u zatvorenoj metalnoj kutiji,
09:44
a new-style elevator;
244
584260
2000
liftu nove generacije,
09:46
they're called destination-control elevators.
245
586260
2000
koji se zovu lokaciono kontrolisani liftovi.
09:48
These are the ones where you have to press what floor you're going to go to
246
588260
3000
To su oni kod kojih treba da odaberete na koji sprat idete
09:51
before you get in the elevator.
247
591260
2000
pre nego uđete u lift.
09:53
And it uses what's called a bin-packing algorithm.
248
593260
2000
On koristi tzv algoritam pakovanja kutije.
09:55
So none of this mishegas
249
595260
2000
Znači ništa od ove ludosti
09:57
of letting everybody go into whatever car they want.
250
597260
2000
da puštamo ljude da ulaze u lift koji žele.
09:59
Everybody who wants to go to the 10th floor goes into car two,
251
599260
2000
Svako ko želi da ode na deseti sprat ulazi u lift broj dva,
10:01
and everybody who wants to go to the third floor goes into car five.
252
601260
3000
a svako ko hoće na treći sprat ulazi u lift broj pet.
10:04
And the problem with that
253
604260
2000
Problem sa ovim je
10:06
is that people freak out.
254
606260
2000
što se ljudi pogube.
10:08
People panic.
255
608260
2000
Ljudi počnu da paniče.
10:10
And you see why. You see why.
256
610260
2000
Vidite zašto. Vidite zašto.
10:12
It's because the elevator
257
612260
2000
Zato što liftu
10:14
is missing some important instrumentation, like the buttons.
258
614260
3000
nedostaju neki važni instrumenti, poput dugmića.
10:17
(Laughter)
259
617260
2000
(smeh)
10:19
Like the things that people use.
260
619260
2000
I druge stvari koje ljudi vole da koriste.
10:21
All it has
261
621260
2000
Sve što lift ima
10:23
is just the number that moves up or down
262
623260
3000
je broj koji ide gore-dole
10:26
and that red button that says, "Stop."
263
626260
3000
i crveno dugme koje kaže "Stop."
10:29
And this is what we're designing for.
264
629260
3000
To je ono što dizajniramo.
10:32
We're designing
265
632260
2000
Dizajniramo
10:34
for this machine dialect.
266
634260
2000
za taj mašnski dijalekat.
10:36
And how far can you take that? How far can you take it?
267
636260
3000
Koliko daleko može to da ode? Dokle možemo to da odvedemo?
10:39
You can take it really, really far.
268
639260
2000
Možemo ga odvesti jako, jako daleko.
10:41
So let me take it back to Wall Street.
269
641260
3000
Zato ću se vratiti nazad na Volstrit.
10:45
Because the algorithms of Wall Street
270
645260
2000
Jer algoritmi na Volstritu
10:47
are dependent on one quality above all else,
271
647260
3000
zavise od jedne stvari pre svega,
10:50
which is speed.
272
650260
2000
a to je brzina.
10:52
And they operate on milliseconds and microseconds.
273
652260
3000
Oni operišu brzinama u milisekundama i mikrosekundama.
10:55
And just to give you a sense of what microseconds are,
274
655260
2000
Da biste shvatili šta je mikrosekunda --
10:57
it takes you 500,000 microseconds
275
657260
2000
potrebno vam je 500 000 mikrosekundi
10:59
just to click a mouse.
276
659260
2000
da biste kliknuli mišem.
11:01
But if you're a Wall Street algorithm
277
661260
2000
Ali ako ste algoritam na Volstritu
11:03
and you're five microseconds behind,
278
663260
2000
i kasnite pet mikrosekundi,
11:05
you're a loser.
279
665260
2000
vi ste gubitnik.
11:07
So if you were an algorithm,
280
667260
2000
Tako da ako ste algoritam,
11:09
you'd look for an architect like the one that I met in Frankfurt
281
669260
3000
tražićete arhitektu poput onoga kojega sam upoznao u Frankfurtu
11:12
who was hollowing out a skyscraper --
282
672260
2000
koji je ispraznio ceo neboder --
11:14
throwing out all the furniture, all the infrastructure for human use,
283
674260
3000
izbacio sav nameštaj i infrastukturu namenjenu ljudskoj upotrebi,
11:17
and just running steel on the floors
284
677260
3000
i postavio čelik na podove
11:20
to get ready for the stacks of servers to go in --
285
680260
3000
kako bi se gomile servera mogle useliti unutra --
11:23
all so an algorithm
286
683260
2000
sve kako bi algoritam
11:25
could get close to the Internet.
287
685260
3000
bio blizu Internetu.
11:28
And you think of the Internet as this kind of distributed system.
288
688260
3000
Vi smatrate da je Internet distribuiran sistem.
11:31
And of course, it is, but it's distributed from places.
289
691260
3000
On to i jeste, ali se distribuira sa različitih mesta.
11:34
In New York, this is where it's distributed from:
290
694260
2000
U Njujorku se distribuira iz
11:36
the Carrier Hotel
291
696260
2000
hotela "Carrier"
11:38
located on Hudson Street.
292
698260
2000
koji se nalazi u ulici Hadson.
11:40
And this is really where the wires come right up into the city.
293
700260
3000
To je mesto odakle se kablovi šire po celom gradu.
11:43
And the reality is that the further away you are from that,
294
703260
4000
Istina je, da što ste dalje od tog mesta,
11:47
you're a few microseconds behind every time.
295
707260
2000
kasnićete par mikrosekundi.
11:49
These guys down on Wall Street,
296
709260
2000
Momci sa Volstrita,
11:51
Marco Polo and Cherokee Nation,
297
711260
2000
"Marko Polo" i "Čeroki Nejšn",
11:53
they're eight microseconds
298
713260
2000
su osam mikrosekundi u zaostatku
11:55
behind all these guys
299
715260
2000
za ovim algoritmima
11:57
going into the empty buildings being hollowed out
300
717260
4000
koji ulaze u prazne zgrade
12:01
up around the Carrier Hotel.
301
721260
2000
oko hotela "Carrier".
12:03
And that's going to keep happening.
302
723260
3000
I to će nastaviti da se dešava.
12:06
We're going to keep hollowing them out,
303
726260
2000
Nastavićemo da ih ispražnjavamo,
12:08
because you, inch for inch
304
728260
3000
jer vi, centimetar po centimetar,
12:11
and pound for pound and dollar for dollar,
305
731260
3000
funtu po funtu, dolar po dolar,
12:14
none of you could squeeze revenue out of that space
306
734260
3000
niko od vas ne bi mogao izvući prihod iz tog prostora
12:17
like the Boston Shuffler could.
307
737260
3000
kao što može "Bostonski mešač".
12:20
But if you zoom out,
308
740260
2000
Ali ako se udaljite od slike,
12:22
if you zoom out,
309
742260
2000
i pogledate krupni plan,
12:24
you would see an 825-mile trench
310
744260
4000
videćete kanal dug 1328 km
12:28
between New York City and Chicago
311
748260
2000
između Njujorka i Čikaga,
12:30
that's been built over the last few years
312
750260
2000
koji je u toku zadnjih nekoliko godina
12:32
by a company called Spread Networks.
313
752260
3000
izgradila "Spread Networks" kompanija.
12:35
This is a fiber optic cable
314
755260
2000
Ovo je optički kabel
12:37
that was laid between those two cities
315
757260
2000
koji leži između dva grada
12:39
to just be able to traffic one signal
316
759260
3000
i može da provodi samo jedan signal
12:42
37 times faster than you can click a mouse --
317
762260
3000
37 puta brže no što vi možete da kliknete mišem,
12:45
just for these algorithms,
318
765260
3000
izgrađen je samo za algoritme,
12:48
just for the Carnival and the Knife.
319
768260
3000
samo za "Karneval" i "Nož".
12:51
And when you think about this,
320
771260
2000
Kada razmislite o tome,
12:53
that we're running through the United States
321
773260
2000
da trčimo kroz SAD
12:55
with dynamite and rock saws
322
775260
3000
sa dinamitom i razbijačima za kamen
12:58
so that an algorithm can close the deal
323
778260
2000
kako bi algoritmi zaključili transakciju
13:00
three microseconds faster,
324
780260
3000
tri mikrosekunde brže,
13:03
all for a communications framework
325
783260
2000
sve to radi komunikacionog okvira
13:05
that no human will ever know,
326
785260
4000
koji nijedan čovek neće spoznati,
13:09
that's a kind of manifest destiny;
327
789260
3000
to je neka vrsta očigledne sudbine
13:12
and we'll always look for a new frontier.
328
792260
3000
koja će uvek pomerati nove granice.
13:15
Unfortunately, we have our work cut out for us.
329
795260
3000
Nažalost, predstoji nam vrlo ambiciozan posao.
13:18
This is just theoretical.
330
798260
2000
Ovo je samo teorijski.
13:20
This is some mathematicians at MIT.
331
800260
2000
To je samo matematika sa MIT-a.
13:22
And the truth is I don't really understand
332
802260
2000
Istina je da ni ja, stvarno, ne razumem
13:24
a lot of what they're talking about.
333
804260
2000
mnogo toga o čemu pričaju.
13:26
It involves light cones and quantum entanglement,
334
806260
3000
Radi se o svetlosnoj kupoli i kvantnoj upletenosti,
13:29
and I don't really understand any of that.
335
809260
2000
a ja to stvarno ne razumem.
13:31
But I can read this map,
336
811260
2000
Ali mogu da pročitam ovu mapu.
13:33
and what this map says
337
813260
2000
A ono što nam ova mapa kaže
13:35
is that, if you're trying to make money on the markets where the red dots are,
338
815260
3000
je da ako pokušavate da zaradite novac na tržištu gde se nalaze crvene tačke,
13:38
that's where people are, where the cities are,
339
818260
2000
tamo gde su ljudi, gde su gradovi,
13:40
you're going to have to put the servers where the blue dots are
340
820260
3000
moraćete servere staviti tamo gde su plave tačke
13:43
to do that most effectively.
341
823260
2000
da bi ste radili efikasno.
13:45
And the thing that you might have noticed about those blue dots
342
825260
3000
Možda ste primetili da se mnoge plave tačke
13:48
is that a lot of them are in the middle of the ocean.
343
828260
3000
nalaze na sredini okeana.
13:51
So that's what we'll do: we'll build bubbles or something,
344
831260
3000
Ono što treba da uradimo je
13:54
or platforms.
345
834260
2000
da izgradimo balone ili platforme.
13:56
We'll actually part the water
346
836260
2000
Da bukvalno razdvojimo more
13:58
to pull money out of the air,
347
838260
2000
i izvlačimo novac iz vazduha,
14:00
because it's a bright future
348
840260
2000
jer je svetla budućnost pred vama
14:02
if you're an algorithm.
349
842260
2000
ako ste algoritam.
14:04
(Laughter)
350
844260
2000
(Smeh)
14:06
And it's not the money that's so interesting actually.
351
846260
3000
I nije novac taj koji je zapravo toliko interesantan.
14:09
It's what the money motivates,
352
849260
2000
Već šta novac motiviše.
14:11
that we're actually terraforming
353
851260
2000
Mi zapravo transformišemo
14:13
the Earth itself
354
853260
2000
samu Zemljinu površinu
14:15
with this kind of algorithmic efficiency.
355
855260
2000
sa ovakvom vrstom algoritamske uspešnosti.
14:17
And in that light,
356
857260
2000
I u tom svetlu
14:19
you go back
357
859260
2000
vi se vraćate
14:21
and you look at Michael Najjar's photographs,
358
861260
2000
i gledate fotografije Mihaela Najara
14:23
and you realize that they're not metaphor, they're prophecy.
359
863260
3000
i uviđate da one nisu metafore, one su proročanstva.
14:26
They're prophecy
360
866260
2000
One su proročanstvo
14:28
for the kind of seismic, terrestrial effects
361
868260
4000
seizmičkih, zemaljskih efekata
14:32
of the math that we're making.
362
872260
2000
koje pravi naša matematika.
14:34
And the landscape was always made
363
874260
3000
Krajolik je uvek bio rezultat
14:37
by this sort of weird, uneasy collaboration
364
877260
3000
čudne, teške saradnje
14:40
between nature and man.
365
880260
3000
između prirode i čoveka.
14:43
But now there's this third co-evolutionary force: algorithms --
366
883260
3000
Ali sada je tu ta treća koevoluciona sila - algoritam,
14:46
the Boston Shuffler, the Carnival.
367
886260
3000
"Bostonski mešač", "Karneval".
14:49
And we will have to understand those as nature,
368
889260
3000
I moraćemo ih razumeti kao prirodu.
14:52
and in a way, they are.
369
892260
2000
Jer na neki način oni to i jesu.
14:54
Thank you.
370
894260
2000
Hvala.
14:56
(Applause)
371
896260
20000
(Aplauz)
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7