How algorithms shape our world | Kevin Slavin

484,482 views ใƒป 2011-07-21

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Yubal Masalker ืžื‘ืงืจ: Ido Dekkers
00:15
This is a photograph
0
15260
2000
ื–ื•ื”ื™ ืชืžื•ื ื”
00:17
by the artist Michael Najjar,
1
17260
2000
ืฉืฆื™ืœื ื”ืืžืŸ ืžื™ื™ืงืœ ื ืื’'ืืจ,
00:19
and it's real,
2
19260
2000
ื•ื”ื™ื ืืžื™ืชื™ืช,
00:21
in the sense that he went there to Argentina
3
21260
2000
ื‘ืžื•ื‘ืŸ ื–ื” ืฉื”ื•ื ื ืกืข ืขื“ ืœืืจื’ื ื˜ื™ื ื”
00:23
to take the photo.
4
23260
2000
ื›ื“ื™ ืœืฆืœื ืื•ืชื”.
00:25
But it's also a fiction. There's a lot of work that went into it after that.
5
25260
3000
ืื‘ืœ ื”ื™ื ื’ื ื‘ื“ื™ื™ื”. ื”ืจื‘ื” ืขื‘ื•ื“ื” ื”ื•ืฉืงืขื” ื‘ื” ืœืื—ืจ ืฆื™ืœื•ืžื”.
00:28
And what he's done
6
28260
2000
ื•ืžื” ืฉื”ื•ื ืขืฉื”
00:30
is he's actually reshaped, digitally,
7
30260
2000
ื”ื•ื ืขื™ืฆื‘ ืžื—ื“ืฉ, ื‘ืื•ืคืŸ ื“ื™ื’ื™ื˜ืœื™,
00:32
all of the contours of the mountains
8
32260
2000
ืืช ื›ืœ ืงื•ื•ื™-ื”ืžื™ืชืืจ ืฉืœ ื”ื”ืจื™ื
00:34
to follow the vicissitudes of the Dow Jones index.
9
34260
3000
ื›ืš ืฉื™ืชืื™ืžื• ืœืขืœื™ื•ืช ื•ื™ืจื™ื“ื•ืช ืฉืœ ืžื“ื“ ื”ื“ืื•-ื’'ื•ื ืก.
00:37
So what you see,
10
37260
2000
ื›ืš ืฉืžื” ืฉืืชื ืจื•ืื™ื,
00:39
that precipice, that high precipice with the valley,
11
39260
2000
ื”ืฆื•ืง ื”ื’ื‘ื•ื” ืขื ื”ืขืžืง,
00:41
is the 2008 financial crisis.
12
41260
2000
ื”ื•ื ื”ืžืฉื‘ืจ ื”ืคื™ื ื ืกื™ ืฉืœ 2008.
00:43
The photo was made
13
43260
2000
ื”ืชืžื•ื ื” ืฆื•ืœืžื”
00:45
when we were deep in the valley over there.
14
45260
2000
ื›ืืฉืจ ื”ื™ื™ื ื• ืขืžื•ืง ื‘ืชื•ืš ื”ืขืžืง ืฉื.
00:47
I don't know where we are now.
15
47260
2000
ืื™ื ื™ ื™ื•ื“ืข ื”ื™ื›ืŸ ืื ื• ืขื›ืฉื™ื•.
00:49
This is the Hang Seng index
16
49260
2000
ื–ื”ื• ืžื“ื“ ื”ื”ื ื’-ืกื ื’.
00:51
for Hong Kong.
17
51260
2000
ืฉืœ ื”ื•ื ื’-ืงื•ื ื’.
00:53
And similar topography.
18
53260
2000
ื•ื˜ื•ืคื•ื’ืจืคื™ื” ื“ื•ืžื”.
00:55
I wonder why.
19
55260
2000
ืื ื™ ืชื•ื”ื” ืœืžื”.
00:57
And this is art. This is metaphor.
20
57260
3000
ื•ื–ื•ื”ื™ ืื•ืžื ื•ืช. ื–ื•ื”ื™ ืžื˜ืคื•ืจื”.
01:00
But I think the point is
21
60260
2000
ืื‘ืœ ืื ื™ ืกื‘ื•ืจ ืฉื”ื ืงื•ื“ื” ื”ื™ื
01:02
that this is metaphor with teeth,
22
62260
2000
ืฉื–ื•ื”ื™ ืžื˜ืคื•ืจื” ืขื•ืงืฆื ื™ืช.
01:04
and it's with those teeth that I want to propose today
23
64260
3000
ื•ืขื ื”ืขื•ืงืฅ ื”ื–ื” ืื ื™ ืจื•ืฆื” ืœื”ืขืœื•ืช ื”ื™ื•ื
01:07
that we rethink a little bit
24
67260
2000
ืืช ื”ืจืขื™ื•ืŸ ืฉืขืœื™ื ื• ืœื—ืฉื•ื‘ ืžื—ื“ืฉ
01:09
about the role of contemporary math --
25
69260
3000
ืขืœ ืชืคืงื™ื“ื” ืฉืœ ื”ืžืชืžื˜ื™ืงื” ื‘ืช-ื–ืžื ื ื• --
01:12
not just financial math, but math in general.
26
72260
3000
ืœื ืจืง ืžืชืžื˜ื™ืงื” ืคื™ื ื ืกื™ืช, ืืœื ืžืชืžื˜ื™ืงื” ื‘ื›ืœืœื•ืชื”.
01:15
That its transition
27
75260
2000
ืขืœ ื”ืžืขื‘ืจ ืฉืœื”
01:17
from being something that we extract and derive from the world
28
77260
3000
ืžืžืฉื”ื• ืฉืื ื• ืžืกื™ืงื™ื ื•ื’ื•ื–ืจื™ื ืžื”ืขื•ืœื
01:20
to something that actually starts to shape it --
29
80260
3000
ืœืžืฉื”ื• ืฉื‘ืขืฆื ืžืชื—ื™ืœ ืœืขืฆื‘ ืืช ื”ืขื•ืœื --
01:23
the world around us and the world inside us.
30
83260
3000
ืืช ื”ืขื•ืœื ืกื‘ื™ื‘ื ื• ื•ืืช ื”ืขื•ืœื ื‘ืชื•ื›ื ื•.
01:26
And it's specifically algorithms,
31
86260
2000
ื•ื‘ืื•ืคืŸ ืกืคืฆื™ืคื™ ืืœื” ื”ืืœื’ื•ืจืชืžื™ื,
01:28
which are basically the math
32
88260
2000
ืฉื”ื ื‘ืขืฆื ื”ืžืชืžื˜ื™ืงื”
01:30
that computers use to decide stuff.
33
90260
3000
ืฉืžืฉืžืฉืช ืืช ื”ืžื—ืฉื‘ื™ื ื›ื“ื™ ืœืงื‘ืœ ื”ื—ืœื˜ื•ืช.
01:33
They acquire the sensibility of truth
34
93260
2000
ื”ื ืจื•ื›ืฉื™ื ื™ื›ื•ืœืช ื”ื‘ื—ื ื” ืœื’ื‘ื™ ื”ืืžืช,
01:35
because they repeat over and over again,
35
95260
2000
ืžื›ื™ื•ื•ืŸ ืฉื”ื ื—ื•ื–ืจื™ื ืขืœ ืขืฆืžื ืฉื•ื‘ ื•ืฉื•ื‘.
01:37
and they ossify and calcify,
36
97260
3000
ื”ื ืžืชืื‘ื ื™ื ื•ืžืกืชื™ื™ื“ื™ื,
01:40
and they become real.
37
100260
2000
ื•ื”ื ื”ื•ืคื›ื™ื ืœืžืžืฉื™ื™ื.
01:42
And I was thinking about this, of all places,
38
102260
3000
ื—ืฉื‘ืชื™ ืขืœ ื›ืœ ื–ื”
01:45
on a transatlantic flight a couple of years ago,
39
105260
3000
ื‘ื˜ื™ืกื” ื˜ืจื ืกืื˜ืœื ื˜ื™ืช ืœืคื ื™ ื›ืžื” ืฉื ื™ื,
01:48
because I happened to be seated
40
108260
2000
ืžื›ื™ื•ื•ืŸ ืฉื‘ืžืงืจื” ื™ืฉื‘ืชื™
01:50
next to a Hungarian physicist about my age
41
110260
2000
ืœื™ื“ ืคื™ื–ื™ืงืื™ ื”ื•ื ื’ืจื™ ืฉื”ื™ื” ื‘ืขืจืš ื‘ื’ื™ืœื™
01:52
and we were talking
42
112260
2000
ื•ื“ื™ื‘ืจื ื• ืขืœ ืื™ืš ื”ื™ื• ื”ื—ื™ื™ื
01:54
about what life was like during the Cold War
43
114260
2000
ื‘ืชืงื•ืคืช ื”ืžืœื—ืžื” ื”ืงืจื”
01:56
for physicists in Hungary.
44
116260
2000
ืขื‘ื•ืจ ืคื™ื–ื™ืงืื™ ื‘ื”ื•ื ื’ืจื™ื”.
01:58
And I said, "So what were you doing?"
45
118260
2000
ืฉืืœืชื™ ืื•ืชื•, "ืžื” ืขืฉื™ืช ืื–?"
02:00
And he said, "Well we were mostly breaking stealth."
46
120260
2000
ื•ื”ื•ื ืขื ื”, "ื‘ืขื™ืงืจ ื ื™ืกื™ื ื• ืœื’ืœื•ืช ืžื˜ื•ืกื™ ื—ืžืงืŸ."
02:02
And I said, "That's a good job. That's interesting.
47
122260
2000
ืื ื™ ืืžืจืชื™, "ื–ื• ืขื‘ื•ื“ื” ืžืขื ื™ื™ื ืช.
02:04
How does that work?"
48
124260
2000
ืื™ืš ื–ื” ื‘ื“ื™ื•ืง ืขื•ื‘ื“?"
02:06
And to understand that,
49
126260
2000
ื›ื“ื™ ืœื”ื‘ื™ืŸ ื–ืืช,
02:08
you have to understand a little bit about how stealth works.
50
128260
3000
ืฆืจื™ืš ืœื”ื‘ื™ืŸ ืงืฆืช ืื™ืš ื”ื—ืžืงืŸ ืคื•ืขืœ.
02:11
And so -- this is an over-simplification --
51
131260
3000
ื–ื” ื‘ืื•ืคืŸ ืคืฉื˜ื ื™ --
02:14
but basically, it's not like
52
134260
2000
ืื‘ืœ ืขืงืจื•ื ื™ืช,
02:16
you can just pass a radar signal
53
136260
2000
ืื™-ืืคืฉืจ ืกืชื ืœื”ืขื‘ื™ืจ ืื•ืช ืžื›"ืž
02:18
right through 156 tons of steel in the sky.
54
138260
3000
ื“ืจืš 156 ื˜ื•ืŸ ืคืœื“ื” ื”ื ืžืฆืืช ื‘ืฉืžื™ื™ื.
02:21
It's not just going to disappear.
55
141260
3000
ื–ื” ืœื ื™ื›ื•ืœ ืœื”ื™ืขืœื ืกืชื ื›ื›ื”.
02:24
But if you can take this big, massive thing,
56
144260
3000
ืื‘ืœ ืื ืœื•ืงื—ื™ื ืืช ื”ื“ื‘ืจ ื”ืขื ืง ื”ื–ื”,
02:27
and you could turn it into
57
147260
3000
ื•ื”ื•ืคื›ื™ื ืื•ืชื•
02:30
a million little things --
58
150260
2000
ืœืžื™ืœื™ื•ื ื™ ื“ื‘ืจื™ื ืงื˜ื ื™ื --
02:32
something like a flock of birds --
59
152260
2000
ืžืฉื”ื• ื›ืžื• ืœื”ืงืช ืฆื™ืคื•ืจื™ื --
02:34
well then the radar that's looking for that
60
154260
2000
ืื– ื”ืžื›"ืž ืฉืžื—ืคืฉ ืื•ืชื•
02:36
has to be able to see
61
156260
2000
ืฆืจื™ืš ืœื”ื™ื•ืช ืžืกื•ื’ืœ ืœื”ื‘ื—ื™ืŸ
02:38
every flock of birds in the sky.
62
158260
2000
ื‘ื›ืœ ืœื”ืงืช ืฆื™ืคื•ืจื™ื ืฉื‘ืฉืžื™ื™ื.
02:40
And if you're a radar, that's a really bad job.
63
160260
4000
ื•ืื ืืชื” ืžื›"ืž, ื–ื• ื‘ืืžืช ืžืฉื™ืžื” ืงืฉื”.
02:44
And he said, "Yeah." He said, "But that's if you're a radar.
64
164260
3000
ื•ื”ื•ื ืืžืจ, "ื ื›ื•ืŸ, ืื‘ืœ ื–ื” ืื ืืชื” ืžื›"ืž.
02:47
So we didn't use a radar;
65
167260
2000
ืœื›ืŸ ืœื ื”ืฉืชืžืฉื ื• ื‘ืžื›"ืž;
02:49
we built a black box that was looking for electrical signals,
66
169260
3000
ื‘ื ื™ื ื• ืงื•ืคืกื” ืฉื—ื•ืจื” ืฉื—ื™ืคืฉื” ืื•ืชื•ืช ื—ืฉืžืœื™ื™ื,
02:52
electronic communication.
67
172260
3000
ืชืงืฉื•ืจืช ืืœืงื˜ืจื•ื ื™ืช.
02:55
And whenever we saw a flock of birds that had electronic communication,
68
175260
3000
ื‘ื›ืœ ืคืขื ืฉืจืื™ื ื• ืœื”ืงืช ืฆื™ืคื•ืจื™ื ืฉื”ื™ืชื” ืืฆืœื” ืชืงืฉื•ืจืช ืืœืงื˜ืจื•ื ื™ืช,
02:58
we thought, 'Probably has something to do with the Americans.'"
69
178260
3000
ื—ืฉื‘ื ื• ืฉืงืจื•ื‘ ืœื•ื•ื“ืื™ ืฉื–ื” ืงืฉื•ืจ ืœืืžืจื™ืงืื™ื."
03:01
And I said, "Yeah.
70
181260
2000
ื•ืื ื™ ืืžืจืชื™, "ื ื›ื•ืŸ.
03:03
That's good.
71
183260
2000
ื–ื” ื˜ื•ื‘.
03:05
So you've effectively negated
72
185260
2000
ืืชื” ื‘ืขืฆื ื‘ื™ื˜ืœืช ื‘ื™ืขื™ืœื•ืช
03:07
60 years of aeronautic research.
73
187260
2000
60 ืฉื ื” ืฉืœ ืžื—ืงืจ ืื•ื•ื™ืจื•ื ืื•ื˜ื™.
03:09
What's your act two?
74
189260
2000
ืžื” ื”ืฆืขื“ ื”ื‘ื ืฉืœืš?
03:11
What do you do when you grow up?"
75
191260
2000
ืžื” ืืชื” ืขื•ืฉื” ืœืื—ืจ ืฉื’ื“ืœืช?"
03:13
And he said,
76
193260
2000
ื”ื•ื ืขื ื”,
03:15
"Well, financial services."
77
195260
2000
"ืฉื™ืจื•ืชื™ื ืคื™ื ื ืกื™ื™ื."
03:17
And I said, "Oh."
78
197260
2000
ืืžืจืชื™, "ืื•."
03:19
Because those had been in the news lately.
79
199260
3000
ื›ื™ ืืœื” ื”ื™ื• ื‘ื—ื“ืฉื•ืช ืœืื—ืจื•ื ื”.
03:22
And I said, "How does that work?"
80
202260
2000
ืฉืืœืชื™, "ื›ื™ืฆื“ ื–ื” ืขื•ื‘ื“?"
03:24
And he said, "Well there's 2,000 physicists on Wall Street now,
81
204260
2000
ื”ื•ื ืขื ื”, "ื›ื™ื•ื ื™ืฉื ื 2,000 ืคื™ื–ื™ืงืื™ื ื‘ื•ื•ืœ-ืกื˜ืจื™ื˜,
03:26
and I'm one of them."
82
206260
2000
ื•ืื ื™ ืื—ื“ ืžื”ื."
03:28
And I said, "What's the black box for Wall Street?"
83
208260
3000
ืฉืืœืชื™, "ืžื”ื™ ื”ืงื•ืคืกื” ื”ืฉื—ื•ืจื” ืฉืœ ื•ื•ืœ-ืกื˜ืจื™ื˜?"
03:31
And he said, "It's funny you ask that,
84
211260
2000
ื•ื”ื•ื ืขื ื”, "ืžืขื ื™ื™ืŸ ืฉืืชื” ืฉื•ืืœ ืืช ื–ื”,
03:33
because it's actually called black box trading.
85
213260
3000
ื›ื™ ื‘ืขืฆื ื–ื” ื ืงืจื ืžืกื—ืจ ืงื•ืคืกื” ืฉื—ื•ืจื”.
03:36
And it's also sometimes called algo trading,
86
216260
2000
ื•ืœืคืขืžื™ื ื”ื•ื ื ืงืจื ื’ื ืžืกื—ืจ ืืœื’ื•,
03:38
algorithmic trading."
87
218260
3000
ืžืกื—ืจ ืืœื’ื•ืจืชืžื™."
03:41
And algorithmic trading evolved in part
88
221260
3000
ืžืกื—ืจ ืืœื’ื•ืจื™ืชืžื™ ื”ืชืคืชื—, ื‘ื—ืœืงื•,
03:44
because institutional traders have the same problems
89
224260
3000
ื‘ื’ืœืœ ืฉืœืกื•ื—ืจื™ื ืžืžื•ืกื“ื™ื ื™ืฉ ืืช ืื•ืชืŸ ื”ื‘ืขื™ื•ืช
03:47
that the United States Air Force had,
90
227260
3000
ืฉื™ืฉ ืœื—ื™ืœ-ื”ืื•ื™ืจ ื”ืืžืจื™ืงืื™,
03:50
which is that they're moving these positions --
91
230260
3000
ื•ื”ื™ื ืฉื”ื ืžืขื‘ื™ืจื™ื ืคื•ื–ื™ืฆื™ื•ืช --
03:53
whether it's Proctor & Gamble or Accenture, whatever --
92
233260
2000
ื‘ื™ืŸ ืื ื–ื” "ืคืจื•ืงื˜ื•ืจ ืืช ื’ืžื‘ืœ" ืื• "ืืงื ื˜ื™ื•ืจ" ื•ื›ื•' --
03:55
they're moving a million shares of something
93
235260
2000
ื”ื ืžืขื‘ื™ืจื™ื ืžืฉื”ื• ื›ืžื• ืžื™ืœื™ื•ืŸ ืžื ื™ื•ืช
03:57
through the market.
94
237260
2000
ื“ืจืš ื”ืฉื•ืง.
03:59
And if they do that all at once,
95
239260
2000
ื•ืื ื”ื ืขื•ืฉื™ื ื–ืืช ื‘ื‘ืช-ืื—ืช,
04:01
it's like playing poker and going all in right away.
96
241260
2000
ื–ื” ื›ืžื• ืœืฉื—ืง ืคื•ืงืจ ื•ืœื”ืžืจ ืขืœ ื”ื›ืœ.
04:03
You just tip your hand.
97
243260
2000
ื–ื” ื›ืžื• ืœื’ืœื•ืช ืืช ื”ืงืœืคื™ื ืฉืœืš.
04:05
And so they have to find a way --
98
245260
2000
ื•ืœื›ืŸ ืขืœื™ื”ื ืœืžืฆื•ื ื“ืจืš --
04:07
and they use algorithms to do this --
99
247260
2000
ื”ื ืžืฉืชืžืฉื™ื ื‘ืืœื’ื•ืจื™ืชืžื™ื ื›ื“ื™ ืœื‘ืฆืข ื–ืืช --
04:09
to break up that big thing
100
249260
2000
ืœืฉื‘ื•ืจ ื“ื‘ืจ ืื—ื“ ื’ื“ื•ืœ
04:11
into a million little transactions.
101
251260
2000
ืœืžื™ืœื™ื•ืŸ ื”ืขื‘ืจื•ืช ืงื˜ื ื•ืช.
04:13
And the magic and the horror of that
102
253260
2000
ื•ื”ืงืกื ื•ื”ืคื—ื“ ื‘ื–ื” ื”ื
04:15
is that the same math
103
255260
2000
ืฉืื•ืชื” ืžืชืžื˜ื™ืงื”
04:17
that you use to break up the big thing
104
257260
2000
ืฉืžืฉืžืฉืช ืœืฉื‘ื™ืจืช ื”ื“ื‘ืจ ื”ื’ื“ื•ืœ
04:19
into a million little things
105
259260
2000
ืœืžื™ืœื™ื•ืŸ ื—ืœืงื™ื ืงื˜ื ื™ื,
04:21
can be used to find a million little things
106
261260
2000
ื ื™ืชืŸ ืœื”ืฉืชืžืฉ ื‘ื” ืœืžืฆื™ืืช ืžื™ืœื™ื•ืŸ
04:23
and sew them back together
107
263260
2000
ื“ื‘ืจื™ื ืงื˜ื ื™ื ื•ืœื—ื‘ืจื ื‘ื™ื—ื“
04:25
and figure out what's actually happening in the market.
108
265260
2000
ื•ืœื’ืœื•ืช ืžื” ื‘ืืžืช ืžืชืจื—ืฉ ื‘ืฉื•ืง.
04:27
So if you need to have some image
109
267260
2000
ืื– ืื ื‘ืจืฆื•ื ื›ื ืœืงื‘ืœ ืชืžื•ื ื”
04:29
of what's happening in the stock market right now,
110
269260
3000
ืขืœ ืžื” ืฉืžืชืจื—ืฉ ื‘ื‘ื•ืจืกื” ืžืžืฉ ืขื›ืฉื™ื•,
04:32
what you can picture is a bunch of algorithms
111
272260
2000
ืืคืฉืจ ืœื“ืžื•ืช ืงื‘ื•ืฆืช ืืœื’ื•ืจื™ืชืžื™ื
04:34
that are basically programmed to hide,
112
274260
3000
ื”ืžืชื•ื›ื ืชื™ื ืœื”ืกืชืชืจ,
04:37
and a bunch of algorithms that are programmed to go find them and act.
113
277260
3000
ื•ืงื‘ื•ืฆื” ืื—ืจืช ืฉืœ ื›ืืœื” ื”ืžืชื•ื›ื ืชื™ื ืœืžืฆื•ื ืื•ืชื ื•ืœืคืขื•ืœ.
04:40
And all of that's great, and it's fine.
114
280260
3000
ื›ืœ ื–ื” ื ืคืœื ื•ื”ื›ืœ ื‘ืกื“ืจ.
04:43
And that's 70 percent
115
283260
2000
ื•ื–ื” 70 ืื—ื•ื–
04:45
of the United States stock market,
116
285260
2000
ืžื‘ื•ืจืกืช ืืจื”"ื‘,
04:47
70 percent of the operating system
117
287260
2000
70 ืื—ื•ื– ืžืžืขืจื›ืช ืžืชืคืงื“ืช
04:49
formerly known as your pension,
118
289260
3000
ืฉื”ื™ืชื” ื™ื“ื•ืขื” ื‘ืขื‘ืจ ื›ืคื ืกื™ื” ืฉืœื›ื,
04:52
your mortgage.
119
292260
3000
ืžืฉื›ื ืชื ืฉืœื›ื.
04:55
And what could go wrong?
120
295260
2000
ื•ืžื” ื™ื›ื•ืœ ื”ื™ื” ืœื”ืฉืชื‘ืฉ?
04:57
What could go wrong
121
297260
2000
ืžื” ืฉื”ืฉืชื‘ืฉ
04:59
is that a year ago,
122
299260
2000
ื”ื•ื ืฉืœืคื ื™ ืฉื ื”,
05:01
nine percent of the entire market just disappears in five minutes,
123
301260
3000
9 ืื—ื•ื–ื™ื ืžืก"ื” ืฉื•ืง ื”ืžื ื™ื•ืช ื ืขืœืžื• ืชื•ืš 5 ื“ืงื•ืช,
05:04
and they called it the Flash Crash of 2:45.
124
304260
3000
ื•ื”ื ืงืจืื• ืœื–ื” ื”ืชืจืกืงื•ืช ื‘ื”ื™ื ื“-ืขืคืขืฃ ืฉืœ 2:45.
05:07
All of a sudden, nine percent just goes away,
125
307260
3000
ื›ื›ื” ืคืชืื•ื, 9 ืื—ื•ื–ื™ื ืคืฉื•ื˜ ื ืขืœืžื•,
05:10
and nobody to this day
126
310260
2000
ื•ืืฃ ืื—ื“ ืขื“ ื”ื™ื•ื
05:12
can even agree on what happened
127
312260
2000
ืืคื™ืœื• ืœื ื™ื•ื“ืข ืžื” ืงืจื”,
05:14
because nobody ordered it, nobody asked for it.
128
314260
3000
ืžืื—ืจ ื•ืืฃ ืื—ื“ ืœื ื”ื–ืžื™ืŸ ืื• ื‘ื™ืงืฉ ืœืขืฉื•ืช ื–ืืช.
05:17
Nobody had any control over what was actually happening.
129
317260
3000
ืœืื™ืฉ ืœื ื”ื™ืชื” ืฉืœื™ื˜ื” ืขืœ ืžื” ืฉืงื•ืจื” ื‘ืคื•ืขืœ.
05:20
All they had
130
320260
2000
ื›ืœ ืžื” ืฉื”ื™ื” ืœื”ื
05:22
was just a monitor in front of them
131
322260
2000
ื–ื” ืจืง ืฆื’ ืžื•ืœ ืขื™ื ื™ื”ื
05:24
that had the numbers on it
132
324260
2000
ืฉืขืœื™ื• ืจืฆื™ื ืžืกืคืจื™ื
05:26
and just a red button
133
326260
2000
ื•ื›ืคืชื•ืจ ืื“ื•ื
05:28
that said, "Stop."
134
328260
2000
ื”ืื•ืžืจ "ืขืฆื•ืจ".
05:30
And that's the thing,
135
330260
2000
ื•ื–ื” ื”ืขื ื™ื™ืŸ,
05:32
is that we're writing things,
136
332260
2000
ืฉืื ื• ื›ื•ืชื‘ื™ื ื“ื‘ืจื™ื,
05:34
we're writing these things that we can no longer read.
137
334260
3000
ืฉืื ื• ื›ื‘ืจ ืœื ืžืกื•ื’ืœื™ื ื™ื•ืชืจ ืœืงืจื•ื.
05:37
And we've rendered something
138
337260
2000
ื™ืฆืจื ื• ืžืฉื”ื•
05:39
illegible,
139
339260
2000
ื‘ืœืชื™-ืงืจื™ื.
05:41
and we've lost the sense
140
341260
3000
ื•ืื™ื‘ื“ื ื• ืืช ื”ืชื—ื•ืฉื”
05:44
of what's actually happening
141
344260
2000
ืœื’ื‘ื™ ืžื” ืฉื‘ืขืฆื ืงื•ืจื”
05:46
in this world that we've made.
142
346260
2000
ื‘ืขื•ืœื ื”ื–ื” ืฉื™ืฆืจื ื•.
05:48
And we're starting to make our way.
143
348260
2000
ื•ืื ื—ื ื• ืžืชื—ื™ืœื™ื ืœื”ืชืงื“ื.
05:50
There's a company in Boston called Nanex,
144
350260
3000
ื™ืฉ ื—ื‘ืจื” ื‘ื‘ื•ืกื˜ื•ืŸ ื‘ืฉื ื ืื ืงืก,
05:53
and they use math and magic
145
353260
2000
ื”ื ืžืฉืชืžืฉื™ื ื‘ืžืชืžื˜ื™ืงื” ื•ืงืกื
05:55
and I don't know what,
146
355260
2000
ื•ื”ืฉื“ ื™ื•ื“ืข ืžื”,
05:57
and they reach into all the market data
147
357260
2000
ื•ื”ื ืžื’ื™ืขื™ื ืœื›ืœ ื ืชื•ื ื™ ื”ืฉื•ืง
05:59
and they find, actually sometimes, some of these algorithms.
148
359260
3000
ื•ื”ื ืžื•ืฆืื™ื ืœืคืขืžื™ื ื—ืœืง ืžื”ืืœื’ื•ืจื™ืชืžื™ื ื”ืœืœื•.
06:02
And when they find them they pull them out
149
362260
3000
ื›ืืฉืจ ื”ื ืžื•ืฆืื™ื ืื•ืชื, ื”ื ืžื•ืฆื™ืื™ื ืื•ืชื ื”ื—ื•ืฆื”
06:05
and they pin them to the wall like butterflies.
150
365260
3000
ื•ืžืฆืžื™ื“ื™ื ืื•ืชื ืœืงื™ืจ ื›ืื™ืœื• ื”ื™ื• ืคืจืคืจื™ื.
06:08
And they do what we've always done
151
368260
2000
ื”ื ืขื•ืฉื™ื ืžื” ืฉืชืžื™ื“ ืขืฉื™ื ื•
06:10
when confronted with huge amounts of data that we don't understand --
152
370260
3000
ื›ืืฉืจ ืขืžื“ื ื• ืžื•ืœ ื›ืžื•ื™ื•ืช ืื“ื™ืจื•ืช ืฉืœ ื ืชื•ื ื™ื ืฉืื™ื ื ื• ืžื‘ื™ื ื™ื --
06:13
which is that they give them a name
153
373260
2000
ื”ื ื ื•ืชื ื™ื ืœื–ื” ืฉื
06:15
and a story.
154
375260
2000
ื•ื™ื•ืฆืจื™ื ืกื™ืคื•ืจ.
06:17
So this is one that they found,
155
377260
2000
ื”ื ื” ืื—ื“ ืฉื”ื ืžืฆืื•,
06:19
they called the Knife,
156
379260
4000
ื”ื ื›ื™ื ื• ืื•ืชื• ื”"ืกื›ื™ืŸ",
06:23
the Carnival,
157
383260
2000
ื”"ืงืจื ื‘ืœ",
06:25
the Boston Shuffler,
158
385260
4000
ื”"ืžืขืจื‘ืœ ื”ื‘ื•ืกื˜ื•ื ื™",
06:29
Twilight.
159
389260
2000
"ื“ืžื“ื•ืžื™ื".
06:31
And the gag is
160
391260
2000
ื•ื”ืงื˜ืข ื”ื•ื ืฉืืœื’ื•ืจืชืžื™ื
06:33
that, of course, these aren't just running through the market.
161
393260
3000
ื›ืืœื” ืื™ื ื ืžืื›ืœืกื™ื ืจืง ืืช ืฉื•ืง ื”ืžื ื™ื•ืช.
06:36
You can find these kinds of things wherever you look,
162
396260
3000
ื ื™ืชืŸ ืœืžืฆื•ื ื›ืืœื” ื‘ื›ืœ ืžืงื•ื ืฉืžื—ืคืฉื™ื ืื•ืชื,
06:39
once you learn how to look for them.
163
399260
2000
ื‘ืจื’ืข ืฉืœื•ืžื“ื™ื ื›ื™ืฆื“ ืœืืชืจื.
06:41
You can find it here: this book about flies
164
401260
3000
ื ื™ืชืŸ ืœืžืฆื•ื ื›ืืœื” ื›ืืŸ: ืกืคืจ ื”ื–ื‘ื•ื‘ื™ื
06:44
that you may have been looking at on Amazon.
165
404260
2000
ืฉืื•ืœื™ ื—ื™ืคืฉืชื ื‘ืืžืื–ื•ืŸ.
06:46
You may have noticed it
166
406260
2000
ืื•ืœื™ ื”ื‘ื—ื ืชื ื‘ื–ื”
06:48
when its price started at 1.7 million dollars.
167
408260
2000
ื›ืืฉืจ ืžื—ื™ืจื• ื”ืชื—ื™ืœ ื‘-1.7 ืžื™ืœื™ื•ืŸ ื“ื•ืœืจ.
06:50
It's out of print -- still ...
168
410260
2000
ื”ื•ื ืื–ืœ -- ืื‘ืœ ื‘ื›ืœ ื–ืืช ....
06:52
(Laughter)
169
412260
2000
(ืฆื—ื•ืง)
06:54
If you had bought it at 1.7, it would have been a bargain.
170
414260
3000
ืื ืจื›ืฉืชื ืื•ืชื• ืชืžื•ืจืช 1.7, ื–ื›ื™ืชื ื‘ืžืฆื™ืื”.
06:57
A few hours later, it had gone up
171
417260
2000
ื›ืžื” ืฉืขื•ืช ืื—ืจ-ื›ืš, ืžื—ื™ืจื• ืขืœื”
06:59
to 23.6 million dollars,
172
419260
2000
ืœ-23.6 ืžื™ืœื™ื•ืŸ ื“ื•ืœืจ,
07:01
plus shipping and handling.
173
421260
2000
ืœื ื›ื•ืœืœ ื“ืžื™ ืžืฉืœื•ื—.
07:03
And the question is:
174
423260
2000
ื•ื”ืฉืืœื” ื”ื™ื: ืื ืืฃ ืื—ื“ ืœื ืงื ื”
07:05
Nobody was buying or selling anything; what was happening?
175
425260
2000
ืื• ืžื›ืจ ืžืฉื”ื•, ืื– ืžื” ืงืจื” ื›ืืŸ?
07:07
And you see this behavior on Amazon
176
427260
2000
ื•ืจื•ืื™ื ื”ืชื ื”ื’ื•ืช ื›ื–ื• ื‘ืืžืื–ื•ืŸ
07:09
as surely as you see it on Wall Street.
177
429260
2000
ื‘ืื•ืชื” ื•ื•ื“ืื•ืช ืฉืจื•ืื™ื ืื•ืชื” ื‘ื•ื•ืœ-ืกื˜ืจื™ื˜.
07:11
And when you see this kind of behavior,
178
431260
2000
ื›ืืฉืจ ืจื•ืื™ื ื”ืชื ื”ื’ื•ืช ื›ื–ื•,
07:13
what you see is the evidence
179
433260
2000
ื–ื• ื”ืขื“ื•ืช
07:15
of algorithms in conflict,
180
435260
2000
ืœืกืชื™ืจื•ืช ื‘ื™ืŸ ืืœื’ื•ืจื™ืชืžื™ื,
07:17
algorithms locked in loops with each other,
181
437260
2000
ืืœื’ื•ืจื™ืชืžื™ื ื”ื ืขื•ืœื™ื ื‘ืœื•ืœืื•ืช ืฉืœ ื”ืื—ื“ ื‘ืฉื ื™,
07:19
without any human oversight,
182
439260
2000
ืœืœื ื”ืฉื’ื—ืช ืื“ื,
07:21
without any adult supervision
183
441260
3000
ืœืœื ื‘ื•ื’ืจ ืื—ืจืื™
07:24
to say, "Actually, 1.7 million is plenty."
184
444260
3000
ืฉื™ืืžืจ, "1.7 ืžื™ืœื™ื•ืŸ ื–ื” ื™ื•ืชืจ ืžื“ื™."
07:27
(Laughter)
185
447260
3000
(ืฆื—ื•ืง)
07:30
And as with Amazon, so it is with Netflix.
186
450260
3000
ื•ื›ืžื• ื‘ืืžืื–ื•ืŸ, ื›ื›ื” ื’ื ื‘ื ื˜ืคืœื™ืงืก.
07:33
And so Netflix has gone through
187
453260
2000
ื ื˜ืคืœื™ืงืก ื”ืฉืชืžืฉื” ื‘ื›ืžื”
07:35
several different algorithms over the years.
188
455260
2000
ืืœื’ื•ืจื™ืชืžื™ื ืฉื•ื ื™ื ื‘ืžืฉืš ื”ืฉื ื™ื.
07:37
They started with Cinematch, and they've tried a bunch of others --
189
457260
3000
ื”ื ื”ื—ืœื• ืขื ืกื™ื™ื ืžืืฆ', ื•ื ื™ืกื• ืขื•ื“ ื›ืžื”.
07:40
there's Dinosaur Planet; there's Gravity.
190
460260
2000
ื™ืฉ ืืช "ื›ื•ื›ื‘ ื”ื“ื™ื ื•ื–ืื•ืจื™ื", ื™ืฉ "ื›ื‘ื™ื“ื”".
07:42
They're using Pragmatic Chaos now.
191
462260
2000
ื›ืขืช ื”ื ืžืฉืชืžืฉื™ื ื‘"ื›ืื•ืก ืคืจื’ืžื˜ื™".
07:44
Pragmatic Chaos is, like all of Netflix algorithms,
192
464260
2000
"ื›ืื•ืก ืคืจื’ืžื˜ื™", ื›ืžื• ื›ืœ ื”ืืœื’ื•ืจื™ืชืžื™ื ืฉืœ ื ื˜ืคืœื™ืงืก,
07:46
trying to do the same thing.
193
466260
2000
ืžื ืกื” ืœืขืฉื•ืช ืื•ืชื• ื”ื“ื‘ืจ.
07:48
It's trying to get a grasp on you,
194
468260
2000
ื”ื•ื ืžื ืกื” ืœื”ืฉื™ื’ ืขืœื™ื ื• ืื—ื™ื–ื”,
07:50
on the firmware inside the human skull,
195
470260
2000
ืขืœ ื”ืชื•ื›ื ื” ื”ืฆืจื•ื‘ื” ืฉื‘ื’ื•ืœื’ืœืชื ื•,
07:52
so that it can recommend what movie
196
472260
2000
ื›ื“ื™ ืฉื™ื•ื›ืœ ืœื”ืžืœื™ืฅ ืขืœ ื”ืกืจื˜
07:54
you might want to watch next --
197
474260
2000
ืฉืื•ืœื™ ื ืจืฆื” ืœืฆืคื•ืช ื‘ื• ื›ืขืช --
07:56
which is a very, very difficult problem.
198
476260
3000
ืฉื”ื™ื ื‘ืขื™ื” ืžืื•ื“, ืžืื•ื“ ืงืฉื”.
07:59
But the difficulty of the problem
199
479260
2000
ืื‘ืœ ื”ืงื•ืฉื™ ืฉืœ ื”ื‘ืขื™ื”
08:01
and the fact that we don't really quite have it down,
200
481260
3000
ื•ื”ืขื•ื‘ื“ื” ืฉืœื ื”ืฆืœื—ื ื• ืœื”ืฉืชืœื˜ ืขืœื™ื”,
08:04
it doesn't take away
201
484260
2000
ืื™ื ื ืžื•ื ืขื™ื ืžืื™ืชื ื•
08:06
from the effects Pragmatic Chaos has.
202
486260
2000
ืืช ื”ื”ืฉืคืขื•ืช ืฉื™ืฉ ืœ"ื›ืื•ืก ืคืจื’ืžื˜ื™".
08:08
Pragmatic Chaos, like all Netflix algorithms,
203
488260
3000
"ื›ืื•ืก ืคืจื’ืžื˜ื™", ื›ืžื• ื›ืœ ื”ืืœื’ื•ืจื™ืชืžื™ื ืฉืœ ื ื˜ืคืœื™ืงืก,
08:11
determines, in the end,
204
491260
2000
ืงื•ื‘ืข, ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ,
08:13
60 percent
205
493260
2000
60 ืื—ื•ื–
08:15
of what movies end up being rented.
206
495260
2000
ืฉืœ ืื™ื–ื” ืกืจื˜ื™ื ื™ื•ืฉื›ืจื•.
08:17
So one piece of code
207
497260
2000
ื›ืš ืฉื—ืœืง ืื—ื“ ืฉืœ ื”ืชื•ื›ื ื™ืช
08:19
with one idea about you
208
499260
3000
ื”ืžื—ื–ื™ืง ื‘ื“ื™ืžื•ื™ ืื—ื“ ืžืกื•ื™ื™ื ืขืœื™ื ื•,
08:22
is responsible for 60 percent of those movies.
209
502260
3000
ืื—ืจืื™ ืœ-60 ืื—ื•ื– ืžื”ืกืจื˜ื™ื ื”ืœืœื•.
08:25
But what if you could rate those movies
210
505260
2000
ืื‘ืœ ืžื” ืื ื”ื™ื™ื ื• ื™ื›ื•ืœื™ื ืœื“ืจื’ ืืช ื”ืกืจื˜ื™ื
08:27
before they get made?
211
507260
2000
ืœืคื ื™ ืฉื™ื•ืฆืจื™ื ืื•ืชื?
08:29
Wouldn't that be handy?
212
509260
2000
ื”ืื ื–ื” ืœื ื™ื”ื™ื” ื™ื•ืชืจ ืฉื™ืžื•ืฉื™?
08:31
Well, a few data scientists from the U.K. are in Hollywood,
213
511260
3000
ื›ืžื” ืžื“ืขื ื™ ื ืชื•ื ื™ื ืžื‘ืจื™ื˜ื ื™ื” ื ืžืฆืื™ื ื‘ื”ื•ืœื™ื•ื•ื“,
08:34
and they have "story algorithms" --
214
514260
2000
ื•ื™ืฉ ืœื”ื ืืœื’ื•ืจื™ืชืžื™ ืขืœื™ืœื•ืช --
08:36
a company called Epagogix.
215
516260
2000
ื—ื‘ืจื” ื”ื ืงืจืืช ืืคืื’ื•ื’ื™ืงืก.
08:38
And you can run your script through there,
216
518260
3000
ื•ื ื™ืชืŸ ืœื”ืจื™ืฅ ืืช ืชืกืจื™ื˜ ื”ืกืจื˜ ืฉื,
08:41
and they can tell you, quantifiably,
217
521260
2000
ื•ื”ื ื™ื›ื•ืœื™ื ืœื”ื’ื™ื“ ื‘ืื•ืคืŸ ื›ืžื•ืชื™,
08:43
that that's a 30 million dollar movie
218
523260
2000
ืฉื–ื” ืกืจื˜ ืฉืœ 30 ืžื™ืœื™ื•ืŸ ื“ื•ืœืจ
08:45
or a 200 million dollar movie.
219
525260
2000
ืื• ืกืจื˜ ืฉืœ 200 ืžื™ืœื™ื•ืŸ ื“ื•ืœืจ.
08:47
And the thing is, is that this isn't Google.
220
527260
2000
ืื‘ืœ ื”ืขื ื™ื™ืŸ ื›ืืŸ ื”ื•ื ืฉื–ื” ืœื ื’ื•ื’ืœ.
08:49
This isn't information.
221
529260
2000
ื–ื” ืœื ืžื™ื“ืข.
08:51
These aren't financial stats; this is culture.
222
531260
2000
ืืœื” ืื™ื ืŸ ืกื˜ื˜ื™ืกืงื•ืช ืคื™ื ื ืกื™ื•ืช; ื–ื•ื”ื™ ืื•ืžื ื•ืช.
08:53
And what you see here,
223
533260
2000
ื•ืžื” ืฉืจื•ืื™ื ื›ืืŸ,
08:55
or what you don't really see normally,
224
535260
2000
ืื• ืžื” ืฉืœื ืจื•ืื™ื ื‘ืื•ืคืŸ ืจื’ื™ืœ,
08:57
is that these are the physics of culture.
225
537260
4000
ื–ื” ืฉืืœื” ื”ื ื”ืคื™ื–ื™ืงื” ืฉืœ ืื•ืžื ื•ืช.
09:01
And if these algorithms,
226
541260
2000
ื•ืื ืืœื’ื•ืจื™ืชืžื™ื ื”ืœืœื•,
09:03
like the algorithms on Wall Street,
227
543260
2000
ื›ืžื• ื”ืืœื’ื•ืจื™ืชืžื™ื ื‘ื•ื•ืœ-ืกื˜ืจื™ื˜,
09:05
just crashed one day and went awry,
228
545260
3000
ื™ืชืจืกืงื• ื™ื•ื ืื—ื“ ื•ื™ืฉืชื‘ืฉื•,
09:08
how would we know?
229
548260
2000
ื›ื™ืฆื“ ื ื“ืข ืขืœ ื–ื”,
09:10
What would it look like?
230
550260
2000
ื›ื™ืฆื“ ื–ื” ืืžื•ืจ ืœื”ื™ืจืื•ืช?
09:12
And they're in your house. They're in your house.
231
552260
3000
ื•ื”ื ื ืžืฆืื™ื ื‘ื‘ื™ืชื™ื ื•.
09:15
These are two algorithms competing for your living room.
232
555260
2000
ืืœื” ื”ื ืฉื ื™ ืืœื’ื•ืจื™ืชืžื™ื ื”ืžืชื—ืจื™ื ืขืœ ืกืœื•ืŸ.
09:17
These are two different cleaning robots
233
557260
2000
ืืœื” ื”ื ืฉื ื™ ืจื•ื‘ื•ื˜ื™-ื ื™ืงื•ื™ ืฉื•ื ื™ื
09:19
that have very different ideas about what clean means.
234
559260
3000
ื”ื ื•ืฉืื™ื ืขื™ืžื ืฉืชื™ ืชืคื™ืกื•ืช ืฉื•ื ื•ืช ืœื—ืœื•ื˜ื™ืŸ ืขืœ ืžื” ื–ื” ื ื™ืงื•ื™.
09:22
And you can see it
235
562260
2000
ื•ื ื™ืชืŸ ืœืจืื•ืช ื–ืืช,
09:24
if you slow it down and attach lights to them,
236
564260
3000
ื‘ื”ื™ืœื•ืš ืื™ื˜ื™ ื›ืืฉืจ ืžืฆืžื™ื“ื™ื ืœื”ื ืคื ืกื™ื.
09:27
and they're sort of like secret architects in your bedroom.
237
567260
3000
ื•ื”ื ืžื”ื•ื•ื™ื ืžื™ืŸ ืืจื›ื™ื˜ืงื˜ื™ื ื—ืฉืื™ื™ื ื‘ื—ื“ืจ-ื”ืฉื™ื ื” ืฉืœื ื•.
09:30
And the idea that architecture itself
238
570260
3000
ื•ื”ืจืขื™ื•ืŸ ืฉื”ืืจื›ื™ื˜ืงื˜ ืขืฆืžื•
09:33
is somehow subject to algorithmic optimization
239
573260
2000
ื›ืคื•ืฃ ืœืื•ืคื˜ื™ืžื™ื–ืฆื™ื” ืืœื’ื•ืจื™ืชืžื™ืช
09:35
is not far-fetched.
240
575260
2000
ื›ื‘ืจ ืื™ื ื• ื“ืžื™ื•ื ื™.
09:37
It's super-real and it's happening around you.
241
577260
3000
ื”ื•ื ืžืžืฉื™ ื‘ื™ื•ืชืจ ื•ืžืชืงื™ื™ื ืกื‘ื™ื‘ื ื•.
09:40
You feel it most
242
580260
2000
ื—ืฉื™ื ืื•ืชื• ื”ื›ื™ ื”ืจื‘ื”
09:42
when you're in a sealed metal box,
243
582260
2000
ื›ืืฉืจ ืื ื• ื ืขื•ืœื™ื ื‘ืชื-ืžืชื›ืช,
09:44
a new-style elevator;
244
584260
2000
ืžืขืœื™ืช ืžืกื•ื’ ื—ื“ืฉ,
09:46
they're called destination-control elevators.
245
586260
2000
ื”ื ืงืจืืช ืžืขืœื™ืช ืฉืœื™ื˜ื”-ืขืœ-ื™ืขื“.
09:48
These are the ones where you have to press what floor you're going to go to
246
588260
3000
ืืœื• ืžืขืœื™ื•ืช ื‘ื”ืŸ ืฆืจื™ืš ืœืœื—ื•ืฅ ืขืœ ื”ืงื•ืžื” ืฉืจื•ืฆื™ื ืœื”ื’ื™ืข ืืœื™ื”
09:51
before you get in the elevator.
247
591260
2000
ืœืคื ื™ ืฉื ื›ื ืกื™ื ืœืžืขืœื™ืช.
09:53
And it uses what's called a bin-packing algorithm.
248
593260
2000
ื•ื”ื™ื ืžืฉืชืžืฉืช ื‘ืืœื’ื•ืจื™ืชื ื”ื ืงืจื ืืœื’ื•ืจื™ืชืžื ืืจื™ื–ืช ืชื™ื‘ื”.
09:55
So none of this mishegas
249
595260
2000
ื ื’ืžืจื• ื”ืฉื˜ื•ื™ื•ืช ื”ืืœื” ืฉืœ ืœืชืช
09:57
of letting everybody go into whatever car they want.
250
597260
2000
ืœื›ืœ ืื—ื“ ืœื”ื™ื›ื ืก ืœื›ืœ ืžืขืœื™ืช ืฉื‘ื ืœื•.
09:59
Everybody who wants to go to the 10th floor goes into car two,
251
599260
2000
ื›ืœ ืžื™ ืฉืจื•ืฆื” ืœื”ื’ื™ืข ืœืงื•ืžื” ื”ืขืฉื™ืจื™ืช, ื™ื™ื›ื ืก ืœืžืขืœื™ืช 2,
10:01
and everybody who wants to go to the third floor goes into car five.
252
601260
3000
ื•ื›ืœ ืžื™ ืฉืจื•ืฆื” ืœื”ื’ื™ืข ืœืงื•ืžื” ื”ืฉืœื™ืฉื™ืช, ื™ื™ื›ื ืก ืœืžืขืœื™ืช 5.
10:04
And the problem with that
253
604260
2000
ืื‘ืœ ื”ื‘ืขื™ื” ืขื ื–ื”
10:06
is that people freak out.
254
606260
2000
ื”ื™ื ืฉืื ืฉื™ื ื—ื•ืฉืฉื™ื.
10:08
People panic.
255
608260
2000
ืื ืฉื™ื ื ื›ื ืกื™ื ืœื—ืจื“ื”.
10:10
And you see why. You see why.
256
610260
2000
ื•ืจื•ืื™ื ืžื“ื•ืข.
10:12
It's because the elevator
257
612260
2000
ื–ื” ื‘ื’ืœืœ ืฉื”ืžืขืœื™ืช
10:14
is missing some important instrumentation, like the buttons.
258
614260
3000
ื—ืกืจื” ืืžืฆืขื™ื ืžืื•ื“ ื—ืฉื•ื‘ื™ื, ื›ืžื• ื”ื›ืคืชื•ืจื™ื.
10:17
(Laughter)
259
617260
2000
(ืฆื—ื•ืง)
10:19
Like the things that people use.
260
619260
2000
ื›ืžื• ืืœื” ืฉืื ืฉื™ื ืžืฉืชืžืฉื™ื.
10:21
All it has
261
621260
2000
ื›ืœ ืžื” ืฉื™ืฉ ืขื›ืฉื™ื•
10:23
is just the number that moves up or down
262
623260
3000
ื–ื” ื”ืžืกืคืจ ืฉื ืข ืžืขืœื” ืžื˜ื”
10:26
and that red button that says, "Stop."
263
626260
3000
ื•ื”ื›ืคืชื•ืจ ื”ืื“ื•ื ื”ื ื•ืชืŸ ืคืงื•ื“ื” ืœืขืฆื•ืจ.
10:29
And this is what we're designing for.
264
629260
3000
ื•ื–ื” ืžื” ืฉืื ื• ื‘ื•ื ื™ื.
10:32
We're designing
265
632260
2000
ืื ื• ื‘ื•ื ื™ื
10:34
for this machine dialect.
266
634260
2000
ื ื™ื‘ ืฉืœ ืžื›ื•ื ื•ืช.
10:36
And how far can you take that? How far can you take it?
267
636260
3000
ื›ืžื” ืจื—ื•ืง ืืคืฉืจ ืœืงื—ืช ืืช ื–ื”?
10:39
You can take it really, really far.
268
639260
2000
ื ื™ืชืŸ ืœืงื—ืช ื–ืืช ืžืžืฉ, ืžืžืฉ ืจื—ื•ืง.
10:41
So let me take it back to Wall Street.
269
641260
3000
ืื—ื–ื•ืจ ื‘ืจืฉื•ืชื›ื ืœื•ื•ืœ-ืกื˜ืจื™ื˜.
10:45
Because the algorithms of Wall Street
270
645260
2000
ืžืื—ืจ ื•ื”ืืœื’ื•ืจื™ืชืžื™ื ื‘ื•ื•ืœ-ืกื˜ืจื™ื˜
10:47
are dependent on one quality above all else,
271
647260
3000
ืชืœื•ื™ื™ื ื‘ืชื›ื•ื ื” ืื—ืช ื”ืžืขืคื™ืœื” ืขืœ ื”ืฉืืจ,
10:50
which is speed.
272
650260
2000
ืฉื–ื• ืžื”ื™ืจื•ืช.
10:52
And they operate on milliseconds and microseconds.
273
652260
3000
ื•ื”ื ืคื•ืขืœื™ื ื‘ืžื™ืœื™ืฉื ื™ื•ืช ืื• ืžื™ืงืจื•ืฉื ื™ื•ืช.
10:55
And just to give you a sense of what microseconds are,
274
655260
2000
ื•ืจืง ื›ื“ื™ ืœืชืช ืœื›ื ืžื•ืฉื’ ืžื” ื–ื” ืžื™ืงืจื•ืฉื ื™ื”,
10:57
it takes you 500,000 microseconds
275
657260
2000
ืœื•ืงื— ืœื ื• 500,000 ืžื™ืงืจื•ืฉื ื™ื•ืช
10:59
just to click a mouse.
276
659260
2000
ืจืง ื›ื“ื™ ืœื”ืงืœื™ืง ืขืœ ืขื›ื‘ืจ.
11:01
But if you're a Wall Street algorithm
277
661260
2000
ืื‘ืœ ืื ืืชื” ืืœื’ื•ืจื™ืชื ื‘ื•ื•ืœ-ืกื˜ืจื™ื˜
11:03
and you're five microseconds behind,
278
663260
2000
ื•ืืชื” ืžืคื’ืจ ื‘-5 ืžื™ืงืจื•ืฉื ื™ื•ืช ืžืื—ื•ืจ,
11:05
you're a loser.
279
665260
2000
ืืชื” ื ื—ืฉื‘ ืœืžืคืกื™ื“ืŸ.
11:07
So if you were an algorithm,
280
667260
2000
ืœื›ืŸ ืื ื”ื™ื™ืชื ืืœื’ื•ืจื™ืชื,
11:09
you'd look for an architect like the one that I met in Frankfurt
281
669260
3000
ื”ื™ื™ืชื ืžื—ืคืฉื™ื ืืจื›ื™ื˜ืงื˜ ื›ืžื• ื–ื” ืฉืคื’ืฉืชื™ ื‘ืคืจื ืงืคื•ืจื˜
11:12
who was hollowing out a skyscraper --
282
672260
2000
ืฉืจื•ืงืŸ ื’ื•ืจื“-ืฉื—ืงื™ื --
11:14
throwing out all the furniture, all the infrastructure for human use,
283
674260
3000
ื–ื•ืจืง ืืช ื›ืœ ื”ืจื™ื”ื•ื˜, ืืช ื›ืœ ื”ืื‘ื™ื–ืจื™ื ืœืฉื™ืžื•ืฉ ืื“ื,
11:17
and just running steel on the floors
284
677260
3000
ื•ืจืง ืžืฉืื™ืจ ืคืœื“ื•ืช ื‘ืจื™ืฆืคื”
11:20
to get ready for the stacks of servers to go in --
285
680260
3000
ื›ื“ื™ ืœื”ืชื›ื•ื ืŸ ืœืžื“ืคื™ ืฉืจืชื™ื ื”ืขื•ืžื“ื™ื ืœื”ื™ื›ื ืก --
11:23
all so an algorithm
286
683260
2000
ื›ืœ ื–ื” ื›ื“ื™ ืฉืืœื’ื•ืจื™ืชืžื™ื
11:25
could get close to the Internet.
287
685260
3000
ื™ื•ื›ืœื• ืœื”ืชืงืจื‘ ืขื•ื“ ืœืื™ื ื˜ืจื ื˜.
11:28
And you think of the Internet as this kind of distributed system.
288
688260
3000
ืืชื ื—ื•ืฉื‘ื™ื ืขืœ ืื™ื ื˜ืจื ื˜ ื›ืžืขืจื›ืช ืžื‘ื•ื–ืจืช.
11:31
And of course, it is, but it's distributed from places.
289
691260
3000
ื›ืžื•ื‘ืŸ ืฉื”ื™ื ื›ืŸ, ืื‘ืœ ื”ื™ื ืžื‘ื•ื–ืจืช ืžืžืงื•ืžื•ืช ืžืกื•ื™ื™ืžื™ื.
11:34
In New York, this is where it's distributed from:
290
694260
2000
ื‘ื ื™ื•-ื™ื•ืจืง, ื–ื” ื”ืžืงื•ื ืžืžื ื• ื”ื™ื ืžื‘ื•ื–ืจืช:
11:36
the Carrier Hotel
291
696260
2000
ืžืœื•ืŸ ืงืืจื™ื™ืจ
11:38
located on Hudson Street.
292
698260
2000
ื”ืžืžื•ืงื ื‘ืจื—ื•ื‘ ื”ื“ืกืŸ.
11:40
And this is really where the wires come right up into the city.
293
700260
3000
ื•ื–ื” ื”ืžืงื•ื ืžืžื ื• ื™ื•ืฆืื™ื ื”ื›ื‘ืœื™ื ืืœ ืชื•ืš ื”ืขื™ืจ.
11:43
And the reality is that the further away you are from that,
294
703260
4000
ื•ื”ืžืฆื™ืื•ืช ื”ื™ื ืฉื›ื›ืœ ืฉืžื™ืฉื”ื• ื™ื•ืชืจ ืจื—ื•ืง ืžืžื ื•,
11:47
you're a few microseconds behind every time.
295
707260
2000
ื”ื•ื ื ืฉืืจ ืžืคื’ืจ ืžืื—ื•ืจ ื‘ื›ืžื” ืžื™ืงืจื•ืฉื ื™ื•ืช.
11:49
These guys down on Wall Street,
296
709260
2000
ื”ืื“ื•ื ื™ื ื”ืืœื” ื‘ื•ื•ืœ-ืกื˜ืจื™ื˜,
11:51
Marco Polo and Cherokee Nation,
297
711260
2000
ืžืจืงื• ืคื•ืœื• ื•ืฆ'ืจื•ืงื™ ื ื™ื™ืฉืŸ,
11:53
they're eight microseconds
298
713260
2000
ื”ื 8 ืžื™ืงืจื•ืฉื ื™ื•ืช
11:55
behind all these guys
299
715260
2000
ืžืื—ื•ืจื™ ื”ืื“ื•ื ื™ื ื”ืืœื”
11:57
going into the empty buildings being hollowed out
300
717260
4000
ื”ืขื•ืžื“ื™ื ืœื”ื™ื›ื ืก ืœื‘ื ื™ื™ื ื™ื ื”ืจื™ืงื™ื ื”ืžืจื•ืงื ื™ื ื›ืขืช
12:01
up around the Carrier Hotel.
301
721260
2000
ื‘ืกื‘ื™ื‘ืช ืžืœื•ืŸ ืงืืจื™ื™ืจ.
12:03
And that's going to keep happening.
302
723260
3000
ื•ื–ื” ื™ืžืฉื™ืš ืœืงืจื•ืช ืฉื•ื‘ ื•ืฉื•ื‘.
12:06
We're going to keep hollowing them out,
303
726260
2000
ืื ื• ืขื•ืžื“ื™ื ืœื”ืžืฉื™ืš ื•ืœืจื•ืงืŸ ืื•ืชื,
12:08
because you, inch for inch
304
728260
3000
ืžืื—ืจ ื•ืืชื, ืื™ื ื˜ืฉ ืื—ืจ ืื™ื ื˜ืฉ
12:11
and pound for pound and dollar for dollar,
305
731260
3000
ื•ืคืื•ื ื“ ืื—ืจ ืคืื•ื ื“ ื“ื•ืœืจ ืื—ืจ ื“ื•ืœืจ,
12:14
none of you could squeeze revenue out of that space
306
734260
3000
ืืฃ ืื—ื“ ืžื›ื ืื™ื ื• ืžืกื•ื’ืœ ืœืกื—ื•ื˜ ื›ืกืฃ ืžื”ืžืจื—ื‘ ื”ื–ื”
12:17
like the Boston Shuffler could.
307
737260
3000
ื›ืžื• ืฉื”"ืžืขืจื‘ืœ ื”ื‘ื•ืกื˜ื•ื ื™" ื™ื›ื•ืœ.
12:20
But if you zoom out,
308
740260
2000
ืื‘ืœ ืื ืชืชืจื—ืงื•,
12:22
if you zoom out,
309
742260
2000
ืื ืชืชืจื—ืงื•,
12:24
you would see an 825-mile trench
310
744260
4000
ืชืจืื• ืชืขืœื” ื‘ืื•ืจืš 1300 ืง"ืž
12:28
between New York City and Chicago
311
748260
2000
ื‘ื™ืŸ ื ื™ื•-ื™ื•ืจืง ืœืฉื™ืงื’ื•
12:30
that's been built over the last few years
312
750260
2000
ื”ื ื‘ื ื™ืช ื‘ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช
12:32
by a company called Spread Networks.
313
752260
3000
ืขืœ-ื™ื“ื™ ื—ื‘ืจื” ื”ื ืงืจืืช ืกืคืจื™ื™ื“ ื ื˜ื•ื•ืจืงืก.
12:35
This is a fiber optic cable
314
755260
2000
ื–ื”ื• ื›ื‘ืœ ืกื™ื‘ ืื•ืคื˜ื™
12:37
that was laid between those two cities
315
757260
2000
ืฉื”ื•ื ื— ื‘ื™ืŸ ืฉืชื™ ื”ืขืจื™ื ื”ืœืœื•
12:39
to just be able to traffic one signal
316
759260
3000
ืคืฉื•ื˜ ื›ื“ื™ ืœื”ื™ื•ืช ืžืกื•ื’ืœื™ื ืœื”ืขื‘ื™ืจ ืื•ืช ืื—ื“
12:42
37 times faster than you can click a mouse --
317
762260
3000
ืžื”ืจ ื™ื•ืชืจ ืคื™-37 ืžืžื” ืฉืืชื ื™ื›ื•ืœื™ื ืœื”ืงืœื™ืง ืขืœ ืขื›ื‘ืจ --
12:45
just for these algorithms,
318
765260
3000
ืืš ื•ืจืง ื‘ืฉื‘ื™ืœ ืืœื’ื•ืจื™ืชืžื™ื ื”ืœืœื•,
12:48
just for the Carnival and the Knife.
319
768260
3000
ืืš ื•ืจืง ื‘ืฉื‘ื™ืœ ื”"ืงืจื ื‘ืœ" ื•ื”"ืกื›ื™ืŸ".
12:51
And when you think about this,
320
771260
2000
ื›ืืฉืจ ื—ื•ืฉื‘ื™ื ืขืœ ื›ืš,
12:53
that we're running through the United States
321
773260
2000
ืฉืื ื• ืขื•ื‘ืจื™ื ืขืœ ืืจื”"ื‘
12:55
with dynamite and rock saws
322
775260
3000
ืขื ืžืกื•ืจื™ ื“ื™ื ืžื™ื˜ ื•ืกืœืขื™ื
12:58
so that an algorithm can close the deal
323
778260
2000
ื›ื“ื™ ืฉืืœื’ื•ืจื™ืชื ื™ื•ื›ืœ ืœืกื’ื•ืจ ืขื™ืกืงื”
13:00
three microseconds faster,
324
780260
3000
3 ืžื™ืงืจื•ืฉื ื™ื•ืช ื™ื•ืชืจ ืžื”ืจ,
13:03
all for a communications framework
325
783260
2000
ื”ื›ืœ ื‘ืฉื‘ื™ืœ ืžืขืจื›ืช ืชืงืฉื•ืจืช
13:05
that no human will ever know,
326
785260
4000
ืฉืืฃ ืื“ื ืœื ื™ื›ื™ืจื” ืื™-ืคืขื,
13:09
that's a kind of manifest destiny;
327
789260
3000
ื–ื”ื• ืžื™ืŸ ืžื™ื ืฉืจ ืฉืœ ื’ื•ืจืœ ื™ื“ื•ืข ืžืจืืฉ,
13:12
and we'll always look for a new frontier.
328
792260
3000
ืฉืชืžื™ื“ ื™ื—ืคืฉ ื—ื–ื™ืชื•ืช ื—ื“ืฉื•ืช.
13:15
Unfortunately, we have our work cut out for us.
329
795260
3000
ืœืจื•ืข ื”ืžื–ืœ, ื”ืขื‘ื•ื“ื” ื›ื‘ืจ ื ืขืฉืชื” ื‘ืฉื‘ื™ืœื ื•.
13:18
This is just theoretical.
330
798260
2000
ื–ื” ืจืง ืชืื•ืจื˜ื™.
13:20
This is some mathematicians at MIT.
331
800260
2000
ืืœื” ื›ืžื” ืžืชืžื˜ื™ืงืื™ื ื‘-MIT.
13:22
And the truth is I don't really understand
332
802260
2000
ื•ื”ืืžืช ื”ื™ื ืฉืื™ื ื™ ืžื‘ื™ืŸ
13:24
a lot of what they're talking about.
333
804260
2000
ื”ืจื‘ื” ืžืžื” ืฉื”ื ืžื“ื‘ืจื™ื ืขืœื™ื•.
13:26
It involves light cones and quantum entanglement,
334
806260
3000
ื–ื” ืงืฉื•ืจ ืœืงื•ื ื•ืกื™ ืื•ืจ ื•ืชืกื‘ื•ื›ืช ืงื•ื•ื ื˜ื™ืช,
13:29
and I don't really understand any of that.
335
809260
2000
ื•ื”ืืžืช ื”ื™ื ืฉืื ื™ ืœื ืžื‘ื™ืŸ ืฉื•ื ื“ื‘ืจ ืžื–ื”.
13:31
But I can read this map,
336
811260
2000
ืื‘ืœ ืื ื™ ื™ื›ื•ืœ ืœื”ื‘ื™ืŸ ืืช ื”ืžืคื”.
13:33
and what this map says
337
813260
2000
ื•ืžื” ืฉื”ืžืคื” ื”ื–ื• ืื•ืžืจืช
13:35
is that, if you're trying to make money on the markets where the red dots are,
338
815260
3000
ื”ื•ื ืฉืื ืืชื ืžื ืกื™ื ืœืขืฉื•ืช ื›ืกืฃ ื‘ืฉื•ื•ืงื™ื ื”ื™ื›ืŸ ืฉื”ื ืงื•ื“ื•ืช ื”ืื“ื•ืžื•ืช ืžื•ืคื™ืขื•ืช,
13:38
that's where people are, where the cities are,
339
818260
2000
ืฉืฉื ื ืžืฆืื™ื ื”ืื ืฉื™ื, ื”ื™ื›ืŸ ืฉื”ืขืจื™ื ื”ื’ื“ื•ืœื•ืช,
13:40
you're going to have to put the servers where the blue dots are
340
820260
3000
ืชืฆื˜ืจื›ื• ืœื”ื ื™ื— ืืช ื”ืฉืจืชื™ื ื”ื™ื›ืŸ ืฉื ืžืฆืื•ืช ื”ื ืงื•ื“ื•ืช ื”ื›ื—ื•ืœื•ืช
13:43
to do that most effectively.
341
823260
2000
ื›ื“ื™ ืœื‘ืฆืข ื–ืืช ื‘ืฆื•ืจื” ื”ื™ืขื™ืœื” ื‘ื™ื•ืชืจ.
13:45
And the thing that you might have noticed about those blue dots
342
825260
3000
ื•ืื•ืœื™ ื›ื‘ืจ ื”ื‘ื—ื ืชื ืžืฉื”ื• ื‘ื ื•ื’ืข ืœื ืงื•ื“ื•ืช ื”ื›ื—ื•ืœื•ืช,
13:48
is that a lot of them are in the middle of the ocean.
343
828260
3000
ืฉืจื‘ื•ืช ืžื”ืŸ ื ืžืฆืื•ืช ื‘ืชื•ืš ื”ืื•ืงื™ื™ื ื•ืก.
13:51
So that's what we'll do: we'll build bubbles or something,
344
831260
3000
ืื– ื–ื” ืžื” ืฉื ืขืฉื”. ื ื‘ื ื” ืžื™ืŸ ืฉืœืคื•ื—ื™ื•ืช ืื• ืžืฉื”ื•,
13:54
or platforms.
345
834260
2000
ืื• ืจืฆื™ืคื™ื.
13:56
We'll actually part the water
346
836260
2000
ืื ื• ื‘ืขืฆื ื ื—ืฆื” ืืช ื”ืžื™ื
13:58
to pull money out of the air,
347
838260
2000
ื›ื“ื™ ืœืกื—ื•ื˜ ื›ืกืฃ ืžื”ืื•ื™ืจ,
14:00
because it's a bright future
348
840260
2000
ืžื›ื™ื•ื•ืŸ ืฉื”ืขืชื™ื“ ื•ืจื•ื“
14:02
if you're an algorithm.
349
842260
2000
ืื ืืชื” ืืœื’ื•ืจื™ืชื.
14:04
(Laughter)
350
844260
2000
(ืฆื—ื•ืง)
14:06
And it's not the money that's so interesting actually.
351
846260
3000
ื•ื–ื” ืœื ื”ื›ืกืฃ ืขืฆืžื• ืฉืžืขื ื™ื™ืŸ ื›ืœ-ื›ืš,
14:09
It's what the money motivates,
352
849260
2000
ืืœื ืžื” ืฉื”ื›ืกืฃ ื’ื•ืจื ืœื ื• ืœืขืฉื•ืช.
14:11
that we're actually terraforming
353
851260
2000
ืื ื• ืœืžืขืฉื” ืžืขืฆื‘ื™ื ืžื—ื“ืฉ
14:13
the Earth itself
354
853260
2000
ืืช ืคื ื™-ื”ืฉื˜ื— ืฉืœ ื›ื“ื•ืจ-ื”ืืจืฅ ืขืฆืžื•
14:15
with this kind of algorithmic efficiency.
355
855260
2000
ืขื ืกื•ื’ ื›ื–ื” ืฉืœ ื™ืขื™ืœื•ืช ืืœื’ื•ืจื™ืชืžื™ืช.
14:17
And in that light,
356
857260
2000
ืœืื•ืจ ื›ืœ ื–ืืช,
14:19
you go back
357
859260
2000
ื ื—ื–ื•ืจ ื•ื ืกืชื›ืœ
14:21
and you look at Michael Najjar's photographs,
358
861260
2000
ื‘ืฆื™ืœื•ืžื™ื• ืฉืœ ืžื™ื™ืงืœ ื ืื’'ืืจ,
14:23
and you realize that they're not metaphor, they're prophecy.
359
863260
3000
ื•ื ื’ืœื” ืฉื”ืŸ ืœื ืžื˜ืคื•ืจื”, ืืœื ื ื‘ื•ืื”.
14:26
They're prophecy
360
866260
2000
ื”ืŸ ื ื‘ื•ืื”
14:28
for the kind of seismic, terrestrial effects
361
868260
4000
ืขืœ ื”ื”ืฉืคืขื•ืช ื”ืกืกืžื™ื•ืช, ื”ืงืจืงืขื™ื•ืช
14:32
of the math that we're making.
362
872260
2000
ืฉื™ืฉ ืœืžืชืžื˜ื™ืงื” ืฉืื ื• ื™ื•ืฆืจื™ื.
14:34
And the landscape was always made
363
874260
3000
ื•ืชื•ื•ืื™ ื”ืงืจืงืข ืชืžื™ื“ ื ื•ืฆืจ ื‘ืขื‘ืจ
14:37
by this sort of weird, uneasy collaboration
364
877260
3000
ืขืœ-ื™ื“ื™ ืกื•ื’ ื›ื–ื” ืฉืœ ืฉื™ืชื•ืฃ-ืคืขื•ืœื” ืžื•ื–ืจ ื•ืžื“ืื™ื’
14:40
between nature and man.
365
880260
3000
ื‘ื™ืŸ ื”ื˜ื‘ืข ื•ื”ืื“ื.
14:43
But now there's this third co-evolutionary force: algorithms --
366
883260
3000
ืื‘ืœ ื›ืขืช ื™ืฉื ื• ื›ื— ืื‘ื•ืœื•ืฆื™ื•ื ื™-ืฉื™ืชื•ืคื™ ืฉืœื™ืฉื™: ื”ืืœื’ื•ืจื™ืชืžื™ื --
14:46
the Boston Shuffler, the Carnival.
367
886260
3000
ื”"ืžืขืจื‘ืœ ื”ื‘ื•ืกื˜ื•ื ื™", ื”"ืงืจื ื‘ืœ".
14:49
And we will have to understand those as nature,
368
889260
3000
ื•ืขืœื™ื ื• ื™ื”ื™ื” ืœื”ื‘ื™ื˜ ืขืœื™ื”ื ื‘ืชื•ืจ ื˜ื‘ืข.
14:52
and in a way, they are.
369
892260
2000
ื•ื‘ืžื•ื‘ืŸ ืžืกื•ื™ื™ื, ื”ื ื‘ืืžืช ื›ืืœื”.
14:54
Thank you.
370
894260
2000
ืชื•ื“ื”.
14:56
(Applause)
371
896260
20000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7