How algorithms shape our world | Kevin Slavin

485,165 views ใƒป 2011-07-21

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

๋ฒˆ์—ญ: Sue J. Hur ๊ฒ€ํ† : Young-ho Park
00:15
This is a photograph
0
15260
2000
์ด๊ฒƒ์€ ๋งˆ์ดํด ๋‚˜์ž๋ผ๋Š” ์˜ˆ์ˆ ๊ฐ€์˜
00:17
by the artist Michael Najjar,
1
17260
2000
์ž‘ํ’ˆ์ธ๋ฐ ๊ทธ๊ฐ€ ์‹ค์ œ๋กœ ์•„๋ฅดํ—จํ‹ฐ๋‚˜์—
00:19
and it's real,
2
19260
2000
๊ฐ€์„œ ์ฐ์€ ์‚ฌ์ง„์ด๋‹ˆ๊นŒ
00:21
in the sense that he went there to Argentina
3
21260
2000
์‹ค์ œ ์‚ฌ์ง„์ด๋ผ๊ณ ๋„
00:23
to take the photo.
4
23260
2000
๋งํ•  ์ˆ˜ ์žˆ์ฃ .
00:25
But it's also a fiction. There's a lot of work that went into it after that.
5
25260
3000
ํ•˜์ง€๋งŒ, ์ด ์‚ฌ์ง„์€ ๋งŽ์€ ์ž‘์—…์„ ํ•œ ์‚ฌ์ง„์ด๊ธฐ ๋•Œ๋ฌธ์— ๊ฐ€์งœ ์‚ฌ์ง„์ด๋ผ๊ณ  ๋งํ•  ์ˆ˜๋„ ์žˆ์ฃ .
00:28
And what he's done
6
28260
2000
์ด๊ฒƒ์€ ์‚ฌ์‹ค ๋””์ง€ํ„ธ ์ž‘์—…์„ ํ†ตํ•ด
00:30
is he's actually reshaped, digitally,
7
30260
2000
๋‹ค์šฐ์กด์Šค ์ง€์ˆ˜๊ฐ€ ๋ณ€๋™ํ•œ
00:32
all of the contours of the mountains
8
32260
2000
๋ชจ์–‘์— ๋”ฐ๋ผ ์‚ฐ์˜ ๋“ฑ๊ณ ์„ ์„
00:34
to follow the vicissitudes of the Dow Jones index.
9
34260
3000
์กฐ์ž‘ํ•œ ์‚ฌ์ง„์ด์ง€์š”.
00:37
So what you see,
10
37260
2000
์—ฌ๊ธฐ์— ๋ณด์ด๋Š” ๊ณ„๊ณก์˜
00:39
that precipice, that high precipice with the valley,
11
39260
2000
๋†’์€ ์ ˆ๋ฒฝ์€
00:41
is the 2008 financial crisis.
12
41260
2000
2008๋…„ ๊ธˆ์œต์œ„๊ธฐ๋ฅผ ๋‚˜ํƒ€๋‚ด์ฃ .
00:43
The photo was made
13
43260
2000
์ด ์‚ฌ์ง„์€ ์šฐ๋ฆฌ์˜ ๊ฒฝ์ œ๊ฐ€ ์ € ๊นŠ์ˆ™ํ•œ
00:45
when we were deep in the valley over there.
14
45260
2000
๊ณ„๊ณก์•ˆ์— ์žˆ์—ˆ์„๋•Œ ์ฐ์€๊ฒƒ์ด์ง€์š”.
00:47
I don't know where we are now.
15
47260
2000
์š”์ฆ˜ ์š”์ฆ˜ ๋‹ค์šฐ์กด์Šค๋Š” ์–ด๋–ค์ง€ ๋ชจ๋ฅด๊ฒ ์Šต๋‹ˆ๋‹ค.
00:49
This is the Hang Seng index
16
49260
2000
์ด ์‚ฌ์ง„์€ ํ™์ฝฉ
00:51
for Hong Kong.
17
51260
2000
ํ•ญ์ƒ์ง€์ˆ˜์ธ๋ฐ
00:53
And similar topography.
18
53260
2000
์ „์ฒด์  ์–‘์ƒ์ด ๋น„์Šทํ•˜๋„ค์š”.
00:55
I wonder why.
19
55260
2000
์™œ ๊ทธ๋Ÿด๊นŒ์š”?
00:57
And this is art. This is metaphor.
20
57260
3000
์ด๊ฒƒ์€ ์˜ˆ์ˆ ์ธ ๋™์‹œ์— ๋ฉ”ํƒ€ํฌ์ฃ .
01:00
But I think the point is
21
60260
2000
๊ทธ๋Ÿฐ๋ฐ ์ด ๋ฉ”ํƒ€ํฌ์—๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ž์ฒด๊ฐ€
01:02
that this is metaphor with teeth,
22
62260
2000
์‹ค์„ธ๊ณ„์— ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค๋Š” ์˜๋ฏธ๊ฐ€ ์žˆ์ง€์š”.
01:04
and it's with those teeth that I want to propose today
23
64260
3000
์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์‹ค์„ธ๊ณ„์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๊ธฐ ๋•Œ๋ฌธ์— ์ €๋Š”
01:07
that we rethink a little bit
24
67260
2000
๊ธˆ์œต์ˆ˜ํ•™ ๊ฐ™์€ ํ˜„๋Œ€ ์ˆ˜ํ•™ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ
01:09
about the role of contemporary math --
25
69260
3000
์ผ๋ฐ˜์ ์ธ ์ˆ˜ํ•™์˜ ์—ญํ• ๋„
01:12
not just financial math, but math in general.
26
72260
3000
์žฌ๊ณ ํ•  ๊ฒƒ์„ ์ €๋Š” ์—ฌ๋Ÿฌ๋ถ„๊ป˜ ๊ฑด์˜ํ•ฉ๋‹ˆ๋‹ค.
01:15
That its transition
27
75260
2000
์ €๋Š” ๋˜ํ•œ ์šฐ๋ฆฌ๊ฐ€ ์„ธ๊ณ„๋กœ ๋ถ€ํ„ฐ ์ถ”์ถœํ•˜๊ณ 
01:17
from being something that we extract and derive from the world
28
77260
3000
์œ ๋„ํ•ด ๋‚ด๋Š” ๋ฐ์ดํ„ฐ๊ฐ€ ์šฐ๋ฆฌ์˜ ์ƒํ™œ๊ณผ
01:20
to something that actually starts to shape it --
29
80260
3000
์šฐ๋ฆฌ๋ฅผ ๋‘˜๋Ÿฌ์‹ธ๋Š” ์„ธ๊ณ„๋ฅผ
01:23
the world around us and the world inside us.
30
83260
3000
์‹ค์ง€๋กœ ๋งŒ๋“œ๋Š” ์ „์ด ๊ณผ์ •, ๊ทธ๋ฆฌ๊ณ 
01:26
And it's specifically algorithms,
31
86260
2000
์ปดํ“จํ„ฐ๊ฐ€ ๊ฒฐ์ •์„ ๋‚ด๋ฆด ๋•Œ ์‚ฌ์šฉ๋˜๋Š” ์ˆ˜ํ•™,
01:28
which are basically the math
32
88260
2000
ํŠนํžˆ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๋Œ€ํ•ด
01:30
that computers use to decide stuff.
33
90260
3000
๋ง์”€๋“œ๋ฆฌ๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค.
01:33
They acquire the sensibility of truth
34
93260
2000
์ปดํ“จํ„ฐ์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๊ณ„์† ๋ฐ˜๋ณต์ ์œผ๋กœ
01:35
because they repeat over and over again,
35
95260
2000
์‚ฌ์šฉ๋˜๊ธฐ ๋•Œ๋ฌธ์— ๊ทธ๋“ค์ด ์˜ณ๋‹ค๋Š” ์ธ์ƒ์„ ์ฃผ๋ฉฐ
01:37
and they ossify and calcify,
36
97260
3000
์‹œ๊ฐ„์ด ํ๋ฆ„์— ๋”ฐ๋ผ ๊ทธ๋“ค์— ๋Œ€ํ•œ
01:40
and they become real.
37
100260
2000
์‹ ๋ขฐ๋„๊ฐ€ ๋” ์ฆ๊ฐ€ํ•˜๊ณ  ๊ฒฐ๊ตญ์—๋Š” ์ง„์‹ค์ด ๋˜์ฃ .
01:42
And I was thinking about this, of all places,
38
102260
3000
์ €๋Š” ํ•œ 2๋…„์ „์— ๋Œ€์„œ์–‘์„ ๊ฑด๋„ˆ๋Š” ๋น„ํ–‰๊ธฐ ์•ˆ์—์„œ
01:45
on a transatlantic flight a couple of years ago,
39
105260
3000
๋ฐ”๋กœ ์ด๋Ÿฐ ์ƒ๊ฐ์„ ํ•˜๊ณ ์žˆ์—ˆ๋Š”๋ฐ
01:48
because I happened to be seated
40
108260
2000
๋งˆ์นจ ์ œ ์˜†์— ์ œ ๋‚˜์ด ์ •๋„๋˜๋Š”
01:50
next to a Hungarian physicist about my age
41
110260
2000
ํ—๊ฐ€๋ฆฌ์ธ ๋ฌผ๋ฆฌํ•™์ž๊ฐ€ ์•‰์•˜์—ˆ์ง€์š”.
01:52
and we were talking
42
112260
2000
์šฐ๋ฆฌ๋Š” ๋ƒ‰์ „ ๋‹น์‹œ ํ—๊ฐ€๋ฆฌ์—์„œ
01:54
about what life was like during the Cold War
43
114260
2000
๋ฌผ๋ฆฌํ•™์ž๋กœ ์ผํ•˜๋Š”๊ฒŒ
01:56
for physicists in Hungary.
44
116260
2000
์–ด๋• ๋Š”๊ฐ€ ํ•˜๋Š” ๋Œ€ํ™”๋ฅผ ๋‚˜๋ˆด๋Š”๋ฐ
01:58
And I said, "So what were you doing?"
45
118260
2000
๊ทธ์‚ฌ๋žŒ์—๊ฒŒ ๋ฌด์Šจ์ผ์„ ํ–ˆ๋ƒ๊ณ  ๋ฌผ์—ˆ๋”๋‹ˆ
02:00
And he said, "Well we were mostly breaking stealth."
46
120260
2000
์ฃผ๋กœ ์Šคํ…”์Šค๋ฅผ ์žก๋Š” ์ผ์„ ํ–ˆ๋‹ค๊ณ  ํ•˜๋”๊ตฐ์š”.
02:02
And I said, "That's a good job. That's interesting.
47
122260
2000
๊ทธ๋ž˜์„œ ์ €๋Š” ํฅ๋ฏธ์žˆ๋Š” ์ง์—…๊ฐ™๋‹ค๊ณ  ๋งํ–ˆ์ฃ .
02:04
How does that work?"
48
124260
2000
๊ทธ๋Ÿฐ๋ฐ ๊ทธ๊ฑด ์–ด๋–ค ๊ธฐ์ˆ ์ธ๊ฐ€์š”?
02:06
And to understand that,
49
126260
2000
๊ทธ ๊ธฐ์ˆ ์„ ์ดํ•ดํ•˜๋ ค๋ฉด
02:08
you have to understand a little bit about how stealth works.
50
128260
3000
์Šคํ…”์Šค์˜ ์ž‘๋™์›๋ฆฌ๋ฅผ ์ข€ ์•Œ์•„์•ผ ํ•˜์ฃ .
02:11
And so -- this is an over-simplification --
51
131260
3000
์•„์ฃผ ๊ฐ„๋‹จํžˆ ๋งํ•˜์ž๋ฉด ๋ ˆ์ด๋” ์‹ ํ˜ธ๊ฐ€
02:14
but basically, it's not like
52
134260
2000
ํ•˜๋Š˜์— ๋œฌ 156ํ†ค์˜ ์ฒ  ๋ฉ์–ด๋ฆฌ๋ฅผ
02:16
you can just pass a radar signal
53
136260
2000
๋šซ๊ณ  ๋‚˜๊ฐ€๊ฑฐ๋‚˜
02:18
right through 156 tons of steel in the sky.
54
138260
3000
๋˜๋Š” ๊ทธ๋ƒฅ ์‚ฌ๋ผ์ง€๊ฒŒ
02:21
It's not just going to disappear.
55
141260
3000
๋งŒ๋“ค ์ˆ˜๋Š” ์—†์ฃ .
02:24
But if you can take this big, massive thing,
56
144260
3000
๊ทธ๋ ‡์ง€๋งŒ ์ด๋ ‡๊ฒŒ ํฐ ๋น„ํ–‰๊ธฐ๋ฅผ ์ˆ˜๋งŒ๊ฐœ์˜
02:27
and you could turn it into
57
147260
3000
์ž‘์€ ์กฐ๊ฐ์œผ๋กœ ์ชผ๊ฐค ์ˆ˜ ์žˆ๋‹ค๋ฉด
02:30
a million little things --
58
150260
2000
- ์˜ˆ๋ฅผ๋“ค๋ฉด ์ƒˆ ๋–ผ ๊ฐ™์€ ๊ฒƒ์œผ๋กœ์š” -
02:32
something like a flock of birds --
59
152260
2000
์ด๋Ÿฐ ๋น„ํ–‰๊ธฐ๋ฅผ ์ถ”์ ํ•˜๋Š”
02:34
well then the radar that's looking for that
60
154260
2000
๋ ˆ์ด๋‹ค๋Š” ๋‚ ๋ผ๋‹ค๋‹ˆ๋Š”
02:36
has to be able to see
61
156260
2000
๋ชจ๋“  ์ƒˆ ๋–ผ๋“ค์„
02:38
every flock of birds in the sky.
62
158260
2000
๋‹ค ๋ณผ ์ˆ˜ ์žˆ์–ด์•ผ ๊ฒ ์ง€์š”.
02:40
And if you're a radar, that's a really bad job.
63
160260
4000
๋ ˆ์ด๋”๋กœ ๊ทธ๋Ÿฐ ์ผ์„ ํ•˜๋Š”๊ฒƒ์€ ์ฐธ ์–ด๋ ต์ฃ .
02:44
And he said, "Yeah." He said, "But that's if you're a radar.
64
164260
3000
๊ทธ๋ฆฌ๊ณ  ๊ทธ ํ—๊ฐ€๋ฆฌ ๋ฌผ๋ฆฌํ•™์ž๊ฐ€ ๋งํ–ˆ์ฃ ,
02:47
So we didn't use a radar;
65
167260
2000
"๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๋Š” ๋ ˆ์ด๋”๋ฅผ ๋งŒ๋“ค์ง€ ์•Š๊ณ 
02:49
we built a black box that was looking for electrical signals,
66
169260
3000
์ „๊ธฐํ†ต์‹ ์ด๋‚˜ ์ „๊ธฐ์‹ ํ˜ธ๋ฅผ ๊ฐ์ง€ํ•˜๋Š”
02:52
electronic communication.
67
172260
3000
๋ธ”๋ž™๋ฐ•์Šค๋ฅผ ๋งŒ๋“ค์—ˆ์ฃ . ๊ทธ๋ฆฌ๊ณ ๋Š”,
02:55
And whenever we saw a flock of birds that had electronic communication,
68
175260
3000
์ƒˆ ๋–ผ๋“ค์ด ์ „๊ธฐํ†ต์‹ ์„ ํ• ๋•Œ ๋งˆ๋‹ค ๋ฏธ๊ตญ์ธ๋“ค๊ณผ
02:58
we thought, 'Probably has something to do with the Americans.'"
69
178260
3000
๋ฌด์Šจ ์—ฐ๊ด€์ด ์žˆ์„์ง€ ๋ชจ๋ฅธ๋‹ค๊ณ  ์ƒ๊ฐํ–ˆ์ฃ ".
03:01
And I said, "Yeah.
70
181260
2000
๊ทธ๋ž˜์„œ ์ œ๊ฐ€ ๊ทธ๋žฌ์ฃ .
03:03
That's good.
71
183260
2000
"์ข‹๊ตฐ์š”.
03:05
So you've effectively negated
72
185260
2000
๋‹น์‹ ๋„ค๋“ค์ด 60๋…„๊ฐ„์˜ ํ•ญ๊ณตํ•™
03:07
60 years of aeronautic research.
73
187260
2000
์—ฐ๊ตฌ๋ฅผ ๋ฌดํšจํ™”ํ•œ ์…ˆ์ด๋„ค์š”.
03:09
What's your act two?
74
189260
2000
๊ทธ๋Ÿผ ๋‹น์‹ ์˜ ์ œ2์žฅ์€ ๋ญ์ฃ ?
03:11
What do you do when you grow up?"
75
191260
2000
๊ทธ๋Ÿผ ์ง€๊ธˆ์€ ๋ฌด์Šจ์ผ์„ ํ•˜์„ธ์š”?"
03:13
And he said,
76
193260
2000
๊ทธ๊ฐ€ ์ด๋ ‡๊ฒŒ ๋‹ตํ–ˆ์ฃ ,
03:15
"Well, financial services."
77
195260
2000
"๊ธˆ์œต์„œ๋น„์Šค์—์„œ ์ผํ•ด์š”".
03:17
And I said, "Oh."
78
197260
2000
๊ทผ๋ฐ ๊ทธ ๋‹น์‹œ์— ๊ทธ๋Ÿฐ ์ด์•ผ๊ธฐ๋“ค์ด
03:19
Because those had been in the news lately.
79
199260
3000
๋‰ด์Šค์— ๋ณด๋„๋˜๊ณ  ์žˆ์—ˆ๊ธฐ ๋•Œ๋ฌธ์— ์ œ๊ฐ€ ๋ฌผ์—ˆ์ฃ .
03:22
And I said, "How does that work?"
80
202260
2000
"๊ทธ๊ฒŒ ๋ญํ•˜๋Š”๊ฑฐ์ฃ ?"
03:24
And he said, "Well there's 2,000 physicists on Wall Street now,
81
204260
2000
๊ทธ๊ฐ€ ๋งํ•˜๊ธธ, "์›”์ŠคํŠธ๋ฆฌํŠธ์—” ์ €๊ฐ™์€
03:26
and I'm one of them."
82
206260
2000
๋ฌผ๋ฆฌํ•™์ž๋“ค์ด ์•ฝ 2000๋ช… ์ผํ•˜๊ณ  ์žˆ์ฃ ".
03:28
And I said, "What's the black box for Wall Street?"
83
208260
3000
์ œ๊ฐ€ ๋ฌผ์—ˆ์ฃ . "์›”์ŠคํŠธ๋ฆฌํŠธ์˜ ๋ธ”๋ž™๋ฐ•์Šค๊ฐ€ ๋ญก๋‹ˆ๊นŒ?"
03:31
And he said, "It's funny you ask that,
84
211260
2000
๊ทธ๊ฐ€ ๋งํ•˜๊ธธ, "๋ง๊ทธ๋Œ€๋กœ ๋ธ”๋ž™๋ฐ•์Šค์˜ˆ์š”.
03:33
because it's actually called black box trading.
85
213260
3000
์‚ฌ์‹ค ๋ธ”๋ž™๋ฐ•์Šค ํŠธ๋ ˆ์ด๋”ฉ์ด๋ผ๊ณ  ๋งํ•˜์ฃ .
03:36
And it's also sometimes called algo trading,
86
216260
2000
์–ด๋–ค ์‚ฌ๋žŒ์€ ์•Œ๊ณ  ํŠธ๋ ˆ์ด๋”ฉ, ์ฆ‰
03:38
algorithmic trading."
87
218260
3000
์•Œ๊ณ ๋ฆฌ์ฆˆ๋ฏน ํŠธ๋ ˆ์ด๋”ฉ์ด๋ผ๊ณ  ํ•˜์ฃ ".
03:41
And algorithmic trading evolved in part
88
221260
3000
์•Œ๊ณ ๋ฆฌ์ฆˆ๋ฏน ํŠธ๋ ˆ์ด๋”ฉ์ด ๋ฐœ๋‹ฌ๋˜๊ฒŒ ๋œ ์ด์œ ์˜ ํ•˜๋‚˜๋Š”
03:44
because institutional traders have the same problems
89
224260
3000
์›”์ŠคํŠธ๋ฆฌํŠธ์˜ ๊ธฐ๊ด€ํˆฌ์ž์ž๋“ค์ด ๋ฏธ๊ตญ ๊ณต๊ตฐ์ด ๊ฐ€์กŒ๋˜
03:47
that the United States Air Force had,
90
227260
3000
๋˜‘ ๊ฐ™์€ ๋ฌธ์ œ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด์—ˆ๋Š”๋ฐ -
03:50
which is that they're moving these positions --
91
230260
3000
๊ทธ๋“ค์€, ์˜ˆ๋ฅผ๋“ค๋ฉด ํ”„๋กํ„ฐ ์•ค ๊ฐฌ๋ธ”
03:53
whether it's Proctor & Gamble or Accenture, whatever --
92
233260
2000
๋˜๋Š” ์•ก์„ผ์ณ ๊ฐ™์€,
03:55
they're moving a million shares of something
93
235260
2000
ํšŒ์‚ฌ๋“ค์˜ ์ˆ˜๋งŽ์€
03:57
through the market.
94
237260
2000
์ฃผ์‹์„ ์‚ฌ๊ณ  ํŒ”์ง€์š”.
03:59
And if they do that all at once,
95
239260
2000
๊ทธ๋Ÿฐ๋ฐ ์ด๋“ค์ด ์ฃผ์‹๊ฑฐ๋ž˜๋ฅผ ํ•œ๊บผ๋ฒˆ์— ํ•œ๋‹ค๋ฉด
04:01
it's like playing poker and going all in right away.
96
241260
2000
ํฌ์ปค๋ฅผ ํ• ๋•Œ ์˜ฌ์ธํ•˜๋Š”๊ฑฐ๋‚˜ ๋งˆ์ฐฌ๊ฐ€์ง€์ฃ .
04:03
You just tip your hand.
97
243260
2000
์žˆ๋Š” ๋ˆ์„ ํ•œ๊บผ๋ฒˆ์— ๋‹ค ๊ฑฐ๋Š” ๊ฑฐ๋‹ˆ๊นŒ์š”.
04:05
And so they have to find a way --
98
245260
2000
๊ทธ๋ž˜์„œ ๊ทธ๋“ค์€ ํฐ ๊ธˆ์•ก์„
04:07
and they use algorithms to do this --
99
247260
2000
ํ•œ๊บผ๋ฒˆ์— ๊ฑฐ๋ž˜ํ•˜์ง€ ์•Š๊ณ ,
04:09
to break up that big thing
100
249260
2000
๋งŽ์€ ์ˆ˜์˜ ์ ์€ ๊ธˆ์•ก์œผ๋กœ ๋‚˜๋ˆ ์„œ ๊ฑฐ๋ž˜๋ฅผ ํ•˜๋Š”๋ฐ
04:11
into a million little transactions.
101
251260
2000
๊ทธ๋Ÿด๋•Œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•˜์ฃ .
04:13
And the magic and the horror of that
102
253260
2000
๊ทธ๋Ÿฐ๋ฐ ํ•œ๊ฐ€์ง€ ํฅ๋ฏธ์žˆ๋Š” ๋™์‹œ์— ๋‘๋ ค์šด ์‚ฌ์‹ค์€
04:15
is that the same math
103
255260
2000
ํฐ ๊ธˆ์•ก์˜ ๊ฑฐ๋ž˜๋ฅผ ๋งŽ์€ ์—ฌ๋Ÿฌ๊ฐœ์˜ ์ž‘์€ ๊ฑฐ๋ž˜๋กœ ๊ฐˆ๋ฅผ๋•Œ
04:17
that you use to break up the big thing
104
257260
2000
์‚ฌ์šฉํ•œ ๋˜‘๊ฐ™์€ ์ˆ˜ํ•™๋ฐฉ์‹์„ ์‚ฌ์šฉํ•˜๋ฉด
04:19
into a million little things
105
259260
2000
์ˆ˜๋งŽ์€ ์ž‘์€ ๊ธˆ์•ก์˜ ๊ฑฐ๋ž˜๋“ค์„ ์›๋ž˜์˜
04:21
can be used to find a million little things
106
261260
2000
ํฐ ๊ธˆ์•ก์œผ๋กœ ๋‹ค์‹œ ์กฐ๋ฆฝ์‹œ์ผœ์„œ
04:23
and sew them back together
107
263260
2000
์ฃผ์‹ ์‹œ์žฅ์—์„œ ์‹ค์ง€๋กœ ๋ฌด์Šจ์ผ์ด ๋ฒŒ์–ด์ง€๊ณ  ์žˆ๋Š”์ง€
04:25
and figure out what's actually happening in the market.
108
265260
2000
์•Œ์•„๋‚ผ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
04:27
So if you need to have some image
109
267260
2000
์ฆ‰, ์ง€๊ธˆ ์ฃผ์‹์‹œ์žฅ์ด ์–ด๋–ป๊ฒŒ ๋Œ์•„๊ฐ€๋Š”์ง€ ์ดํ•ดํ•˜๋ ค๋ฉด
04:29
of what's happening in the stock market right now,
110
269260
3000
์ฃผ์‹๊ฑฐ๋ž˜๋ฅผ ์ˆจ๊ธฐ๋Š” ๋ชฉ์ ์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์žˆ๋Š”๊ฐ€ ํ•˜๋ฉด,
04:32
what you can picture is a bunch of algorithms
111
272260
2000
๊ทธ์™€๋Š” ์ •๋ฐ˜๋Œ€๋กœ ์ˆจ๊ฒจ์ง„ ๊ฑฐ๋ž˜๋“ค์„ ์ฐพ์•„๋‚ด์„œ
04:34
that are basically programmed to hide,
112
274260
3000
์ ์ ˆํ•œ ์กฐ์น˜๋ฅผ ์ทจํ•˜๋Š” ๊ฒƒ์„ ๋ชฉ์ ์œผ๋กœ ํ”„๋กœ๊ทธ๋žจ๋œ
04:37
and a bunch of algorithms that are programmed to go find them and act.
113
277260
3000
์—ฌ๋Ÿฌ๊ฐœ์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค์„ ์•Œ์•„์•ผ ํ•ฉ๋‹ˆ๋‹ค.
04:40
And all of that's great, and it's fine.
114
280260
3000
์ž, ์—ฌ๊ธฐ๊นŒ์ง€๋Š” ๋ญ ํฐ ๋ฌธ์ œ๊ฐ€ ์—†์ฃ .
04:43
And that's 70 percent
115
283260
2000
๊ทธ๋ ‡์ง€๋งŒ, ์ด๋Ÿฐ ๊ธฐ๊ด€ํˆฌ์ž์ž๋“ค์˜
04:45
of the United States stock market,
116
285260
2000
๊ฑฐ๋ž˜์•ก์ด ์ด ์ฆ์‹œ๊ฑฐ๋ž˜์•ก์˜
04:47
70 percent of the operating system
117
287260
2000
70%์— ๋‹ฌํ•˜๋Š”๋ฐ
04:49
formerly known as your pension,
118
289260
3000
์ด๊ฒŒ ๋‹ค ์—ฌ๋Ÿฌ๋ถ„์˜
04:52
your mortgage.
119
292260
3000
์—ฐ๊ธˆ์ด๊ณ  ๋ชจ๊ฒŒ์ง€์ฃ .
04:55
And what could go wrong?
120
295260
2000
์ด๊ฒƒ์ฒ˜๋Ÿผ ์•ˆ์ „ํ•œ๊ฒŒ ์žˆ๊ฒ ์–ด์š”?
04:57
What could go wrong
121
297260
2000
๊ทธ๋Ÿฐ๋ฐ 1๋…„ ์ „์— ์ „ ์ฆ์‹œ ๊ฑฐ๋ž˜์•ก์˜
04:59
is that a year ago,
122
299260
2000
9%๊ฐ€ 5๋ถ„ ๋™์•ˆ์— ๊ฐ‘์ž๊ธฐ
05:01
nine percent of the entire market just disappears in five minutes,
123
301260
3000
์‚ฌ๋ผ์ง€๋Š” ์‚ฌํƒœ๊ฐ€ ๋ฒŒ์–ด์กŒ์—ˆ๋Š”๋ฐ
05:04
and they called it the Flash Crash of 2:45.
124
304260
3000
๊ทธ๋“ค์€ ๊ทธ ์‚ฌ๊ฑด์„ '2:45 ํ”Œ๋ž˜์‹œ ํฌ๋ž˜์‰ฌ'๋ผ๊ณ  ๋ถ€๋ฅด์ฃ .
05:07
All of a sudden, nine percent just goes away,
125
307260
3000
๊ทธ๋Ÿฐ ์‚ฌํƒœ๊ฐ€ ๋ฒŒ์–ด์งˆ ๋งŒํ•œ ์ฃผ์‹๊ฑฐ๋ž˜๋ฅผ
05:10
and nobody to this day
126
310260
2000
ํ–ˆ๋˜ ์‚ฌ๋žŒ๋„ ์—†๊ณ  ์š”์ฒญํ•œ ์‚ฌ๋žŒ๋„ ์—†์—ˆ๋Š”๋ฐ
05:12
can even agree on what happened
127
312260
2000
์™œ ๊ทธ๋Ÿฐ ์‚ฌํƒœ๊ฐ€ ๋ฐœ์ƒํ–ˆ์—ˆ๋Š”์ง€ ์•„์ง๊นŒ์ง€๋„ ์ „๋ฌธ๊ฐ€๋“ค ๋ผ๋ฆฌ
05:14
because nobody ordered it, nobody asked for it.
128
314260
3000
๊ทธ ์‚ฌ๊ฑด์˜ ๋ฐœ์ƒ ์›์ธ์— ๋Œ€ํ•ด ๋™์˜์กฐ์ฐจ ๋ชปํ•˜๊ณ  ์žˆ์ฃ .
05:17
Nobody had any control over what was actually happening.
129
317260
3000
์‹ค์ œ๋กœ ๋ฒŒ์–ด์ง€๋Š” ์ƒํ™ฉ์„ ์•„๋ฌด๋„ ์ปจํŠธ๋กค ํ•  ์ˆ˜ ์—†์—ˆ์ฃ .
05:20
All they had
130
320260
2000
๊ธฐ๊ด€ํˆฌ์ž์ž๋“ค์ด ๊ฐ€์กŒ๋˜ ์ปจํŠธ๋กค์ด๋ผ๊ณ ๋Š”
05:22
was just a monitor in front of them
131
322260
2000
๋ชจ๋‹ˆํ„ฐ์— ํ‘œ์‹œ๋˜๋Š” ์ˆซ์ž๋“ค๊ณผ
05:24
that had the numbers on it
132
324260
2000
'์Šคํ†ฑ'์ด๋ผ๋Š” ๊ธ€์ด ์ ํžŒ
05:26
and just a red button
133
326260
2000
๋นจ๊ฐ„ ๋ฒ„ํŠผ ๋ฐ–์—
05:28
that said, "Stop."
134
328260
2000
์—†์—ˆ์œผ๋‹ˆ๊นŒ์š”.
05:30
And that's the thing,
135
330260
2000
๊ทธ๋Ÿฌ๋‹ˆ๊นŒ ์šฐ๋ฆฌ๋Š” ์šฐ๋ฆฌ๊ฐ€
05:32
is that we're writing things,
136
332260
2000
๋” ์ด์ƒ ์ฝ์„ ์ˆ˜ ์—†๊ฒŒ
05:34
we're writing these things that we can no longer read.
137
334260
3000
๋œ ๊ฒƒ ๋“ค์„ ์“ฐ๊ณ  ์žˆ์—ˆ๋‹ค๋Š” ๊ฑฐ์ฃ .
05:37
And we've rendered something
138
337260
2000
์šฐ๋ฆฌ๊ฐ€ ๊ทธ ๋ฌด์—‡์ธ๊ฐ€๋ฅผ ๋” ์ด์ƒ
05:39
illegible,
139
339260
2000
์ฝ์„ ์ˆ˜ ์—†๊ฒŒ ๋งŒ๋“ค์—ˆ๋‹ค๋Š” ๊ฒƒ์ด์ฃ .
05:41
and we've lost the sense
140
341260
3000
๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๋Š” ์šฐ๋ฆฌ๊ฐ€ ๋งŒ๋“ 
05:44
of what's actually happening
141
344260
2000
์ด ์„ธ๊ณ„์—์„œ ์‹ค์ง€๋กœ ๋ฌด์Šจ์ผ์ด ๋ฐœ์ƒํ•˜๊ณ  ์žˆ๋Š”์ง€๋ฅผ
05:46
in this world that we've made.
142
346260
2000
๋ชจ๋ฅด๊ฒŒ ๋์ง€์š”.
05:48
And we're starting to make our way.
143
348260
2000
๊ทธ๋Ÿฌ๋‚˜ ์ธ์   ํ˜•ํŽธ์ด ๋‚˜์•„์ง€๊ธฐ ์‹œ์ž‘ํ–ˆ์ฃ .
05:50
There's a company in Boston called Nanex,
144
350260
3000
๋ณด์Šคํ„ด์— ๋‚˜๋„ฅ์Šค๋ผ๋Š” ํšŒ์‚ฌ๊ฐ€ ์žˆ๋Š”๋ฐ,
05:53
and they use math and magic
145
353260
2000
๊ทธ ํšŒ์‚ฌ๋Š” ์ˆ˜ํ•™๊ณผ ์ œ๊ฐ€ ๋ชจ๋ฅด๋Š” ์–ด๋–ค ๋งˆ์ˆ ์„ ์‚ฌ์šฉํ•ด์„œ
05:55
and I don't know what,
146
355260
2000
์ฆ๊ถŒ์‹œ์žฅ์˜ ๋ชจ๋“  ๋ฐ์ดํ„ฐ๋ฅผ ์ฝ๊ณ 
05:57
and they reach into all the market data
147
357260
2000
ํ•ญ์ƒ ๊ทธ๋Ÿฐ๊ฒƒ์€ ์•„๋‹ˆ์ง€๋งŒ
05:59
and they find, actually sometimes, some of these algorithms.
148
359260
3000
๊ฐ€๋” ์ด๋Ÿฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์˜ ์ผ๋ถ€๋ฅผ ์ฐพ์•„๋‚ด์ง€์š”.
06:02
And when they find them they pull them out
149
362260
3000
๊ทธ๋“ค์€ ๊ทธ๋Ÿฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ•˜๋‚˜ ์ฐพ์œผ๋ฉด
06:05
and they pin them to the wall like butterflies.
150
365260
3000
๊ทธ๊ฑธ ์ข…์ด์— ์ ์–ด์„œ ๋‚˜๋น„์ฒ˜๋Ÿผ ๋ฒฝ์— ๋ถ™์ด์ง€์š”.
06:08
And they do what we've always done
151
368260
2000
์šฐ๋ฆฌ๋Š” ์ดํ•ดํ•˜์ง€ ๋ชปํ•˜๋Š” ์—„์ฒญ๋‚œ ๋Ÿ‰์˜
06:10
when confronted with huge amounts of data that we don't understand --
152
370260
3000
๋ฐ์ดํ„ฐ๋ฅผ ์ดํ•ดํ•ด์•ผ ํ• ๋•Œ๋Š” ์–ธ์ œ๋‚˜
06:13
which is that they give them a name
153
373260
2000
๊ทธ๋ž˜์™”๋“ฏ์ด ์ด๋Ÿฐ์‹์œผ๋กœ ๊ทธ๋Ÿฐ๊ฒƒ์—
06:15
and a story.
154
375260
2000
์ด๋ฆ„๊ณผ ์Šคํ† ๋ฆฌ๋ฅผ ๋ถ™์ด์ฃ .
06:17
So this is one that they found,
155
377260
2000
๊ทธ๋“ค์ด ์ฐพ์•„๋‚ธ ๊ฒƒ๋“ค์€ ๋‹ค์Œ๊ณผ ๊ฐ™์ฃ .
06:19
they called the Knife,
156
379260
4000
์ด๊ฒƒ์€ ๋‚˜์ดํ”„,
06:23
the Carnival,
157
383260
2000
์นด๋‹ˆ๋ฐœ,
06:25
the Boston Shuffler,
158
385260
4000
๋ณด์Šคํ„ด ์…”ํ”Œ๋Ÿฌ,
06:29
Twilight.
159
389260
2000
ํŠธ์™€์ผ๋ผ์ดํŠธ.
06:31
And the gag is
160
391260
2000
๊ทธ๋Ÿฐ๋ฐ ์›ƒ๊ธฐ๋Š”๊ฑด ์ผ๋‹จ ์ด๋Ÿฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด
06:33
that, of course, these aren't just running through the market.
161
393260
3000
์žˆ๋Š”๊ฐ€๋ฅผ ์•Œ์•„๋‚ด๋Š” ๋ฐฉ๋ฒ•์„ ํ„ฐ๋“ํ•˜๋ฉด
06:36
You can find these kinds of things wherever you look,
162
396260
3000
์ฆ์‹œ ๋ฟ๋งŒ์•„๋‹ˆ๋ผ ๋ชจ๋“  ๊ณณ์—์„œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด
06:39
once you learn how to look for them.
163
399260
2000
์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋‹ค๋Š”๊ฑธ ์•Œ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฑฐ์ฃ .
06:41
You can find it here: this book about flies
164
401260
3000
์ด ์ฑ…๋„ ๊ทธ๋Ÿฐ ์˜ˆ์˜ ํ•˜๋‚˜์ฃ :
06:44
that you may have been looking at on Amazon.
165
404260
2000
์ด๊ฑด ์•„๋งˆ์กด์—์„œ ํŒ”์•˜๋˜ ๊ฑด๋ฐ
06:46
You may have noticed it
166
406260
2000
์‹œ์ž‘๊ฐ€๊ฐ€
06:48
when its price started at 1.7 million dollars.
167
408260
2000
170๋งŒ ๋‹ฌ๋Ÿฌ์˜€์ง€์š”.
06:50
It's out of print -- still ...
168
410260
2000
์ ˆํŒ์ด์—ˆ๋Š”๋ฐ๋„ ๋ง์ด์˜ˆ์š”.
06:52
(Laughter)
169
412260
2000
(์›ƒ์Œ)
06:54
If you had bought it at 1.7, it would have been a bargain.
170
414260
3000
๊ทธ๋Ÿฐ๋ฐ ๋งŒ์•ฝ 170 ๋งŒ๋‹ฌ๋Ÿฌ์— ์ƒ€๋‹ค๋ฉด, ์ž˜ ํˆฌ์žํ•œ๊ฑฐ์ฃ .
06:57
A few hours later, it had gone up
171
417260
2000
์™œ๋ƒํ•˜๋ฉด ๋ถˆ๊ณผ ๋ช‡ ์‹œ๊ฐ„ ๋’ค์—,
06:59
to 23.6 million dollars,
172
419260
2000
2์ฒœ360๋งŒ ๋‹ฌ๋Ÿฌ๋กœ ๊ฐ€๊ฒฉ์ด ๋›ฐ์—ˆ์œผ๋‹ˆ๊นŒ์š”.
07:01
plus shipping and handling.
173
421260
2000
์šด์†ก๋น„์™€ ํฌ์žฅ๋น„๋Š” ๋ณ„๋„์˜€์ฃ .
07:03
And the question is:
174
423260
2000
๊ทธ๋Ÿฐ๋ฐ, ์•„๋ฌด๋„ ์‚ฌ๊ฑฐ๋‚˜ ํŒ”์ง€ ์•Š์•˜๋Š”๋ฐ
07:05
Nobody was buying or selling anything; what was happening?
175
425260
2000
์–ด๋–ป๊ฒŒ ๊ทธ๋Ÿฐ์ผ์ด ์ƒ๊ฒผ์„๊นŒ์š”?
07:07
And you see this behavior on Amazon
176
427260
2000
์ฆ‰, ์›”์ŠคํŠธ๋ฆฌํŠธ์™€ ๋˜‘๊ฐ™์€ ํ˜„์ƒ์„
07:09
as surely as you see it on Wall Street.
177
429260
2000
์•„๋งˆ์กด์—์„œ๋„ ๋ณผ ์ˆ˜ ์žˆ๋‹ค๋Š” ๋ง์ด์ฃ .
07:11
And when you see this kind of behavior,
178
431260
2000
์ด๋Ÿฐ ์‚ฌ๊ฑด์ด ์ƒ๊ธด๋‹ค๋Š” ๊ฒƒ์€
07:13
what you see is the evidence
179
433260
2000
์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์ด ์„œ๋กœ ์ถฉ๋Œํ•˜๊ณ  ์žˆ๋‹ค๋Š” ๊ฒƒ์„
07:15
of algorithms in conflict,
180
435260
2000
์ฆ๋ช…ํ•ด ์ฃผ๋Š”๋ฐ ๊ฐ„๋‹จํžˆ ๋งํ•˜๋ฉด
07:17
algorithms locked in loops with each other,
181
437260
2000
์ธ๊ฐ„์˜ ์•„๋ฌด๋Ÿฐ ๊ฐœ์ž…์ด๋‚˜ ๊ฐ๋…์ด ์—†์ด
07:19
without any human oversight,
182
439260
2000
์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์ด ์„œ๋กœ ๋งž๋ฌผ๊ณ 
07:21
without any adult supervision
183
441260
3000
๋ฃจํ”„์—์„œ ๋งด๋Œ๋‹ค๊ฐ€
07:24
to say, "Actually, 1.7 million is plenty."
184
444260
3000
"ํ ..170๋งŒ ๋‹ฌ๋Ÿฌ ์ •๋„๋ฉด ๋์–ด" ํ•œ๊ฑฐ์ฃ .
07:27
(Laughter)
185
447260
3000
(์›ƒ์Œ)
07:30
And as with Amazon, so it is with Netflix.
186
450260
3000
๋„คํŠธํ”Œ๋ฆญ์Šค๋„ ์•„๋งˆ์กด๊ณผ ๊ฐ™์€ ํ˜•ํŽธ์— ์žˆ์ฃ .
07:33
And so Netflix has gone through
187
453260
2000
๊ทธ๋ž˜์„œ ๋„คํŠธํ”Œ๋ฆญ์Šค๋Š” ์ง€๋‚œ ์ˆ˜๋…„๊ฐ„
07:35
several different algorithms over the years.
188
455260
2000
์—ฌ๋Ÿฌ๊ฐ€์ง€ ๋‹ค๋ฅธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์จ๋ดค์ง€์š”.
07:37
They started with Cinematch, and they've tried a bunch of others --
189
457260
3000
์ฒ˜์Œ์—๋Š” Cinematch๋ฅผ ์‚ฌ์šฉํ•˜๋‹ค๊ฐ€
07:40
there's Dinosaur Planet; there's Gravity.
190
460260
2000
๊ทธํ›„์— Dinasaur Planet, ๊ทธ๋ฆฌ๊ณ  Gravity๋ฅผ ์‚ฌ์šฉํ–ˆ๋Š”๋ฐ
07:42
They're using Pragmatic Chaos now.
191
462260
2000
์ง€๊ธˆ์€ Pragmatic Chaos๋ฅผ ์‚ฌ์šฉํ•˜์ฃ .
07:44
Pragmatic Chaos is, like all of Netflix algorithms,
192
464260
2000
Pragmatic Chaos๋„ ๋„คํŠธํ”Œ๋ฆญ์Šค๊ฐ€ ์‚ฌ์šฉํ–ˆ๋˜
07:46
trying to do the same thing.
193
466260
2000
๋‹ค๋ฅธ ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ๋˜‘๊ฐ™์€ ์ผ์„ ํ•˜๋ ค๊ณ  ํ•˜์ง€์š”.
07:48
It's trying to get a grasp on you,
194
468260
2000
์ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๊ณ ๊ฐ์˜ ๋งˆ์Œ์•ˆ์œผ๋กœ
07:50
on the firmware inside the human skull,
195
470260
2000
ํŒŒ๊ณ  ๋“ค์–ด๊ฐ€์„œ ์–ด๋–ค๊ฒƒ์„ ์ข‹์•„ํ•˜๋Š”๊ฐ€๋ฅผ
07:52
so that it can recommend what movie
196
472260
2000
ํŒŒ์•…ํ•œ ํ›„์— ๋‹ค์Œ๋ฒˆ์— ์–ด๋–ค ์˜ํ™”๋ฅผ
07:54
you might want to watch next --
197
474260
2000
๋ณด๊ณ  ์‹ถ์–ดํ• ์ง€๋ฅผ ์ถ”์ธกํ•˜๋ ค๊ณ  ํ•˜๋Š”๋ฐ
07:56
which is a very, very difficult problem.
198
476260
3000
์ด๊ฑด ์—„์ฒญ๋‚˜๊ฒŒ ์–ด๋ ค์šด ๋ฌธ์ œ์ง€์š”.
07:59
But the difficulty of the problem
199
479260
2000
์ด๊ฒƒ์ด ๋งค์šฐ ํž˜๋“  ์ผ์ด๊ณ 
08:01
and the fact that we don't really quite have it down,
200
481260
3000
๋˜ ์šฐ๋ฆฌ๋“ค ์ž์ฒด๊ฐ€ ์‚ฌ์‹ค ์ด๋Ÿฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์•„์ง ์ •ํ™•ํžˆ
08:04
it doesn't take away
201
484260
2000
์ดํ•ดํ•˜์ง€ ๋ชปํ•˜์ง€๋งŒ Pragmatic Chaos๋Š”
08:06
from the effects Pragmatic Chaos has.
202
486260
2000
๊ทธ๋ž˜๋„ ์šฐ๋ฆฌ์—๊ฒŒ ์˜ํ–ฅ์„ ๋ฏธ์น˜๊ณ  ์žˆ์ง€์š”.
08:08
Pragmatic Chaos, like all Netflix algorithms,
203
488260
3000
๊ณผ๊ฑฐ์˜ ๋ชจ๋“  ๋„คํŠธํ”Œ๋ฆญ์Šค ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์ด ๊ทธ๋žฌ๋“ฏ์ด,
08:11
determines, in the end,
204
491260
2000
์šฐ๋ฆฌ๋Š” Pragmatic Chaos๊ฐ€
08:13
60 percent
205
493260
2000
์ถ”์ฒœํ•˜๋Š” ์˜ํ™”์˜ ์•ฝ
08:15
of what movies end up being rented.
206
495260
2000
60%๋ฅผ ์‹ค์ œ๋กœ ๋นŒ๋ ค์„œ ๋ณด๋‹ˆ๊นŒ์š”.
08:17
So one piece of code
207
497260
2000
์ด๋ง์€ ์ฆ‰, ์—ฌ๋Ÿฌ๋ถ„์— ๋Œ€ํ•ด ์ง€๊ทนํžˆ ๋‹จํŽธ์ ์ธ
08:19
with one idea about you
208
499260
3000
์•„์ด๋””์–ด๋งŒ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ์ปดํ“จํ„ฐ ์ฝ”๋“œ๊ฐ€
08:22
is responsible for 60 percent of those movies.
209
502260
3000
์—ฌ๋Ÿฌ๋ถ„์ด ์„ ํƒํ•˜๋Š” ์˜ํ™”์˜ 60%๋ฅผ ๊ฒฐ์ •ํ•œ๋‹ค๋Š” ๊ฑฐ์ฃ .
08:25
But what if you could rate those movies
210
505260
2000
๊ทธ๋Ÿฐ๋ฐ ์˜ํ™”๋ฅผ ๋งŒ๋“ค๊ธฐ๋„ ์ „์— ๊ทธ ์˜ํ™”์— ๋Œ€ํ•œ
08:27
before they get made?
211
507260
2000
ํ‰๊ฐ€๋ฅผ ๋‚ด๋ฆด ์ˆ˜ ์žˆ๋‹ค๋ฉด ์–ด๋–จ๊นŒ์š”?
08:29
Wouldn't that be handy?
212
509260
2000
๊ทธ๋Ÿผ ์•„์ฃผ ์œ ์šฉํ•˜์ง€ ์•Š์„๊นŒ์š”?
08:31
Well, a few data scientists from the U.K. are in Hollywood,
213
511260
3000
์˜๊ตญ ๋ฐ์ดํ„ฐ ๊ณผํ•™์ž๋“ค์ด ๋ช‡๋ช…์ด
08:34
and they have "story algorithms" --
214
514260
2000
ํ™€๋ฆฌ์šฐ๋“œ์— ์ดํŒŒ๊ณ ๊ธฑ์Šค๋ผ๋Š”ํšŒ์‚ฌ๋ฅผ ์ฐจ๋ฆฌ๊ณ 
08:36
a company called Epagogix.
215
516260
2000
์Šคํ† ๋ฆฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๋งŒ๋“ค์—ˆ์ฃ .
08:38
And you can run your script through there,
216
518260
3000
๊ทธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€
08:41
and they can tell you, quantifiably,
217
521260
2000
์˜ํ™” ์Šคํฌ๋ฆฝํŠธ๋ฅผ ์ฝ๊ณ 
08:43
that that's a 30 million dollar movie
218
523260
2000
๊ทธ๊ฒŒ 3์ฒœ๋งŒ๋ถˆ ์งœ๋ฆฌ ์ธ์ง€
08:45
or a 200 million dollar movie.
219
525260
2000
2์–ต๋ถˆ์งœ๋ฆฌ ์˜ํ™”์ธ์ง€ ๋งํ•ด ์ฃผ์ฃ .
08:47
And the thing is, is that this isn't Google.
220
527260
2000
์ด๊ฑด ๊ตฌ๊ธ€๊ฐ™์ด ์ •๋ณด๋ฅผ ์ฐพ๋Š”๊ฒƒ๋„ ์•„๋‹ˆ๊ณ ,
08:49
This isn't information.
221
529260
2000
๊ธˆ์œต์ƒํƒœ๋ฅผ ํŒŒ์•…ํ•˜๋Š” ๊ฒƒ๋„ ์•„๋‹ˆ๊ณ ,
08:51
These aren't financial stats; this is culture.
222
531260
2000
๋ฌธํ™”๋ฅผ ํŒ๋‹จํ•œ๋‹ค๋Š” ์ด์•ผ๊ธฐ์ฃ .
08:53
And what you see here,
223
533260
2000
์—ฌ๋Ÿฌ๋ถ„์ด ์ง€๊ธˆ ๋ณด์‹œ๋Š” ์ด ๊ทธ๋ฆผ์€,
08:55
or what you don't really see normally,
224
535260
2000
์‚ฌ์‹ค ์—ฌ๋Ÿฌ๋ถ„์ด ํ”ํžˆ ๋ณด๋Š” ๊ทธ๋ฆผ์€ ์•„๋‹ˆ์ง€๋งŒ,
08:57
is that these are the physics of culture.
225
537260
4000
๋ฌธ๋ช…์˜ ๊ธฐ๋ณธ ์›์น™์„ ๋ณด์—ฌ์ฃผ๋Š” ๊ทธ๋ฆผ์ด์ฃ .
09:01
And if these algorithms,
226
541260
2000
๊ทธ๋Ÿฐ๋ฐ ์ด๋Ÿฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์ด
09:03
like the algorithms on Wall Street,
227
543260
2000
์›”์ŠคํŠธ๋ฆฌํŠธ์— ์žˆ๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์ฒ˜๋Ÿผ
09:05
just crashed one day and went awry,
228
545260
3000
์–ด๋А๋‚  ๊ฐ‘์ž๊ธฐ ํฌ๋ž˜์‰ฌ ํ•œ๋‹ค๋ฉด
09:08
how would we know?
229
548260
2000
๊ทธ๊ฑธ ์šฐ๋ฆฌ๊ฐ€ ์–ด๋–ป๊ฒŒ ์•Œ๊นŒ์š”?
09:10
What would it look like?
230
550260
2000
๋˜ ์–ด๋–ค ์ผ์ด ์ƒ๊ธธ๊นŒ์š”?
09:12
And they're in your house. They're in your house.
231
552260
3000
์—ฌ๋Ÿฌ๋ถ„๋“ค ์ง‘์— ์žˆ๋Š” ์ด๋Ÿฐ ์ฒญ์†Œ๊ธฐ์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์€
09:15
These are two algorithms competing for your living room.
232
555260
2000
๊ฑฐ์‹ค์„ ์ฐจ์ง€ํ•˜๋ ค๊ณ  ์„œ๋กœ ๊ฒฝ์Ÿํ•˜๊ณ  ์žˆ์ฃ .
09:17
These are two different cleaning robots
233
557260
2000
๊ทธ๋Ÿฐ๋ฐ ์ด๋“ค์€ ๊นจ๋—ํ•˜๋‹ค๋Š”
09:19
that have very different ideas about what clean means.
234
559260
3000
๊ฒƒ์„ ํŒ๋‹จํ•˜๋Š” ๊ธฐ์ค€์ด ์„œ๋กœ ๋‹ค๋ฅด์ฃ .
09:22
And you can see it
235
562260
2000
์ฒญ์†Œ๊ธฐ์˜ ์†๋„๋ฅผ ์ค„์ด๊ณ 
09:24
if you slow it down and attach lights to them,
236
564260
3000
๋ผ์ดํŠธ๋ฅผ ๋‹ฌ๋ฉด ๊ทธ ์ฐจ์ด๋ฅผ ๋ณผ ์ˆ˜ ์žˆ์ฃ .
09:27
and they're sort of like secret architects in your bedroom.
237
567260
3000
์ด๋“ค์€ ์—ฌ๋Ÿฌ๋ถ„์˜ ์นจ์‹ค์— ์žˆ๋Š”
09:30
And the idea that architecture itself
238
570260
3000
์ผ์ข…์˜ ์ˆจ์–ด์žˆ๋Š” ๊ฑด์ถ•๊ฐ€์™€ ๋น„์Šทํ•˜๋‹ค๊ณ  ๋ณผ ์ˆ˜ ์žˆ๊ฒ ๋Š”๋ฐ,
09:33
is somehow subject to algorithmic optimization
239
573260
2000
์‚ฌ์‹ค์€ ๊ฑด์ถ• ์ž์ฒด๊ฐ€ ์‚ฐ์ˆ ์—ฐ์‚ฐ์„
09:35
is not far-fetched.
240
575260
2000
์ตœ์ ํ™” ํ•œ ๊ฒฐ๊ณผ๋ผ๊ณ  ํ•ด๋„ ๊ณผ์–ธ์€ ์•„๋‹ˆ์ง€์š”.
09:37
It's super-real and it's happening around you.
241
577260
3000
์ด๊ฑด ์šฐ๋ฆฌ ์ฃผ์œ„์—์„œ ์‹ค์ œ๋กœ ์ผ์–ด๋‚˜๊ณ  ์žˆ๋Š” ์—„์—ฐํ•œ ์‚ฌ์‹ค์ด์ฃ .
09:40
You feel it most
242
580260
2000
์šฐ๋ฆฌ๊ฐ€ ์‹ ํ˜• '๋ชฉ์ ์ธต์„ ํƒ ์—˜๋ฆฌ๋ฒ ์ดํ„ฐ'์˜
09:42
when you're in a sealed metal box,
243
582260
2000
์ฒ ํŒ ๋ฐ•์Šค ์•ˆ์—
09:44
a new-style elevator;
244
584260
2000
๊ฐ™ํ˜€ ์žˆ์„๋•Œ๋Š”
09:46
they're called destination-control elevators.
245
586260
2000
๊ทธ๋Ÿฐ ์ƒ๊ฐ์ด ๋” ๋‚˜์ง€์š”.
09:48
These are the ones where you have to press what floor you're going to go to
246
588260
3000
ํƒ€๊ธฐ ์ „์— ์Šน๊ฐ์ด ๋ฐ–์—์„œ
09:51
before you get in the elevator.
247
591260
2000
๋ฏธ๋ฆฌ ๋ชฉ์ ์ธต์„ ์„ ํƒํ•˜๋Š” ์ด๋Ÿฐ ์‹ ํ˜• ์—˜๋ฆฌ๋ฒ ์ดํ„ฐ๋Š”
09:53
And it uses what's called a bin-packing algorithm.
248
593260
2000
'๋นˆ ํŒจํ‚น'์ด๋ผ๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•˜์ฃ .
09:55
So none of this mishegas
249
595260
2000
์Šน๊ฐ๋“ค์ด ์ž๊ธฐ๊ฐ€ ํƒ€๊ณ  ์‹ถ์€ ์Šน๊ฐ•๊ธฐ๋ฅผ
09:57
of letting everybody go into whatever car they want.
250
597260
2000
๋งˆ์Œ๋Œ€๋กœ ๊ณ ๋ฅด๋Š” ๊ฒƒ์€ ์˜›๋ง์ด์ฃ .
09:59
Everybody who wants to go to the 10th floor goes into car two,
251
599260
2000
10์ธต์œผ๋กœ ๊ฐˆ ์‚ฌ๋žŒ๋“ค์€ 2๋ฒˆ ์Šน๊ฐ•๊ธฐ๋กœ,
10:01
and everybody who wants to go to the third floor goes into car five.
252
601260
3000
3์ธต์— ๊ฐˆ ์‚ฌ๋žŒ๋“ค์€ 5๋ฒˆ ์Šน๊ฐ•๊ธฐ๋กœ...์ด๋Ÿฐ ์‹์ด์ฃ .
10:04
And the problem with that
253
604260
2000
๊ทธ๋Ÿฐ๋ฐ ๋ฌธ์ œ๋Š”
10:06
is that people freak out.
254
606260
2000
์‚ฌ๋žŒ๋“ค์ด ๋‹นํ™ฉํ•ด์„œ
10:08
People panic.
255
608260
2000
์–ด์ฉ”์ง€ ๋ชจ๋ฅธ๋‹ค๋Š” ๊ฒƒ์ด์ฃ .
10:10
And you see why. You see why.
256
610260
2000
๊ทธ๋Ÿฐ๋ฐ ๋‹นํ™ฉํ•ด ํ•˜๋Š”๊ฒŒ ๋‹น์—ฐํ•˜์ฃ .
10:12
It's because the elevator
257
612260
2000
๊ทธ ์—˜๋ ˆ๋ฒ ์ดํ„ฐ์—๋Š”
10:14
is missing some important instrumentation, like the buttons.
258
614260
3000
์ธต์ˆ˜๊ฐ€ ์ ํžŒ ๋ฒ„ํŠผ ๊ฐ™์€๊ฒŒ ์—†์œผ๋‹ˆ๊นŒ์š”.
10:17
(Laughter)
259
617260
2000
(์›ƒ์Œ)
10:19
Like the things that people use.
260
619260
2000
์ผ๋ฐ˜ ์—˜๋ ˆ๋ฒ ์ดํ„ฐ์™€๋Š” ์•„์ฃผ ๋‹ค๋ฅด์ฃ .
10:21
All it has
261
621260
2000
๊ทธ์ € ์œ—์ชฝ์ด๋‚˜ ์•„๋žซ์ชฝ์œผ๋กœ
10:23
is just the number that moves up or down
262
623260
3000
์˜ฌ๋ผ๊ฐ”๋‹ค ๋‚ด๋ ค๊ฐ”๋‹ค ํ•˜๋Š” ๋ฒˆํ˜ธ์™€
10:26
and that red button that says, "Stop."
263
626260
3000
'์Šคํ†ฑ' ์ด๋ผ๊ณ  ์ ํžŒ ๋นจ๊ฐ„ ๋ฒ„ํŠผ๋งŒ ์žˆ์ฃ .
10:29
And this is what we're designing for.
264
629260
3000
์š”์ฆ˜ ์šฐ๋ฆฌ๊ฐ€ ๋””์ž์ธํ•˜๋Š” ๊ฒƒ๋“ค์ด ๋‹ค๋“ค ์ด๋Ÿฐ์‹์ด์ฃ .
10:32
We're designing
265
632260
2000
์šฐ๋ฆฌ๋Š” ์ด๋Ÿฐ์‹์˜ ์ธ๊ฐ„๊ธฐ๊ณ„
10:34
for this machine dialect.
266
634260
2000
๋Œ€ํ™”๋ฅผ ๋””์ž์ธ ํ•˜๊ณ  ์žˆ์ฃ .
10:36
And how far can you take that? How far can you take it?
267
636260
3000
์šฐ๋ฆฌ๋Š” ์ด๋Ÿฐ์‹์œผ๋กœ ์–ผ๋งˆ๋‚˜ ๋” ๋‚˜๊ฐˆ ์ˆ˜ ์žˆ์„๊นŒ์š”?
10:39
You can take it really, really far.
268
639260
2000
์•„๋งˆ ๊ฑฐ์˜ ๋ฌดํ•œ์ • ๊ฐˆ๊ป˜์—์š”.
10:41
So let me take it back to Wall Street.
269
641260
3000
์›”์ŠคํŠธ๋ฆฌํŠธ ์ด์•ผ๊ธฐ๋กœ ๋‹ค์‹œ ๋Œ์•„๊ฐ€์ฃ .
10:45
Because the algorithms of Wall Street
270
645260
2000
์›”์ŠคํŠธ๋ฆฌํŠธ์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์—๊ฒŒ
10:47
are dependent on one quality above all else,
271
647260
3000
๊ทธ ๋ฌด์—‡๋ณด๋‹ค๋„ ๋”
10:50
which is speed.
272
650260
2000
์ค‘์š”ํ•œ ๊ฒƒ์€ ์†๋„์ฃ .
10:52
And they operate on milliseconds and microseconds.
273
652260
3000
๊ทธ๋“ค์€ ๋ฐ€๋ฆฌ์„ธ์ปจ๋“œ์™€ ๋งˆ์ดํฌ๋กœ์„ธ์ปจ๋“œ๋ฅผ ๋”ฐ์ง€์ฃ .
10:55
And just to give you a sense of what microseconds are,
274
655260
2000
๋งˆ์šฐ์Šค๋ฅผ ํ•œ๋ฒˆ ํด๋ฆญํ•˜๋Š”๋ฐ
10:57
it takes you 500,000 microseconds
275
657260
2000
๊ฑธ๋ฆฌ๋Š” ์‹œ๊ฐ„์€
10:59
just to click a mouse.
276
659260
2000
50๋งŒ ๋งˆ์ดํฌ๋กœ์„ธ์ปจ๋“œ์ฃ .
11:01
But if you're a Wall Street algorithm
277
661260
2000
์›”์ŠคํŠธ๋ฆฌํŠธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ž…์žฅ์—์„œ ๋ณผ๋•Œ๋Š”
11:03
and you're five microseconds behind,
278
663260
2000
๋‹จ 5 ๋งˆ์ดํฌ๋กœ์„ธ์ปจ๋“œ๋งŒ ๋’ค์ ธ๋„
11:05
you're a loser.
279
665260
2000
ํŒจ์ž๊ฐ€ ๋˜๋Š” ๊ฒƒ์ด์ฃ .
11:07
So if you were an algorithm,
280
667260
2000
์—ฌ๋Ÿฌ๋ถ„์ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด๋ผ๋ฉด ์•„๋งˆ๋„
11:09
you'd look for an architect like the one that I met in Frankfurt
281
669260
3000
์ œ๊ฐ€ ํ”„๋ž‘ํฌํ”„๋ฃจํŠธ์—์„œ ๋งŒ๋‚œ ๊ฑด์ถ•๊ฐ€ ๊ฐ™์€ ์‚ฌ๋žŒ๋“ค์„ ์ฐพ๊ฒ ์ง€์š”.
11:12
who was hollowing out a skyscraper --
282
672260
2000
๊ทธ ๊ฑด์ถ•๊ฐ€๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด
11:14
throwing out all the furniture, all the infrastructure for human use,
283
674260
3000
์ธํ„ฐ๋„ท ์ผ€์ด๋ธ”์— ์ข€ ๋” ๊ฐ€๊น๊ฒŒ ์ž๋ฆฌ์žก์„ ์ˆ˜ ์žˆ๊ฒŒ
11:17
and just running steel on the floors
284
677260
3000
๋‹ค์ˆ˜์˜ ์ปดํ“จํ„ฐ ์„œ๋ฒ„๋“ค์„ ๋“ค์–ด๊ฐˆ ์žฅ์†Œ๋ฅผ ๋งŒ๋“ค๋ ค๊ณ 
11:20
to get ready for the stacks of servers to go in --
285
680260
3000
์ฝ˜ํฌ๋ฆฌํŠธ ๋ฐ”๋‹ฅ๋งŒ ๋‚จ๊ธฐ๊ณ 
11:23
all so an algorithm
286
683260
2000
์‚ฌ๋žŒ๋“ค์—๊ฒŒ ํ•„์š”ํ•œ ๋ชจ๋“  ๊ธฐ๋ฐ˜ ์„ค๋น„์™€
11:25
could get close to the Internet.
287
685260
3000
๊ฐ€๊ตฌ๋“ค์„ ์ „๋ถ€ ๋‹ค ๋œฏ์–ด๋‚ด๋Š” ์ผ์„ ํ–ˆ์ง€์š”.
11:28
And you think of the Internet as this kind of distributed system.
288
688260
3000
์ธํ„ฐ๋„ท์€ ์ผ์ข…์˜ ๋ถ„์‚ฐ ์‹œ์Šคํ…œ์ด์ง€๋งŒ ๊ทธ๊ฒƒ์€
11:31
And of course, it is, but it's distributed from places.
289
691260
3000
์ผ์ •ํ•œ ์žฅ์†Œ๋“ค๋กœ ๋ถ€ํ„ฐ ๋ถ„์‚ฐ๋˜๋Š” ์‹œ์Šคํ…œ์ด์ฃ .
11:34
In New York, this is where it's distributed from:
290
694260
2000
๋‰ด์š•์˜ ์ธํ„ฐ๋„ท์€
11:36
the Carrier Hotel
291
696260
2000
ํ—ˆ๋“œ์Šจ ์ŠคํŠธ๋ฆฌํŠธ์— ์žˆ๋Š”
11:38
located on Hudson Street.
292
698260
2000
์บ๋ฆฌ์–ด ํ˜ธํ…”์—์„œ ๋ถ€ํ„ฐ ๋ถ„๋ฐฐ๋˜์ง€์š”.
11:40
And this is really where the wires come right up into the city.
293
700260
3000
๋‰ด์š•์‹œ๋กœ ์˜ค๋Š” ๋ชจ๋“  ์ธํ„ฐ๋„ท ์ผ€์ด๋ธ”์ด ์‹ค์ œ๋กœ ๋“ค์–ด์˜ค๋Š” ๊ณณ์ด์ฃ 
11:43
And the reality is that the further away you are from that,
294
703260
4000
๊ทธ๋ž˜์„œ ๊ทธ๊ณณ์—์„œ ๋ฉ€๋ฉด ๋ฉ€์ˆ˜๋ก ๋ชจ๋“  ๊ฑฐ๋ž˜๊ฐ€
11:47
you're a few microseconds behind every time.
295
707260
2000
๋ช‡ ๋งˆ์ดํฌ๋กœ์„ธ์ปจ๋“œ์”ฉ ๋Šฆ์–ด์ง€์ง€์š”.
11:49
These guys down on Wall Street,
296
709260
2000
๋งˆ์ฝ”ํด๋กœ๋‚˜, ์น˜๋กœํ‚ค ๋„ค์ด์…˜ ๊ฐ™์€
11:51
Marco Polo and Cherokee Nation,
297
711260
2000
์›”์ŠคํŠธ๋ฆฌํŠธ ๋ถ€๊ทผ์˜ ๋นŒ๋”ฉ์— ์žˆ๋Š” ์‚ฌ๋žŒ๋“ค์€
11:53
they're eight microseconds
298
713260
2000
์บ๋ฆฌ์–ด ํ˜ธํ…” ๋ถ€๊ทผ์— ๋นŒ๋”ฉ ๋‚ด๋ถ€๋ฅผ ํ—ˆ๋ฌผ์–ด๋‚ด๊ณ 
11:55
behind all these guys
299
715260
2000
์ƒˆ๋กœ ์ธํ„ฐ๋„ท ์žฅ๋น„๋ฅผ ๊นŒ๋Š”
11:57
going into the empty buildings being hollowed out
300
717260
4000
์‚ฌ๋žŒ๋“ค๋ณด๋‹ค 8 ๋งˆ์ดํฌ๋กœ์„ธ์ปจ๋“œ
12:01
up around the Carrier Hotel.
301
721260
2000
๋” ๋Šฆ๊ฒŒ ๋˜์ฃ .
12:03
And that's going to keep happening.
302
723260
3000
์ด๋Ÿฐ ์ผ์€ ์•ž์œผ๋กœ๋„ ๊ณ„์† ์ƒ๊ธธ๊ฒ๋‹ˆ๋‹ค.
12:06
We're going to keep hollowing them out,
303
726260
2000
๊ทธ๋ ‡์ง€ ์•Š๊ณ ๋Š” ์ฆ์‹œ์—์„œ ๊ฑฐ๋ž˜๋ฅผ ํ•  ๋•Œ
12:08
because you, inch for inch
304
728260
3000
๋ณด์Šคํ†ค ์…”ํ”Œ๋Ÿฌ์ฒ˜๋Ÿผ
12:11
and pound for pound and dollar for dollar,
305
731260
3000
๋งˆ์ง€๋ง‰ ํ•œ๋ฐฉ์šธ ๊นŒ์ง€์˜
12:14
none of you could squeeze revenue out of that space
306
734260
3000
์ด์ต์„
12:17
like the Boston Shuffler could.
307
737260
3000
์งœ๋‚ผ ์ˆ˜ ์—†๊ธฐ ๋•Œ๋ฌธ์ด์ฃ .
12:20
But if you zoom out,
308
740260
2000
์ด์ œ ์คŒ์•„์›ƒ์„ ํ•ด๋ณด์ง€์š”.
12:22
if you zoom out,
309
742260
2000
์คŒ์•„์›ƒ์„ ํ•ด๋ณด๋ฉด,
12:24
you would see an 825-mile trench
310
744260
4000
๋‰ด์š•์‹œ์™€ ์‹œ์นด๊ณ ๋ฅผ ์—ฐ๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด
12:28
between New York City and Chicago
311
748260
2000
์Šคํ”„๋ ˆ๋“œ ๋„คํŠธ์›Œํฌ๋ผ๋Š” ํšŒ์‚ฌ๊ฐ€
12:30
that's been built over the last few years
312
750260
2000
์ง€๋‚œ ๋ช‡๋…„์— ๊ฑธ์ณ ๊ณต์‚ฌํ•˜๊ณ  ์žˆ๋Š”
12:32
by a company called Spread Networks.
313
752260
3000
825 ๋งˆ์ผ ๊ธธ์ด์˜ ๊ธฐ๋ฐ˜์‹œ์„ค ๊ณต์‚ฌ ์ „๊ฒฝ์„ ๋ณผ ์ˆ˜ ์žˆ์ง€์š”.
12:35
This is a fiber optic cable
314
755260
2000
์ด๊ฒƒ์€ ์นด๋‹ˆ๋ฐœ์ด๋‚˜ ๋‚˜์ดํ”„ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ „์šฉ์œผ๋กœ
12:37
that was laid between those two cities
315
757260
2000
๋‘ ๋„์‹œ๊ฐ„์— ๊น”๋ฆฐ ๊ด‘์ผ€์ด๋ธ” ๋ฃจํŠธ์ธ๋ฐ
12:39
to just be able to traffic one signal
316
759260
3000
๋งˆ์šฐ์Šค๋ฅผ ํด๋ฆญํ•˜๋Š” ๊ฒƒ๋ณด๋‹ค
12:42
37 times faster than you can click a mouse --
317
762260
3000
37๋ฐฐ ๋” ๋น ๋ฅธ ์†๋„๋กœ
12:45
just for these algorithms,
318
765260
3000
์‹ ํ˜ธ๋ฅผ ์ „์†กํ•˜๋Š”
12:48
just for the Carnival and the Knife.
319
768260
3000
๋‹จ ํ•œ๊ฐ€์ง€์˜ ๋ชฉ์ ์„ ์œ„ํ•ด ๊ฑด์„ค๋œ ๊ฒƒ์ด์ฃ .
12:51
And when you think about this,
320
771260
2000
์šฐ๋ฆฌ๋Š” ์•„๋ฌด๋„ ์•Œ์ง€ ๋ชปํ• 
12:53
that we're running through the United States
321
773260
2000
ํ†ต์‹  ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ๊ตฌ์ถ•ํ•ด์„œ
12:55
with dynamite and rock saws
322
775260
3000
์ฃผ์‹๊ฑฐ๋ž˜๋ฅผ 3 ๋งˆ์ดํฌ๋กœ์„ธ์ปจ๋“œ
12:58
so that an algorithm can close the deal
323
778260
2000
๋” ๋นจ๋ฆฌ ์ฒด๊ฒฐํ•  ์ˆ˜ ์žˆ๊ฒŒ
13:00
three microseconds faster,
324
780260
3000
๋ฏธ๊ตญ์˜ ๊ณณ๊ณณ์„
13:03
all for a communications framework
325
783260
2000
๋‹ค์ด๋‚˜๋งˆ์ดํŠธ์™€ ์•”์„ํ†ฑ์œผ๋กœ
13:05
that no human will ever know,
326
785260
4000
ํญ๋ฐœ์‹œํ‚ค๊ณ  ์ž๋ฅด๊ณ ํ•˜๋Š”๋ฐ
13:09
that's a kind of manifest destiny;
327
789260
3000
์ด๊ฒƒ์€ ์„œ๋ถ€๋กœ ํŒฝ์ฐฝํ•˜์ž๋Š” ์šฐ๋ฆฌ์˜ '๋ช…๋ฐฑํ•œ ์šด๋ช…'์ด๊ฒ ๊ณ ,
13:12
and we'll always look for a new frontier.
328
792260
3000
์šฐ๋ฆฌ๋Š” ๋˜ํ•œ ์•ž์œผ๋กœ๋„ ๊ณ„์† ๋ฏธ๊ฐœ์ฒ™์ง€๋ฅผ ์ฐพ์•„ ๋‹ค๋‹ˆ๊ฒ ์ง€์š”.
13:15
Unfortunately, we have our work cut out for us.
329
795260
3000
์•ž์œผ๋กœ ์šฐ๋ฆฌ๊ฐ€ ํ• ์ผ์ด ํƒœ์‚ฐ๊ฐ™์ง€์š”.
13:18
This is just theoretical.
330
798260
2000
์ด๊ฑด MIT์˜ ์ˆ˜ํ•™์ž๋“ค์ด
13:20
This is some mathematicians at MIT.
331
800260
2000
์ž‘์„ฑํ•œ ๋‹จ์ˆœํžˆ ์ด๋ก ์ ์ธ ๊ทธ๋ฆผ์ธ๋ฐ
13:22
And the truth is I don't really understand
332
802260
2000
์†”์งํžˆ ๋งํ•˜๋ฉด
13:24
a lot of what they're talking about.
333
804260
2000
์ „ ๊ทธ๋“ค์ด ๋ฌด์Šจ ๋ง์„ ํ•˜๋Š”์ง€ ๋ชฐ๋ผ์š”.
13:26
It involves light cones and quantum entanglement,
334
806260
3000
'๋น›์›๋ฟ”', '์–‘์ž์–ฝํž˜' ๋ญ ๊ทธ๋Ÿฐ ๋ง์„ํ•˜๋Š”๋ฐ
13:29
and I don't really understand any of that.
335
809260
2000
์ „ ํ•œ๋งˆ๋””๋„ ์ดํ•ด๋ฅผ ๋ชปํ•˜์ฃ .
13:31
But I can read this map,
336
811260
2000
๊ทธ๋ ‡์ง€๋งŒ ์ด ์ง€๋„๋Š” ์ œ๊ฐ€ ์ดํ•ดํ•˜์ฃ .
13:33
and what this map says
337
813260
2000
์ด ์ง€๋„๊ฐ€ ๋ณด์—ฌ์ฃผ๋Š” ๊ฒƒ์€
13:35
is that, if you're trying to make money on the markets where the red dots are,
338
815260
3000
๋„์‹œ๊ฐ€ ์žˆ๋Š” ์ฆ๊ถŒ์‹œ์žฅ์ด ์žˆ๋Š”
13:38
that's where people are, where the cities are,
339
818260
2000
๋นจ๊ฐ„ ์ ๋“ค์—์„œ ๋ˆ์„ ๋ฒŒ๋ ค๋ฉด
13:40
you're going to have to put the servers where the blue dots are
340
820260
3000
ํ‘ธ๋ฅธ ์ ๋“ค์— ์„œ๋ฒ„๋ฅผ ์„ค์น˜ํ•˜๋Š” ๊ฒƒ์ด
13:43
to do that most effectively.
341
823260
2000
๊ฐ€์žฅ ํšจ์œจ์ ์ด๋ผ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
13:45
And the thing that you might have noticed about those blue dots
342
825260
3000
๊ทธ๋Ÿฐ๋ฐ ์ด ์ง€๋„์—๋Š”
13:48
is that a lot of them are in the middle of the ocean.
343
828260
3000
๋Œ€์–‘์—๋„ ํ‘ธ๋ฅธ ์ ๋“ค์ด ๋งŽ์ด ์žˆ์ฃ .
13:51
So that's what we'll do: we'll build bubbles or something,
344
831260
3000
๊ทธ๋Ÿผ ์ด๊ฑด ์–ด๋–จ๊นŒ์š”?
13:54
or platforms.
345
834260
2000
์šฐ๋ฆฌ๊ฐ€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ๋˜๋ฉด
13:56
We'll actually part the water
346
836260
2000
๋ฐ”๋‹ค ํ•œ๊ฐ€์šด๋ฐ ํฐ ๊ณต๊ฐ™์€ ๊ตฌ์กฐ๋ฌผ์ด๋‚˜
13:58
to pull money out of the air,
347
838260
2000
ํ”Œ๋žซํผ์„ ๋งŒ๋“ค๊ณ  ๊ฑฐ๊ธฐ์„œ ๋ฐ”๋‹ค๋ฅผ
14:00
because it's a bright future
348
840260
2000
๊ฐ€๋ฅด๋Š” ๊ธฐ์ ์ฒ˜๋Ÿผ ๋Œ€๊ธฐ๋กœ ๋ถ€ํ„ฐ
14:02
if you're an algorithm.
349
842260
2000
๋ˆ์„ ๋ฌด์ง„์žฅ ๋งŒ๋“ค ์ˆ˜ ์žˆ๊ฒ ์ง€์š”.
14:04
(Laughter)
350
844260
2000
(์›ƒ์Œ)
14:06
And it's not the money that's so interesting actually.
351
846260
3000
์‚ฌ์‹ค์€ ๋ˆ ์ž์ฒด๊ฐ€ ํฅ๋ฏธ์žˆ๋Š”๊ฒŒ ์•„๋‹ˆ์ฃ .
14:09
It's what the money motivates,
352
849260
2000
๋ˆ์ด ์–ด๋–ค ์˜์š•์„ ์ฃผ๋Š”๊ฐ€๊ฐ€ ์ค‘์š”ํ•˜์ฃ .
14:11
that we're actually terraforming
353
851260
2000
์šฐ๋ฆฌ๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ฐ™์€ ํšจ์œจ๋กœ
14:13
the Earth itself
354
853260
2000
์ง€๊ตฌ ์ž์ฒด๋ฅผ
14:15
with this kind of algorithmic efficiency.
355
855260
2000
์‹ค์ œ๋กœ ๋ฐ”๊พธ๊ณ  ์žˆ์ง€์š”.
14:17
And in that light,
356
857260
2000
์šฐ๋ฆฌ๊ฐ€ ์ด๋Ÿฐ ์ƒ๊ฐ์„ ์—ผ๋‘์— ๋‘๊ณ 
14:19
you go back
357
859260
2000
๋งˆ์ดํด ๋‚˜์ž์˜ ์‚ฌ์ง„๋“ค์„ ๋‹ค์‹œ ํ•œ๋ฒˆ ๋ณธ๋‹ค๋ฉด
14:21
and you look at Michael Najjar's photographs,
358
861260
2000
๊ทธ๊ฒƒ์€ ์‚ฌ์‹ค ๋ฉ”ํƒ€ํฌ๊ฐ€ ์•„๋‹Œ
14:23
and you realize that they're not metaphor, they're prophecy.
359
863260
3000
์˜ˆ์–ธ์ด๋ผ๋Š” ๊ฒƒ์„ ๊นจ๋‹ฌ์„ ์ˆ˜ ์žˆ์ง€์š”.
14:26
They're prophecy
360
866260
2000
๊ทธ์˜ ์‚ฌ์ง„๋“ค์€ ์šฐ๋ฆฌ๊ฐ€ ๋งŒ๋“œ๋Š” ์ˆ˜ํ•™์ด
14:28
for the kind of seismic, terrestrial effects
361
868260
4000
์ง€๊ตฌ์˜ ์ง€ํ˜•์— ์–ผ๋งˆ๋‚˜
14:32
of the math that we're making.
362
872260
2000
๊ฑฐ๋Œ€ํ•œ ๋ณ€ํ™”๋ฅผ ์ค„๊ฒƒ์ด๋ผ๋Š” ๊ฒƒ์„ ์˜ˆ์–ธํ•ด ์ค๋‹ˆ๋‹ค.
14:34
And the landscape was always made
363
874260
3000
ํ’๊ฒฝ์ด๋ž€ ์›๋ž˜
14:37
by this sort of weird, uneasy collaboration
364
877260
3000
์ž์—ฐ๊ณผ ์ธ๊ฐ„์˜ ๊ดด์ƒํ•˜๊ณ 
14:40
between nature and man.
365
880260
3000
๊ฑฐ๋ถํ•œ ํ˜‘๋™์œผ๋กœ ๋งŒ๋“ค์–ด ์ง€์ฃ .
14:43
But now there's this third co-evolutionary force: algorithms --
366
883260
3000
๊ทธ๋Ÿฌ๋‚˜ ์ด์ œ๋Š” ํ’๊ฒฝ์„ ๋ฐ”๊พธ๋Š” ์ œ3์˜ ์š”์†Œ๊ฐ€ ์ƒ๊ฒผ๋Š”๋ฐ
14:46
the Boston Shuffler, the Carnival.
367
886260
3000
๊ทธ๊ฒƒ์€ ์ฆ‰ ๋ณด์Šคํ„ด ์…”ํ”Œ๋Ÿฌ, ์นด๋‹ˆ๋ฐœ ๊ฐ™์€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด์ฃ .
14:49
And we will have to understand those as nature,
368
889260
3000
์šฐ๋ฆฌ๋Š” ์ด์ œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ž์—ฐ์ด๋ผ๊ณ  ์ƒ๊ฐํ•ด์•ผ ํ•˜๋Š”๋ฐ ์–ด๋–ป๊ฒŒ ๋ณด๋ฉด
14:52
and in a way, they are.
369
892260
2000
์‚ฌ์‹ค ๊ทธ๋ง์ด ๋งž์Šต๋‹ˆ๋‹ค.
14:54
Thank you.
370
894260
2000
๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
14:56
(Applause)
371
896260
20000
(๋ฐ•์ˆ˜)
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7