How algorithms shape our world | Kevin Slavin

484,482 views ・ 2011-07-21

TED


Molimo dvaput kliknite na engleski titl ispod za reprodukciju videa.

Translator: Sanjin Arifagic Reviewer: Mislav Ante Omazić - EFZG
00:15
This is a photograph
0
15260
2000
Ovo je fotografija
00:17
by the artist Michael Najjar,
1
17260
2000
koju je načinio umjetnik Michael Najjar,
00:19
and it's real,
2
19260
2000
i ona je stvarna
00:21
in the sense that he went there to Argentina
3
21260
2000
u smislu da je on otišao u Argentinu
00:23
to take the photo.
4
23260
2000
da je uslika
00:25
But it's also a fiction. There's a lot of work that went into it after that.
5
25260
3000
Ali je također i fikcija. Uloženo je mnogo truda u nju nakon samog fotografisanja.
00:28
And what he's done
6
28260
2000
Ono što je on ustvari uradio je
00:30
is he's actually reshaped, digitally,
7
30260
2000
preoblikovao, digitalno,
00:32
all of the contours of the mountains
8
32260
2000
sve vrhove planina
00:34
to follow the vicissitudes of the Dow Jones index.
9
34260
3000
kako bi odgovarali promjenama Dow Jones indeksa.
00:37
So what you see,
10
37260
2000
Tako da je ovo što vidite
00:39
that precipice, that high precipice with the valley,
11
39260
2000
ova padina, ova strma padina sa dolinom u produžetku
00:41
is the 2008 financial crisis.
12
41260
2000
ustvari finansijska kriza iz 2008. godine.
00:43
The photo was made
13
43260
2000
Fotografija je napravljena
00:45
when we were deep in the valley over there.
14
45260
2000
kada smo zagazili duboko u dolinu.
00:47
I don't know where we are now.
15
47260
2000
Ne znam gdje se sada nalazimo.
00:49
This is the Hang Seng index
16
49260
2000
Ovo je Hang Seng indeks
00:51
for Hong Kong.
17
51260
2000
berze u Hong Kongu.
00:53
And similar topography.
18
53260
2000
I slična topografija.
00:55
I wonder why.
19
55260
2000
Pitam se zašto.
00:57
And this is art. This is metaphor.
20
57260
3000
Ovo je umjetnost, zar ne? Ovo je metafora.
01:00
But I think the point is
21
60260
2000
Ali čini se da je ključno
01:02
that this is metaphor with teeth,
22
62260
2000
da je ovo metafora sa zubima,
01:04
and it's with those teeth that I want to propose today
23
64260
3000
i sa tom mišlju vam želim predložiti danas
01:07
that we rethink a little bit
24
67260
2000
da ponovo promislimo
01:09
about the role of contemporary math --
25
69260
3000
ulogu savremene matematike --
01:12
not just financial math, but math in general.
26
72260
3000
ne samo finansijske matematike, nego matematike uopšte.
01:15
That its transition
27
75260
2000
Njena trazicija
01:17
from being something that we extract and derive from the world
28
77260
3000
iz nečega što izvodimo i deriviramo iz stvarnog svijeta
01:20
to something that actually starts to shape it --
29
80260
3000
u nešto što zapravo počinje oblikovati svijet --
01:23
the world around us and the world inside us.
30
83260
3000
svijet oko nas, svijet unutar nas.
01:26
And it's specifically algorithms,
31
86260
2000
I posebno algoritme,
01:28
which are basically the math
32
88260
2000
koji su u osnovi matematika
01:30
that computers use to decide stuff.
33
90260
3000
koju kompjuteri koriste kako bi donosili odluke.
01:33
They acquire the sensibility of truth
34
93260
2000
Oni stiču osjećaj istine
01:35
because they repeat over and over again,
35
95260
2000
jer se iznova ponavljaju.
01:37
and they ossify and calcify,
36
97260
3000
I oni se okoštaju i kalcificiraju,
01:40
and they become real.
37
100260
2000
i zapravo postaju stvarni.
01:42
And I was thinking about this, of all places,
38
102260
3000
Ja sam razmišljao o ovome, od svih mjesta,
01:45
on a transatlantic flight a couple of years ago,
39
105260
3000
na preko-atlantskom letu prije par godina
01:48
because I happened to be seated
40
108260
2000
jer sam se slučajno našao na sjedištu
01:50
next to a Hungarian physicist about my age
41
110260
2000
pored mađarskog fizičara, otprilike mojih godina,
01:52
and we were talking
42
112260
2000
i mi razgovaramo
01:54
about what life was like during the Cold War
43
114260
2000
o tome kakav je bio život fizičara
01:56
for physicists in Hungary.
44
116260
2000
u Mađarskoj tijekom hladnog rata.
01:58
And I said, "So what were you doing?"
45
118260
2000
I upitao sam ga, "Šta ste Vi radili?",
02:00
And he said, "Well we were mostly breaking stealth."
46
120260
2000
I rekao je, "Pa, uglavnom smo pokušavali da razbijemo nevidljivost lovačkih aviona.“
02:02
And I said, "That's a good job. That's interesting.
47
122260
2000
A ja sam rekao, "Zvuči kao odličan posao. To je interesantno."
02:04
How does that work?"
48
124260
2000
"Kako to funkcioniše?"
02:06
And to understand that,
49
126260
2000
Da biste to razumjeli,
02:08
you have to understand a little bit about how stealth works.
50
128260
3000
morate imate osnovno razumijevanje kako funkcioniše nevidljivost aviona.
02:11
And so -- this is an over-simplification --
51
131260
3000
I -- ovo je potpuno pojednostavljeno --
02:14
but basically, it's not like
52
134260
2000
ali u osnovi ne možete jednostavno
02:16
you can just pass a radar signal
53
136260
2000
da provučete radarski signal
02:18
right through 156 tons of steel in the sky.
54
138260
3000
kroz 156 tona čelika na nebu.
02:21
It's not just going to disappear.
55
141260
3000
Objekat neće jednostavno nestati.
02:24
But if you can take this big, massive thing,
56
144260
3000
Ali ako možete uzeti ovu veliku, masivnu stvar,
02:27
and you could turn it into
57
147260
3000
i pretvoriti je u
02:30
a million little things --
58
150260
2000
milion malih stvari --
02:32
something like a flock of birds --
59
152260
2000
nešto kao jato ptica --
02:34
well then the radar that's looking for that
60
154260
2000
u tom slučaju, radar koji to traži
02:36
has to be able to see
61
156260
2000
mora biti u stanju uočiti
02:38
every flock of birds in the sky.
62
158260
2000
svako jato ptica na nebu.
02:40
And if you're a radar, that's a really bad job.
63
160260
4000
Ako ste radar, to je zaista težak posao.
02:44
And he said, "Yeah." He said, "But that's if you're a radar.
64
164260
3000
"Da", rekao je, "ali samo ako si radar.
02:47
So we didn't use a radar;
65
167260
2000
Tako da nismo koristili radar;
02:49
we built a black box that was looking for electrical signals,
66
169260
3000
napravili smo crnu kutiju koja je pretraživala električne signale,
02:52
electronic communication.
67
172260
3000
elektronsku komunikaciju.
02:55
And whenever we saw a flock of birds that had electronic communication,
68
175260
3000
I kad god bismo vidjeli jato ptica koje ima elektronsku komunikaciju,
02:58
we thought, 'Probably has something to do with the Americans.'"
69
178260
3000
mogli smo biti prilično sigurni Amerikanci imaju nešto s tim."
03:01
And I said, "Yeah.
70
181260
2000
A ja sam rekao "Da.
03:03
That's good.
71
183260
2000
To je dobro.
03:05
So you've effectively negated
72
185260
2000
"Znači, Vi ste efektivno poništili
03:07
60 years of aeronautic research.
73
187260
2000
"60 godina aeronautičkog istraživanja.
03:09
What's your act two?
74
189260
2000
Šta se dešava u drugom činu?
03:11
What do you do when you grow up?"
75
191260
2000
Šta radite sad kad ste porasli?"
03:13
And he said,
76
193260
2000
I on reče,
03:15
"Well, financial services."
77
195260
2000
"Pa... finansijske usluge."
03:17
And I said, "Oh."
78
197260
2000
"Oh.", rekao sam.
03:19
Because those had been in the news lately.
79
199260
3000
Obzirom da su vijesti o finansijama nešto češće u posljednje vrijeme.
03:22
And I said, "How does that work?"
80
202260
2000
"Kako to funkcioniše?", pitao sam.
03:24
And he said, "Well there's 2,000 physicists on Wall Street now,
81
204260
2000
Rekao je, "Pa trenutno ima 2.000 fizičara na Wall Streetu,
03:26
and I'm one of them."
82
206260
2000
i ja sam jedan od njih."
03:28
And I said, "What's the black box for Wall Street?"
83
208260
3000
"I šta je crna kutija na Wall Streetu?", pitao sam.
03:31
And he said, "It's funny you ask that,
84
211260
2000
"Interesantno da to pitate," rekao je
03:33
because it's actually called black box trading.
85
213260
3000
"obzirom da se zaista zove trgovanje iz crne kutije ("black box trading").
03:36
And it's also sometimes called algo trading,
86
216260
2000
A nekada se naziva i algo trgovanje,
03:38
algorithmic trading."
87
218260
3000
algoritamsko trgovanje."
03:41
And algorithmic trading evolved in part
88
221260
3000
I algoritamsko trgovanje je nastalo dijelom
03:44
because institutional traders have the same problems
89
224260
3000
jer su institucionalni investitori imali iste probleme
03:47
that the United States Air Force had,
90
227260
3000
kao američka ratna avijacija.
03:50
which is that they're moving these positions --
91
230260
3000
Mijenjali su svoje vlasničke pozicije --
03:53
whether it's Proctor & Gamble or Accenture, whatever --
92
233260
2000
bilo da je to bio Proctor & Gamble, Accenture, ili neka druga firma --
03:55
they're moving a million shares of something
93
235260
2000
mijenjali su vlasništvo nad milionima dionica nečega
03:57
through the market.
94
237260
2000
kroz tržište.
03:59
And if they do that all at once,
95
239260
2000
I ako to urade odjednom
04:01
it's like playing poker and going all in right away.
96
241260
2000
to je kao da uložite sve u prvom dijeljenju u igri pokera.
04:03
You just tip your hand.
97
243260
2000
Jednostavno odate karte.
04:05
And so they have to find a way --
98
245260
2000
Tako da su morali pronaći način --
04:07
and they use algorithms to do this --
99
247260
2000
a za ovo koriste algoritme --
04:09
to break up that big thing
100
249260
2000
da podijele tu jednu veliku stvar, veliku transakciju
04:11
into a million little transactions.
101
251260
2000
u milion malih transakcija.
04:13
And the magic and the horror of that
102
253260
2000
Čarolija i užas toga je da
04:15
is that the same math
103
255260
2000
istu matematiku
04:17
that you use to break up the big thing
104
257260
2000
koju koristite da podijelite veliku stvar
04:19
into a million little things
105
259260
2000
u milion malih djelića
04:21
can be used to find a million little things
106
261260
2000
možete koristiti da pronađete milion malih djelića
04:23
and sew them back together
107
263260
2000
i ponovo ih sastavite
04:25
and figure out what's actually happening in the market.
108
265260
2000
i shvatite šta se zapravo dešava na tržištu.
04:27
So if you need to have some image
109
267260
2000
Tako da ako želite imati neku sliku
04:29
of what's happening in the stock market right now,
110
269260
3000
berzovnog tržišta u ovom trenutku,
04:32
what you can picture is a bunch of algorithms
111
272260
2000
možete ga zamisliti kao veliki broj algoritama
04:34
that are basically programmed to hide,
112
274260
3000
koji su programirani da prikriju transakcije,
04:37
and a bunch of algorithms that are programmed to go find them and act.
113
277260
3000
i veliki broj algoritama koji su programirani da ih pronađu i djeluju.
04:40
And all of that's great, and it's fine.
114
280260
3000
I sve je to u redu.
04:43
And that's 70 percent
115
283260
2000
Dok ne saznate da oni čine 70 procenata
04:45
of the United States stock market,
116
285260
2000
berzovnog prometa Sjedinjenih Država,
04:47
70 percent of the operating system
117
287260
2000
70 procenata operativnog sistema
04:49
formerly known as your pension,
118
289260
3000
prethodno poznatog kao vaše penzije,
04:52
your mortgage.
119
292260
3000
vaši zajmovi za kuće.
04:55
And what could go wrong?
120
295260
2000
A šta može poći po zlu?
04:57
What could go wrong
121
297260
2000
Pa, šta može poći po zlu
04:59
is that a year ago,
122
299260
2000
je da je prije godinu dana,
05:01
nine percent of the entire market just disappears in five minutes,
123
301260
3000
9 posto vrijednosti cjelokupnog tržišta nestalo za samo pet minuta.
05:04
and they called it the Flash Crash of 2:45.
124
304260
3000
i to nazivaju "fleš krahom u 2:45".
05:07
All of a sudden, nine percent just goes away,
125
307260
3000
Potpuno neočekivano, 9 posto jednostavno nestane,
05:10
and nobody to this day
126
310260
2000
i nitko do današnjeg dana,
05:12
can even agree on what happened
127
312260
2000
se čak ne može ni složiti oko toga šta se dogodilo,
05:14
because nobody ordered it, nobody asked for it.
128
314260
3000
jer nitko nije izdao nalog, nitko to nije tražio.
05:17
Nobody had any control over what was actually happening.
129
317260
3000
Niko nije imao kontrolu nad ovim.
05:20
All they had
130
320260
2000
Sve što su imali bio je monitor
05:22
was just a monitor in front of them
131
322260
2000
ispred njih
05:24
that had the numbers on it
132
324260
2000
sa brojevima na njemu
05:26
and just a red button
133
326260
2000
i crveno dugme
05:28
that said, "Stop."
134
328260
2000
na kojem je pisalo "Stop".
05:30
And that's the thing,
135
330260
2000
Stvar je zapravo u tome
05:32
is that we're writing things,
136
332260
2000
da mi trenutno pišemo stvari,
05:34
we're writing these things that we can no longer read.
137
334260
3000
pišemo ove stvari koje više ne znamo pročitati.
05:37
And we've rendered something
138
337260
2000
Načinili smo nešto
05:39
illegible,
139
339260
2000
nečitljivim.
05:41
and we've lost the sense
140
341260
3000
I izgubili smo osjećaj
05:44
of what's actually happening
141
344260
2000
šta se zapravo zbiva
05:46
in this world that we've made.
142
346260
2000
u ovom svijetu koji smo napravili.
05:48
And we're starting to make our way.
143
348260
2000
I počinjemo tražiti put.
05:50
There's a company in Boston called Nanex,
144
350260
3000
U Bostonu postoji kompanija koja se zove Nanex,
05:53
and they use math and magic
145
353260
2000
koja koristi matematiku i čarolije
05:55
and I don't know what,
146
355260
2000
i ne znam šta sve ne,
05:57
and they reach into all the market data
147
357260
2000
i oni posegnu za svim podacima o trgovini na berzi
05:59
and they find, actually sometimes, some of these algorithms.
148
359260
3000
i ponekada zaista pronađu neke od ovih algoritama.
06:02
And when they find them they pull them out
149
362260
3000
I kada ih pronađu, oni ih iščupaju iz mase podataka
06:05
and they pin them to the wall like butterflies.
150
365260
3000
i zakače ih na zid, kao preparirane leptirove.
06:08
And they do what we've always done
151
368260
2000
I rade ono što smo uvijek radili
06:10
when confronted with huge amounts of data that we don't understand --
152
370260
3000
kad se suočimo sa velikom količinom podataka koje ne razumijemo --
06:13
which is that they give them a name
153
373260
2000
damo im ime
06:15
and a story.
154
375260
2000
i priču.
06:17
So this is one that they found,
155
377260
2000
I tako, ovo je jedan od algoritama koji su pronašli
06:19
they called the Knife,
156
379260
4000
koji zovu "Nož",
06:23
the Carnival,
157
383260
2000
"Karneval",
06:25
the Boston Shuffler,
158
385260
4000
"Bostonski mješač",
06:29
Twilight.
159
389260
2000
"Sumrak".
06:31
And the gag is
160
391260
2000
Stvar je da,
06:33
that, of course, these aren't just running through the market.
161
393260
3000
naravno, oni nisu ograničeni samo na tržišta.
06:36
You can find these kinds of things wherever you look,
162
396260
3000
Ovakve algoritme možete naći gdje god da pogledate,
06:39
once you learn how to look for them.
163
399260
2000
ukoliko naučite šta da tražite.
06:41
You can find it here: this book about flies
164
401260
3000
Možete ih naći ovdje: ova knjiga o muhama
06:44
that you may have been looking at on Amazon.
165
404260
2000
koju ste možda uočili na Amazonu.
06:46
You may have noticed it
166
406260
2000
Možda vam je zapala za oko
06:48
when its price started at 1.7 million dollars.
167
408260
2000
kada je njena cijena dostigla 1,7 miliona dolara.
06:50
It's out of print -- still ...
168
410260
2000
Knjiga se više na štampa, ali ipak...
06:52
(Laughter)
169
412260
2000
(Smijeh)
06:54
If you had bought it at 1.7, it would have been a bargain.
170
414260
3000
Da ste je kupili po cijeni od 1.7 miliona, to bi bila bagatela.
06:57
A few hours later, it had gone up
171
417260
2000
Nekoliko sati kasnije, cijena se popela
06:59
to 23.6 million dollars,
172
419260
2000
na 23.6 miliona dolara,
07:01
plus shipping and handling.
173
421260
2000
uz troškove pošiljke i obrade.
07:03
And the question is:
174
423260
2000
I pitanje je sljedeće:
07:05
Nobody was buying or selling anything; what was happening?
175
425260
2000
Niko nije ništa kupovao ili prodavao; šta se događalo?
07:07
And you see this behavior on Amazon
176
427260
2000
Možete uočiti ove pojave na Amazonu
07:09
as surely as you see it on Wall Street.
177
429260
2000
isto kao što ih možete vidjeti na Wall Streetu.
07:11
And when you see this kind of behavior,
178
431260
2000
I kada vidite ovu vrstu pojave,
07:13
what you see is the evidence
179
433260
2000
ono što vidite je manifestacija
07:15
of algorithms in conflict,
180
435260
2000
algoritama u konfliktu,
07:17
algorithms locked in loops with each other,
181
437260
2000
algoritama zaključanih u beskonačnim krugovima jednih sa drugima,
07:19
without any human oversight,
182
439260
2000
bez ikakvog ljudskog nadzora,
07:21
without any adult supervision
183
441260
3000
bez roditeljske pažnje
07:24
to say, "Actually, 1.7 million is plenty."
184
444260
3000
nekoga ko bi rekao, "Zapravo, 1.7 miliona je više nego dovoljno."
07:27
(Laughter)
185
447260
3000
(Smijeh)
07:30
And as with Amazon, so it is with Netflix.
186
450260
3000
Sličan primjer Amazonu vidimo i na Netflixu.
07:33
And so Netflix has gone through
187
453260
2000
Netflix je prošao kroz nekoliko
07:35
several different algorithms over the years.
188
455260
2000
različitih algoritama tokom godina.
07:37
They started with Cinematch, and they've tried a bunch of others --
189
457260
3000
Počeli su sa Cinematch, a onda su okušali i niz drugih.
07:40
there's Dinosaur Planet; there's Gravity.
190
460260
2000
Imate Planetu dionosaura ("Dinosaur Planet"), Gravitaciju ("Gravity").
07:42
They're using Pragmatic Chaos now.
191
462260
2000
Trenutno koriste Pragmatični haos ("Pragmatic Chaos").
07:44
Pragmatic Chaos is, like all of Netflix algorithms,
192
464260
2000
Pragmatični haos pokušava učiniti istu stvar
07:46
trying to do the same thing.
193
466260
2000
kao i svi drugi Netflix algoritmi.
07:48
It's trying to get a grasp on you,
194
468260
2000
Pokušava shvatiti vas,
07:50
on the firmware inside the human skull,
195
470260
2000
operativni sistem u vašim glavama,
07:52
so that it can recommend what movie
196
472260
2000
kako bi preporučio naredni film
07:54
you might want to watch next --
197
474260
2000
koji biste mogle pogledati --
07:56
which is a very, very difficult problem.
198
476260
3000
što je veoma, veoma težak problem.
07:59
But the difficulty of the problem
199
479260
2000
Ali složenost problema
08:01
and the fact that we don't really quite have it down,
200
481260
3000
kao i činjenica da ga i ne razumijemo u potpunosti,
08:04
it doesn't take away
201
484260
2000
ne umanjuje učinak
08:06
from the effects Pragmatic Chaos has.
202
486260
2000
koji Pragmatični haos ima.
08:08
Pragmatic Chaos, like all Netflix algorithms,
203
488260
3000
Pragmatični haos, kao svi Netflix algoritmi,
08:11
determines, in the end,
204
491260
2000
određuje, na kraju,
08:13
60 percent
205
493260
2000
60 procenata
08:15
of what movies end up being rented.
206
495260
2000
svih filmova koji se rentaju.
08:17
So one piece of code
207
497260
2000
Dakle, jedan program
08:19
with one idea about you
208
499260
3000
sa nekom idejom o vama
08:22
is responsible for 60 percent of those movies.
209
502260
3000
je odgovoran za 60 posto filmova koje pogledate.
08:25
But what if you could rate those movies
210
505260
2000
Ali šta kada biste mogli ocijeniti filmove
08:27
before they get made?
211
507260
2000
i prije no što ih snime?
08:29
Wouldn't that be handy?
212
509260
2000
Zar to ne bi bilo korisno?
08:31
Well, a few data scientists from the U.K. are in Hollywood,
213
511260
3000
E, pa nekoliko informacijskih naučnika iz Velike Britanije je u Holivudu,
08:34
and they have "story algorithms" --
214
514260
2000
i oni imaju algoritme za scenarije i filmske priče --
08:36
a company called Epagogix.
215
516260
2000
kompanije koja se zove Epagogix.
08:38
And you can run your script through there,
216
518260
3000
I možete provući vaš scenarij kroz njihov program,
08:41
and they can tell you, quantifiably,
217
521260
2000
i oni vam mogu reći, kvantificirati,
08:43
that that's a 30 million dollar movie
218
523260
2000
da je to film koji će zaraditi 30 miliona dolara
08:45
or a 200 million dollar movie.
219
525260
2000
ili 200 miliona dolara.
08:47
And the thing is, is that this isn't Google.
220
527260
2000
Stvar je u tome da ovo nije Google.
08:49
This isn't information.
221
529260
2000
Ovo nisu informacije.
08:51
These aren't financial stats; this is culture.
222
531260
2000
Ovo nisu finansijski podaci; ovo je kultura.
08:53
And what you see here,
223
533260
2000
I ono što vidimo ovdje,
08:55
or what you don't really see normally,
224
535260
2000
ili bolje rečeno, što obično ne vidimo jer ostane skriveno,
08:57
is that these are the physics of culture.
225
537260
4000
jest da je ovo fizika kulture.
09:01
And if these algorithms,
226
541260
2000
I ako ovi algoritmi,
09:03
like the algorithms on Wall Street,
227
543260
2000
kao algoritmi na Wall Streetu
09:05
just crashed one day and went awry,
228
545260
3000
krahiraju jednog dana i pođu po zlu,
09:08
how would we know?
229
548260
2000
kako ćemo znati,
09:10
What would it look like?
230
550260
2000
kako će to izgledati?
09:12
And they're in your house. They're in your house.
231
552260
3000
A oni su u vašoj kući. Oni su u vašoj kući.
09:15
These are two algorithms competing for your living room.
232
555260
2000
Ovo su dva algoritma koja se bore za vašu dnevnu sobu.
09:17
These are two different cleaning robots
233
557260
2000
Ovo su dva robotizirana usisivača
09:19
that have very different ideas about what clean means.
234
559260
3000
koja imaju vrlo različita shvatanja čistoće.
09:22
And you can see it
235
562260
2000
I vi to možete i vidjeti
09:24
if you slow it down and attach lights to them,
236
564260
3000
ako ih usporite i dodate im svjetlo.
09:27
and they're sort of like secret architects in your bedroom.
237
567260
3000
A oni su kao neki tajni arhitekti u vašoj spavaćoj sobi.
09:30
And the idea that architecture itself
238
570260
3000
Čak i ideja da je i sama arhitektura
09:33
is somehow subject to algorithmic optimization
239
573260
2000
na neki način podređena algoritamskoj optimizaciji
09:35
is not far-fetched.
240
575260
2000
nije nerealna.
09:37
It's super-real and it's happening around you.
241
577260
3000
Ona je vrlo stvarna i to se već dešava oko vas.
09:40
You feel it most
242
580260
2000
Najviše ćete je osjetiti
09:42
when you're in a sealed metal box,
243
582260
2000
kad se budete nalazili u zatvorenoj metalnoj kutiji,
09:44
a new-style elevator;
244
584260
2000
liftu nove generacije,
09:46
they're called destination-control elevators.
245
586260
2000
kojeg zovu lift sa kontrolom odredišta.
09:48
These are the ones where you have to press what floor you're going to go to
246
588260
3000
To su oni liftovi kod kojih morate odabrati sprat na koji idete
09:51
before you get in the elevator.
247
591260
2000
prije negoli uđete u lift.
09:53
And it uses what's called a bin-packing algorithm.
248
593260
2000
I on koristi ono što se naziva algoritmom za pakovanje kanti.
09:55
So none of this mishegas
249
595260
2000
Znači ništa od ove ludosti
09:57
of letting everybody go into whatever car they want.
250
597260
2000
da puštamo ljude da ulaze u lift koji žele.
09:59
Everybody who wants to go to the 10th floor goes into car two,
251
599260
2000
Svi koji žele na 10-ti sprat ulaze u lift dva,
10:01
and everybody who wants to go to the third floor goes into car five.
252
601260
3000
a svi koji žele na treći sprat ulaze u lift pet.
10:04
And the problem with that
253
604260
2000
Problem s ovim
10:06
is that people freak out.
254
606260
2000
je da se ljudi prestrave.
10:08
People panic.
255
608260
2000
Ljudi se uspaniče.
10:10
And you see why. You see why.
256
610260
2000
A možete i razumjeti zašto. Vidite zašto.
10:12
It's because the elevator
257
612260
2000
Liftu nedostaje
10:14
is missing some important instrumentation, like the buttons.
258
614260
3000
nekoliko važnih instrumenata, kao na primjer dugmad.
10:17
(Laughter)
259
617260
2000
(Smijeh)
10:19
Like the things that people use.
260
619260
2000
Stvari koje ljudi koriste.
10:21
All it has
261
621260
2000
Sve što lift ima
10:23
is just the number that moves up or down
262
623260
3000
je broj koji se pomjera gore ili dole
10:26
and that red button that says, "Stop."
263
626260
3000
i crveno dugme na kojem piše "Stop".
10:29
And this is what we're designing for.
264
629260
3000
Tako dizajniramo stvari.
10:32
We're designing
265
632260
2000
Dizajniramo
10:34
for this machine dialect.
266
634260
2000
za ovaj mašinski dijalekt.
10:36
And how far can you take that? How far can you take it?
267
636260
3000
I, dokle možemo ići tako? Dokle ovo možemo dovesti?
10:39
You can take it really, really far.
268
639260
2000
Možemo ga dovesti stvarno, stvarno daleko.
10:41
So let me take it back to Wall Street.
269
641260
3000
Dopustite mi da se vratim na Wall Street.
10:45
Because the algorithms of Wall Street
270
645260
2000
Jer algoritmi na Wall Streetu zavise
10:47
are dependent on one quality above all else,
271
647260
3000
od jedne stvari više no od bilo čega drugog,
10:50
which is speed.
272
650260
2000
a to je brzina.
10:52
And they operate on milliseconds and microseconds.
273
652260
3000
A oni operišu u milisekundama i mikrosekundama.
10:55
And just to give you a sense of what microseconds are,
274
655260
2000
Da bih vam dao osjećaj šta je mikrosekunda,
10:57
it takes you 500,000 microseconds
275
657260
2000
potrebno vam je 500,000 mikrosekundi
10:59
just to click a mouse.
276
659260
2000
da biste kliknuli mišem.
11:01
But if you're a Wall Street algorithm
277
661260
2000
Ali ako ste algoritam na Wall Streetu
11:03
and you're five microseconds behind,
278
663260
2000
i ako kasnite 5 mikrosekundi,
11:05
you're a loser.
279
665260
2000
vi ste gubitnik.
11:07
So if you were an algorithm,
280
667260
2000
Dakle ako ste algoritam,
11:09
you'd look for an architect like the one that I met in Frankfurt
281
669260
3000
tražili biste arhitektu kao jednoga kojeg sam upoznao u Frankfurtu
11:12
who was hollowing out a skyscraper --
282
672260
2000
koji ispražnjuje cijeli neboder --
11:14
throwing out all the furniture, all the infrastructure for human use,
283
674260
3000
izbacuje sav namještaj, svu infrastrukturu koju koriste ljudi,
11:17
and just running steel on the floors
284
677260
3000
i samo postavlja čelik na podove
11:20
to get ready for the stacks of servers to go in --
285
680260
3000
kako bi ih pripremio za nizove servera koji će ići unutra --
11:23
all so an algorithm
286
683260
2000
sve kako bi algoritam
11:25
could get close to the Internet.
287
685260
3000
mogao prići bliže Internetu.
11:28
And you think of the Internet as this kind of distributed system.
288
688260
3000
Obično razmišljamo o Internetu kao o distribuiranom sistemu.
11:31
And of course, it is, but it's distributed from places.
289
691260
3000
I naravno, on to i jeste, ali je distribuiran iz različitih lokacija.
11:34
In New York, this is where it's distributed from:
290
694260
2000
U New Yorku, distribuiran je odavde:
11:36
the Carrier Hotel
291
696260
2000
Carrier hotel
11:38
located on Hudson Street.
292
698260
2000
u ulici Hudson.
11:40
And this is really where the wires come right up into the city.
293
700260
3000
Odavde žice ulaze direktno u grad.
11:43
And the reality is that the further away you are from that,
294
703260
4000
I realnost je da što ste dalje od ove lokacije
11:47
you're a few microseconds behind every time.
295
707260
2000
uvijek ste par mikrosekundi sporiji.
11:49
These guys down on Wall Street,
296
709260
2000
Ovi momci s Wall Streeta,
11:51
Marco Polo and Cherokee Nation,
297
711260
2000
Marco Polo i Cherokee Nation
11:53
they're eight microseconds
298
713260
2000
oni su osam mikrosekundi
11:55
behind all these guys
299
715260
2000
sporiji od ovih algoritama
11:57
going into the empty buildings being hollowed out
300
717260
4000
koje lociraju u ispražnjene zgrade
12:01
up around the Carrier Hotel.
301
721260
2000
oko Carrier hotela.
12:03
And that's going to keep happening.
302
723260
3000
I to će nastaviti da se dešava.
12:06
We're going to keep hollowing them out,
303
726260
2000
Nastavićemo da ih ispražnjujemo,
12:08
because you, inch for inch
304
728260
3000
jer vi, centimetar po centimetar,
12:11
and pound for pound and dollar for dollar,
305
731260
3000
dolar po dolar, nitko od vas
12:14
none of you could squeeze revenue out of that space
306
734260
3000
ne može iscijediti veći prihod iz tog prostora
12:17
like the Boston Shuffler could.
307
737260
3000
od Bostonskog mješača.
12:20
But if you zoom out,
308
740260
2000
Ali, ako se malo izdvojite iz slike
12:22
if you zoom out,
309
742260
2000
i pogledate krupni plan,
12:24
you would see an 825-mile trench
310
744260
4000
vidjećete kanal dug 1,330 kilometara
12:28
between New York City and Chicago
311
748260
2000
između New Yorka i Čikaga
12:30
that's been built over the last few years
312
750260
2000
koji izgrađen tijekom posljednjih par godina
12:32
by a company called Spread Networks.
313
752260
3000
od kompanije koja se zove Spread Networks.
12:35
This is a fiber optic cable
314
755260
2000
Ovo je optički kabl
12:37
that was laid between those two cities
315
757260
2000
koji je pružen između ova dva grada
12:39
to just be able to traffic one signal
316
759260
3000
za saobraćaj samo jednog signala
12:42
37 times faster than you can click a mouse --
317
762260
3000
37 puta brže no što vi možete kliknuti mišem --
12:45
just for these algorithms,
318
765260
3000
izgrađen samo za ove algoritme,
12:48
just for the Carnival and the Knife.
319
768260
3000
samo za Karneval, za Nož.
12:51
And when you think about this,
320
771260
2000
I kada pomislite na to,
12:53
that we're running through the United States
321
773260
2000
da trčimo kroz Sjedinjene Države
12:55
with dynamite and rock saws
322
775260
3000
sa dinamitom i razbijačima stijena
12:58
so that an algorithm can close the deal
323
778260
2000
samo kako bi algoritam mogao zaključiti transakciju
13:00
three microseconds faster,
324
780260
3000
tri mikrosekunde brže,
13:03
all for a communications framework
325
783260
2000
sve za komunikacijski okvir
13:05
that no human will ever know,
326
785260
4000
koji nijedno ljudsko biće neće upoznati
13:09
that's a kind of manifest destiny;
327
789260
3000
to je neka vrsta manifestne sudbine
13:12
and we'll always look for a new frontier.
328
792260
3000
koja će uvijek pomjerati nove granice.
13:15
Unfortunately, we have our work cut out for us.
329
795260
3000
Nažalost, posao pred nama je vrlo ambiciozan.
13:18
This is just theoretical.
330
798260
2000
Ovo je samo teoretski.
13:20
This is some mathematicians at MIT.
331
800260
2000
Ovo su pripremili neki matematičari sa MIT-a.
13:22
And the truth is I don't really understand
332
802260
2000
I, da budem iskren, ni ja ne razumijem mnogo
13:24
a lot of what they're talking about.
333
804260
2000
od ovoga o čemu su pričali.
13:26
It involves light cones and quantum entanglement,
334
806260
3000
Uključujući neke svjetlosne kupole i kvantnu zamršenost,
13:29
and I don't really understand any of that.
335
809260
2000
i je ne razumijem ništa od toga.
13:31
But I can read this map,
336
811260
2000
Ali mogu se snaći na ovoj mapi.
13:33
and what this map says
337
813260
2000
I ono što nam ova mapa kaže
13:35
is that, if you're trying to make money on the markets where the red dots are,
338
815260
3000
je da, ukoliko mislite zaraditi novac na tržištima gdje su ove crvene tačke,
13:38
that's where people are, where the cities are,
339
818260
2000
gdje se nalaze ljudi, u gradovima,
13:40
you're going to have to put the servers where the blue dots are
340
820260
3000
moraćete postaviti servere na mjesta označena plavim tačkama
13:43
to do that most effectively.
341
823260
2000
kako biste bili najučinkovitiji.
13:45
And the thing that you might have noticed about those blue dots
342
825260
3000
Možda ste primjetili da se mnoge od ovih plavih tačaka
13:48
is that a lot of them are in the middle of the ocean.
343
828260
3000
nalaze na sredini okeana.
13:51
So that's what we'll do: we'll build bubbles or something,
344
831260
3000
Znači to ćemo raditi, pravićemo neke balone ili nešto slično,
13:54
or platforms.
345
834260
2000
ili platforme.
13:56
We'll actually part the water
346
836260
2000
bukvalno ćemo razdvajati more
13:58
to pull money out of the air,
347
838260
2000
kako bismo uzimali novac iz zraka,
14:00
because it's a bright future
348
840260
2000
jer pred vama je blistava budućnost,
14:02
if you're an algorithm.
349
842260
2000
ukoliko ste algoritam.
14:04
(Laughter)
350
844260
2000
(Smijeh)
14:06
And it's not the money that's so interesting actually.
351
846260
3000
Novac sam i nije toliko interesatan.
14:09
It's what the money motivates,
352
849260
2000
Interesantno je kako nas novac motiviše.
14:11
that we're actually terraforming
353
851260
2000
Tako mijenjamo oblik i izgled
14:13
the Earth itself
354
853260
2000
površine Zemlje
14:15
with this kind of algorithmic efficiency.
355
855260
2000
u cilju algoritamske efikasnosti.
14:17
And in that light,
356
857260
2000
I kada se u tom svjetlu
14:19
you go back
357
859260
2000
vratite
14:21
and you look at Michael Najjar's photographs,
358
861260
2000
i pogledate fotografije Michaela Najjara,
14:23
and you realize that they're not metaphor, they're prophecy.
359
863260
3000
shvatite da to nisu metafore, već predskazanja.
14:26
They're prophecy
360
866260
2000
To su predskazanja
14:28
for the kind of seismic, terrestrial effects
361
868260
4000
seizmičkih, reljefno mijenjajučih efekata
14:32
of the math that we're making.
362
872260
2000
matematike.
14:34
And the landscape was always made
363
874260
3000
Pejsaž je uvijek bio proizvod
14:37
by this sort of weird, uneasy collaboration
364
877260
3000
čudne, nespokojne saradnje
14:40
between nature and man.
365
880260
3000
prirode i čovjeka.
14:43
But now there's this third co-evolutionary force: algorithms --
366
883260
3000
Ali sada imamo i treću ko-evolucijsku snagu: algoritme --
14:46
the Boston Shuffler, the Carnival.
367
886260
3000
Bostonskog mješača, Karneval.
14:49
And we will have to understand those as nature,
368
889260
3000
I moraćemo ih početi razumijevati kao dio prirode.
14:52
and in a way, they are.
369
892260
2000
Na neki način, oni to i jesu.
14:54
Thank you.
370
894260
2000
Hvala vam.
14:56
(Applause)
371
896260
20000
(Aplauz)
O ovoj web stranici

Ova stranica će vas upoznati sa YouTube video zapisima koji su korisni za učenje engleskog jezika. Vidjet ćete časove engleskog jezika koje drže vrhunski nastavnici iz cijelog svijeta. Dvaput kliknite na titlove na engleskom koji su prikazani na svakoj stranici s videozapisom da odatle reprodukujete videozapis. Titlovi se pomeraju sinhronizovano sa video reprodukcijom. Ako imate bilo kakvih komentara ili zahtjeva, kontaktirajte nas putem ove kontakt forme.

https://forms.gle/WvT1wiN1qDtmnspy7