How algorithms shape our world | Kevin Slavin

484,482 views ・ 2011-07-21

TED


Dvaput kliknite na engleske titlove ispod za reprodukciju videozapisa.

Prevoditelj: Matija Stepic Recezent: Tilen Pigac - EFZG
00:15
This is a photograph
0
15260
2000
Ovo je fotografija
00:17
by the artist Michael Najjar,
1
17260
2000
od umjetnika Michaela Najjara,
00:19
and it's real,
2
19260
2000
i ona je stvarna,
00:21
in the sense that he went there to Argentina
3
21260
2000
u smislu da je otišao u Argentinu
00:23
to take the photo.
4
23260
2000
kako bi uslikao ovu fotografiju.
00:25
But it's also a fiction. There's a lot of work that went into it after that.
5
25260
3000
No ona je i fikcija. Mnogo posla je još uloženo nakon toga.
00:28
And what he's done
6
28260
2000
A ono što je učinio
00:30
is he's actually reshaped, digitally,
7
30260
2000
je da je zapravo preoblikovao, digitalno,
00:32
all of the contours of the mountains
8
32260
2000
sve konture planina
00:34
to follow the vicissitudes of the Dow Jones index.
9
34260
3000
kako bi pratio promjene Dow Jones indeksa.
00:37
So what you see,
10
37260
2000
Stoga ono što vidite,
00:39
that precipice, that high precipice with the valley,
11
39260
2000
da litica, da je visoka litica u dolini,
00:41
is the 2008 financial crisis.
12
41260
2000
financijska kriza 2008.
00:43
The photo was made
13
43260
2000
Fotografija je uslikana
00:45
when we were deep in the valley over there.
14
45260
2000
kada smo bili duboko u dolini ondje.
00:47
I don't know where we are now.
15
47260
2000
Neznam gdje smo sada.
00:49
This is the Hang Seng index
16
49260
2000
Ovo je Hang Seng index
00:51
for Hong Kong.
17
51260
2000
za Hong Kong.
00:53
And similar topography.
18
53260
2000
I slična topografija.
00:55
I wonder why.
19
55260
2000
Pitam se zašto.
00:57
And this is art. This is metaphor.
20
57260
3000
Ovo je umjetnost. Ovo je metafora.
01:00
But I think the point is
21
60260
2000
No mislim da je poanta u
01:02
that this is metaphor with teeth,
22
62260
2000
tome da su ovo metafore sa zubima.
01:04
and it's with those teeth that I want to propose today
23
64260
3000
I s ovim zubima želim danas predložiti
01:07
that we rethink a little bit
24
67260
2000
da promislimo malo
01:09
about the role of contemporary math --
25
69260
3000
o ulozi suvremene matematike --
01:12
not just financial math, but math in general.
26
72260
3000
ne samo financijske matematike, već matematike općenito.
01:15
That its transition
27
75260
2000
Da je ona tranzicija
01:17
from being something that we extract and derive from the world
28
77260
3000
od nečega što smo istisnuli i izvukli iz svijeta
01:20
to something that actually starts to shape it --
29
80260
3000
do nečega što zapravo počinje oblikovati
01:23
the world around us and the world inside us.
30
83260
3000
svijet oko nas i svijet unutar nas.
01:26
And it's specifically algorithms,
31
86260
2000
To se posebno odnosi na algoritme,
01:28
which are basically the math
32
88260
2000
koji su zapravo matematika
01:30
that computers use to decide stuff.
33
90260
3000
koju računala koriste kako bi odlučili o nečemu.
01:33
They acquire the sensibility of truth
34
93260
2000
Oni stječu senzibilitet istine,
01:35
because they repeat over and over again,
35
95260
2000
jer se iznova ponavljaju.
01:37
and they ossify and calcify,
36
97260
3000
Oni se okoštavaju i kalcificiraju,
01:40
and they become real.
37
100260
2000
te postaju stvarni.
01:42
And I was thinking about this, of all places,
38
102260
3000
O ovome sam razmišljao, od svih mjesta,
01:45
on a transatlantic flight a couple of years ago,
39
105260
3000
na prekoatlantskom letu prije nekoliko godina,
01:48
because I happened to be seated
40
108260
2000
zato jer sam slučajno dobio mjesto
01:50
next to a Hungarian physicist about my age
41
110260
2000
kraj mađarskog fizičara mojih godina
01:52
and we were talking
42
112260
2000
i pričali smo o
01:54
about what life was like during the Cold War
43
114260
2000
tome kakav je bio život tokom hladnog rata
01:56
for physicists in Hungary.
44
116260
2000
za fizičare u Mađarskoj.
01:58
And I said, "So what were you doing?"
45
118260
2000
Pitao sam, "I što ste radili?"
02:00
And he said, "Well we were mostly breaking stealth."
46
120260
2000
On odgovara, "Više manje smo razbijali nevidljivost."
02:02
And I said, "That's a good job. That's interesting.
47
122260
2000
Odgovaram, "To je dobar posao. To je zanimljivo.
02:04
How does that work?"
48
124260
2000
Kako to funkcionira?"
02:06
And to understand that,
49
126260
2000
Da biste to razumjeli,
02:08
you have to understand a little bit about how stealth works.
50
128260
3000
morate malo razumjeti kako nevidljivost funkcionira.
02:11
And so -- this is an over-simplification --
51
131260
3000
I tako -- ovo je pojednostavljenje --
02:14
but basically, it's not like
52
134260
2000
no u osnovi, nije samo da
02:16
you can just pass a radar signal
53
136260
2000
može proći radarski signal
02:18
right through 156 tons of steel in the sky.
54
138260
3000
kroz 156 tona čelika u zraku.
02:21
It's not just going to disappear.
55
141260
3000
Neće samo odjedanput nestati.
02:24
But if you can take this big, massive thing,
56
144260
3000
No ukoliko možete uzeti ovu veliku, masivnu stvar,
02:27
and you could turn it into
57
147260
3000
i možete ju pretvoriti u
02:30
a million little things --
58
150260
2000
milijun malih stvari --
02:32
something like a flock of birds --
59
152260
2000
nešto kao jato ptica --
02:34
well then the radar that's looking for that
60
154260
2000
onda zapravo radar koji to traži
02:36
has to be able to see
61
156260
2000
mora biti u mogućnosti da vidi
02:38
every flock of birds in the sky.
62
158260
2000
sva jata ptica u zraku.
02:40
And if you're a radar, that's a really bad job.
63
160260
4000
A ukoliko ste radar, to je stvarno težak posao.
02:44
And he said, "Yeah." He said, "But that's if you're a radar.
64
164260
3000
On odgovara, "Da." Kaže on, "No to ako si radar."
02:47
So we didn't use a radar;
65
167260
2000
Stoga nismo koristili radar;
02:49
we built a black box that was looking for electrical signals,
66
169260
3000
izradili smo crnu kutiju koja traži električne signale,
02:52
electronic communication.
67
172260
3000
elektroničku komunikaciju.
02:55
And whenever we saw a flock of birds that had electronic communication,
68
175260
3000
I svaki put kada smo vidjeli jato ptica koje ima elektroničku komunikaciju,
02:58
we thought, 'Probably has something to do with the Americans.'"
69
178260
3000
mislili smo kako vjerovatno ima nekakve veze s amerikancima."
03:01
And I said, "Yeah.
70
181260
2000
"Da" kažem ja.
03:03
That's good.
71
183260
2000
To je dobro.
03:05
So you've effectively negated
72
185260
2000
Znači vi ste efikasno negirali
03:07
60 years of aeronautic research.
73
187260
2000
60 godina aeronautičkog istraživanja.
03:09
What's your act two?
74
189260
2000
Koji vam je drugi čin?
03:11
What do you do when you grow up?"
75
191260
2000
Što radite nakon što odrastete?"
03:13
And he said,
76
193260
2000
Odgovara on,
03:15
"Well, financial services."
77
195260
2000
"Pa, financijske usluge."
03:17
And I said, "Oh."
78
197260
2000
"Oh," kažem ja.
03:19
Because those had been in the news lately.
79
199260
3000
Zato jer toga vidimo po vijestima u zadnje vrijeme.
03:22
And I said, "How does that work?"
80
202260
2000
Kažem ja, "I kako to funkcionira?"
03:24
And he said, "Well there's 2,000 physicists on Wall Street now,
81
204260
2000
Odgovara on, "Trenutno je 2.000 fizičara na Wall Street-u,
03:26
and I'm one of them."
82
206260
2000
a ja sam jedan od njih."
03:28
And I said, "What's the black box for Wall Street?"
83
208260
3000
Kažem ja, "I što je crna kutija za Wall Street?"
03:31
And he said, "It's funny you ask that,
84
211260
2000
Odgovara on, "Smiješno što me tako pitaš,
03:33
because it's actually called black box trading.
85
213260
3000
jer se zapravo zove trgovanje crnom kutijom.
03:36
And it's also sometimes called algo trading,
86
216260
2000
Nekada se još naziva algo trgovanje,
03:38
algorithmic trading."
87
218260
3000
algoritamsko trgovanje."
03:41
And algorithmic trading evolved in part
88
221260
3000
I algoritamsko trgovanje je djelomično evoluiralo
03:44
because institutional traders have the same problems
89
224260
3000
iz razloga što su institucionalni 'trejderi' imali iste probleme
03:47
that the United States Air Force had,
90
227260
3000
koje je imalo Američko zrakoplovstvo,
03:50
which is that they're moving these positions --
91
230260
3000
gdje oni zapravo premještaju ove pozicije --
03:53
whether it's Proctor & Gamble or Accenture, whatever --
92
233260
2000
nebitno radi li se o Proctor & Gamble-u ili Accenturu --
03:55
they're moving a million shares of something
93
235260
2000
oni premještaju milijun udjela nečega
03:57
through the market.
94
237260
2000
kroz tržište.
03:59
And if they do that all at once,
95
239260
2000
Te ukoliko sve to naprave odjednom,
04:01
it's like playing poker and going all in right away.
96
241260
2000
to je kao da igrate poker i odmah sve ulažete.
04:03
You just tip your hand.
97
243260
2000
Zapravo ste pokazali svoje karte.
04:05
And so they have to find a way --
98
245260
2000
Stoga moraju pronaći način --
04:07
and they use algorithms to do this --
99
247260
2000
i koriste algoritme kako bi to učinili --
04:09
to break up that big thing
100
249260
2000
da razbijete tu veliku stvar
04:11
into a million little transactions.
101
251260
2000
na milijun malih transakcija.
04:13
And the magic and the horror of that
102
253260
2000
Magija i horor iza toga
04:15
is that the same math
103
255260
2000
je da ista ta matematika
04:17
that you use to break up the big thing
104
257260
2000
koju koristite da razbijete tu veliku stvar
04:19
into a million little things
105
259260
2000
na milijun malih stvari
04:21
can be used to find a million little things
106
261260
2000
može se koristiti za pronalaženje milijuna malih stvari
04:23
and sew them back together
107
263260
2000
koje spajate natrag zajedno
04:25
and figure out what's actually happening in the market.
108
265260
2000
i odgonetnete što se zapravo događa na tržištu.
04:27
So if you need to have some image
109
267260
2000
Stoga ako trebate imati neku sliku
04:29
of what's happening in the stock market right now,
110
269260
3000
o tome što se trenutno događa na tržištu vrijednosnica,
04:32
what you can picture is a bunch of algorithms
111
272260
2000
ono što možete zamisliti je hrpa algoritama
04:34
that are basically programmed to hide,
112
274260
3000
koji su u biti programirani da se sakriju,
04:37
and a bunch of algorithms that are programmed to go find them and act.
113
277260
3000
i hrpa algoritama koja je programirana da ih pronađe i djeluje.
04:40
And all of that's great, and it's fine.
114
280260
3000
I to je sve super, u redu je.
04:43
And that's 70 percent
115
283260
2000
I to se odnosi na 70 posto
04:45
of the United States stock market,
116
285260
2000
tržišta vrijednosnica u Sjedinjenim Državama.
04:47
70 percent of the operating system
117
287260
2000
70 posto od operativnog sustava
04:49
formerly known as your pension,
118
289260
3000
poznatog kao vaša mirovina,
04:52
your mortgage.
119
292260
3000
vaša hipoteka.
04:55
And what could go wrong?
120
295260
2000
Što može poći po zlu?
04:57
What could go wrong
121
297260
2000
Ono što može poći po zlu
04:59
is that a year ago,
122
299260
2000
je da prije godinu dana,
05:01
nine percent of the entire market just disappears in five minutes,
123
301260
3000
devet posto cijelog tržišta samo je nestalo u pet minuta,
05:04
and they called it the Flash Crash of 2:45.
124
304260
3000
i nazivaju ga 'flash crash' od 2:45
05:07
All of a sudden, nine percent just goes away,
125
307260
3000
Odjednom, devet posto samo nestane,
05:10
and nobody to this day
126
310260
2000
i nitko do danas
05:12
can even agree on what happened
127
312260
2000
se ne može složiti što se zapravo dogodilo,
05:14
because nobody ordered it, nobody asked for it.
128
314260
3000
jer nitko nije to naručio, nitko nije zatražio.
05:17
Nobody had any control over what was actually happening.
129
317260
3000
Nitko nije imaju bilo kakvu kontrolu nad onime što se zapravo događalo.
05:20
All they had
130
320260
2000
Sve što su imali
05:22
was just a monitor in front of them
131
322260
2000
je monitor ispred njih
05:24
that had the numbers on it
132
324260
2000
koji je prikazivao brojeve
05:26
and just a red button
133
326260
2000
i crveno dugme
05:28
that said, "Stop."
134
328260
2000
na kojemu piše, "Stop."
05:30
And that's the thing,
135
330260
2000
O tome se radi,
05:32
is that we're writing things,
136
332260
2000
da pišemo stvari,
05:34
we're writing these things that we can no longer read.
137
334260
3000
pišemo te stvari koje više ne možemo pročitati.
05:37
And we've rendered something
138
337260
2000
Napravili smo nešto
05:39
illegible,
139
339260
2000
nečitko.
05:41
and we've lost the sense
140
341260
3000
I izgubili smo osjećaj
05:44
of what's actually happening
141
344260
2000
što se zapravo događa
05:46
in this world that we've made.
142
346260
2000
u ovome svijetu koji smo stvorili.
05:48
And we're starting to make our way.
143
348260
2000
Počinjemo stvarati svoj put.
05:50
There's a company in Boston called Nanex,
144
350260
3000
Postoji kompanija u Bostonu pod imenom Nanex,
05:53
and they use math and magic
145
353260
2000
koja koristi matematiku i magiju
05:55
and I don't know what,
146
355260
2000
i tko zna što drugo,
05:57
and they reach into all the market data
147
357260
2000
posežu za svim podacima s tržišta
05:59
and they find, actually sometimes, some of these algorithms.
148
359260
3000
i pronađu, nekada, neke od ovih algoritama.
06:02
And when they find them they pull them out
149
362260
3000
I kada ih nađu izvuku ih van
06:05
and they pin them to the wall like butterflies.
150
365260
3000
i zakvače ih za zid kao leptire.
06:08
And they do what we've always done
151
368260
2000
I učine, ono što uvijek činimo
06:10
when confronted with huge amounts of data that we don't understand --
152
370260
3000
kad se suočavamo s velikom količinom podataka koju ne razumijemo --
06:13
which is that they give them a name
153
373260
2000
a to je da im daju ime
06:15
and a story.
154
375260
2000
i priču.
06:17
So this is one that they found,
155
377260
2000
Ovo je jedan kojeg su našli,
06:19
they called the Knife,
156
379260
4000
zovu ga Nož,
06:23
the Carnival,
157
383260
2000
Karneval,
06:25
the Boston Shuffler,
158
385260
4000
Bostonski prevrtljivac,
06:29
Twilight.
159
389260
2000
Sumrak.
06:31
And the gag is
160
391260
2000
I problem je taj,
06:33
that, of course, these aren't just running through the market.
161
393260
3000
naravno, da ovi ne prolaze samo kroz tržište.
06:36
You can find these kinds of things wherever you look,
162
396260
3000
Možete naći ovakve stvari gdjegod pogledate,
06:39
once you learn how to look for them.
163
399260
2000
jednom kad naučite kako ih pronaći.
06:41
You can find it here: this book about flies
164
401260
3000
Možete ih naći ovdje: na ovoj knjizi o muhama
06:44
that you may have been looking at on Amazon.
165
404260
2000
koju ste možda tražili na Amazonu.
06:46
You may have noticed it
166
406260
2000
Možda ste primjetili
06:48
when its price started at 1.7 million dollars.
167
408260
2000
kada joj je početna cijena bila 1,7 milijuna dolara.
06:50
It's out of print -- still ...
168
410260
2000
Još uvijek je izvan tiska --
06:52
(Laughter)
169
412260
2000
(Smijeh)
06:54
If you had bought it at 1.7, it would have been a bargain.
170
414260
3000
Da ste ju kupili za 1,7, to bi bilo jeftino.
06:57
A few hours later, it had gone up
171
417260
2000
Nekoliko sati poslije, porasla je
06:59
to 23.6 million dollars,
172
419260
2000
na 23,6 milijuna dolara,
07:01
plus shipping and handling.
173
421260
2000
plus troškovi transporta i rukovanja.
07:03
And the question is:
174
423260
2000
I pitanje je:
07:05
Nobody was buying or selling anything; what was happening?
175
425260
2000
Nitko nije kupovao ni prodavao ništa; što se događalo?
07:07
And you see this behavior on Amazon
176
427260
2000
Vidite ovo ponašanje na Amazonu
07:09
as surely as you see it on Wall Street.
177
429260
2000
jednako kao što vidite na Wall Streetu.
07:11
And when you see this kind of behavior,
178
431260
2000
I kada vidite ovakvo ponašanje,
07:13
what you see is the evidence
179
433260
2000
vidite dokaz
07:15
of algorithms in conflict,
180
435260
2000
algoritama u konfliktu,
07:17
algorithms locked in loops with each other,
181
437260
2000
algoritama zatvorenih u petlje jedne s drugima,
07:19
without any human oversight,
182
439260
2000
bez ljudskog nadzora,
07:21
without any adult supervision
183
441260
3000
bez nadzora odrasle osobe
07:24
to say, "Actually, 1.7 million is plenty."
184
444260
3000
koja kaže, "Zapravo, 1,7 milijuna je puno."
07:27
(Laughter)
185
447260
3000
(Smijeh)
07:30
And as with Amazon, so it is with Netflix.
186
450260
3000
Kao i s Amazonom, tako je i s Netflixom.
07:33
And so Netflix has gone through
187
453260
2000
Netflix je prošao kroz
07:35
several different algorithms over the years.
188
455260
2000
nekoliko različitih algoritama tokom godina.
07:37
They started with Cinematch, and they've tried a bunch of others --
189
457260
3000
Počeli su s 'Cinematch', a postoje i mnogi drugi.
07:40
there's Dinosaur Planet; there's Gravity.
190
460260
2000
Imate Dinaosaurov planet, tu je Gravitacija.
07:42
They're using Pragmatic Chaos now.
191
462260
2000
Trenutno koriste Pragmatični Kaos.
07:44
Pragmatic Chaos is, like all of Netflix algorithms,
192
464260
2000
Pragmatični Kaos, kao i svi Netflixovi algoritmi,
07:46
trying to do the same thing.
193
466260
2000
pokušava činiti istu stvar.
07:48
It's trying to get a grasp on you,
194
468260
2000
Pokušava vas dokučiti,
07:50
on the firmware inside the human skull,
195
470260
2000
sistem unutar ljudske lubanje,
07:52
so that it can recommend what movie
196
472260
2000
tako da bi mogao preporučiti koji film
07:54
you might want to watch next --
197
474260
2000
možda želite gledati --
07:56
which is a very, very difficult problem.
198
476260
3000
što je vrlo, vrlo težak problem.
07:59
But the difficulty of the problem
199
479260
2000
No težina problema
08:01
and the fact that we don't really quite have it down,
200
481260
3000
i činjenica da zapravo još nismo na čisto,
08:04
it doesn't take away
201
484260
2000
ne osporava
08:06
from the effects Pragmatic Chaos has.
202
486260
2000
efekte koje ima Pragmatični Kaos.
08:08
Pragmatic Chaos, like all Netflix algorithms,
203
488260
3000
Pragmatični Kaos, kao svi Netflixovi algoritmi,
08:11
determines, in the end,
204
491260
2000
određuje, u konačnici,
08:13
60 percent
205
493260
2000
60 posto
08:15
of what movies end up being rented.
206
495260
2000
filmova koji se iznajme.
08:17
So one piece of code
207
497260
2000
Stoga jedan komad koda
08:19
with one idea about you
208
499260
3000
s jednom idejom o vama
08:22
is responsible for 60 percent of those movies.
209
502260
3000
je odgovoran za 60 posto tih filmova.
08:25
But what if you could rate those movies
210
505260
2000
No što ukoliko biste mogli ocjeniti te filmove
08:27
before they get made?
211
507260
2000
prije nego što se naprave?
08:29
Wouldn't that be handy?
212
509260
2000
Ne bi li to bilo zgodno?
08:31
Well, a few data scientists from the U.K. are in Hollywood,
213
511260
3000
Pa, nekolicina podatkovnih znanstvenika iz U.K. su u Hollywoodu,
08:34
and they have "story algorithms" --
214
514260
2000
i imaju algoritme priče --
08:36
a company called Epagogix.
215
516260
2000
kompanija pod imenom Epagogix.
08:38
And you can run your script through there,
216
518260
3000
I možete provući svoj scenario ovdje,
08:41
and they can tell you, quantifiably,
217
521260
2000
i mogu vam reći, kvantificirano,
08:43
that that's a 30 million dollar movie
218
523260
2000
da je to film od 30 milijuna dolara
08:45
or a 200 million dollar movie.
219
525260
2000
ili film od 200 milijuna dolara.
08:47
And the thing is, is that this isn't Google.
220
527260
2000
A radi se o tome da ovo nije Google.
08:49
This isn't information.
221
529260
2000
Ovo nije informacija.
08:51
These aren't financial stats; this is culture.
222
531260
2000
Ovo nisu financijski pokazatelji; ovo je kultura.
08:53
And what you see here,
223
533260
2000
Ono što ovdje vidite,
08:55
or what you don't really see normally,
224
535260
2000
ili što normalno ne vidite,
08:57
is that these are the physics of culture.
225
537260
4000
je da je ovo fizika kulture.
09:01
And if these algorithms,
226
541260
2000
I ukoliko se ovi algoritmi,
09:03
like the algorithms on Wall Street,
227
543260
2000
kao algoritmi na Wall Street-u,
09:05
just crashed one day and went awry,
228
545260
3000
jednoga dana sruše i odu naopako,
09:08
how would we know?
229
548260
2000
kako bismo znali,
09:10
What would it look like?
230
550260
2000
kako bi to izgledalo?
09:12
And they're in your house. They're in your house.
231
552260
3000
I oni su u vašim kućama. Oni su u vašim kućama.
09:15
These are two algorithms competing for your living room.
232
555260
2000
Ovo su dva algoritma koji se natječu za vaš dnevni boravak.
09:17
These are two different cleaning robots
233
557260
2000
Ovo su dva različita robota spremača
09:19
that have very different ideas about what clean means.
234
559260
3000
koji imaju vrlo različite ideje o tome što znači čisto.
09:22
And you can see it
235
562260
2000
I možete to vidjeti
09:24
if you slow it down and attach lights to them,
236
564260
3000
ukoliko ih usporite i zakvačite svijetlo na njih.
09:27
and they're sort of like secret architects in your bedroom.
237
567260
3000
I oni su kao tajni arhitekti u vašoj spavačoj sobi.
09:30
And the idea that architecture itself
238
570260
3000
Te ideja da je arhitektura sama po sebi
09:33
is somehow subject to algorithmic optimization
239
573260
2000
na neki način subjekt algoritamske optimizacije
09:35
is not far-fetched.
240
575260
2000
nije daleka.
09:37
It's super-real and it's happening around you.
241
577260
3000
To je super stvarno i događa se oko vas.
09:40
You feel it most
242
580260
2000
Najviše možete osjetiti
09:42
when you're in a sealed metal box,
243
582260
2000
kada ste u zatvorenoj metalnoj kutiji,
09:44
a new-style elevator;
244
584260
2000
dizala novog stila,
09:46
they're called destination-control elevators.
245
586260
2000
nazivaju se dizala kontrole destinacije.
09:48
These are the ones where you have to press what floor you're going to go to
246
588260
3000
To su ona na kojima morate prisitsnuti na koji kat želite ići
09:51
before you get in the elevator.
247
591260
2000
prije nego uđete u dizalo.
09:53
And it uses what's called a bin-packing algorithm.
248
593260
2000
I koristi tzv. algoritam pakiranja kutije.
09:55
So none of this mishegas
249
595260
2000
Stoga ništa od ovih besmislica
09:57
of letting everybody go into whatever car they want.
250
597260
2000
dopuštanja svima ulazak u vozilo koje žele.
09:59
Everybody who wants to go to the 10th floor goes into car two,
251
599260
2000
Svatko to želi ići na 10 kat ulazi u vozilo dva,
10:01
and everybody who wants to go to the third floor goes into car five.
252
601260
3000
a svatko tko želi ići na treći kat ulazi u vozilo pet.
10:04
And the problem with that
253
604260
2000
A problem s time je
10:06
is that people freak out.
254
606260
2000
da ljudi polude.
10:08
People panic.
255
608260
2000
Ljudi paniče.
10:10
And you see why. You see why.
256
610260
2000
I možete vidjeti zašto. Vidite zašto.
10:12
It's because the elevator
257
612260
2000
To je zato jer dizalu
10:14
is missing some important instrumentation, like the buttons.
258
614260
3000
nedostaju neki važni instrumenti, kao dugmad.
10:17
(Laughter)
259
617260
2000
(Smijeh)
10:19
Like the things that people use.
260
619260
2000
Nešto što ljudi koriste.
10:21
All it has
261
621260
2000
Jedino što ima
10:23
is just the number that moves up or down
262
623260
3000
je broj koji se kreće gore ili dolje
10:26
and that red button that says, "Stop."
263
626260
3000
i crveno dugme koje kaže, "Stop."
10:29
And this is what we're designing for.
264
629260
3000
I zbog toga dizajniramo.
10:32
We're designing
265
632260
2000
Mi dizajniramo
10:34
for this machine dialect.
266
634260
2000
za ovaj dijalekt strojeva.
10:36
And how far can you take that? How far can you take it?
267
636260
3000
I koliko daleko možete ići s time? Koliko daleko možete otići?
10:39
You can take it really, really far.
268
639260
2000
Možete otići jako, jako daleko.
10:41
So let me take it back to Wall Street.
269
641260
3000
Vratimo se nazad na Wall Street.
10:45
Because the algorithms of Wall Street
270
645260
2000
Jer algoritmi s Wall Streeta
10:47
are dependent on one quality above all else,
271
647260
3000
ovisni su o jednoj kvaliteti iznad svega,
10:50
which is speed.
272
650260
2000
a to je brzina.
10:52
And they operate on milliseconds and microseconds.
273
652260
3000
I oni rade na milisekundama i mikrosekundama.
10:55
And just to give you a sense of what microseconds are,
274
655260
2000
Da dobijete osjećaj što su mikrosekunde,
10:57
it takes you 500,000 microseconds
275
657260
2000
potrebno je 500.000 mikrosekundi
10:59
just to click a mouse.
276
659260
2000
kako bi kliknuli miša.
11:01
But if you're a Wall Street algorithm
277
661260
2000
No ako ste algoritam s Wall Street-a
11:03
and you're five microseconds behind,
278
663260
2000
i zaostajete pet mikrosekundi,
11:05
you're a loser.
279
665260
2000
vi ste gubitnik.
11:07
So if you were an algorithm,
280
667260
2000
Stoga da ste algoritam,
11:09
you'd look for an architect like the one that I met in Frankfurt
281
669260
3000
potražili bi arhitekta kao onoga što sam sreo u Frankfurtu
11:12
who was hollowing out a skyscraper --
282
672260
2000
koji je ispražnjavao neboder --
11:14
throwing out all the furniture, all the infrastructure for human use,
283
674260
3000
izbacujući sav namještaj, svu infrastrukturu potrebnu čovjeku,
11:17
and just running steel on the floors
284
677260
3000
i samo ostavljajući čelik na podovima
11:20
to get ready for the stacks of servers to go in --
285
680260
3000
spremajući ga za postavljanje servera --
11:23
all so an algorithm
286
683260
2000
sve kako bi algoritam
11:25
could get close to the Internet.
287
685260
3000
bio bliže Internetu.
11:28
And you think of the Internet as this kind of distributed system.
288
688260
3000
A vi zamišljate Internet kao sistem distribucije.
11:31
And of course, it is, but it's distributed from places.
289
691260
3000
Naravno, on to je, ali se distribuira s određenog mjesta.
11:34
In New York, this is where it's distributed from:
290
694260
2000
U New Yorku, odavde se distribuira:
11:36
the Carrier Hotel
291
696260
2000
Carrier Hotel
11:38
located on Hudson Street.
292
698260
2000
smješten u Hudson ulici.
11:40
And this is really where the wires come right up into the city.
293
700260
3000
I ovdje je zapravo mjesto gdje žice izlaze van u grad.
11:43
And the reality is that the further away you are from that,
294
703260
4000
I stvarnost je ta da što ste dalje od toga,
11:47
you're a few microseconds behind every time.
295
707260
2000
vi ste nekoliko mikrosekundi iza svaki put.
11:49
These guys down on Wall Street,
296
709260
2000
Ovi momci dolje s Wall Streeta,
11:51
Marco Polo and Cherokee Nation,
297
711260
2000
Marko Polo i Cherokee Nacija,
11:53
they're eight microseconds
298
713260
2000
oni su osam mikrosekundi
11:55
behind all these guys
299
715260
2000
iza svih ovih drugih
11:57
going into the empty buildings being hollowed out
300
717260
4000
koji se nalaze u ovim praznim ispraznjenim zgradama
12:01
up around the Carrier Hotel.
301
721260
2000
oko Carrier Hotela.
12:03
And that's going to keep happening.
302
723260
3000
I to će se nastaviti događati.
12:06
We're going to keep hollowing them out,
303
726260
2000
Nastavit ćemo ih ispražnjavati
12:08
because you, inch for inch
304
728260
3000
zato jer, inč po inč
12:11
and pound for pound and dollar for dollar,
305
731260
3000
i funtu za funtu i dolar za dolar,
12:14
none of you could squeeze revenue out of that space
306
734260
3000
nitko od vas ne može iscjediti prihod iz prostora
12:17
like the Boston Shuffler could.
307
737260
3000
kao što to može Bostonski Prevrtljivac.
12:20
But if you zoom out,
308
740260
2000
No ako odzumirate
12:22
if you zoom out,
309
742260
2000
ako odzumirate,
12:24
you would see an 825-mile trench
310
744260
4000
vidjeli bi rov od 825 milja
12:28
between New York City and Chicago
311
748260
2000
između New Yorka i Chicaga
12:30
that's been built over the last few years
312
750260
2000
koji se gradi zadnjih nekoliko godina
12:32
by a company called Spread Networks.
313
752260
3000
od kompanije Spread Networks.
12:35
This is a fiber optic cable
314
755260
2000
Ovo je svjetlosni optički kabel
12:37
that was laid between those two cities
315
757260
2000
koji je položen između ova dva grada
12:39
to just be able to traffic one signal
316
759260
3000
kako bi bili u mogućnosti poslati samo jedan signal
12:42
37 times faster than you can click a mouse --
317
762260
3000
37 puta brže nego što možete kliknuti mišem --
12:45
just for these algorithms,
318
765260
3000
samo za ove algoritme,
12:48
just for the Carnival and the Knife.
319
768260
3000
samo za Karneval i Nož.
12:51
And when you think about this,
320
771260
2000
I kada razmislite o ovome,
12:53
that we're running through the United States
321
773260
2000
da prolazimo kroz Sjedinjene Države
12:55
with dynamite and rock saws
322
775260
3000
s dinamitom i pilama za kamen
12:58
so that an algorithm can close the deal
323
778260
2000
kako bi algoritam mogao zatvoriti poziciju
13:00
three microseconds faster,
324
780260
3000
tri mikrosekunde brže,
13:03
all for a communications framework
325
783260
2000
sve za komunikacijski sistem
13:05
that no human will ever know,
326
785260
4000
za koji čovjek nikad neće znati,
13:09
that's a kind of manifest destiny;
327
789260
3000
to je kao manifest sudbine
13:12
and we'll always look for a new frontier.
328
792260
3000
i uvijek će tražiti nove granice.
13:15
Unfortunately, we have our work cut out for us.
329
795260
3000
Nažalost, mi smo izostavljeni iz ovog posla.
13:18
This is just theoretical.
330
798260
2000
Ovo je samo teoretski.
13:20
This is some mathematicians at MIT.
331
800260
2000
Ovo su neki matematičari sa MIT-a.
13:22
And the truth is I don't really understand
332
802260
2000
Istina je da nažalost ne razumijem
13:24
a lot of what they're talking about.
333
804260
2000
mnogo toga o čemu pričaju.
13:26
It involves light cones and quantum entanglement,
334
806260
3000
Uključuje svjetlosni stožac i kvantnu zapreku,
13:29
and I don't really understand any of that.
335
809260
2000
i ne razumijem ništa od toga.
13:31
But I can read this map,
336
811260
2000
Ali mogu čitati ovu kartu.
13:33
and what this map says
337
813260
2000
A ono o čemu ova karta govori je da
13:35
is that, if you're trying to make money on the markets where the red dots are,
338
815260
3000
ukoliko želite zaraditi novac na tržištima gdje se nalaze crvene točke,
13:38
that's where people are, where the cities are,
339
818260
2000
tamo gdje se nalaze ljudi, gradovi,
13:40
you're going to have to put the servers where the blue dots are
340
820260
3000
morat ćete postaviti servere tamo gdje se nalaze plave točke
13:43
to do that most effectively.
341
823260
2000
kako bi bili što efikasniji.
13:45
And the thing that you might have noticed about those blue dots
342
825260
3000
Ono što ste mogli zamjetiti na plavim točkama
13:48
is that a lot of them are in the middle of the ocean.
343
828260
3000
je da se mnogo njih nalaze usred oceana.
13:51
So that's what we'll do: we'll build bubbles or something,
344
831260
3000
I to je što ćemo napraviti, sagradit ćemo balone ili nešto drugo,
13:54
or platforms.
345
834260
2000
ili platforme.
13:56
We'll actually part the water
346
836260
2000
Mi ćemo zapravo razdvajati vodu
13:58
to pull money out of the air,
347
838260
2000
kako bi izvukli novac iz zraka
14:00
because it's a bright future
348
840260
2000
zato jer je to sjajna budućnost
14:02
if you're an algorithm.
349
842260
2000
ukoliko ste algoritam.
14:04
(Laughter)
350
844260
2000
(Smijeh)
14:06
And it's not the money that's so interesting actually.
351
846260
3000
I ne radi se o novcu da je toliko interesantan zapravo.
14:09
It's what the money motivates,
352
849260
2000
Radi se o tome što novac motivira.
14:11
that we're actually terraforming
353
851260
2000
Mi zapravo teraformiramo
14:13
the Earth itself
354
853260
2000
samu Zemlju
14:15
with this kind of algorithmic efficiency.
355
855260
2000
s ovom algoritamskom efikasnošću.
14:17
And in that light,
356
857260
2000
U tome svjetlu,
14:19
you go back
357
859260
2000
vratite se nazad
14:21
and you look at Michael Najjar's photographs,
358
861260
2000
i pogledajte fotografije Michaela Najjara,
14:23
and you realize that they're not metaphor, they're prophecy.
359
863260
3000
i shvatite da one nisu metafora, one su proročanstvo.
14:26
They're prophecy
360
866260
2000
One su proročanstvo
14:28
for the kind of seismic, terrestrial effects
361
868260
4000
za ove seizmičke, zemaljske učinke
14:32
of the math that we're making.
362
872260
2000
matematike koju stvaramo.
14:34
And the landscape was always made
363
874260
3000
I pejzaž je uvijek bio načinjen
14:37
by this sort of weird, uneasy collaboration
364
877260
3000
od ove čudne, nelagodne suradnje
14:40
between nature and man.
365
880260
3000
između prirode i čovjeka.
14:43
But now there's this third co-evolutionary force: algorithms --
366
883260
3000
No sada imamo i treću ko-evolucijsku silu: algoritme --
14:46
the Boston Shuffler, the Carnival.
367
886260
3000
Bostonskog Prevrtljivca, Karneval.
14:49
And we will have to understand those as nature,
368
889260
3000
I morat ćemo ih shvatiti kao prirodu.
14:52
and in a way, they are.
369
892260
2000
Na neki način, oni to i jesu.
14:54
Thank you.
370
894260
2000
Hvala vam.
14:56
(Applause)
371
896260
20000
(Pljesak)
O ovoj web stranici

Ova stranica će vas upoznati s YouTube videozapisima koji su korisni za učenje engleskog jezika. Vidjet ćete lekcije engleskog koje vode vrhunski profesori iz cijelog svijeta. Dvaput kliknite na engleske titlove prikazane na svakoj video stranici da biste reproducirali video s tog mjesta. Titlovi se pomiču sinkronizirano s reprodukcijom videozapisa. Ako imate bilo kakvih komentara ili zahtjeva, obratite nam se putem ovog obrasca za kontakt.

https://forms.gle/WvT1wiN1qDtmnspy7