12 sustainable design ideas from nature | Janine Benyus

620,844 views ใƒป 2007-05-17

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Meir Adest ืžื‘ืงืจ: Sigal Tifferet
00:25
It is a thrill to be here at a conference
0
25000
4000
ืœืขื•ื ื’ ืœื™ ืœื”ื™ื•ืช ืคื” ื‘ื›ื ืก
00:29
that's devoted to "Inspired by Nature" -- you can imagine.
1
29000
5000
ื”ืžื•ืงื“ืฉ ืœ"ื”ืฉืจืื” ืžื”ื˜ื‘ืข" - ื›ืคื™ ืฉืืชื ื™ื›ื•ืœื™ื ืœืฉืขืจ.
00:34
And I'm also thrilled to be in the foreplay section.
2
34000
4000
ืื ื™ ื’ื ื ืจื’ืฉืช ืœื”ื™ื•ืช ื‘ื—ืœืง ืฉืœ ื”ืžืฉื—ืง ื”ืžืงื“ื™ื.
00:38
Did you notice this section is foreplay?
3
38000
2000
ืฉืžืชื ืœื‘ ืฉื”ื—ืœืง ื”ื–ื” ื”ื•ื ืžืฉื—ืง ืžืงื“ื™ื?
00:40
Because I get to talk about one of my favorite critters,
4
40000
3000
ื›ื™ื•ื•ืŸ ืฉื™ื•ืฆื ืœื™ ืœื“ื‘ืจ ืขืœ ืื—ื“ ื”ื™ืฆื•ืจื™ื ื”ื—ื‘ื™ื‘ื™ื ืขืœื™,
00:43
which is the Western Grebe. You haven't lived
5
43000
3000
ืฉื”ื•ื ื”ื˜ื‘ืœืŸ ื”ืžืขืจื‘ื™. ืœื ื—ื™ื™ืชื ื‘ืืžืช
00:46
until you've seen these guys do their courtship dance.
6
46000
4000
ืขื“ ืฉืจืื™ืชื ืืช ื”ื—ื‘ืจ'ื” ื”ืืœื” ื‘ืจื™ืงื•ื“ ื”ื—ื™ื–ื•ืจ ืฉืœื”ื.
00:50
I was on Bowman Lake in Glacier National Park,
7
50000
3000
ื”ื™ื™ืชื™ ืขืœ ืื’ื ื‘ื•ืžืŸ ื‘ืคืืจืง ื”ืœืื•ืžื™ ื’ืœื™ืฉื™ื™ืจ,
00:53
which is a long, skinny lake with sort of mountains upside down in it,
8
53000
4000
ืฉื”ื•ื ืื’ื ืืจื•ืš ื•ืฆืจ ืขื ืžืขื™ืŸ ื”ืจื™ื ื”ืคื•ื›ื™ื ื‘ืชื•ื›ื•,
00:57
and my partner and I have a rowing shell.
9
57000
2000
ื•ืœืฉื•ืชืฃ ืฉืœื™ ื•ืœื™ ื”ื™ืชื” ืกื™ืจืช ืžืฉื•ื˜ื™ื.
00:59
And so we were rowing, and one of these Western Grebes came along.
10
59000
6000
ื•ื›ืš ื—ืชืจื ื• ืœื ื•, ื•ืื—ื“ ื”ื˜ื‘ืœื ื™ื ื”ืžืขืจื‘ื™ื™ื ื”ืฆื˜ืจืฃ ืืœื™ื ื•.
01:05
And what they do for their courtship dance is, they go together,
11
65000
5000
ื•ืžื” ืฉื”ื ืขื•ืฉื™ื ื‘ืจื™ืงื•ื“ ื”ื—ื™ื–ื•ืจ ืฉืœื”ื, ื”ื ื”ื•ืœื›ื™ื ื™ื—ื“,
01:10
the two of them, the two mates, and they begin to run underwater.
12
70000
5000
ืฉื ื™ื”ื, ื”ื–ื•ื’, ื•ืžืชื—ื™ืœื™ื ืœืจื•ืฅ ืžืชื—ืช ืœืžื™ื.
01:15
They paddle faster, and faster, and faster, until they're going so fast
13
75000
4000
ื”ื ืžืฉื›ืฉื›ื™ื ืžื”ืจ ื™ื•ืชืจ, ื•ื™ื•ืชืจ, ื•ื™ื•ืชืจ, ืขื“ ืฉื”ื ื›ืœ-ื›ืš ืžื”ื™ืจื™ื
01:19
that they literally lift up out of the water,
14
79000
3000
ืฉื”ื ืคืฉื•ื˜ ืžืชืจื•ืžืžื™ื ืžื—ื•ืฅ ืœืžื™ื,
01:22
and they're standing upright, sort of paddling the top of the water.
15
82000
4000
ื•ื”ื ืขื•ืžื“ื™ื ื–ืงื•ืคื™ื, ื•ืžืฉื›ืฉื›ื™ื ืžืขืœ ืœืžื™ื.
01:26
And one of these Grebes came along while we were rowing.
16
86000
5000
ื•ืื—ื“ ื”ื˜ื‘ืœื ื™ื ื”ืืœื” ื”ืฆื˜ืจืฃ ืืœื™ื ื• ื‘ื–ืžืŸ ืฉื—ืชืจื ื•.
01:31
And so we're in a skull, and we're moving really, really quickly.
17
91000
4000
ืื– ืื ื—ื ื• ื—ื•ืชืจื™ื ืžืื•ื“, ืžืื•ื“ ืžื”ืจ.
01:35
And this Grebe, I think, sort of, mistaked us for a prospect,
18
95000
7000
ื•ื”ื˜ื‘ืœืŸ ื”ื–ื” ืจื•ืื” ื‘ื ื• ื‘ื˜ืขื•ืช, ืื ื™ ื—ื•ืฉื‘ืช, ืžื•ืขืžื“ ืœื—ื™ื–ื•ืจ,
01:42
and started to run along the water next to us,
19
102000
4000
ื•ืžืชื—ื™ืœ ืœืจื•ืฅ ืœืื•ืจืš ื”ืžื™ื ืœืฆื™ื“ื ื•,
01:46
in a courtship dance -- for miles.
20
106000
5000
ื‘ืจื™ืงื•ื“ ื—ื™ื–ื•ืจ - ืœืื•ืจืš ืงื™ืœื•ืžื˜ืจื™ื.
01:51
It would stop, and then start, and then stop, and then start.
21
111000
4000
ื”ื•ื ื”ื™ื” ืขื•ืฆืจ, ื•ืžืชื—ื™ืœ, ื•ืขื•ืฆืจ, ื•ืžืชื—ื™ืœ ืฉื•ื‘.
01:55
Now that is foreplay.
22
115000
2000
ืขื›ืฉื™ื•, ื–ื”ื• ืžืฉื—ืง ืžืงื“ื™ื.
01:57
(Laughter)
23
117000
3000
(ืฆื—ื•ืง)
02:00
I came this close to changing species at that moment.
24
120000
9000
ืื•ืงื™ื™. ื”ื™ื™ืชื™ ื›ื›ื” ืงืจื•ื‘ื” ืœื”ื—ืœื™ืฃ ืืช ื”ืžื™ืŸ ืฉืœื™ ืœื˜ื‘ืœืŸ ื‘ืื•ืชื• ื”ืจื’ืข.
02:09
Obviously, life can teach us something
25
129000
4000
ื›ืžื•ื‘ืŸ, ื”ื—ื™ื™ื ื™ื›ื•ืœื™ื ืœืœืžื“ ืื•ืชื ื• ืžืฉื”ื•
02:13
in the entertainment section. Life has a lot to teach us.
26
133000
4000
ืœื’ื‘ื™ ื”ื—ืœืง ื”ื‘ื™ื“ื•ืจื™, ื‘ืกื“ืจ. ื”ื—ื™ื™ื ื™ื›ื•ืœื™ื ืœืœืžื“ ืื•ืชื ื• ื”ืจื‘ื”.
02:17
But what I'd like to talk about today
27
137000
3000
ืื‘ืœ ื”ื™ื•ื ืื ื™ ืจื•ืฆื” ืœื“ื‘ืจ
02:20
is what life might teach us in technology and in design.
28
140000
4000
ืขืœ ืžื” ืฉื”ื—ื™ื™ื ื™ื›ื•ืœื™ื ืœืœืžื“ ืื•ืชื ื• ืขืœ ื˜ื›ื ื•ืœื•ื’ื™ื” ื•ืขื™ืฆื•ื‘.
02:24
What's happened since the book came out --
29
144000
2000
ืžื” ืฉืงืจื” ืžืื– ืฉื”ืกืคืจ ื™ืฆื -
02:26
the book was mainly about research in biomimicry --
30
146000
3000
ื”ืกืคืจ ื”ื•ื ื‘ืขื™ืงืจ ื‘ื ื•ื’ืข ืœืžื—ืงืจื™ื ื‘ื‘ื™ื•-ื—ื™ืงื•ื™.
02:29
and what's happened since then is architects, designers, engineers --
31
149000
4000
ื•ืžื” ืฉืงืจื” ืžืื– ื”ื•ื ืฉืืจื›ื™ื˜ืงื˜ื™ื, ืžืขืฆื‘ื™ื, ืžื”ื ื“ืกื™ื
02:33
people who make our world -- have started to call and say,
32
153000
3000
ืื ืฉื™ื ืฉื™ื•ืฆืจื™ื ืืช ืขื•ืœืžื ื• - ื”ืชื—ื™ืœื• ืœื”ืชืงืฉืจ ื•ืœื•ืžืจ,
02:36
we want a biologist to sit at the design table
33
156000
4000
ืื ื—ื ื• ืจื•ืฆื™ื ื‘ื™ื•ืœื•ื’ ืฉื™ืฉื‘ ืœื™ื“ ืฉื•ืœื—ืŸ ื”ืขื™ืฆื•ื‘
02:40
to help us, in real time, become inspired.
34
160000
3000
ื•ื™ืขื–ื•ืจ ืœื ื•, ื‘ื–ืžืŸ ืืžืช, ืœืžืฆื•ื ืžืงื•ืจื•ืช ื”ืฉืจืื”.
02:43
Or -- and this is the fun part for me -- we want you to take us out
35
163000
4000
ืื• - ื•ืžื‘ื—ื™ื ืชื™, ื–ื” ื”ื—ืœืง ื”ื›ื™ืคื™ - ืื ื—ื ื• ืจื•ืฆื™ื ืฉืชืงื—ื™ ืื•ืชื ื• ื”ื—ื•ืฆื”
02:47
into the natural world. We'll come with a design challenge
36
167000
2000
ืืœ ื”ื˜ื‘ืข. ืื ื—ื ื• ื ื‘ื•ื ืขื ืืชื’ืจ ืขื™ืฆื•ื‘ื™
02:49
and we find the champion adapters in the natural world, who might inspire us.
37
169000
5000
ื•ื ืžืฆื ืืช ื”ืžืกืชื’ืœื™ื ื”ื˜ื•ื‘ื™ื ื‘ื™ื•ืชืจ ื‘ื˜ื‘ืข, ืฉื™ื”ื•ื• ืขื‘ื•ืจื ื• ื”ืฉืจืื”.
02:54
So this is a picture from a Galapagos trip that we took
38
174000
4000
ืื– ื–ื• ืชืžื•ื ื” ืžื˜ื™ื•ืœ ืฉืขืจื›ื ื• ืœื’ืœืคื’ื•ืก
02:58
with some wastewater treatment engineers; they purify wastewater.
39
178000
4000
ืขื ื›ืžื” ืžื”ื ื“ืกื™ ืžื™ื; ื”ื ืžื˜ื”ืจื™ื ืžื™ ืฉื•ืคื›ื™ืŸ.
03:02
And some of them were very resistant, actually, to being there.
40
182000
3000
ื•ื›ืžื” ืžื”ื ืžืื•ื“ ื”ืชื ื’ื“ื•, ืœืžืขืŸ ื”ืืžืช, ืœื”ื™ื•ืช ืฉื.
03:05
What they said to us at first was, you know, we already do biomimicry.
41
185000
5000
ืžื” ืฉื”ื ืืžืจื• ืœื ื• ื‘ื”ืชื—ืœื” ื”ื™ื”, ืืชื ื™ื•ื“ืขื™ื, ืื ื—ื ื• ื›ื‘ืจ ืขื•ืฉื™ื ื‘ื™ื•-ื—ื™ืงื•ื™ื™ื.
03:10
We use bacteria to clean our water. And we said,
42
190000
5000
ืื ื—ื ื• ืžืฉืชืžืฉื™ื ื‘ื‘ืงื˜ืจื™ื” ืœื ืงื•ืช ืืช ื”ืžื™ื. ื•ืื ื—ื ื• ืืžืจื ื•,
03:15
well, that's not exactly being inspired by nature.
43
195000
4000
ื–ื” ืœื ื‘ื“ื™ื•ืง - ื–ื• ืœื ื‘ื“ื™ื•ืง ื”ืฉืจืื” ืžื”ื˜ื‘ืข.
03:19
That's bioprocessing, you know; that's bio-assisted technology:
44
199000
4000
ื–ื” ืขื™ื‘ื•ื“ ื‘ืืžืฆืขื•ืช ื”ื˜ื‘ืข, ืืชื ื™ื•ื“ืขื™ื; ื–ื• ื˜ื›ื ื•ืœื•ื’ื™ื” ืฉื ืขื–ืจืช ื‘ื‘ื™ื•ืœื•ื’ื™ื”:
03:23
using an organism to do your wastewater treatment
45
203000
5000
ื”ืฉื™ืžื•ืฉ ื‘ืื•ืจื’ื ื™ื–ื ืœื˜ื™ื”ื•ืจ ืžื™ ืฉื•ืคื›ื™ืŸ
03:28
is an old, old technology called "domestication."
46
208000
3000
ื”ื•ื ื˜ื›ื ื•ืœื•ื’ื™ื” ื™ืฉื ื” ืžืื•ื“ ืฉื ืงืจืืช "ื‘ื™ื•ืช."
03:31
This is learning something, learning an idea, from an organism and then applying it.
47
211000
7000
ืื ื—ื ื• ืจื•ืฆื™ื ืœืœืžื•ื“ ืžืฉื”ื•, ืœืœืžื•ื“ ืจืขื™ื•ืŸ, ืžืื•ืจื’ื ื™ื–ื ื•ืœื™ื™ืฉื ืื•ืชื•.
03:38
And so they still weren't getting it.
48
218000
3000
ืื‘ืœ ื”ื ืขื“ื™ื™ืŸ ืœื ืงืœื˜ื• ืืช ื”ืจืขื™ื•ืŸ.
03:41
So we went for a walk on the beach and I said,
49
221000
2000
ืื– ื”ืœื›ื ื• ืœื˜ื™ื•ืœ ืขืœ ื”ื—ื•ืฃ ื•ืืžืจืชื™,
03:43
well, give me one of your big problems. Give me a design challenge,
50
223000
5000
ื˜ื•ื‘, ืชื ื• ืœื™ ืืช ืื—ืช ื”ื‘ืขื™ื•ืช ื”ื’ื“ื•ืœื•ืช ืฉืœื›ื. ืชื ื• ืœื™ ืืชื’ืจ ืขื™ืฆื•ื‘ื™,
03:48
sustainability speed bump, that's keeping you from being sustainable.
51
228000
3000
ืžื›ืฉื•ืœ, ืฉืžื•ื ืข ืžื›ื ืœื”ืžืฉื™ืš ื•ืœื’ื“ื•ืœ.
03:51
And they said scaling, which is the build-up of minerals inside of pipes.
52
231000
6000
ื•ื”ื ืืžืจื• ืื‘ื ื™ืช, ืฉื”ื™ื ื”ืฆื˜ื‘ืจื•ืช ืฉืœ ืžื™ื ืจืœื™ื ื‘ืชื•ืš ืฆื™ื ื•ืจื•ืช.
03:57
And they said, you know what happens is, mineral --
53
237000
2000
ื•ื”ื ืืžืจื•, ืืช ื™ื•ื“ืขืช - ื”ื‘ืขื™ื” ื”ื™ื, ืฉืžื™ื ืจืœ -
03:59
just like at your house -- mineral builds up.
54
239000
2000
ื‘ื“ื™ื•ืง ื›ืžื• ื‘ื‘ื™ืช ืฉืœืš - ืžื™ื ืจืœ ืžืฆื˜ื‘ืจ.
04:01
And then the aperture closes, and we have to flush the pipes with toxins,
55
241000
4000
ื•ืื– ื”ืคืชื— ื ืกืชื, ื•ืฆืจื™ืš ืœืฉื˜ื•ืฃ ืืช ื”ืฆื™ื ื•ืจื•ืช ืขื ืจืขืœื™ื,
04:05
or we have to dig them up.
56
245000
2000
ืื• ืฉืฆืจื™ืš ืœื—ืคื•ืจ ืื•ืชื ื”ื—ื•ืฆื”.
04:07
So if we had some way to stop this scaling --
57
247000
3000
ืื– ืื ื”ื™ื™ืชื” ืœื ื• ื“ืจืš ืœืขืฆื•ืจ ืืช ื”ืื‘ื ื™ืช -
04:10
and so I picked up some shells on the beach. And I asked them,
58
250000
5000
ื•ื›ืš ื”ืจืžืชื™ ื›ืžื” ืฆื“ืคื™ื ืžื”ื—ื•ืฃ. ื•ืฉืืœืชื™ ืื•ืชื,
04:15
what is scaling? What's inside your pipes?
59
255000
2000
ืžื”ื™ ืื‘ื ื™ืช? ืžื” ื™ืฉ ืœื›ื ื‘ืชื•ืš ื”ืฆื™ื ื•ืจื•ืช?
04:17
And they said, calcium carbonate.
60
257000
3000
ื•ื”ื ืืžืจื•, ืกื™ื“ืŸ ืคื—ืžืชื™.
04:20
And I said, that's what this is; this is calcium carbonate.
61
260000
3000
ื•ืืžืจืชื™, ื–ื” ืžื” ืฉื–ื”; ื–ื” ืกื™ื“ืŸ ืคื—ืžืชื™.
04:23
And they didn't know that.
62
263000
3000
ื•ื”ื ืœื ื™ื“ืขื• ืืช ื–ื”.
04:26
They didn't know that what a seashell is,
63
266000
2000
ื”ื ืœื ื™ื“ืขื• ืžืžื” ืขืฉื•ื™ ืฆื“ืฃ,
04:28
it's templated by proteins, and then ions from the seawater
64
268000
4000
ื”ื—ืœื‘ื•ื ื™ื ืžืฉืžืฉื™ื ื›ืชื‘ื ื™ืช, ื•ืื– ื™ื•ื ื™ื ืžืžื™-ื”ื™ื
04:32
crystallize in place to create a shell.
65
272000
3000
ืžืชื’ื‘ืฉื™ื ื‘ืžืงื•ืžื ืขืœ ืžื ืช ืœื™ืฆื•ืจ ืฆื“ืฃ.
04:35
So the same sort of a process, without the proteins,
66
275000
4000
ืื– ืื•ืชื• ืชื”ืœื™ืš, ื‘ืœื™ ื”ื—ืœื‘ื•ื ื™ื,
04:39
is happening on the inside of their pipes. They didn't know.
67
279000
3000
ืงื•ืจื” ื‘ืชื•ืš ื”ืฆื™ื ื•ืจื•ืช. ื”ื ืœื ื™ื“ืขื•.
04:42
This is not for lack of information; it's a lack of integration.
68
282000
6000
ื–ื” ืœื ื—ื•ืกืจ ื‘ืื™ื ืคื•ืจืžืฆื™ื”; ื–ื” ื—ื•ืกืจ ื‘ืื™ื ื˜ื’ืจืฆื™ื”.
04:48
You know, it's a silo, people in silos. They didn't know
69
288000
3000
ืืชื ื™ื•ื“ืขื™ื, ื–ื” ื‘ื•ืจ, ืื ืฉื™ื ื ืžืฆืื™ื ื‘ื‘ื•ืจื•ืช. ื”ื ืœื ื™ื“ืขื•
04:51
that the same thing was happening. So one of them thought about it
70
291000
3000
ืฉืื•ืชื• ื“ื‘ืจ ืงื•ืจื”. ืื– ืื—ื“ ืžื”ื ื—ืฉื‘ ืขืœ ื–ื”
04:54
and said, OK, well, if this is just crystallization
71
294000
4000
ื•ืืžืจ, ื‘ืกื“ืจ, ืื– ืื ื–ื• ืจืง ื”ืชื’ื‘ืฉื•ืช
04:58
that happens automatically out of seawater -- self-assembly --
72
298000
5000
ืฉืงื•ืจื™ืช ื‘ืื•ืคืŸ ื˜ื‘ืขื™ ืžืžื™ ื™ื - ื”ืจื›ื‘ื” ืขืฆืžื™ืช -
05:03
then why aren't shells infinite in size? What stops the scaling?
73
303000
5000
ืื– ืœืžื” ืฆื“ืคื™ื ืžื•ื’ื‘ืœื™ื ื‘ื’ื•ื“ืœ? ืžื” ืขื•ืฆืจ ืืช ื”ืื‘ื ื™ืช?
05:08
Why don't they just keep on going?
74
308000
2000
ืœืžื” ื”ื ืœื ืคืฉื•ื˜ ืžืžืฉื™ื›ื™ื ืœื’ื“ื•ืœ?
05:10
And I said, well, in the same way
75
310000
4000
ืื– ืืžืจืชื™, ื˜ื•ื‘, ื‘ืื•ืชื” ื“ืจืš ืฉื”ื -
05:14
that they exude a protein and it starts the crystallization --
76
314000
4000
ื›ืžื• ืฉื”ื ืžืคืจื™ืฉื™ื ื—ืœื‘ื•ืŸ ื•ื”ื•ื ืžืชื—ื™ืœ ืืช ื”ื”ืชื’ื‘ืฉื•ืช -
05:18
and then they all sort of leaned in --
77
318000
4000
ื•ืื– ื”ื ื›ื•ืœื ืจื›ื ื• ืคื ื™ืžื” -
05:22
they let go of a protein that stops the crystallization.
78
322000
3000
ื›ืš ื”ื ืžืคืจื™ืฉื™ื ื—ืœื‘ื•ืŸ ืฉืขื•ืฆืจ ืืช ื”ื”ืชื’ื‘ืฉื•ืช.
05:25
It literally adheres to the growing face of the crystal.
79
325000
2000
ื”ื•ื ืขื•ืงื‘ ืื—ืจ ื”ืฉืคื” ื”ื’ื“ืœื” ืฉืœ ื”ื’ื‘ื™ืฉ.
05:27
And, in fact, there is a product called TPA
80
327000
4000
ื•ืœืžืขืŸ ื”ืืžืช, ื™ืฉ ืžื•ืฆืจ ื‘ืฉื TPA
05:31
that's mimicked that protein -- that stop-protein --
81
331000
5000
ืฉืžื—ืงื” ืืช ื”ื—ืœื‘ื•ืŸ - ื—ืœื‘ื•ืŸ ื”ืขืฆื™ืจื” -
05:36
and it's an environmentally friendly way to stop scaling in pipes.
82
336000
4000
ื•ื–ื• ื“ืจืš ื™ื“ื™ื“ื•ืชื™ืช ืœืกื‘ื™ื‘ื” ืœืขืฆื•ืจ ืืช ื”ืื‘ื ื™ืช ื‘ืฆื™ื ื•ืจื•ืช.
05:40
That changed everything. From then on,
83
340000
4000
ื–ื” ืฉื™ื ื” ื”ื›ืœ. ืžืื•ืชื• ืจื’ืข,
05:44
you could not get these engineers back in the boat.
84
344000
4000
ืœื ื™ื›ื•ืœืชื ืœื”ื—ื–ื™ืจ ืืช ื”ืžื”ื ื“ืกื™ื ื—ื–ืจื” ืœืกื™ืจื”.
05:48
The first day they would take a hike,
85
348000
3000
ื‘ื™ื•ื ื”ืจืืฉื•ืŸ ื”ื ื™ืฆืื• ืœืกื™ื•ืจ,
05:51
and it was, click, click, click, click. Five minutes later they were back in the boat.
86
351000
3000
ื•ื”ื›ืœ ื”ื™ื” ืงืœื™ืง, ืงืœื™ืง, ืงืœื™ืง, ืงืœื™ืง. ืชื•ืš ื—ืžืฉ ื“ืงื•ืช ื”ื ื”ื™ื• ื—ื–ืจื” ื‘ืกื™ืจื”.
05:54
We're done. You know, I've seen that island.
87
354000
4000
ืกื™ื™ืžื ื•. ืืชื ื™ื•ื“ืขื™ื, ืจืื™ืชื™ ืืช ื”ืื™.
05:58
After this,
88
358000
2000
ืื—ืจื™ ื–ื”,
06:00
they were crawling all over. They would snorkel
89
360000
3000
ื”ื ื–ื—ืœื• ื‘ื›ืœ ืžืงื•ื. ื”ื ืœื ื”ื™ื• -
06:03
for as long as we would let them snorkel.
90
363000
5000
ื”ื ื”ื™ื• ืฆื•ืœืœื™ื ืœื›ืžื” ื–ืžืŸ ืฉืจืง ื”ืจืฉื ื• ืœื”ื.
06:08
What had happened was that they realized that there were organisms
91
368000
4000
ืžื” ืฉืงืจื” ื”ื•ื ืฉื”ื ื”ื‘ื™ื ื• ืฉื™ืฉ ืื•ืจื’ื ื™ื–ืžื™ื
06:12
out there that had already solved the problems
92
372000
4000
ืฉื›ื‘ืจ ืคืชืจื• ืืช ื”ื‘ืขื™ื•ืช
06:16
that they had spent their careers trying to solve.
93
376000
3000
ืฉื”ื ื‘ื™ืœื• ืืช ื”ืงืจื™ื™ืจื•ืช ืฉืœื”ื ื‘ื ืกื™ื•ืŸ ืœืคืชื•ืจ.
06:19
Learning about the natural world is one thing;
94
379000
5000
ืœืœืžื•ื“ ืขืœ ื”ื˜ื‘ืข ื”ื•ื ื“ื‘ืจ ืื—ื“,
06:24
learning from the natural world -- that's the switch.
95
384000
2000
ืœืœืžื•ื“ ืžื”ื˜ื‘ืข - ื–ื” ื”ื”ื‘ื“ืœ.
06:26
That's the profound switch.
96
386000
3000
ื–ื” ื”ื‘ื“ืœ ืขืžื•ืง.
06:29
What they realized was that the answers to their questions are everywhere;
97
389000
4000
ืžื” ืฉืงืจื” ื”ื•ื ืฉื”ื ื”ื‘ื™ื ื• ืฉื”ืชืฉื•ื‘ื•ืช ืœืฉืืœื•ืช ืฉืœื”ื ื ืžืฆืื•ืช ื‘ื›ืœ ืžืงื•ื;
06:33
they just needed to change the lenses with which they saw the world.
98
393000
4000
ื”ื ืจืง ื”ื™ื• ืฆืจื™ื›ื™ื ืœื”ื—ืœื™ืฃ ืืช ื”ืขื“ืฉื•ืช ื“ืจื›ื ื”ื ืจืื• ืืช ื”ืขื•ืœื.
06:37
3.8 billion years of field-testing.
99
397000
4000
3.8 ืžื™ืœื™ืืจื“ ืฉื ื™ื ืฉืœ ื ื™ืกื•ื™ื™ ืฉื“ื”
06:41
10 to 30 -- Craig Venter will probably tell you;
100
401000
3000
10 ืขื“ 30 - ืงืจื™ื™ื’ ื•ื ื˜ืจ ื›ื ืจืื” ื™ืืžืจ ืœื›ื;
06:44
I think there's a lot more than 30 million -- well-adapted solutions.
101
404000
4000
ืื ื™ ื—ื•ืฉื‘ืช ืฉื™ืฉ ื”ืจื‘ื” ื™ื•ืชืจ ืž-30 ืžื™ืœื™ื•ืŸ - ืคืชืจื•ื ื•ืช ืžืขื•ื‘ื“ื™ื-ื”ื™ื˜ื‘.
06:48
The important thing for me is that these are solutions solved in context.
102
408000
8000
ื”ื“ื‘ืจ ื”ื—ืฉื•ื‘ ืขื‘ื•ืจื™ ื”ื•ื ืฉืืœื” ื”ื ืคืชืจื•ื ื•ืช ืฉืขื•ื‘ื“ื• ื‘ื”ืงืฉืจ ืžืกื•ื™ื.
06:56
And the context is the Earth --
103
416000
2000
ื•ื”ื”ืงืฉืจ ื”ื•ื ื›ื“ื•ืจ ื”ืืจืฅ -
06:58
the same context that we're trying to solve our problems in.
104
418000
5000
ืื•ืชื• ื”ื”ืงืฉืจ ื‘ื• ืื ื• ืžื ืกื™ื ืœืคืชื•ืจ ืืช ื”ื‘ืขื™ื•ืช ืฉืœื ื•.
07:03
So it's the conscious emulation of life's genius.
105
423000
4000
ืื– ืžื“ื•ื‘ืจ ื‘ื”ื“ืžื™ื” ืžื•ื“ืขืช ืฉืœ ื”ื’ืื•ื ื•ืช ืฉืœ ื”ื—ื™ื™ื.
07:07
It's not slavishly mimicking --
106
427000
2000
ื–ื” ืœื ืกืชื ื—ื™ืงื•ื™ ืขื™ื•ื•ืจ -
07:09
although Al is trying to get the hairdo going --
107
429000
3000
ืœืžืจื•ืช ืฉืืœ ืžื ืกื” ืœื—ืงื•ืช ืืช ื”ืชืกืจื•ืงืช -
07:12
it's not a slavish mimicry; it's taking the design principles,
108
432000
4000
ื–ื” ืœื ืกืชื ื—ื™ืงื•ื™ ืขื™ื•ื•ืจ. ืžื“ื•ื‘ืจ ืขืœ ืœืงื™ื—ืช ืขืงืจื•ื ื•ืช ืชื›ื ื•ืŸ,
07:16
the genius of the natural world, and learning something from it.
109
436000
5000
ื”ื’ืื•ื ื•ืช ืฉืœ ืขื•ืœื ื”ื˜ื‘ืข, ื•ืœื™ืžื•ื“ ืžื”ื.
07:21
Now, in a group with so many IT people, I do have to mention what
110
441000
4000
ืขื›ืฉื™ื•, ื‘ืงื‘ื•ืฆื” ืขื ื›ืœ ื›ืš ื”ืจื‘ื” ืื ืฉื™ IT, ืื ื™ ืฆืจื™ื›ื” ืœื•ืžืจ -
07:25
I'm not going to talk about, and that is that your field
111
445000
3000
ื™ืฉ ืžืฉื”ื• ืฉืื ื™ ืœื ืื“ื‘ืจ ืขืœื™ื•, ื•ื”ื•ื ืฉื”ืชื—ื•ื ืฉืœื›ื
07:28
is one that has learned an enormous amount from living things,
112
448000
4000
ื”ื•ื ืื—ื“ ื”ืชื—ื•ืžื™ื ืฉืœืžื“ื• ื”ืžื•ืŸ ืžื™ืฆื•ืจื™ื ื—ื™ื™ื,
07:32
on the software side. So there's computers that protect themselves,
113
452000
4000
ื‘ืฆื“ ื”ืชื•ื›ื ื”. ื›ืš ืฉื™ืฉ ืžื—ืฉื‘ื™ื ืฉืžื’ื™ื ื™ื ืขืœ ืขืฆืžื,
07:36
like an immune system, and we're learning from gene regulation
114
456000
3000
ื›ืžื• ืžืขืจื›ืช ื—ื™ืกื•ื ื™ืช, ื•ืื ื—ื ื• ืœื•ืžื“ื™ื ืžื•ื™ืกื•ืช ื’ื ื˜ื™
07:39
and biological development. And we're learning from neural nets,
115
459000
5000
ื•ื”ืชืคืชื—ื•ืช ื‘ื™ื•ืœื•ื’ื™ืช. ื•ืื ื—ื ื• ืœื•ืžื“ื™ื ืžืจืฉืชื•ืช ื ื•ื™ืจื•ื ื™ื,
07:44
genetic algorithms, evolutionary computing.
116
464000
3000
ืืœื’ื•ืจื™ืชืžื™ื ื’ื ื˜ื™ื™ื, ืžื—ืฉื•ื‘ ืื‘ื•ืœื•ืฆื™ื•ื ื™.
07:47
That's on the software side. But what's interesting to me
117
467000
5000
ื–ื” ื‘ืฆื“ ื”ืชื•ื›ื ื”. ืื‘ืœ ืžื” ืฉืžืขื ื™ื™ืŸ ืขื‘ื•ืจื™
07:52
is that we haven't looked at this, as much. I mean, these machines
118
472000
5000
ื”ื•ื ืฉืœื ื”ืกืชื›ืœื ื• ืขืœ ื–ื” ืžืกืคื™ืง. ื›ืœื•ืžืจ, ื”ืžื›ื•ื ื•ืช ื”ืืœื”
07:57
are really not very high tech in my estimation
119
477000
3000
ืื™ื ืŸ ื˜ื›ื ื•ืœื•ื’ื™ื” ืžืื•ื“ ืžืชืงื“ืžืช ืœื”ืขืจื›ืชื™
08:00
in the sense that there's dozens and dozens of carcinogens
120
480000
5000
ื‘ืžื•ื‘ืŸ ื–ื” ืฉื™ืฉ ืขืฉืจื•ืช ืขืœ ืขืฉืจื•ืช ืฉืœ ืงืจืฆื™ื ื•ื’ื ื™ื
08:05
in the water in Silicon Valley.
121
485000
3000
ื‘ืžื™ื ื‘ืขืžืง ื”ืกื™ืœื™ืงื•ืŸ.
08:08
So the hardware
122
488000
3000
ืื– ื”ื—ื•ืžืจื”
08:11
is not at all up to snuff in terms of what life would call a success.
123
491000
5000
ืžืžืฉ ืœื ื‘ืจืžื” ืœื” ืขื•ืœื ื”ื—ื™ ื”ื™ื” ืงื•ืจื ื”ืฆืœื—ื”.
08:16
So what can we learn about making -- not just computers, but everything?
124
496000
5000
ืื– ืžื” ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืœืžื•ื“ ืขืœ ื™ื™ืฆื•ืจ - ืœื ืจืง ืฉืœ ืžื—ืฉื‘ื™ื, ืืœื ืฉืœ ื›ืœ ื“ื‘ืจ?
08:21
The plane you came in, cars, the seats that you're sitting on.
125
501000
4000
ื”ืžื˜ื•ืก ืื™ืชื• ื”ื’ืขืชื ืœื›ืืŸ, ืžื›ื•ื ื™ื•ืช, ื”ื›ืกืื•ืช ืขืœื™ื”ื ืืชื ื™ื•ืฉื‘ื™ื.
08:25
How do we redesign the world that we make, the human-made world?
126
505000
7000
ืื™ืš ืื ื—ื ื• ืžืชื›ื ื ื™ื ืžื—ื“ืฉ ืืช ื”ืขื•ืœื ืื•ืชื• ืื ื• ื™ื•ืฆืจื™ื, ื”ืขื•ืœื ื™ืฆื™ืจ-ื›ืคื™ื ื•?
08:32
More importantly, what should we ask in the next 10 years?
127
512000
4000
ื—ืฉื•ื‘ ื™ื•ืชืจ, ืžื” ืขืœื™ื ื• ืœืฉืื•ืœ ื‘ืขืฉืจ ื”ืฉื ื™ื ื”ืงืจื•ื‘ื•ืช?
08:36
And there's a lot of cool technologies out there that life has.
128
516000
3000
ื•ื™ืฉ ื”ืจื‘ื” ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ืžื’ื ื™ื‘ื•ืช ืฉื™ืฉ ืœืขื•ืœื ื”ื—ื™ ืœื”ืฆื™ืข.
08:39
What's the syllabus?
129
519000
2000
ืื– ืžื” ื‘ืชื•ื›ื ื™ืช ื”ืœื™ืžื•ื“ื™ื?
08:41
Three questions, for me, are key.
130
521000
4000
ืขื‘ื•ืจื™, ื™ืฉ ืฉืœื•ืฉ ืฉืืœื•ืช ืžืคืชื—.
08:45
How does life make things?
131
525000
2000
ืื™ืš ื”ื—ื™ื™ื ื™ื•ืฆืจื™ื ื“ื‘ืจื™ื?
08:47
This is the opposite; this is how we make things.
132
527000
3000
ื–ื” ื”ื”ื™ืคืš, ื–ื” ืื™ืš ืื ื—ื ื• ื™ื•ืฆืจื™ื ื“ื‘ืจื™ื.
08:50
It's called heat, beat and treat --
133
530000
2000
ืื ื—ื ื• ืžื—ืžืžื™ื, ืžื›ื™ื, ื•ืžืขื‘ื“ื™ื -
08:52
that's what material scientists call it.
134
532000
2000
ื–ื” ืžื” ืฉืžื”ื ื“ืกื™ ื—ื•ืžืจื™ื ืขื•ืฉื™ื.
08:54
And it's carving things down from the top, with 96 percent waste left over
135
534000
5000
ื•ื–ื” ื’ื™ืœื•ืฃ ื“ื‘ืจื™ื ืžืชื•ืš ืฉืœื, ืขื 96 ืื—ื•ื– ืคืกื•ืœืช ื ื•ืชืจืช
08:59
and only 4 percent product. You heat it up; you beat it with high pressures;
136
539000
5000
ื•ืจืง 4 ืื—ื•ื– ืฉืœ ืžื•ืฆืจ. ืืชื ืžื—ืžืžื™ื ืืช ื–ื”, ืžื›ื™ื ื•ืžืจืงืขื™ื ื‘ืœื—ืฅ ื’ื‘ื•ื”,
09:04
you use chemicals. OK. Heat, beat and treat.
137
544000
3000
ืžืขื‘ื“ื™ื ื‘ืืžืฆืขื•ืช ื›ื™ืžื™ืงืœื™ื. ื‘ืกื“ืจ. ืžื—ืžืžื™ื, ืžื›ื™ื, ื•ืžืขื‘ื“ื™ื.
09:07
Life can't afford to do that. How does life make things?
138
547000
4000
ื”ื—ื™ื™ื ืœื ื™ื›ื•ืœื™ื ืœื”ืจืฉื•ืช ืœืขืฆืžื ืืช ื–ื”. ืื™ืš ื—ื™ื™ื ืžื™ื™ืฆืจื™ื ื“ื‘ืจื™ื?
09:11
How does life make the most of things?
139
551000
3000
ืื™ืš ื”ื—ื™ื™ื ืžืคื™ืงื™ื ืืช ื”ืžื™ืจื‘ ืžืชื•ืš ื“ื‘ืจื™ื?
09:14
That's a geranium pollen.
140
554000
3000
ื–ื”ื• ื’ืจื’ืจ ืื‘ืงืช ืคืจื—ื™ ื’ืจื ื™ื•ื.
09:17
And its shape is what gives it the function of being able
141
557000
5000
ื•ื”ืฆื•ืจื” ืฉืœื• ื”ื™ื ื–ื• ืฉื ื•ืชื ืช ืœื• ืืช ื”ื™ื›ื•ืœืช
09:22
to tumble through air so easily. Look at that shape.
142
562000
4000
ืœื”ื™ื ืฉื ื‘ืื•ื™ืจ ื›ืœ ื›ืš ื‘ืงืœื•ืช, ื‘ืกื“ืจ? ืชืกืชื›ืœื• ืขืœ ื”ืฆื•ืจื” ืฉืœื•.
09:26
Life adds information to matter.
143
566000
5000
ื”ื—ื™ื™ื ืžื•ืกื™ืคื™ื ืžื™ื“ืข ืœื—ื•ืžืจ.
09:31
In other words: structure.
144
571000
2000
ื‘ืžื™ืœื™ื ืื—ืจื•ืช: ืžื‘ื ื”.
09:33
It gives it information. By adding information to matter,
145
573000
5000
ื”ื ืžื•ืกื™ืคื™ื ืžื™ื“ืข. ื‘ื›ืš ืฉื”ื ืžื•ืกื™ืคื™ื ืžื™ื“ืข,
09:38
it gives it a function that's different than without that structure.
146
578000
6000
ื”ื ืžืืคืฉืจื™ื ืชืคืงื•ื“ ืฉื•ื ื” ืžืืฉืจ ืื™ืœื• ืœื ื”ื™ื” ื”ืžื‘ื ื” ืงื™ื™ื.
09:44
And thirdly, how does life make things disappear into systems?
147
584000
5000
ื•ื“ื‘ืจ ืฉืœื™ืฉื™, ืื™ืš ื”ื—ื™ื™ื ื’ื•ืจืžื™ื ืœื“ื‘ืจื™ื ืœื”ื™ืขืœื ื‘ืชื•ืš ืžืขืจื›ื•ืช?
09:49
Because life doesn't really deal in things;
148
589000
5000
ื›ื™ ื”ื—ื™ื™ื ืœื ื‘ืืžืช ืขื•ืกืงื™ื ื‘ื“ื‘ืจื™ื;
09:54
there are no things in the natural world divorced
149
594000
4000
ืื™ืŸ ื“ื‘ืจื™ื ื‘ืขื•ืœื ื”ื˜ื‘ืข ืฉื ืคืจื“ื™ื
09:58
from their systems.
150
598000
3000
ืžื”ืžืขืจื›ื•ืช ื‘ื”ืŸ ื”ื ื ืžืฆืื™ื.
10:01
Really quick syllabus.
151
601000
2000
ื’ืจืกื” ืžืงื•ืฆืจืช ืฉืœ ืชื•ื›ื ื™ืช ื”ืœื™ืžื•ื“ื™ื.
10:03
As I'm reading more and more now, and following the story,
152
603000
6000
ื›ื›ืœ ืฉืื ื™ ืงื•ืจืืช ื™ื•ืชืจ, ื•ืขื•ืงื‘ืช ืื—ืจ ื”ืกื™ืคื•ืจ,
10:09
there are some amazing things coming up in the biological sciences.
153
609000
4000
ื™ืฉ ื›ืžื” ื“ื‘ืจื™ื ืžื“ื”ื™ืžื™ื ืฉืขื•ืœื™ื ืžืžื“ืขื™ ื”ื—ื™ื™ื.
10:13
And at the same time, I'm listening to a lot of businesses
154
613000
3000
ื•ื‘ืื•ืชื• ื–ืžืŸ, ืื ื™ ืžืงืฉื™ื‘ื” ืœืขืกืงื™ื ืจื‘ื™ื
10:16
and finding what their sort of grand challenges are.
155
616000
4000
ื•ืžื•ืฆืืช ืžื” ื”ืืชื’ืจื™ื ื”ื’ื“ื•ืœื™ื ืฉืœื”ื.
10:20
The two groups are not talking to each other.
156
620000
2000
ืฉืชื™ ื”ืงื‘ื•ืฆื•ืช ืœื ืžื“ื‘ืจื•ืช ืื—ืช ืขื ื”ืฉื ื™ื™ื”.
10:22
At all.
157
622000
3000
ื‘ื›ืœืœ.
10:25
What in the world of biology might be helpful at this juncture,
158
625000
4000
ืžื” ื‘ืขื•ืœื ื”ื‘ื™ื•ืœื•ื’ื™ื” ื™ื›ื•ืœ ืœื”ื™ื•ืช ืžื•ืขื™ืœ ื‘ื ืงื•ื“ื” ื–ื•,
10:29
to get us through this sort of evolutionary knothole that we're in?
159
629000
5000
ืขืœ ืžื ืช ืœื”ื•ืฆื™ื ืื•ืชื ื• ืžื”ืคืœื•ื ื˜ืจ ื”ืื‘ื•ืœื•ืฆื™ื•ื ื™ ื‘ื• ืื ื• ื ืžืฆืื™ื?
10:34
I'm going to try to go through 12, really quickly.
160
634000
3000
ืื ื™ ืื ืกื” ืœืกืงื•ืจ ื‘ืงืฆืจื” 12 ืจืขื™ื•ื ื•ืช.
10:37
One that's exciting to me is self-assembly.
161
637000
3000
ืื•ืงื™ื™, ืื—ื“ ืฉืžืจื’ืฉ ืื•ืชื™ ื”ื•ื ื”ืจื›ื‘ื”-ืขืฆืžื™ืช.
10:40
Now, you've heard about this in terms of nanotechnology.
162
640000
4000
ืขื›ืฉื™ื•, ืฉืžืขืชื ืขืœ ื–ื” ื‘ื”ืงืฉืจ ืฉืœ ื ื ื•-ื˜ื›ื ื•ืœื•ื’ื™ื”.
10:44
Back to that shell: the shell is a self-assembling material.
163
644000
4000
ื—ื–ืจื” ืœืฆื“ืฃ: ื”ืฆื“ืฃ ื”ื•ื ื—ื•ืžืจ ืฉืžืจื›ื™ื‘ ืืช ืขืฆืžื•.
10:48
On the lower left there is a picture of mother of pearl
164
648000
4000
ื‘ืฆื“ ื”ืฉืžืืœื™ ืœืžื˜ื” ื™ืฉ ืชืžื•ื ื” ืฉืœ ืื ื”ืคื ื™ื ื”
10:52
forming out of seawater. It's a layered structure that's mineral
165
652000
4000
ื ื•ืฆืจืช ืžืชื•ืš ืžื™ ื™ื. ื–ื”ื• ืžื‘ื ื” ืฉื›ื‘ืชื™ ืฉืœ ืžื™ื ืจืœ
10:56
and then polymer, and it makes it very, very tough.
166
656000
3000
ื•ืื– ืคื•ืœื™ืžืจ, ื•ื”ื•ื ืขื•ืฉื” ืื•ืชื• ืžืื•ื“, ืžืื•ื“ ืงืฉื™ื—.
10:59
It's twice as tough as our high-tech ceramics.
167
659000
3000
ื”ื•ื ืงืฉื™ื— ืคื™ ืฉื ื™ื™ื ืžืงืจืžื™ืงื•ืช ื”ื™-ื˜ืง.
11:02
But what's really interesting: unlike our ceramics that are in kilns,
168
662000
4000
ืื‘ืœ ืžื” ืฉืžืื•ื“ ืžืขื ื™ื™ืŸ ื”ื•ื ืฉื‘ืฉื•ื ื” ืžื”ืงืจืžื™ืงื•ืช ืฉืœื ื• ืฉื ื•ืฆืจื•ืช ื‘ืžืฉืจืคื•ืช,
11:06
it happens in seawater. It happens near, in and near, the organism's body.
169
666000
5000
ื–ื” ืงื•ืจื” ื‘ืžื™ ื™ื. ื–ื” ืงื•ืจื” ื‘ืชื•ืš ื’ื•ืคื• ืฉืœ ื”ืื•ืจื’ื ื™ื–ื ื•ืงืจื•ื‘ ืžืื•ื“ ืืœื™ื•.
11:11
This is Sandia National Labs.
170
671000
2000
ืื•ืงื™ื™, ืื ืฉื™ื ืžืชื—ื™ืœื™ื -
11:13
A guy named Jeff Brinker
171
673000
5000
ืืœื” ืžืขื‘ื“ื•ืช ืกื ื“ื™ื”; ื‘ื—ื•ืจ ื‘ืฉื ื’'ืฃ ื‘ืจื™ื ืงืจ
11:18
has found a way to have a self-assembling coding process.
172
678000
4000
ืžืฆื ื“ืจืš ืœื™ืฆื•ืจ ืชื”ืœื™ืš ืงื™ื“ื•ื“ ื‘ื”ืจื›ื‘ื” ืขืฆืžื™ืช.
11:22
Imagine being able to make ceramics at room temperature
173
682000
4000
ืชืืจื• ืœืขืฆืžื›ื ืืคืฉืจื•ืช ืœื™ืฆื•ืจ ืงืจืžื™ืงื” ื‘ื˜ืžืคืจื˜ื•ืจืช ื”ื—ื“ืจ
11:26
by simply dipping something into a liquid,
174
686000
4000
ืคืฉื•ื˜ ืขืœ ื™ื“ื™ ื˜ื‘ื™ืœืช ืžืฉื”ื• ื‘ื ื•ื–ืœ,
11:30
lifting it out of the liquid, and having evaporation
175
690000
3000
ื”ื•ืฆืืชื• ืžืชื•ืš ื”ื ื•ื–ืœ, ื•ื ืชื™ื ื” ืœืชื”ืœื™ืš ื”ืื™ื“ื•ื™
11:33
force the molecules in the liquid together,
176
693000
4000
ืœื”ื›ืจื™ื— ืืช ื”ืžื•ืœืงื•ืœื•ืช ื‘ื ื•ื–ืœ ืœื”ื™ืฆืžื“ ืื—ื“ ืœืฉื ื™,
11:37
so that they jigsaw together
177
697000
2000
ื›ืš ืฉื”ื ืžืฆื˜ืจืคื™ื ื™ื—ื“
11:39
in the same way as this crystallization works.
178
699000
4000
ื‘ืื•ืชื• ืื•ืคืŸ ื‘ื• ืขื•ื‘ื“ ืชื”ืœื™ืš ื”ืชื’ื‘ืฉื•ืช.
11:43
Imagine making all of our hard materials that way.
179
703000
3000
ืชืืจื• ืœืขืฆืžื›ื ืฉื›ืš ื ื™ืชืŸ ืœื™ื™ืฆืจ ืืช ื›ืœ ื”ื—ืžืจื™ื ื”ืงืฉื™ื—ื™ื.
11:46
Imagine spraying the precursors to a PV cell, to a solar cell,
180
706000
7000
ืชืืจื• ืœืขืฆืžื›ื ืจื™ืกื•ืก ืฉืœ ืงื•ื“ืžืŸ ืœื™ืฆื™ืจืช ืชื ืคื•ื˜ื•-ื•ื•ืœื˜ืื™, ืชื ืกื•ืœืจื™,
11:53
onto a roof, and having it self-assemble into a layered structure that harvests light.
181
713000
4000
ืขืœ ื’ื‘ื™ ื’ื’, ื›ืš ืฉื”ื•ื ื™ืจื›ื™ื‘ ืืช ืขืฆืžื• ืœืฉื›ื‘ื” ืฉืžืžื™ืจื” ืื•ืจ ืœื—ืฉืžืœ.
11:57
Here's an interesting one for the IT world:
182
717000
4000
ื”ื ื” ืจืขื™ื•ืŸ ืžืขื ื™ื™ืŸ ืœืขื•ืœื ื”-IT:
12:01
bio-silicon. This is a diatom, which is made of silicates.
183
721000
5000
ื‘ื™ื•-ืกื™ืœื™ืงื•ืŸ. ื–ื”ื• ื“ื™ืื˜ื•ื ืขืฉื•ื™ ืžืกื™ืœื™ืงื˜ื™ื.
12:06
And so silicon, which we make right now --
184
726000
2000
ื•ื›ืš ืกื™ืœื™ืงื•ืŸ, ืฉืื ื—ื ื• ืžื™ื™ืฆืจื™ื ื‘ื™ืžื™ื ืืœื• -
12:08
it's part of our carcinogenic problem in the manufacture of our chips --
185
728000
6000
ื–ื” ื—ืœืง ืžื”ื‘ืขื™ื” ื”ืงืจืฆื™ื ื•ื’ื ื™ืช ื‘ื™ื™ืฆื•ืจ ื”ืฉื‘ื‘ื™ื ืฉืœื ื• -
12:14
this is a bio-mineralization process that's now being mimicked.
186
734000
4000
ื–ื”ื• ืชื”ืœื™ืš ื‘ื™ื•-ืžื™ื ืจืœื™ื–ืฆื™ื” ืฉืื•ืชื• ืื ื—ื ื• ืžื—ืงื™ื ืขื›ืฉื™ื•.
12:18
This is at UC Santa Barbara. Look at these diatoms.
187
738000
4000
ื–ื•ื”ื™ ืื•ื ื™ื‘ืจืกื™ื˜ืช ืงืœื™ืคื•ืจื ื™ื” ื‘ืกื ื˜ื” ื‘ืจื‘ืจื”. ื”ืกืชื›ืœื• ืขืœ ื”ื“ื™ืื˜ื•ืžื™ื ื”ืืœื”;
12:22
This is from Ernst Haeckel's work.
188
742000
3000
ื–ื” ืœืงื•ื— ืžืขื‘ื•ื“ืชื• ืฉืœ ืืจื ืกื˜ ื”ืงืœ.
12:25
Imagine being able to -- and, again, it's a templated process,
189
745000
5000
ื“ืžื™ื™ื ื• ื™ื›ื•ืœืช - ื•ืฉื•ื‘, ื–ื”ื• ืชื”ืœื™ืš ืชื‘ื ื™ืชื™,
12:30
and it solidifies out of a liquid process -- imagine being able to have that
190
750000
4000
ื•ื”ื•ื ืžืชืžืฆืง ืžืชื•ืš ืชื”ืœื™ืš ื ื•ื–ืœื™ - ื“ืžื™ื™ื ื• ื™ื›ื•ืœืช ืœื’ืจื•ื
12:34
sort of structure coming out at room temperature.
191
754000
4000
ืœืžื‘ื ื” ื›ื–ื” ืœื”ื™ื‘ื ื•ืช ื‘ื˜ืžืคืจื˜ื•ืจืช ื”ื—ื“ืจ.
12:38
Imagine being able to make perfect lenses.
192
758000
3000
ื“ืžื™ื™ื ื• ื™ื›ื•ืœืช ืœื™ืฆื•ืจ ืขื“ืฉื•ืช ืžื•ืฉืœืžื•ืช.
12:41
On the left, this is a brittle star; it's covered with lenses
193
761000
5000
ืžืฆื“ ืฉืžืืœ, ื–ื”ื• ื›ื•ื›ื‘ ื™ื; ื”ื•ื ืžื›ื•ืกื” ื‘ืขื“ืฉื•ืช
12:46
that the people at Lucent Technologies have found
194
766000
3000
ืฉื›ืคื™ ืฉื”ืื ืฉื™ื ื‘ืœื•ืกื ื˜ ื’ื™ืœื•
12:49
have no distortion whatsoever.
195
769000
2000
ื”ื™ื ืŸ ืœื—ืœื•ื˜ื™ืŸ ื—ืกืจื•ืช ืขื™ื•ื•ืชื™ื.
12:51
It's one of the most distortion-free lenses we know of.
196
771000
3000
ืืœื• ื‘ื™ืŸ ื”ืขื“ืฉื•ืช ื—ืกืจื•ืช ื”ืขื™ื•ื•ืชื™ื ื‘ื™ื•ืชืจ ื”ืžื•ื›ืจื•ืช ืœืžื™ืŸ ื”ืื ื•ืฉื™.
12:54
And there's many of them, all over its entire body.
197
774000
3000
ื•ื™ืฉ ื”ืžื•ืŸ ืžื”ืŸ, ื›ืœ ื”ื’ื•ืฃ ืžื›ื•ืกื” ื‘ื”ืŸ.
12:57
What's interesting, again, is that it self-assembles.
198
777000
3000
ืžื” ืฉืžืขื ื™ื™ืŸ ื›ืืŸ, ืฉื•ื‘, ื”ื•ื ืฉื”ืŸ ืงื•ืจื•ืช ื‘ื”ืจื›ื‘ื”-ืขืฆืžื™ืช.
13:00
A woman named Joanna Aizenberg, at Lucent,
199
780000
4000
ืื™ืฉื” ื‘ืฉื ื’'ื•ืื ื” ืื™ื–ื ื‘ืจื’, ื‘ื—ื‘ืจืช ืœื•ืกื ื˜,
13:04
is now learning to do this in a low-temperature process to create
200
784000
4000
ืœื•ืžื“ืช ืขื›ืฉื™ื• ืœืขืฉื•ืช ื–ืืช ื‘ืชื”ืœื™ืš ื‘ื˜ืžืคืจื˜ื•ืจื” ื ืžื•ื›ื” ืขืœ ืžื ืช ืœื™ืฆื•ืจ
13:08
these sort of lenses. She's also looking at fiber optics.
201
788000
4000
ืขื“ืฉื•ืช ื›ืืœื”. ื”ื™ื ื’ื ื‘ื•ื—ื ืช ืกื™ื‘ื™ื ืื•ืคื˜ื™ื™ื.
13:12
That's a sea sponge that has a fiber optic.
202
792000
3000
ื–ื”ื• ืกืคื•ื’ ื™ื ืฉื™ืฉ ืœื• ืกื™ื‘ ืื•ืคื˜ื™.
13:15
Down at the very base of it, there's fiber optics
203
795000
3000
ืœืžื˜ื” ื‘ื‘ืกื™ืก ืฉืœื•, ื™ืฉ ืกื™ื‘ ืื•ืคื˜ื™
13:18
that work better than ours, actually, to move light,
204
798000
3000
ืฉืขื•ื‘ื“ ื˜ื•ื‘ ื™ื•ืชืจ ืžืฉืœื ื•, ืœืžืขืฉื”, ื‘ื”ืขื‘ืจืช ืื•ืจ.
13:21
but you can tie them in a knot; they're incredibly flexible.
205
801000
6000
ืื‘ืœ ืืชื ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ืื™ืชื ืงืฉืจ; ื”ื ื’ืžื™ืฉื™ื ื‘ืื•ืคืŸ ืžื•ืคืœื.
13:27
Here's another big idea: CO2 as a feedstock.
206
807000
4000
ื”ื ื” ืขื•ื“ ืจืขื™ื•ืŸ ื’ื“ื•ืœ: ืคื—ืžืŸ ื“ื• ื—ืžืฆื ื™ ื›ืžืฆืข ื’ื™ื“ื•ืœ.
13:31
A guy named Geoff Coates, at Cornell, said to himself,
207
811000
3000
ื‘ื—ื•ืจ ื‘ืฉื ื’'ืฃ ืงื•ืื˜ืก, ื‘ืื•ื ื™ื‘ืจืกื™ื˜ืช ืงื•ืจื ืœ, ืืžืจ ืœืขืฆืžื•,
13:34
you know, plants do not see CO2 as the biggest poison of our time.
208
814000
4000
ืืชื ื™ื•ื“ืขื™ื, ืฆืžื—ื™ื ืœื ืจื•ืื™ื ื‘ืคื—ืžืŸ ื“ื• ื—ืžืฆื ื™ ืืช ื”ืจืขืœ ื”ื’ื“ื•ืœ ื‘ื™ื•ืชืจ ืฉืœ ื–ืžื ื ื•.
13:38
We see it that way. Plants are busy making long chains
209
818000
3000
ืื ื—ื ื• ืจื•ืื™ื ืื•ืชื• ื›ื›ื–ื”. ืฆืžื—ื™ื ืขืกื•ืงื™ื ื‘ื™ืฆื™ืจืช ืฉืจืฉืจืื•ืช ืืจื•ื›ื•ืช
13:41
of starches and glucose, right, out of CO2. He's found a way --
210
821000
6000
ืฉืœ ืขืžื™ืœื ื™ื ื•ืกื•ื›ืจื™ื, ื ื›ื•ืŸ, ืžืชื•ืš ืคื—ืžืŸ ื“ื• ื—ืžืฆื ื™. ื”ื•ื ืžืฆื ื“ืจืš -
13:47
he's found a catalyst -- and he's found a way to take CO2
211
827000
3000
ื”ื•ื ืžืฆื ื–ืจื–, ื•ื”ื•ื ืžืฆื ื“ืจืš ืœืงื—ืช ืคื—ืžืŸ ื“ื• ื—ืžืฆื ื™
13:50
and make it into polycarbonates. Biodegradable plastics
212
830000
4000
ื•ืœื”ืคื•ืš ืื•ืชื• ืœืคื•ืœื™ืงืจื‘ื•ื ื˜. ืคืœืกื˜ื™ืง ืžืชื›ืœื”
13:54
out of CO2 -- how plant-like.
213
834000
2000
ืžืชื•ืš ืคื—ืžืŸ ื“ื• ื—ืžืฆื ื™ - ืžืžืฉ ื›ืžื• ืฆืžื—.
13:56
Solar transformations: the most exciting one.
214
836000
3000
ื˜ืจื ืกืคื•ืจืžืฆื™ื•ืช ืกื•ืœืืจื™ื•ืช: ื”ืจืขื™ื•ืŸ ื”ื›ื™ ืžืจื’ืฉ.
13:59
There are people who are mimicking the energy-harvesting device
215
839000
4000
ืืœื• ืื ืฉื™ื ืฉืžื—ืงื™ื ืืช ื”ืชืงืŸ ื”ืžืจืช ื”ืื ืจื’ื™ื”
14:03
inside of purple bacterium, the people at ASU. Even more interesting,
216
843000
4000
ืฉื ืžืฆื ื‘ื‘ืงื˜ืจื™ื” ืกื’ื•ืœื”, ืื ืฉื™ื ืž-ASU. ื•ืืคื™ืœื• ื™ื•ืชืจ ืžืขื ื™ื™ืŸ,
14:07
lately, in the last couple of weeks, people have seen
217
847000
3000
ืœืื—ืจื•ื ื”, ื‘ืฉื‘ื•ืขื•ืช ื”ืื—ืจื•ื ื™ื, ืื ืฉื™ื ืจืื•
14:10
that there's an enzyme called hydrogenase that's able to evolve
218
850000
5000
ืฉื™ืฉ ืื ื–ื™ื ื‘ืฉื ื”ื™ื“ื•ืจื’ื ื– ืฉืžืกื•ื’ืœ ืœื™ื™ืฆืจ
14:15
hydrogen from proton and electrons, and is able to take hydrogen up --
219
855000
4000
ืžื™ืžืŸ ืžืชื•ืš ืคืจื•ื˜ื•ื ื™ื ื•ืืœืงื˜ืจื•ื ื™ื.ื•ื”ื•ื ืžืกื•ื’ืœ ืœื™ืฆื•ืจ ืžื™ืžืŸ -
14:19
basically what's happening in a fuel cell, in the anode of a fuel cell
220
859000
5000
ื‘ืื•ืคืŸ ื‘ืกื™ืกื™, ืžื” ืฉืงื•ืจื” ื‘ืชื ื“ืœืง, ื‘ืื ื•ื“ื” ืฉืœ ืชื ื“ืœืง
14:24
and in a reversible fuel cell.
221
864000
2000
ื•ื‘ืชื ื“ืœืง ื”ืคื™ืš.
14:26
In our fuel cells, we do it with platinum;
222
866000
3000
ื‘ืชืื™ ื”ื“ืœืง ืฉืœื ื•, ืื ื—ื ื• ืขื•ืฉื™ื ืืช ื–ื” ืขื ืคืœื˜ื™ื ื”.
14:29
life does it with a very, very common iron.
223
869000
4000
ื”ื—ื™ื™ื ืขื•ืฉื™ื ืืช ื–ื” ืขื ื™ืกื•ื“ ื ืคื•ืฅ ืžืื•ื“ - ื‘ืจื–ืœ.
14:33
And a team has now just been able to mimic
224
873000
4000
ื•ืฆื•ื•ืช ื”ืฆืœื™ื— ืžืžืฉ ืœืื—ืจื•ื ื” ืœื—ืงื•ืช
14:37
that hydrogen-juggling hydrogenase.
225
877000
5000
ืืช ืคืขื•ืœืช ื”ืื ื–ื™ื.
14:42
That's very exciting for fuel cells --
226
882000
2000
ื–ื” ืžืื•ื“ ืžืจื’ืฉ ืขื‘ื•ืจ ืชืื™ ื“ืœืง -
14:44
to be able to do that without platinum.
227
884000
3000
ืœื”ื™ื•ืช ืžืกื•ื’ืœ ืœืขืฉื•ืช ืืช ื–ื” ื‘ืœื™ ืคืœื˜ื™ื ื”.
14:47
Power of shape: here's a whale. We've seen that the fins of this whale
228
887000
5000
ื”ื›ื•ื— ืฉืœ ื”ืฆื•ืจื”: ื”ื ื” ืœื•ื•ื™ื™ืชืŸ. ืจืื™ื ื• ืฉืขืœ ื”ืกื ืคื™ืจื™ื ืฉืœ ืœื•ื•ื™ืชืŸ ื–ื”
14:52
have tubercles on them. And those little bumps
229
892000
3000
ื™ืฉ ื’ื‘ืฉื•ืฉื™ื•ืช. ื•ื”ื‘ืœื™ื˜ื•ืช ื”ืงื˜ื ื•ืช ื”ืืœื”
14:55
actually increase efficiency in, for instance,
230
895000
5000
ื“ื•ื•ืงื ืžื’ื‘ื™ืจื•ืช ืืช ื”ื™ืขื™ืœื•ืช, ืœื“ื•ื’ืžื,
15:00
the edge of an airplane -- increase efficiency by about 32 percent.
231
900000
5000
ื‘ืงืฆื” ืฉืœ ืžื˜ื•ืก - ืžื’ื‘ื™ืจื•ืช ืืช ื”ื™ืขื™ืœื•ืช ื‘-32 ืื—ื•ื– ืœืขืจืš.
15:05
Which is an amazing fossil fuel savings,
232
905000
2000
ืืฉืจ ืžื”ื•ื•ื” ื—ื™ืกื›ื•ืŸ ืžื“ื”ื™ื ื‘ื“ืœืง,
15:07
if we were to just put that on the edge of a wing.
233
907000
5000
ืื ื”ื™ื™ื ื• ืคืฉื•ื˜ ืฉืžื™ื ืืช ื–ื” ืขืœ ืงืฆื” ื”ื›ื ืฃ.
15:12
Color without pigments: this peacock is creating color with shape.
234
912000
4000
ืฆื‘ืข ืœืœื ืคื™ื’ืžื ื˜ื™ื: ื˜ื•ื•ืก ื–ื” ื™ื•ืฆืจ ืฆื‘ืข ืขืœ ื™ื“ื™ ืฆื•ืจื”.
15:16
Light comes through, it bounces back off the layers;
235
916000
3000
ื”ืื•ืจ ืขื•ื‘ืจ, ื•ืžื•ื—ื–ืจ ืžื”ืฉื›ื‘ื•ืช;
15:19
it's called thin-film interference. Imagine being able
236
919000
3000
ืงื•ืจืื™ื ืœื–ื” ื”ืชืื‘ื›ื•ืช ืžืฉื›ื‘ื•ืช ื“ืงื•ืช. ื“ืžื™ื™ื ื• ื™ื›ื•ืœืช
15:22
to self-assemble products with the last few layers
237
922000
3000
ืœืขืฉื•ืช ื”ืจื›ื‘ื” ืขืฆืžื™ืช ืฉืœ ืžื•ืฆืจื™ื ืฉื”ืฉื›ื‘ื•ืช ื”ืื—ืจื•ื ื•ืช ืฉืœื”ื
15:25
playing with light to create color.
238
925000
4000
ืžืฉื—ืงื•ืช ืขื ืื•ืจ ืขืœ ืžื ืช ืœื™ืฆื•ืจ ืฆื‘ืข.
15:29
Imagine being able to create a shape on the outside of a surface,
239
929000
5000
ื“ืžื™ื™ื ื• ืืคืฉืจื•ืช ืœื™ืฆื•ืจ ืฆื•ืจื” ืขืœ ื”ื—ืœืง ื”ื—ื™ืฆื•ื ื™ ืฉืœ ืคื ื™ ื”ืฉื˜ื—,
15:34
so that it's self-cleaning with just water. That's what a leaf does.
240
934000
5000
ื›ืš ืฉื”ื•ื ื™ื‘ืฆืข ื ื™ืงื•ื™-ืขืฆืžื™ ื‘ืืžืฆืขื•ืช ืžื™ื. ื–ื” ืžื” ืฉืขืœื” ืขื•ืฉื”.
15:39
See that up-close picture?
241
939000
2000
ืจื•ืื™ื ืืช ื”ืชืงืจื™ื‘?
15:41
That's a ball of water, and those are dirt particles.
242
941000
3000
ื–ื” ื›ื“ื•ืจ ืฉืœ ืžื™ื, ื•ืืœื• ื”ื ื—ืœืงื™ืงื™ ืœื›ืœื•ืš.
15:44
And that's an up-close picture of a lotus leaf.
243
944000
3000
ื•ื–ื” ืชืงืจื™ื‘ ืฉืœ ืขืœื” ื”ืœื•ื˜ื•ืก.
15:47
There's a company making a product called Lotusan, which mimics --
244
947000
5000
ื™ืฉ ื—ื‘ืจื” ื”ืžื™ื™ืฆืจืช ืžื•ืฆืจ ืฉื ืงืจื Lotusan, ืืฉืจ ืžื—ืงื” -
15:52
when the building facade paint dries, it mimics the bumps
245
952000
4000
ื›ืืฉืจ ื”ืฆื‘ืข ื‘ื—ื–ื™ืช ื”ื‘ื ื™ื™ืŸ ืžืชื™ื™ื‘ืฉ, ื”ื•ื ืžื—ืงื” ืืช ื”ื‘ืœื™ื˜ื•ืช
15:56
in a self-cleaning leaf, and rainwater cleans the building.
246
956000
5000
ื‘ืขืœื” ื‘ืขืœ ื ื™ืงื•ื™ ืขืฆืžื™, ื•ืื– ืžื™ ื’ืฉืžื™ื ืžื ืงื™ื ืืช ื”ื‘ื ื™ื™ืŸ.
16:01
Water is going to be our big, grand challenge:
247
961000
6000
ืžื™ื ื”ื•ืœื›ื™ื ืœื”ื™ื•ืช ื”ืืชื’ืจ ื”ื’ื“ื•ืœ, ื”ืžืจื›ื–ื™ ืฉืœื ื•:
16:07
quenching thirst.
248
967000
2000
ืœื”ืจื•ื•ืช ืฆื™ืžืื•ืŸ.
16:09
Here are two organisms that pull water.
249
969000
3000
ื”ื ื” ืฉื ื™ ืื•ืจื’ื ื™ื–ืžื™ื ืฉืžืคื™ืงื™ื ืžื™ื.
16:12
The one on the left is the Namibian beetle pulling water out of fog.
250
972000
4000
ืžืฉืžืืœ ื—ื™ืคื•ืฉื™ืช ื ืžื™ื‘ื™ืช ืฉืžืคื™ืงื” ืžื™ื ืžืชื•ืš ืขืจืคืœ.
16:16
The one on the right is a pill bug -- pulls water out of air,
251
976000
3000
ืžื™ืžื™ืŸ ื–ื”ื• ืื•ืจื™ ื›ื“ื•ืจื™ - ื”ื•ื ืžืคื™ืง ืžื™ื ืžืชื•ืš ื”ืื•ื™ืจ.
16:19
does not drink fresh water.
252
979000
3000
ืœื ืฉื•ืชื” ืžื™ื.
16:22
Pulling water out of Monterey fog and out of the sweaty air in Atlanta,
253
982000
7000
ื”ืคืงืช ื•ื”ืคืจื“ืช ืžื™ื ืžืชื•ืš ื”ืขืจืคืœ ื‘ืžื•ื ื˜ืจื™ื™ ื•ืžืชื•ืš ื”ืื•ื™ืจ ื”ืœื— ื‘ืื˜ืœื ื˜ื”,
16:29
before it gets into a building, are key technologies.
254
989000
4000
ืœืคื ื™ ื›ื ื™ืกื” ืœืžื‘ื ื™ื, ื”ื™ื ื˜ื›ื ื•ืœื•ื’ื™ื™ืช ืžืคืชื—.
16:33
Separation technologies are going to be extremely important.
255
993000
4000
ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ื”ืคืจื“ื” ื™ื”ื™ื• ื—ืฉื•ื‘ื•ืช ื‘ื™ื•ืชืจ.
16:37
What if we were to say, no more hard rock mining?
256
997000
4000
ืžื” ืื ื ืืžืจ, ื“ื™ ืœื›ืจื™ื™ืช ืื‘ื ื™ื?
16:41
What if we were to separate out metals from waste streams,
257
1001000
6000
ืžื” ืื ื ืคื™ืง ืžืชื›ื•ืช ืžืชื•ืš ื–ืจืžื™ื ืฉืœ ืคืกื•ืœืช -
16:47
small amounts of metals in water? That's what microbes do;
258
1007000
4000
ื›ืžื•ื™ื•ืช ืงื˜ื ื•ืช ืฉืœ ืžืชื›ืช ื‘ืžื™ื? ื–ื” ืžื” ืฉืžื™ืงืจื•ื‘ื™ื ืขื•ืฉื™ื,
16:51
they chelate metals out of water.
259
1011000
2000
ื”ื ืžืคืจื™ื“ื™ื ืžืชื›ื•ืช ืžืชื•ืš ืžื™ื.
16:53
There's a company here in San Francisco called MR3
260
1013000
3000
ื™ืฉ ื—ื‘ืจื” ื›ืืŸ ื‘ืกืืŸ ืคืจื ืกื™ืกืงื• ื‘ืฉื MR3
16:56
that is embedding mimics of the microbes' molecules on filters
261
1016000
6000
ืฉืžื˜ืžื™ืขื” ื—ื™ืงื•ื™ื™ื ืฉืœ ืžื•ืœืงื•ืœื•ืช ืฉืœ ืžื™ืงืจื•ื‘ื™ื ืขืœ ื’ื‘ื™ ืคื™ืœื˜ืจื™ื
17:02
to mine waste streams.
262
1022000
3000
ืขืœ ืžื ืช ืœื›ืจื•ืช ืžืชื•ืš ื–ืจืžื™ ืคืกื•ืœืช.
17:05
Green chemistry is chemistry in water.
263
1025000
4000
ื›ื™ืžื™ื” ื™ืจื•ืงื” ื”ื™ื ื›ื™ืžื™ื” ื‘ืชื•ืš ืžื™ื.
17:09
We do chemistry in organic solvents.
264
1029000
2000
ืื ื—ื ื• ืขื•ืฉื™ื ื›ื™ืžื™ื” ื‘ืกื•ืœื‘ื ื˜ื™ื ืื•ืจื’ื ื™ื™ื.
17:11
This is a picture of the spinnerets coming out of a spider
265
1031000
4000
ื–ื•ื”ื™ ืชืžื•ื ื” ืฉืœ ื”ืงื•ืจื™ื ื™ื•ืฆืื™ื ืžืชื•ืš ืขื›ื‘ื™ืฉ,
17:15
and the silk being formed from a spider. Isn't that beautiful?
266
1035000
3000
ื•ื”ืžืฉื™ ืฉื ื•ืฆืจ ืžื”ืขื›ื‘ื™ืฉ. ื”ืื™ืŸ ื–ื” ื™ืคื”ืคื”?
17:18
Green chemistry is replacing our industrial chemistry with nature's recipe book.
267
1038000
8000
ื›ื™ืžื™ื” ื™ืจื•ืงื” ืžื—ืœื™ืคื” ืืช ื”ื›ื™ืžื™ื” ื”ืชืขืฉื™ื™ืชื™ืช ืฉืœื ื• ืขื ืกืคืจ ื”ืžืชื›ื•ื ื™ื ืฉืœ ื”ื˜ื‘ืข.
17:26
It's not easy, because life uses
268
1046000
5000
ื–ื” ืœื ืงืœ, ื›ื™ื•ื•ืŸ ืฉื”ื—ื™ื™ื ืžืฉืชืžืฉื™ื
17:31
only a subset of the elements in the periodic table.
269
1051000
4000
ืจืง ื‘ื—ืœืง ืงื˜ืŸ ืžื”ื™ืกื•ื“ื•ืช ื‘ื˜ื‘ืœื ื”ืžื—ื–ื•ืจื™ืช.
17:35
And we use all of them, even the toxic ones.
270
1055000
4000
ื•ืื ื—ื ื• ืžืฉืชืžืฉื™ื ื‘ื›ื•ืœื, ืืคื™ืœื• ื‘ืืœื• ื”ืจืขื™ืœื™ื.
17:39
To figure out the elegant recipes that would take the small subset
271
1059000
5000
ืžืฆื™ืืช ื”ืžืชื›ื•ื ื™ื ื”ืืœื’ื ื˜ื™ื™ื ืฉื™ืงื—ื• ืงื‘ื•ืฆื” ืงื˜ื ื”
17:44
of the periodic table, and create miracle materials like that cell,
272
1064000
6000
ืฉืœ ื™ืกื•ื“ื•ืช, ื•ื™ื™ืฆืจื• ื—ื•ืžืจื™ื ืคืœืื™ื™ื ื›ืžื• ื–ื”,
17:50
is the task of green chemistry.
273
1070000
2000
ื–ื•ื”ื™ ืžืฉื™ืžืชื” ืฉืœ ื”ื›ื™ืžื™ื” ื”ื™ืจื•ืงื”.
17:52
Timed degradation: packaging that is good
274
1072000
4000
ื”ืชืคืจืงื•ืช ืžืชื•ื–ืžื ืช: ืืจื™ื–ื” ืฉื”ื™ื ื˜ื•ื‘ื”
17:56
until you don't want it to be good anymore, and dissolves on cue.
275
1076000
4000
ืขื“ ืฉืœื ืชืจืฆื• ืื•ืชื” ื™ื•ืชืจ, ื•ืื– ืžืชืžื•ืกืกืช ืœืคื™ ืคืงื•ื“ื”.
18:00
That's a mussel you can find in the waters out here,
276
1080000
3000
ื–ื•ื”ื™ ืฆื“ืคื” ืฉืชื•ื›ืœื• ืœืžืฆื•ื ื‘ืžื™ื ื›ืืŸ.
18:03
and the threads holding it to a rock are timed; at exactly two years,
277
1083000
4000
ื•ื”ื—ื•ื˜ื™ื ืฉืงื•ืฉืจื™ื ืื•ืชื” ืœืกืœืข ืžืชื•ื–ืžื ื™ื - ืชื•ืš ื‘ื“ื™ื•ืง ืฉื ืชื™ื™ื
18:07
they begin to dissolve.
278
1087000
2000
ื”ื ืžืชื—ื™ืœื™ื ืœื”ืชืžื•ืกืก.
18:09
Healing: this is a good one.
279
1089000
3000
ืจื™ืคื•ื™: ื–ื” ืจืขื™ื•ืŸ ื˜ื•ื‘.
18:12
That little guy over there is a tardigrade.
280
1092000
3000
ื”ื‘ื—ื•ืจ ื”ืงื˜ืŸ ื›ืืŸ ื”ื•ื ื“ื•ื‘ื•ืŸ ืžื™ื.
18:15
There is a problem with vaccines around the world
281
1095000
6000
ื™ืฉ ื‘ืขื™ื” ื‘ืจื—ื‘ื™ ื”ืขื•ืœื ืฉื—ื™ืกื•ื ื™ื
18:21
not getting to patients. And the reason is
282
1101000
3000
ืœื ืžื’ื™ืขื™ื ืœืคืฆื™ื™ื ื˜ื™ื. ื•ื”ืกื™ื‘ื” ืœื›ืš ื”ื™ื
18:24
that the refrigeration somehow gets broken;
283
1104000
4000
ืฉื”ืงื™ืจื•ืจ ืžืชืงืœืงืœ ืœืื•ืจืš ื”ื“ืจืš;
18:28
what's called the "cold chain" gets broken.
284
1108000
2000
"ื”ืฉืจืฉืจืช ื”ืงืจื”" ื ืฉื‘ืจืช, ืงื•ืจืื™ื ืœื–ื”.
18:30
A guy named Bruce Rosner looked at the tardigrade --
285
1110000
3000
ื•ื‘ื—ื•ืจ ื‘ืฉื ื‘ืจื•ืก ืจื•ื–ื ืจ ื”ืกืชื›ืœ ืขืœ ื“ื•ื‘ื•ื ื™ ื”ืžื™ื -
18:33
which dries out completely, and yet stays alive for months
286
1113000
6000
ืฉืžืชื™ื™ื‘ืฉื™ื ืœื—ืœื•ื˜ื™ืŸ, ื•ื‘ื›ืœ ื–ืืช ื ืฉืืจื™ื ื‘ื—ื™ื™ื ื‘ืžืฉืš ื—ื•ื“ืฉื™ื
18:39
and months and months, and is able to regenerate itself.
287
1119000
3000
ื•ื—ื•ื“ืฉื™ื, ื•ื—ื•ื“ืฉื™ื, ื•ืžืกื•ื’ืœื™ื ืœื”ื—ื–ื™ืจ ืืช ืขืฆืžื ืœืชื—ื™ื™ื”.
18:42
And he found a way to dry out vaccines --
288
1122000
3000
ื•ื”ื•ื ืžืฆื ืฉื™ื˜ื” ืœื™ื™ื‘ืฉ ื—ื™ืกื•ื ื™ื -
18:45
encase them in the same sort of sugar capsules
289
1125000
4000
ืœืื—ืกืŸ ืื•ืชื ื‘ืื•ืชื• ืกื•ื’ ืฉืœ ื›ืžื•ืกื•ืช ืกื•ื›ืจ
18:49
as the tardigrade has within its cells --
290
1129000
3000
ืฉื™ืฉ ืœื“ื•ื‘ื•ืŸ ื”ืžื™ื ื‘ืชื•ืš ื”ืชืื™ื ืฉืœื• -
18:52
meaning that vaccines no longer need to be refrigerated.
291
1132000
5000
ื•ื”ืชื•ืฆืื” ื”ื™ื ืฉื”ื—ื™ืกื•ื ื™ื ื›ื‘ืจ ืœื ื—ื™ื™ื‘ื™ื ืœื”ื™ืฉืžืจ ื‘ืงื™ืจื•ืจ.
18:57
They can be put in a glove compartment, OK.
292
1137000
4000
ืืคืฉืจ ืœืื—ืกืŸ ืื•ืชื ื‘ืชื ื”ื›ืคืคื•ืช.
19:01
Learning from organisms. This is a session about water --
293
1141000
5000
ืœื™ืžื•ื“ ืžืื•ืจื’ื ื™ื–ืžื™ื. ื›ืืŸ ืžื“ื•ื‘ืจ ืขืœ ืžื™ื -
19:06
learning about organisms that can do without water,
294
1146000
3000
ืœืœืžื•ื“ ืžืื•ืจื’ื ื™ื–ืžื™ื ืฉื™ื›ื•ืœื™ื ืœื”ืกืชื“ืจ ื‘ืœื™ ืžื™ื,
19:09
in order to create a vaccine that lasts and lasts and lasts without refrigeration.
295
1149000
7000
ืขืœ ืžื ืช ืœื™ืฆื•ืจ ื—ื™ืกื•ื ื™ื ืฉื™ื›ื•ืœื™ื ืœื”ืฉืชืžืจ ืœืื•ืจืš ื–ืžืŸ ืœืœื ืงื™ืจื•ืจ.
19:16
I'm not going to get to 12.
296
1156000
3000
ืื ื™ ืœื ืื’ื™ืข ืœ-12...
19:19
But what I am going to do is tell you that the most important thing,
297
1159000
4000
ืื‘ืœ ืžื” ืฉืื•ืžืจ ืœื›ื ื”ื•ื ืฉื”ื“ื‘ืจ ื”ื—ืฉื•ื‘ ื‘ื™ื•ืชืจ,
19:23
besides all of these adaptations, is the fact that these organisms
298
1163000
5000
ืžืœื‘ื“ ื›ืœ ื”ื”ืชืืžื•ืช ื”ืืœื”, ื”ื•ื ื”ืขื•ื‘ื“ื” ืฉื”ืื•ืจื’ื ื™ื–ืžื™ื ื”ืœืœื•
19:28
have figured out a way to do the amazing things they do
299
1168000
5000
ืžืฆืื• ื“ืจืš ืœืขืฉื•ืช ืืช ื›ืœ ื”ื“ื‘ืจื™ื ื”ืžื•ืคืœืื™ื ืฉื”ื ืขื•ืฉื™ื
19:33
while taking care of the place
300
1173000
3000
ืชื•ืš ืฉื”ื ื“ื•ืื’ื™ื ืœืกื‘ื™ื‘ื”
19:36
that's going to take care of their offspring.
301
1176000
5000
ืฉืชื“ืื’ ืœืฆืืฆืื™ื”ื.
19:41
When they're involved in foreplay,
302
1181000
3000
ื›ืืฉืจ ื”ื ืขื•ืกืงื™ื ื‘ืžืฉื—ืง ืžืงื“ื™ื,
19:44
they're thinking about something very, very important --
303
1184000
3000
ื”ื ื—ื•ืฉื‘ื™ื ืขืœ ืžืฉื”ื• ืžืื•ื“, ืžืื•ื“, ื—ืฉื•ื‘,
19:47
and that's having their genetic material
304
1187000
4000
ื•ื”ื•ื ืื™ืš ืœืฉืžืจ ืืช ื”ื—ื•ืžืจ ื”ื’ื ื˜ื™ ืฉืœื”ื
19:51
remain, 10,000 generations from now.
305
1191000
5000
10,000 ื“ื•ืจื•ืช ืžื”ื™ื•ื.
19:56
And that means finding a way to do what they do
306
1196000
2000
ื•ืคื™ืจื•ืฉื• ืฉืœ ื“ื‘ืจ, ืœืžืฆื•ื ื“ืจืš ืœืขืฉื•ืช ืืช ืžื” ืฉื”ื ืขื•ืฉื™ื
19:58
without destroying the place that'll take care of their offspring.
307
1198000
4000
ืžื‘ืœื™ ืœื”ืจื•ืก ืืช ื”ืกื‘ื™ื‘ื” ืฉืชื“ืื’ ืœืฆืืฆืื™ื ืฉืœื”ื.
20:02
That's the biggest design challenge.
308
1202000
3000
ื–ื”ื• ื”ืืชื’ืจ ื”ืชื›ื ื•ื ื™ ื”ื’ื“ื•ืœ ื‘ื™ื•ืชืจ.
20:05
Luckily, there are millions and millions of geniuses
309
1205000
6000
ืœืžืจื‘ื” ื”ืžื–ืœ, ื™ืฉ ืžื™ืœื™ื•ื ื™ื ืขืœ ืžื™ืœื™ื•ื ื™ื ืฉืœ ื’ืื•ื ื™ื
20:11
willing to gift us with their best ideas.
310
1211000
3000
ืฉืžื•ื›ื ื™ื ืœืชืช ืœื ื• ืืช ืจืขื™ื•ื ื•ืชื™ื”ื ื”ื˜ื•ื‘ื™ื ื‘ื™ื•ืชืจ.
20:14
Good luck having a conversation with them.
311
1214000
3000
ื‘ื”ืฆืœื—ื” ื‘ืฉื™ื—ื” ืื™ืชื.
20:17
Thank you.
312
1217000
1000
ืชื•ื“ื”.
20:18
(Applause)
313
1218000
14000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
20:32
Chris Anderson: Talk about foreplay, I -- we need to get to 12, but really quickly.
314
1232000
4000
ื›ืจื™ืก ืื ื“ืจืกื•ืŸ: ืื ื›ื‘ืจ ืžื“ื‘ืจื™ื ืขืœ ืžืฉื—ืง ืžืงื“ื™ื, ืื ื™ - ืื ื—ื ื• ื—ื™ื™ื‘ื™ื ืœืฉืžื•ืข ืืช ื›ืœ ื”-12, ืื‘ืœ ืžืื•ื“ ืžื”ืจ.
20:36
Janine Benyus: Oh really?
315
1236000
1000
ื’'ื ื™ืŸ ื‘ื ื™ื•ืก: ืื”, ื‘ืืžืช?
20:37
CA: Yeah. Just like, you know, like the 10-second version
316
1237000
3000
ื›ื: ื›ืŸ. ื›ืœื•ืžืจ, ืืช ื™ื•ื“ืขืช, ืชืงืฆื™ืจื™ื ืฉืœ 10 ืฉื ื™ื•ืช
20:40
of 10, 11 and 12. Because we just -- your slides are so gorgeous,
317
1240000
3000
ืฉืœ 10, 11, ื•-12. ื›ื™ื•ื•ืŸ ืฉืื ื—ื ื• ื—ื™ื™ื‘ื™ื - ื”ืฉืงืคื™ื ืฉืœืš ืžื”ืžืžื™ื,
20:43
and the ideas are so big, I can't stand to let you go down
318
1243000
2000
ื•ื”ืจืขื™ื•ื ื•ืช ื›ืœ ื›ืš ื’ื“ื•ืœื™ื, ืฉืื ื™ ืœื ื™ื›ื•ืœ ืœืชืช ืœืš ืœืจื“ืช
20:45
without seeing 10, 11 and 12.
319
1245000
2000
ื‘ืœื™ ืœื”ืจืื•ืช ืืช 10, 11, ื•-12.
20:47
JB: OK, put this -- OK, I'll just hold this thing. OK, great.
320
1247000
4000
ื’ื‘: ืื•ืงื™ื™, ืื ื™ ืจืง ืื—ื–ื™ืง ืืช ื–ื”. ืื•ืงื™ื™, ืžืขื•ืœื”.
20:51
OK, so that's the healing one.
321
1251000
3000
ืื•ืงื™ื™, ืื– ื–ื” ืขืœ ืจื™ืคื•ื™.
20:54
Sensing and responding: feedback is a huge thing.
322
1254000
3000
ื—ื™ืฉื” ื•ืชื’ื•ื‘ื”: ืคื™ื“ื‘ืง ื”ื•ื ื“ื‘ืจ ืื“ื™ืจ.
20:57
This is a locust. There can be 80 million of them in a square kilometer,
323
1257000
4000
ื–ื”ื• ืืจื‘ื”. ื™ื›ื•ืœื™ื ืœื”ื™ื•ืช 80 ืžื™ืœื™ื•ืŸ ืžื”ื ื‘ืงื™ืœื•ืžื˜ืจ ืจื‘ื•ืข,
21:01
and yet they don't collide with one another.
324
1261000
3000
ื•ืขื“ื™ื™ืŸ, ื”ื ืœื ืžืชื ื’ืฉื™ื ืื—ื“ ืขื ื”ืฉื ื™.
21:04
And yet we have 3.6 million car collisions a year.
325
1264000
5000
ืขื ื–ืืช, ื™ืฉ ืœื ื• 3.6 ืžื™ืœื™ื•ืŸ ื”ืชื ื’ืฉื•ื™ื•ืช ื‘ื™ืŸ ืžื›ื•ื ื™ื•ืช ื›ืœ ืฉื ื”.
21:09
(Laughter)
326
1269000
2000
(ืฆื—ื•ืง)
21:11
Right. There's a person at Newcastle
327
1271000
4000
ื ื›ื•ืŸ. ื™ืฉ ืžื™ืฉื”ื™ ื‘ื ื™ื•ืงืกืœ
21:15
who has figured out that it's a very large neuron.
328
1275000
3000
ืฉื”ื‘ื™ื ื” ืฉื™ืฉ ื ื™ื•ืจื•ืŸ ื’ื“ื•ืœ ืžืื•ื“.
21:18
And she's actually figuring out how to make
329
1278000
3000
ื•ื”ื™ื ื—ื•ืงืจืช ืื™ืš ืœืžืžืฉ
21:21
a collision-avoidance circuitry
330
1281000
2000
ืžืขื’ืœ ืœืžื ื™ืขืช ื”ืชื ื’ืฉื•ื™ื•ืช
21:23
based on this very large neuron in the locust.
331
1283000
4000
ื‘ื”ืชื‘ืกืก ืขืœ ื”ื ื•ื™ืจื•ืŸ ื”ื’ื“ื•ืœ ื”ื–ื” ื‘ืืจื‘ื”..
21:27
This is a huge and important one, number 11.
332
1287000
2000
ื–ื” ื’ื“ื•ืœ ื•ื—ืฉื•ื‘, ืžืกืคืจ 11.
21:29
And that's the growing fertility.
333
1289000
2000
ื•ื”ื•ื ื’ื™ื“ื•ืœ ืคืจื™ื•ืŸ.
21:31
That means, you know, net fertility farming.
334
1291000
4000
ื›ืœื•ืžืจ, ืืชื ื™ื•ื“ืขื™ื, ื—ืงืœืื•ืช ืคืจื™ื•ืŸ ื ื˜ื•.
21:35
We should be growing fertility. And, oh yes -- we get food, too.
335
1295000
4000
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื’ื“ืœ ืคืจื™ื•ืŸ. ื•ื’ื, ื›ืŸ - ื ืงื‘ืœ ื’ื ืื•ื›ืœ.
21:39
Because we have to grow the capacity of this planet
336
1299000
5000
ื›ื™ื•ื•ืŸ ืฉืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื”ื’ื“ื™ืœ ืืช ื”ืงื™ื‘ื•ืœืช ืฉืœ ื”ืคืœื ื˜ื” ื”ื–ื•
21:44
to create more and more opportunities for life.
337
1304000
3000
ืœื™ืฆื•ืจ ืขื•ื“ ื•ืขื•ื“ ื”ื–ื“ืžื ื•ื™ื•ืช ืœื—ื™ื™ื.
21:47
And really, that's what other organisms do as well.
338
1307000
2000
ื•ืœืžืขืŸ ื”ืืžืช, ื–ื” ื’ื ืžื” ืฉืื•ืจื’ื ื™ื–ืžื™ื ืื—ืจื™ื ืขื•ืฉื™ื.
21:49
In ensemble, that's what whole ecosystems do:
339
1309000
3000
ื–ื” ืžื” ืฉืžืขืจื›ื•ืช ืืงื•ืœื•ื’ื™ื•ืช ืฉืœืžื•ืช ืขื•ืฉื•ืช ื‘ืœื”ืงื”:
21:52
they create more and more opportunities for life.
340
1312000
3000
ื”ืŸ ื™ื•ืฆืจื•ืช ืขื•ื“ ื•ืขื•ื“ ื”ื–ื“ืžื ื•ื™ื•ืช ืœื—ื™ื™ื.
21:55
Our farming has done the opposite.
341
1315000
3000
ื”ื—ืงืœืื•ืช ืฉืœื ื• ืขืฉืชื” ืืช ื”ื”ื™ืคืš.
21:58
So, farming based on how a prairie builds soil,
342
1318000
4000
ืื–, ื—ืงืœืื•ืช ื”ืžื‘ื•ืกืกืช ืขืœ ื”ื“ืจืš ื‘ื” ืขืจื‘ื” ื‘ื•ื ื” ืื“ืžื” ืคื•ืจื™ื”,
22:02
ranching based on how a native ungulate herd
343
1322000
4000
ื—ื•ื•ืื•ืช ื”ืžืชื‘ืกืกืช ืขืœ ื”ื“ืจืš ื‘ื” ืขื“ืจ ื‘ื”ืžื•ืช ื˜ื‘ืขื™
22:06
actually increases the health of the range,
344
1326000
2000
ืžื’ื“ื™ืœ ืืช ื”ื‘ืจื™ืื•ืช ืฉืœ ื”ื—ื•ื•ื”.
22:08
even wastewater treatment based on how a marsh
345
1328000
5000
ืืคื™ืœื• ื˜ื™ื”ื•ืจ ืžื™ื ื”ืžืชื‘ืกืก ืขืœ ื”ื“ืจืš ื‘ื” ื‘ื™ืฆื”
22:13
not only cleans the water,
346
1333000
2000
ืœื ืจืง ืžื ืงื” ืžื™ื,
22:15
but creates incredibly sparkling productivity.
347
1335000
4000
ืืœื ื’ื ื™ื•ืฆืจืช ืคืจื•ื“ื•ืงื˜ื™ื‘ื™ื•ืช ืžื“ื”ื™ืžื”.
22:19
This is the simple design brief. I mean, it looks simple
348
1339000
4000
ื–ื”ื• ืชื“ืจื™ืš ืขืœ ืขื™ืฆื•ื‘ ืคืฉื•ื˜. ืื ื™ ืžืชื›ื•ื•ื ืช, ื–ื” ื ืจืื” ืคืฉื•ื˜
22:23
because the system, over 3.8 billion years, has worked this out.
349
1343000
5000
ื›ื™ื•ื•ืŸ ืฉื”ืžืขืจื›ืช, ื‘ืžืฉืš 3.8 ืžื™ืœื™ืืจื“ ืฉื ื™ื, ืขื‘ื“ื” ืขืœ ื–ื”.
22:28
That is, those organisms that have not been able to figure out
350
1348000
5000
ื›ืœื•ืžืจ, ืื•ืชื ืื•ืจื’ื ื™ื–ืžื™ื ืฉืœื ื”ืฆืœื™ื—ื• ืœื”ื‘ื™ืŸ
22:33
how to enhance or sweeten their places,
351
1353000
4000
ื›ื™ืฆื“ ืœืฉืคืจ ืื• ืœื”ื™ื˜ื™ื‘ ืืช ื”ืกื‘ื™ื‘ื” ืฉืœื”ื,
22:37
are not around to tell us about it.
352
1357000
3000
ื›ื‘ืจ ืœื ืงื™ื™ืžื™ื ื›ื“ื™ ืœืกืคืจ ืœื ื• ืขืœ ื–ื”.
22:40
That's the twelfth one.
353
1360000
3000
ื–ื” ื”ืฉื ื™ื-ืขืฉืจ.
22:43
Life -- and this is the secret trick; this is the magic trick --
354
1363000
4000
ื”ื—ื™ื™ื - ื•ื–ื” ื”ื˜ืจื™ืง ื”ืกื•ื“ื™; ื–ื” ื”ืงืกื -
22:47
life creates conditions conducive to life.
355
1367000
4000
ื”ื—ื™ื™ื ื™ื•ืฆืจื™ื ืชื ืื™ื ื”ืžืชืื™ืžื™ื ืœื—ื™ื™ื.
22:51
It builds soil; it cleans air; it cleans water;
356
1371000
4000
ื”ื—ื™ื™ื ื‘ื•ื ื™ื ืื“ืžื”, ืžื ืงื™ื ืื•ื•ื™ืจ, ืžื ืงื™ื ืžื™ื,
22:55
it mixes the cocktail of gases that you and I need to live.
357
1375000
3000
ืžืขืจื‘ื‘ื™ื ืืช ืงื•ืงื˜ื™ื™ืœ ื”ื’ื–ื™ื ืฉืื ื™ ื•ืืชื ืฆืจื™ื›ื™ื ืขืœ ืžื ืช ืœื—ื™ื•ืช.
22:58
And it does that in the middle of having great foreplay
358
1378000
6000
ื•ื”ื ืขื•ืฉื™ื ื–ืืช ืชื•ืš ื›ื“ื™ ืžืฉื—ืง ืžืงื“ื™ื ืžืขื•ืœื”
23:04
and meeting their needs. So it's not mutually exclusive.
359
1384000
6000
ื•ื”ื™ืขื ื•ืช ืœืฆืจื›ื™ื ืฉืœื”ื. ื›ืš ืฉื–ื• ืœื ืกืชื™ืจื” ื”ื“ื“ื™ืช.
23:10
We have to find a way to meet our needs,
360
1390000
3000
ืื ื—ื ื• ื—ื™ื™ื‘ื™ื ืœืžืฆื•ื ื“ืจืš ืœื”ื™ืขื ื•ืช ืœืฆืจื›ื™ื ืฉืœื ื•,
23:13
while making of this place an Eden.
361
1393000
6000
ืชื•ืš ืฉืื ื• ื”ื•ืคื›ื™ื ืืช ื”ืกื‘ื™ื‘ื” ืœื’ืŸ ืขื“ืŸ.
23:19
CA: Janine, thank you so much.
362
1399000
1000
ื›ื: ื’'ืื ื™ืŸ, ืชื•ื“ื” ืจื‘ื”.
23:20
(Applause)
363
1400000
1000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7