Hawking's black hole paradox explained - Fabio Pacucci

3,788,670 views ・ 2019-10-22

TED-Ed


請雙擊下方英文字幕播放視頻。

譯者: Lilian Chiu 審譯者: Harper Chang
00:06
Scientists work on the boundaries of the unknown,
0
6666
3760
科學家致力於探索未知的邊界,
00:10
where every new piece of knowledge forms a path into a void of uncertainty.
1
10426
5270
每一次新知的發現
都開啓一條通往未知可能性的路。
00:15
And nothing is more uncertain–
2
15696
2230
沒有什麼比悖論更不確定的了——
00:17
or potentially enlightening– than a paradox.
3
17926
3360
或,更有啟發的潛力。
00:21
Throughout history,
4
21286
1090
縱觀歷史,悖論一直挑戰著 我們所知的一切,
00:22
paradoxes have threatened to undermine everything we know,
5
22376
3710
00:26
and just as often, they’ve reshaped our understanding of the world.
6
26086
4610
但它們同樣經常重新建構 我們對世界的了解。
00:30
Today, one of the biggest paradoxes in the universe
7
30699
3700
現今,宇宙中最大的悖論之一
00:34
threatens to unravel the fields of general relativity and quantum mechanics:
8
34399
5490
威脅著廣義相對論與量子力學領域:
00:39
the black hole information paradox.
9
39889
3210
黑洞資訊悖論。
00:43
To understand this paradox,
10
43099
1840
要了解這個悖論,
00:44
we first need to define what we mean by "information."
11
44939
3500
我們先要定義這裡 所謂的「資訊」是什麼。
00:48
Typically, the information we talk about is visible to the naked eye.
12
48439
4300
通常,我們所說的資訊 是用肉眼可以看見的。
00:52
For example,
13
52739
820
比如,這種資訊告訴我們:
00:53
this kind of information tells us that an apple is red, round, and shiny.
14
53559
5030
蘋果是紅色的、圓形的、有光澤。
00:58
But physicists are more concerned with quantum information.
15
58589
4390
但物理學家更在乎的是量子資訊。
01:02
This refers to the quantum properties of all the particles that make up that apple,
16
62979
4950
也就是:構成這顆蘋果的 所有粒子有什麼量子特性,
01:07
such as their position, velocity and spin.
17
67929
3186
比如它們的位置、速度、自旋。
01:11
Every object in the universe is composed
18
71115
2680
宇宙中的所有物質
都由具有獨特 量子特性的粒子所構成。
01:13
of particles with unique quantum properties.
19
73795
3990
01:17
This idea is evoked most significantly in a vital law of physics:
20
77785
5280
一個重要的物理定律 體現了這個想法:
01:23
the total amount of quantum information in the Universe must be conserved.
21
83069
5100
宇宙中所有量子資訊的 總量必須守恆。
01:28
Even if you destroy an object beyond recognition,
22
88169
3267
即使我們把物體摧毀到無法辨識,
01:31
its quantum information is never permanently deleted.
23
91436
3790
它的量子資訊也永遠不會消失。
01:35
And theoretically, knowledge of that information
24
95226
3050
理論上,一旦知道那些資訊,
01:38
would allow us to recreate the object from its particle components.
25
98276
4290
我們就可以用該物體的粒子元件 將該物體重建出來。
01:42
Conservation of information isn’t just an arbitrary rule,
26
102566
3587
資訊守恆並不只是 任意的一條法則,
01:46
but a mathematical necessity, upon which much of modern science is built.
27
106153
4790
它在數學上有其必要性,
且是大部分現代科學的建構基礎。
01:50
But around black holes, those foundations get shaken.
28
110943
4574
但在黑洞附近, 那些根基受到動搖。
01:55
When an apple enters a black hole,
29
115517
2318
當一顆蘋果進入黑洞,
01:57
it seems as though it leaves the universe,
30
117835
2480
它就好像離開了這個宇宙,
02:00
and all its quantum information becomes irretrievably lost.
31
120315
4010
它會失去它所有的 量子資訊,且無法挽回。
02:04
However, this doesn’t immediately break the laws of physics.
32
124325
3920
然而,這不會馬上 破壞物理的法則。
02:08
The information is out of sight,
33
128245
2130
資訊雖然看不見,
02:10
but it might still exist within the black hole’s mysterious void.
34
130375
4240
但它可能仍然存在於 黑洞的神秘空洞當中。
02:14
Alternatively, some theories suggest
35
134615
2677
另一種說法是,
那些資訊甚至根本 沒有進入到黑洞中。
02:17
that information doesn’t even make it inside the black hole at all.
36
137292
4000
02:21
Seen from outside, it’s as if the apple’s quantum information
37
141292
3490
從外面看,似乎蘋果的量子資訊
02:24
is encoded on the surface layer of the black hole, called the event horizon.
38
144782
5510
被編碼在黑洞的表層上,
也就是事相面(事件視界)。
02:30
As the black hole’s mass increases,
39
150292
2240
當黑洞的質量增加,
02:32
the surface of the event horizon increases as well.
40
152532
3290
事相面的表面也會增加。
02:35
So it’s possible that as a black hole swallows an object,
41
155822
3540
所以,的確有可能, 當黑洞吞噬物體時,
02:39
it also grows large enough to conserve the object’s quantum information.
42
159362
4737
它也會長大到一個程度, 讓該物體的量子資訊可以守恆。
02:44
But whether information is conserved inside the black hole or on its surface,
43
164099
4920
但,不論資訊守恆是 發生在黑洞內或黑洞表面,
02:49
the laws of physics remain intact–
44
169019
2865
物理的定律仍然不受影響——
02:51
until you account for Hawking Radiation.
45
171884
3520
除非你要去說明霍金輻射。
02:55
Discovered by Stephen Hawking in 1974,
46
175404
3210
1974 年史帝芬霍金 發現了這種現象,
02:58
this phenomenon shows that black holes are gradually evaporating.
47
178614
4410
它顯示黑洞會漸漸蒸發。
03:03
Over incredibly long periods of time
48
183024
2470
經過非常長的時間之後,
03:05
black holes lose mass as they shed particles away from their event horizons.
49
185494
5300
黑洞的事相面會散失粒子, 因而失去一些質量。
03:10
Critically, it seems as though the evaporating particles
50
190794
3270
重要的是,蒸發的粒子看起來
03:14
are unrelated to the information the black hole encodes–
51
194064
3640
似乎和黑洞編碼的資訊沒有關聯——
03:17
suggesting that a black hole and all the quantum information it contains
52
197704
4540
這就意味著,黑洞 和它含有的所有量子資訊
03:22
could be completely erased.
53
202244
2880
能被完全抹除。
03:25
Does that quantum information truly disappear?
54
205124
3000
那些量子資訊真的會消失嗎?
03:28
If not, where does it go?
55
208124
2330
如果不會,它們到哪裡去了?
03:30
While the evaporation process would take an incredibly long time,
56
210454
3700
雖然蒸發過程會花非常長的時間,
03:34
the questions it raises for physics are far more urgent.
57
214154
3930
它帶給物理的問題更急迫。
03:38
The destruction of information
58
218084
1580
資訊的毀滅會迫使我們
03:39
would force us to rewrite some of our most fundamental scientific paradigms.
59
219664
4590
重寫我們最基礎的科學範式。
03:44
But fortunately, in science,
60
224254
2050
但,幸運的是,在科學上,
03:46
every paradox is an opportunity for new discoveries.
61
226304
4750
每一個範式都是新發現的機會。
03:51
Researchers are investigating a broad range of possible solutions
62
231054
3885
針對資訊悖論,研究者在探究
03:54
to the Information Paradox.
63
234939
1835
各種可能的解決方案。
03:56
Some have theorized
64
236774
1290
有些研究者推理說資訊 其實是被編碼在逃逸輻射上,
03:58
that information actually is encoded in the escaping radiation,
65
238064
3960
04:02
in some way we can’t yet understand.
66
242024
2900
用的是我們尚無法理解的編碼方式。
04:04
Others have suggested the paradox is just a misunderstanding
67
244924
3590
其他研究者則認為悖論只是誤解,
04:08
of how general relativity and quantum field theory interact.
68
248524
4070
誤會了廣義相對論和量子場論 如何產生交互作用。
04:12
Respectively,
69
252594
910
這兩種理論分別描述了
04:13
these two theories describe the largest and smallest physical phenomena,
70
253504
4810
最大和最小的物理現象,
04:18
and they’re notoriously difficult to combine.
71
258314
2630
這兩者本來就是出了名的難結合。
04:20
Some researchers argue that a solution to this and many other paradoxes
72
260944
4370
有些研究者主張,對這個悖論 及許多其他悖論而言,
04:25
will come naturally with a “unified theory of everything.”
73
265314
3767
解決方案自然會隨著 「統一的萬物論」出現。
04:29
But perhaps the most mind-bending theory to come from exploring this paradox
74
269081
4720
但,也許在探究這個悖論時,
最難以理解的理論是全像原理。
04:33
is the holographic principle.
75
273801
2240
04:36
Expanding on the idea that the 2D surface of an event horizon
76
276041
3840
事相面的 2D 表面 能夠儲存量子資訊,
04:39
can store quantum information,
77
279881
1870
這個想法延伸出了全像原理,
04:41
this principle suggests that the very boundary of the observable universe
78
281751
4800
該原理指出,可觀測宇宙的
每一條邊界也都是 2D 表面,
04:46
is also a 2D surface encoded with information
79
286551
3999
且有關於真實 3D 物體的資訊 被編碼在這表面上。
04:50
about real, 3D objects.
80
290550
2890
04:53
If this is true, it’s possible that reality as we know it
81
293440
3910
如果這是真的, 有可能我們所知道的真實
04:57
is just a holographic projection of that information.
82
297350
4030
只是那些資訊的全像投影。
05:01
If proven, any of these theories would open up new questions to explore,
83
301380
4450
如果得到證明,上述任一個理論 都能夠開啟探索的新方向,
05:05
while still preserving our current models of the universe.
84
305830
3260
同時還能沿用我們目前的宇宙模型。
05:09
But it’s also possible that those models are wrong!
85
309090
3190
但,也有可能那些模型是錯的!
05:12
Either way, this paradox has already helped us take another step
86
312280
4356
不論如何,這個悖論已經協助我們
向未知又邁進了一步。
05:16
into the unknown.
87
316636
1590
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog