An introduction to mathematical theorems - Scott Kennedy

如何證明一個數學定理 - Scott Kennedy

497,008 views

2012-09-10 ・ TED-Ed


New videos

An introduction to mathematical theorems - Scott Kennedy

如何證明一個數學定理 - Scott Kennedy

497,008 views ・ 2012-09-10

TED-Ed


請雙擊下方英文字幕播放視頻。

譯者: Jephian Lin 審譯者: Hao-Wei Chang
00:15
What is proof?
0
15000
1976
什麼是證明?
00:17
And why is it so important in mathematics?
1
17000
2976
而為什麼證明在數學中 是如此重要?
00:20
Proofs provide a solid foundation for mathematicians
2
20000
2976
證明提供一個穩固的基礎給
00:23
logicians, statisticians, economists, architects, engineers,
3
23000
3976
數學家、邏輯學家、統計學家、 經濟學家、建築師、工程師、
00:27
and many others to build and test their theories on.
4
27000
2976
還有許多其它人,讓他們得以在這基礎上 建立並測試他們的理論。
00:30
And they're just plain awesome!
5
30000
2976
這簡直棒極了!
00:33
Let me start at the beginning.
6
33000
1976
讓我從頭說起。
00:35
I'll introduce you to a fellow named Euclid.
7
35000
2976
我將介紹一個人,他叫做歐基里得。
00:38
As in, "here's looking at you, Clid."
8
38000
2976
就像是「就看你的了,寶貝」的那位。 (北非諜影臺詞;寶貝英文音似基里得)
00:41
He lived in Greece about 2,300 years ago,
9
41000
3976
他生活在約 2300年前的希臘,
00:45
and he's considered by many to be the father of geometry.
10
45000
2976
而大多數人認為他是幾何學之父。
00:48
So if you've been wondering where to send your geometry fan mail,
11
48000
3096
所以如果身為幾何粉絲的你 在猶豫粉絲郵件要送到哪的話,
00:51
Euclid of Alexandria is the guy to thank for proofs.
12
51120
3856
對於證明來說,亞歷山卓的歐基里得 就是那位該感謝的人。
00:55
Euclid is not really known for inventing or discovering a lot of mathematics
13
55000
4976
歐基里得並不真的是以 創造、發現大量數學而聞名,
01:00
but he revolutionized the way in which it is written,
14
60000
2976
但是他改革了 數學寫作、表述、及思考的方法。
01:03
presented, and thought about.
15
63000
1976
但是他改革了 數學寫作、表述、及思考的方法。
01:05
Euclid set out to formalize mathematics by establishing the rules of the game.
16
65000
4976
歐基里得藉由訂定遊戲規則 來將數學公式化、條理化。
01:10
These rules of the game are called axioms.
17
70000
2976
這些規則被叫做公理。
01:13
Once you have the rules,
18
73000
1976
只要有了規則,
01:15
Euclid says you have to use them to prove what you think is true.
19
75000
3976
歐基里得說你必須用這些規則 來證明你想的是對的。
01:19
If you can't, then your theorem or idea
20
79000
2976
如果你沒辦法做到,那麼你所想的定理
01:22
might be false.
21
82000
1976
就有可能是錯的。
01:24
And if your theorem is false, then any theorems that come after it and use it
22
84000
3667
而如果你的定理是錯的,那任何隨之而來的定理
01:27
might be false too.
23
87691
1285
同樣也有可能是錯的。
01:29
Like how one misplaced beam can bring down the whole house.
24
89000
3976
就像是一個錯位的橫樑 可以弄垮整棟房子一樣。
01:33
So that's all that proofs are:
25
93000
1976
所以整個證明的過程就是:
01:35
using well-established rules to prove beyond a doubt that some theorem is true.
26
95000
3976
利用完善的規則,合理地證明 某些定理是正確的。
01:39
Then you use those theorems like blocks
27
99000
2976
接著把定理當做積木般
01:42
to build mathematics.
28
102000
1976
來建造數學。
01:44
Let's check out an example.
29
104000
1976
我們來看看一個例子。
01:46
Say I want to prove that these two triangles
30
106000
2096
假設我們想要證明這兩個三角形
01:48
are the same size and shape.
31
108120
1856
大小一樣、形狀也一樣。
01:50
In other words, they are congruent.
32
110000
1976
換句話說,他們是全等的。
01:52
Well, one way to do that is to write a proof
33
112000
2976
嗯,一個辦法是寫一段證明
01:55
that shows that all three sides of one triangle
34
115000
2976
來說明一個三角形的三條邊
01:58
are congruent to all three sides of the other triangle.
35
118000
2976
和另一個三角形的三條邊 分別都等長。
02:01
So how do we prove it?
36
121000
1976
所以要怎麼做?
02:03
First, I'll write down what we know.
37
123000
1976
首先,我會寫下我們所知道的。
02:05
We know that point M is the midpoint of AB.
38
125000
3976
我們知道 M點 是 AB邊 的中點。
02:09
We also know that sides AC and BC are already congruent.
39
129000
3976
我們也知道 AC邊 和 BC邊 本來就等長。
02:13
Now let's see. What does the midpoint tell us?
40
133000
3976
現在咱們看看。這個中點可以告訴我們什麼?
02:17
Luckily, I know the definition of midpoint.
41
137000
2976
幸運地,我知道中點的定義。
02:20
It is basically the point in the middle.
42
140000
2976
基本上它就是正中央的那點。
02:23
What this means is that AM and BM are the same length,
43
143000
2976
它的意思就是 AM邊 和 BM邊 的長度相同,
02:26
since M is the exact middle of AB.
44
146000
2976
因為 M點 位在 AB邊 的正中間。
02:29
In other words, the bottom side of each of our triangles are congruent.
45
149000
3976
也就是說,我們考慮的三角形 的兩個底邊是等長的。
02:33
I'll put that as step two.
46
153000
1976
我會把這當做第二步。
02:35
Great! So far I have two pairs of sides that are congruent.
47
155000
2976
太棒了!目前為止我已經有兩組邊等長。
02:38
The last one is easy.
48
158000
1976
最後一步是簡單的。
02:40
The third side of the left triangle
49
160000
1976
左邊三角形的第三邊
02:42
is CM, and the third side of the right triangle is -
50
162000
2976
是 CM邊,而右邊三角形的第三邊是……
02:45
well, also CM.
51
165000
2976
對,也是 CM邊。
02:48
They share the same side.
52
168000
1976
他們共用這條邊。
02:50
Of course it's congruent to itself!
53
170000
1976
當然和自己等長!
02:52
This is called the reflexive property.
54
172000
2976
這個叫做「反身性」。
02:55
Everything is congruent to itself.
55
175000
1976
就是說每條邊都和自己等長。
02:57
I'll put this as step three.
56
177000
1976
我把這當做第三步。
02:59
Ta dah! You've just proven that all three sides of the left triangle
57
179000
3239
噠啦!你已經證明左邊三角形的三條邊
03:02
are congruent to all three sides of the right triangle.
58
182263
2713
和右邊三角形的完全等長。
03:05
Plus, the two triangles are congruent
59
185000
1976
附帶地,兩個三角形會全等
03:07
because of the side-side-side congruence theorem for triangles.
60
187000
3000
是由於有三角形 SSS 全等性質。
03:10
When finished with a proof, I like to do what Euclid did.
61
190024
2952
當完成了一段證明,我喜歡做件 歐基里得會做的事。
03:13
He marked the end of a proof with the letters QED.
62
193000
2976
他用字母 QED 來標記一段證明的結尾。
03:16
It's Latin for "quod erat demonstrandum,"
63
196000
2976
這表示拉丁話「quod erat demonstrandum」,
03:19
which translates literally to
64
199000
1976
字面上的意思就是
03:21
"what was to be proven."
65
201000
1976
「這就是所要證明的」。
03:23
But I just think of it as "look what I just did!"
66
203000
2976
但是我只把它想成是: 瞧瞧我做了什麼!
03:26
I can hear what you're thinking:
67
206000
1976
我可以聽見你正在想什麼:
03:28
why should I study proofs?
68
208000
1976
為什麼我要學證明?
03:30
One reason is that they could allow you to win any argument.
69
210000
2976
一個理由是證明可以讓你 在爭論中獲勝。
03:33
Abraham Lincoln, one of our nation's greatest leaders of all time
70
213000
3976
亞伯拉罕.林肯,一位美國整個時期 最偉大的領導者
03:37
used to keep a copy of Euclid's Elements on his bedside table
71
217000
2976
習慣放一本歐基里得的《幾何原本》 在他的桌邊
03:40
to keep his mind in shape.
72
220000
1976
來讓他的思考有條理。
03:42
Another reason is you can make a million dollars.
73
222000
2976
另一個理由是你可以賺到一百萬美元。
03:45
You heard me.
74
225000
1976
你沒聽錯。
03:47
One million dollars.
75
227000
1976
一百萬美元。
03:49
That's the price that the Clay Mathematics Institute in Massachusetts
76
229000
2976
這是麻州克雷數學研究所 所提出的價格,
03:52
is willing to pay anyone who proves one of the many unproven theories
77
232000
3286
將付給任何解出 某些未知猜想的人,
03:55
that it calls "the millenium problems."
78
235310
1976
這些猜想被稱作「千禧年大獎難題」。
03:57
A couple of these have been solved in the 90s and 2000s.
79
237310
3666
其中有一些 已經在 1990 及 2000 年代被解決了。
04:01
But beyond money and arguments,
80
241000
1976
但是超乎錢金和爭論的是,
04:03
proofs are everywhere.
81
243000
1976
證明無所不在。
04:05
They underly architecture, art, computer programming, and internet security.
82
245000
3976
它們潛藏在建築、藝術、程式設計、 以及網路安全之中。
04:09
If no one understood or could generate a proof,
83
249000
2976
如果都沒人了解、或是有辦法證明,
04:12
we could not advance these essential parts of our world.
84
252000
2976
我們將無法在這些重要領域中進步。
04:15
Finally, we all know that the proof is in the pudding.
85
255000
2976
最後,我們都知道證明藏在布丁裡。 (美國諺語:表示布丁好吃的證明要吃了才知道。)
04:18
And pudding is delicious. QED.
86
258000
4000
而布丁是美味的。QED。
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7