Could we create dark matter? - Rolf Landua

1,419,447 views ・ 2017-08-17

TED-Ed


请双击下面的英文字幕来播放视频。

翻译人员: Ethan Ouyang 校对人员: Echo Yang
00:07
85% of the matter in our universe is a mystery.
0
7319
3620
宇宙中有 85% 的物质神秘莫测。
00:10
We don't know what it's made of, which is why we call it dark matter.
1
10939
4220
我们不知道它们是什么, 所以我们称它们为“暗物质”。
但是我们知道它们的存在,
00:15
But we know it's out there because we can observe its gravitational attraction
2
15159
3899
因为我们可观测它们作用在 众多星系与天体间的引力。
00:19
on galaxies and other celestial objects.
3
19058
3441
00:22
We've yet to directly observe dark matter,
4
22499
2349
虽然我们还无法直接观测暗物质,
00:24
but scientists theorize that we may actually be able to create it
5
24848
3482
但是科学家推测, 人类也许可以用世上最强大的
00:28
in the most powerful particle collider in the world.
6
28330
3569
粒子对撞机来创造暗物质。
00:31
That's the 27 kilometer-long Large Hadron Collider, or LHC,
7
31899
4900
那就是位于瑞士日内瓦, 长达 27 公里
00:36
in Geneva, Switzerland.
8
36799
1721
的大型强子对撞机,简称 LHC。
00:38
So how would that work?
9
38520
1520
那么它的工作原理是什么呢?
在 LHC 里,两个质子向反方向运动,
00:40
In the LHC, two proton beams move in opposite directions
10
40040
4129
00:44
and are accelerated to near the speed of light.
11
44169
3151
并被加速至接近光速。
00:47
At four collision points, the beams cross and protons smash into each other.
12
47320
5073
在四个撞击点上, 质子束相交, 质子相互碰撞。
00:52
Protons are made of much smaller components called quarks and gluons
13
52393
4299
质子是由更小的夸克和胶子组成的。
00:56
In most ordinary collisions, the two protons pass through each other
14
56692
4309
在一般情况下,两个质子穿过彼此
01:01
without any significant outcome.
15
61001
2542
不会产生重大影响。
01:03
However, in about one in a million collisions,
16
63543
2730
但有一百万分之一的概率,
01:06
two components hit each other so violently,
17
66273
2439
两个质子的强烈碰撞,
01:08
that most of the collision energy is set free
18
68712
3199
会释放出爆炸级的碰撞能量,
01:11
producing thousands of new particles.
19
71911
2523
生成上千个新的粒子。
01:14
It's only in these collisions that very massive particles,
20
74434
2979
理论上只有在这种碰撞中才会生成
01:17
like the theorized dark matter, can be produced.
21
77413
3910
像暗物质那样的超大粒子。
01:21
The collision points are surrounded by detectors
22
81323
2670
碰撞点的四周都有探测器,
01:23
containing about 100 million sensors.
23
83993
3182
里面有约 1 亿个感应器,
01:27
Like huge three-dimensional cameras,
24
87175
2120
就像一个大型的 3D 照相机,
01:29
they gather information on those new particles,
25
89295
2370
可以收集那些新粒子的信息,
01:31
including their trajectory,
26
91665
1408
包括它们的轨道,
01:33
electrical charge,
27
93073
1387
电荷,
01:34
and energy.
28
94460
1693
和能量。
01:36
Once processed, the computers can depict a collision as an image.
29
96153
3583
在处理完这些信息后, 电脑可以形成撞击图像。
01:39
Each line is the path of a different particle,
30
99736
3209
每条线都是不同粒子的轨迹,
01:42
and different types of particles are color-coded.
31
102945
3210
不同种类的粒子会标为不同的颜色。
01:46
Data from the detectors allows scientists to determine
32
106155
3030
探测仪记录的数据可以 让科学家们判断
01:49
what each of these particles is,
33
109185
2001
这些粒子的种类,
01:51
things like photons and electrons.
34
111186
2750
比如是光子还是电子。
01:53
Now, the detectors take snapshots of about a billion of these collisions per second
35
113936
4560
探测器每秒对撞击进行 大约十亿次的拍摄,
01:58
to find signs of extremely rare massive particles.
36
118496
3920
以寻找极其稀有的超大粒子的踪迹。
02:02
To add to the difficulty,
37
122416
1329
更加困难的是,
02:03
the particles we're looking for may be unstable
38
123745
2951
我们寻找的粒子很可能极不稳定,
02:06
and decay into more familiar particles before reaching the sensors.
39
126696
5121
以至于在到达探测器前 就衰变为常见的粒子。
02:11
Take, for example, the Higgs boson,
40
131817
2301
以希格斯玻色子为例,
02:14
a long-theorized particle that wasn't observed until 2012.
41
134118
4380
这个长期存在于理论上的粒子 直到 2012 年才被观测到。
02:18
The odds of a given collision producing a Higgs boson are about one in 10 billion,
42
138498
6160
在一次特定碰撞中产生希格斯玻色子 的几率仅为百亿分之一。
02:24
and it only lasts for a tiny fraction of a second
43
144658
2960
并且只存在了短短的一瞬,
就发了生衰变。
02:27
before decaying.
44
147618
1921
02:29
But scientists developed theoretical models to tell them what to look for.
45
149539
4099
但科学家们研制出了理论模型 来确定寻找的对象。
02:33
For the Higgs, they thought it would sometimes decay into two photons.
46
153638
4471
科学家一开始认为希格斯玻色子 会衰变为两个光子。
02:38
So they first examined only the high-energy events
47
158109
3450
所以他们起初只检测,
包含两个光子的高能量事件。
02:41
that included two photons.
48
161559
2009
02:43
But there's a problem here.
49
163568
1872
但有个问题。
02:45
There are innumerable particle interactions
50
165440
2280
有无数种粒子的相互作用
02:47
that can produce two random photons.
51
167720
2460
可以产生两个随机的光子。
02:50
So how do you separate out the Higgs from everything else?
52
170180
3459
那么应该如何将希格斯玻色子 与其他物质进行区分?
02:53
The answer is mass.
53
173639
2241
答案就是质量。
02:55
The information gathered by the detectors allows the scientists to go a step back
54
175880
5051
探测器收集的数据让科学家 能够退一步思考,
03:00
and determine the mass of whatever it was that produced two photons.
55
180931
4741
并检查产生两个光子的物质的质量。
03:05
They put that mass value into a graph
56
185672
2119
他们用这些数据制图,
03:07
and then repeat the process for all events with two photons.
57
187791
4469
然后重复产生两个光子的过程。
03:12
The vast majority of these events are just random photon observations,
58
192260
4221
大多数情况下只能观察到 随机产生的光子,
03:16
what scientists call background events.
59
196481
3621
科学家们称之为背景事件。
03:20
But when a Higgs boson is produced and decays into two photons,
60
200102
3930
但当希格斯玻色子产生并 衰变为两个光子的时候,
03:24
the mass always comes out to be the same.
61
204032
3120
这两个光子的质量通常都是相同的。
03:27
Therefore, the tell-tale sign of the Higgs boson
62
207152
2570
因此,辨识希格斯玻色子 出现的最好迹象,
03:29
would be a little bump sitting on top of the background.
63
209722
3951
就是背景图上的一个小小的隆起。
03:33
It takes billions of observations before a bump like this can appear,
64
213673
3690
这样的隆起需要经过 数亿次的观测方能出现,
03:37
and it's only considered a meaningful result
65
217363
2411
而且也只有当隆起部分 显著的高出背景图时,
03:39
if that bump becomes significantly higher than the background.
66
219774
4339
这个结果才有意义。
03:44
In the case of the Higgs boson,
67
224113
1981
在希格斯玻色子的例子中,
03:46
the scientists at the LHC announced their groundbreaking result
68
226094
3789
尽管要观测到背景图上的隆起,
03:49
when there was only a one in 3 million chance
69
229883
3092
只有区区三百万分之一的几率, 可能仅仅是统计学上的巧合,
03:52
this bump could have appeared by a statistical fluke.
70
232975
4070
LHC 的科学家们 还是得出了开创性的结论。
03:57
So back to the dark matter.
71
237045
1830
那么回到暗物质上来。
03:58
If the LHC's proton beams have enough energy to produce it,
72
238875
3570
如果 LHC 的质子束有足够的 能量来制造暗物质,
04:02
that's probably an even rarer occurrence than the Higgs boson.
73
242445
4461
成功的几率将比希格斯玻色子还小。
04:06
So it takes quadrillions of collisions combined with theoretical models
74
246906
4020
它将需要百万之四次方 的碰撞与理论模型相结合,
04:10
to even start to look.
75
250926
2119
方能初具雏形。
04:13
That's what the LHC is currently doing.
76
253045
3072
而那正是 LHC 现在在做的事。
04:16
By generating a mountain of data,
77
256117
1769
通过生成堆积如山的数据,
04:17
we're hoping to find more tiny bumps in graphs
78
257886
3080
我们希望能在图像中找到更多的隆起,
04:20
that will provide evidence for yet unknown particles, like dark matter.
79
260966
4850
那些便是未知粒子,例如暗物质, 存在的最好证明。
04:25
Or maybe what we'll find won't be dark matter,
80
265816
2471
也许我们找到的未必是暗物质,
04:28
but something else
81
268287
1188
而是其他的一些
04:29
that would reshape our understanding of how the universe works entirely.
82
269475
4513
将会改变我们对整个宇宙 的看法的物质。
04:33
That's part of the fun at this point.
83
273988
2011
那也是当前研究的乐趣之一。
04:35
We have no idea what we're going to find.
84
275999
2427
我们并不确定将会找到什么。
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog