请双击下面的英文字幕来播放视频。
翻译人员: Ethan Ouyang
校对人员: Echo Yang
00:07
85% of the matter in our universe
is a mystery.
0
7319
3620
宇宙中有 85% 的物质神秘莫测。
00:10
We don't know what it's made of,
which is why we call it dark matter.
1
10939
4220
我们不知道它们是什么,
所以我们称它们为“暗物质”。
但是我们知道它们的存在,
00:15
But we know it's out there because we
can observe its gravitational attraction
2
15159
3899
因为我们可观测它们作用在
众多星系与天体间的引力。
00:19
on galaxies and other celestial objects.
3
19058
3441
00:22
We've yet to directly observe dark matter,
4
22499
2349
虽然我们还无法直接观测暗物质,
00:24
but scientists theorize that we may
actually be able to create it
5
24848
3482
但是科学家推测,
人类也许可以用世上最强大的
00:28
in the most powerful particle collider
in the world.
6
28330
3569
粒子对撞机来创造暗物质。
00:31
That's the 27 kilometer-long
Large Hadron Collider, or LHC,
7
31899
4900
那就是位于瑞士日内瓦,
长达 27 公里
00:36
in Geneva, Switzerland.
8
36799
1721
的大型强子对撞机,简称 LHC。
00:38
So how would that work?
9
38520
1520
那么它的工作原理是什么呢?
在 LHC 里,两个质子向反方向运动,
00:40
In the LHC, two proton beams
move in opposite directions
10
40040
4129
00:44
and are accelerated
to near the speed of light.
11
44169
3151
并被加速至接近光速。
00:47
At four collision points, the beams cross
and protons smash into each other.
12
47320
5073
在四个撞击点上, 质子束相交,
质子相互碰撞。
00:52
Protons are made of much smaller
components called quarks and gluons
13
52393
4299
质子是由更小的夸克和胶子组成的。
00:56
In most ordinary collisions, the two
protons pass through each other
14
56692
4309
在一般情况下,两个质子穿过彼此
01:01
without any significant outcome.
15
61001
2542
不会产生重大影响。
01:03
However, in about
one in a million collisions,
16
63543
2730
但有一百万分之一的概率,
01:06
two components hit each other
so violently,
17
66273
2439
两个质子的强烈碰撞,
01:08
that most of the collision energy
is set free
18
68712
3199
会释放出爆炸级的碰撞能量,
01:11
producing thousands of new particles.
19
71911
2523
生成上千个新的粒子。
01:14
It's only in these collisions that very
massive particles,
20
74434
2979
理论上只有在这种碰撞中才会生成
01:17
like the theorized dark matter,
can be produced.
21
77413
3910
像暗物质那样的超大粒子。
01:21
The collision points
are surrounded by detectors
22
81323
2670
碰撞点的四周都有探测器,
01:23
containing about 100 million sensors.
23
83993
3182
里面有约 1 亿个感应器,
01:27
Like huge three-dimensional cameras,
24
87175
2120
就像一个大型的 3D 照相机,
01:29
they gather information
on those new particles,
25
89295
2370
可以收集那些新粒子的信息,
01:31
including their trajectory,
26
91665
1408
包括它们的轨道,
01:33
electrical charge,
27
93073
1387
电荷,
01:34
and energy.
28
94460
1693
和能量。
01:36
Once processed, the computers can depict
a collision as an image.
29
96153
3583
在处理完这些信息后,
电脑可以形成撞击图像。
01:39
Each line is the path
of a different particle,
30
99736
3209
每条线都是不同粒子的轨迹,
01:42
and different types of particles
are color-coded.
31
102945
3210
不同种类的粒子会标为不同的颜色。
01:46
Data from the detectors
allows scientists to determine
32
106155
3030
探测仪记录的数据可以
让科学家们判断
01:49
what each of these particles is,
33
109185
2001
这些粒子的种类,
01:51
things like photons and electrons.
34
111186
2750
比如是光子还是电子。
01:53
Now, the detectors take snapshots of about
a billion of these collisions per second
35
113936
4560
探测器每秒对撞击进行
大约十亿次的拍摄,
01:58
to find signs of extremely rare
massive particles.
36
118496
3920
以寻找极其稀有的超大粒子的踪迹。
02:02
To add to the difficulty,
37
122416
1329
更加困难的是,
02:03
the particles we're looking for
may be unstable
38
123745
2951
我们寻找的粒子很可能极不稳定,
02:06
and decay into more familiar particles
before reaching the sensors.
39
126696
5121
以至于在到达探测器前
就衰变为常见的粒子。
02:11
Take, for example, the Higgs boson,
40
131817
2301
以希格斯玻色子为例,
02:14
a long-theorized particle that wasn't
observed until 2012.
41
134118
4380
这个长期存在于理论上的粒子
直到 2012 年才被观测到。
02:18
The odds of a given collision producing
a Higgs boson are about one in 10 billion,
42
138498
6160
在一次特定碰撞中产生希格斯玻色子
的几率仅为百亿分之一。
02:24
and it only lasts for
a tiny fraction of a second
43
144658
2960
并且只存在了短短的一瞬,
就发了生衰变。
02:27
before decaying.
44
147618
1921
02:29
But scientists developed theoretical
models to tell them what to look for.
45
149539
4099
但科学家们研制出了理论模型
来确定寻找的对象。
02:33
For the Higgs, they thought it would
sometimes decay into two photons.
46
153638
4471
科学家一开始认为希格斯玻色子
会衰变为两个光子。
02:38
So they first examined only
the high-energy events
47
158109
3450
所以他们起初只检测,
包含两个光子的高能量事件。
02:41
that included two photons.
48
161559
2009
02:43
But there's a problem here.
49
163568
1872
但有个问题。
02:45
There are innumerable
particle interactions
50
165440
2280
有无数种粒子的相互作用
02:47
that can produce two random photons.
51
167720
2460
可以产生两个随机的光子。
02:50
So how do you separate out the Higgs
from everything else?
52
170180
3459
那么应该如何将希格斯玻色子
与其他物质进行区分?
02:53
The answer is mass.
53
173639
2241
答案就是质量。
02:55
The information gathered by the detectors
allows the scientists to go a step back
54
175880
5051
探测器收集的数据让科学家
能够退一步思考,
03:00
and determine the mass of whatever it was
that produced two photons.
55
180931
4741
并检查产生两个光子的物质的质量。
03:05
They put that mass value into a graph
56
185672
2119
他们用这些数据制图,
03:07
and then repeat the process
for all events with two photons.
57
187791
4469
然后重复产生两个光子的过程。
03:12
The vast majority of these events
are just random photon observations,
58
192260
4221
大多数情况下只能观察到
随机产生的光子,
03:16
what scientists call background events.
59
196481
3621
科学家们称之为背景事件。
03:20
But when a Higgs boson is produced
and decays into two photons,
60
200102
3930
但当希格斯玻色子产生并
衰变为两个光子的时候,
03:24
the mass always comes out to be the same.
61
204032
3120
这两个光子的质量通常都是相同的。
03:27
Therefore, the tell-tale sign
of the Higgs boson
62
207152
2570
因此,辨识希格斯玻色子
出现的最好迹象,
03:29
would be a little bump sitting on top
of the background.
63
209722
3951
就是背景图上的一个小小的隆起。
03:33
It takes billions of observations
before a bump like this can appear,
64
213673
3690
这样的隆起需要经过
数亿次的观测方能出现,
03:37
and it's only considered
a meaningful result
65
217363
2411
而且也只有当隆起部分
显著的高出背景图时,
03:39
if that bump becomes significantly
higher than the background.
66
219774
4339
这个结果才有意义。
03:44
In the case of the Higgs boson,
67
224113
1981
在希格斯玻色子的例子中,
03:46
the scientists at the LHC announced their
groundbreaking result
68
226094
3789
尽管要观测到背景图上的隆起,
03:49
when there was only
a one in 3 million chance
69
229883
3092
只有区区三百万分之一的几率,
可能仅仅是统计学上的巧合,
03:52
this bump could have
appeared by a statistical fluke.
70
232975
4070
LHC 的科学家们
还是得出了开创性的结论。
03:57
So back to the dark matter.
71
237045
1830
那么回到暗物质上来。
03:58
If the LHC's proton beams have enough
energy to produce it,
72
238875
3570
如果 LHC 的质子束有足够的
能量来制造暗物质,
04:02
that's probably an even rarer occurrence
than the Higgs boson.
73
242445
4461
成功的几率将比希格斯玻色子还小。
04:06
So it takes quadrillions of collisions
combined with theoretical models
74
246906
4020
它将需要百万之四次方
的碰撞与理论模型相结合,
04:10
to even start to look.
75
250926
2119
方能初具雏形。
04:13
That's what the LHC is currently doing.
76
253045
3072
而那正是 LHC 现在在做的事。
04:16
By generating a mountain of data,
77
256117
1769
通过生成堆积如山的数据,
04:17
we're hoping to find more tiny bumps
in graphs
78
257886
3080
我们希望能在图像中找到更多的隆起,
04:20
that will provide evidence for
yet unknown particles, like dark matter.
79
260966
4850
那些便是未知粒子,例如暗物质,
存在的最好证明。
04:25
Or maybe what we'll
find won't be dark matter,
80
265816
2471
也许我们找到的未必是暗物质,
04:28
but something else
81
268287
1188
而是其他的一些
04:29
that would reshape our understanding
of how the universe works entirely.
82
269475
4513
将会改变我们对整个宇宙
的看法的物质。
04:33
That's part of the fun at this point.
83
273988
2011
那也是当前研究的乐趣之一。
04:35
We have no idea what we're
going to find.
84
275999
2427
我们并不确定将会找到什么。
New videos
关于本网站
这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。