Chris Urmson: How a driverless car sees the road

872,667 views ・ 2015-06-26

TED


請雙擊下方英文字幕播放視頻。

譯者: Kenny Lo 審譯者: Yamei Huang
00:12
So in 1885, Karl Benz invented the automobile.
0
12528
3949
1885年,卡爾·賓士發明汽車。
00:16
Later that year, he took it out for the first public test drive,
1
16707
3762
那年底, 他開著那台車做了第一次公開試駕,
00:20
and -- true story -- crashed into a wall.
2
20469
3375
結果,撞毀了。
00:24
For the last 130 years,
3
24184
2043
過去 130 年來,
00:26
we've been working around that least reliable part of the car, the driver.
4
26227
4319
我們一直致力於改進 車裡最不可靠的部分,駕駛。
00:30
We've made the car stronger.
5
30546
1354
我們讓車子更堅固。
00:32
We've added seat belts, we've added air bags,
6
32200
2548
我們加上安全帶和安全氣囊,
00:34
and in the last decade, we've actually started trying to make the car smarter
7
34748
3971
過去十年, 我們想辦法讓車子變得更聰明
00:38
to fix that bug, the driver.
8
38719
2938
來修正駕駛這個問題。
00:41
Now, today I'm going to talk to you a little bit about the difference
9
41657
3261
現在,我要告訴你
00:44
between patching around the problem with driver assistance systems
10
44918
3808
使用駕駛輔助系統來修正這問題,
00:48
and actually having fully self-driving cars
11
48726
2564
和完全自動化駕駛其中的差異
00:51
and what they can do for the world.
12
51290
1880
以及在世界上所產生的影響。
00:53
I'm also going to talk to you a little bit about our car
13
53170
2995
我也將告訴你 關於我們車子的一些細節
00:56
and allow you to see how it sees the world and how it reacts and what it does,
14
56165
3999
讓你可以了解它所看到的世界 以及如何對外界做出反應,
01:00
but first I'm going to talk a little bit about the problem.
15
60164
3187
首先我先來探討一個問題。
01:03
And it's a big problem:
16
63651
1648
是一個大問題:
01:05
1.2 million people are killed on the world's roads every year.
17
65299
3089
全世界每年有 120 萬人 死於交通事故。
01:08
In America alone, 33,000 people are killed each year.
18
68388
3784
僅僅美國, 每年就佔了 33,000 人。
01:12
To put that in perspective,
19
72172
2028
依此數據與飛機事故比較,
01:14
that's the same as a 737 falling out of the sky every working day.
20
74200
4797
等於每個上班日, 都有一台 737 從空中掉下。
01:19
It's kind of unbelievable.
21
79342
1786
有點讓人無法置信。
01:21
Cars are sold to us like this,
22
81548
2298
車輛以這種模式賣給我們,
01:23
but really, this is what driving's like.
23
83846
2717
但實際上, 這才是我們開車所遇到的狀況,
01:26
Right? It's not sunny, it's rainy,
24
86563
2159
對吧?不是晴天,而是雨天,
01:28
and you want to do anything other than drive.
25
88722
2488
除了開車外你還想要做其他事。
01:31
And the reason why is this:
26
91210
1622
就是這個原因:
01:32
Traffic is getting worse.
27
92832
1858
交通變得更糟糕了。
01:34
In America, between 1990 and 2010,
28
94690
3506
在美國,1990 年到 2010 年間,
01:38
the vehicle miles traveled increased by 38 percent.
29
98196
3504
汽車行駛哩程數增加百分之三十八,
01:42
We grew by six percent of roads,
30
102213
2749
但是道路只增加百分之六,
01:44
so it's not in your brains.
31
104962
1602
所以不是錯覺。
01:46
Traffic really is substantially worse than it was not very long ago.
32
106564
4276
跟幾年前比起來 交通其實是變差。
01:50
And all of this has a very human cost.
33
110840
2409
所有這一切都代表大量的人力成本。
01:53
So if you take the average commute time in America, which is about 50 minutes,
34
113529
3948
以美國平均通勤時間來看, 大約 50 分鐘,
01:57
you multiply that by the 120 million workers we have,
35
117477
3649
乘以目前約一億兩千萬工作人口,
02:01
that turns out to be about six billion minutes
36
121126
2225
將會是六十億分鐘的時間
02:03
wasted in commuting every day.
37
123351
2026
浪費在每天的通勤上。
02:05
Now, that's a big number, so let's put it in perspective.
38
125377
2827
這是個很大的數值, 這個數據,相當於
02:08
You take that six billion minutes
39
128204
1774
把六十億分鐘的時間
02:09
and you divide it by the average life expectancy of a person,
40
129978
3784
除以一般人的平均壽命,
02:13
that turns out to be 162 lifetimes
41
133762
3135
將會是 162 個人一生的時間
02:16
spent every day, wasted,
42
136897
2925
每天浪費在這交通上面,
02:19
just getting from A to B.
43
139822
2044
只是要從 A 點移動到 B 點。
02:21
It's unbelievable.
44
141866
1730
讓人無法置信。
02:23
And then, there are those of us who don't have the privilege
45
143596
2844
而且,有些在交通上
02:26
of sitting in traffic.
46
146440
1672
弱勢的人,
02:28
So this is Steve.
47
148112
1578
這是史蒂夫。
02:29
He's an incredibly capable guy,
48
149690
1765
一個非常有才能力的人,
02:31
but he just happens to be blind,
49
151455
2516
但是他卻是眼睛失明,
02:33
and that means instead of a 30-minute drive to work in the morning,
50
153971
3217
他不是每天早上 花 30 分鐘開車上班,
02:37
it's a two-hour ordeal of piecing together bits of public transit
51
157188
3979
而是要痛苦的花兩個時 轉搭大眾運輸工具
02:41
or asking friends and family for a ride.
52
161167
2385
或請求朋友或親人接送。
02:43
He doesn't have that same freedom that you and I have to get around.
53
163552
3669
他無法像你我一樣 有到處走動的自由。
02:47
We should do something about that.
54
167221
2460
我們應該做一些事情。
02:49
Now, conventional wisdom would say
55
169891
1757
在現在傳統的思慮會提到
02:51
that we'll just take these driver assistance systems
56
171648
2492
我們可以使用一些駕駛輔助系統
02:54
and we'll kind of push them and incrementally improve them,
57
174140
3750
我們則持續的推動及改善整個系統,
02:57
and over time, they'll turn into self-driving cars.
58
177890
2542
隨著時間演進, 轉變為自動駕駛系統。
03:00
Well, I'm here to tell you that's like me saying
59
180432
2409
在這我要告訴你們就像我所說的
03:02
that if I work really hard at jumping, one day I'll be able to fly.
60
182841
4057
如果我可以很努力的跳躍, 有一天我可以飛上天
03:06
We actually need to do something a little different.
61
186898
2728
我們確實需要 用一些不同的方式去做事情。
03:09
And so I'm going to talk to you about three different ways
62
189626
2711
我將告訴你 在自動駕駛系統
03:12
that self-driving systems are different than driver assistance systems.
63
192337
3346
與駕駛輔助系統之間, 有三個不同點。
03:15
And I'm going to start with some of our own experience.
64
195683
2651
從我們本身的經驗開始談起。
03:18
So back in 2013,
65
198334
2253
2013 年。
03:20
we had the first test of a self-driving car
66
200587
2663
我們第一次做自動駕駛車的測試
03:23
where we let regular people use it.
67
203250
2027
我們讓一般大眾人去開它。
03:25
Well, almost regular -- they were 100 Googlers,
68
205277
2202
嗯,幾乎算是 -- 他們是 100 位谷歌的員工,
03:27
but they weren't working on the project.
69
207479
2003
但他們的工作都不屬於這個專案,
03:29
And we gave them the car and we allowed them to use it in their daily lives.
70
209482
3621
我們提供車輛 並允許在每天的日常生活中使用。
03:33
But unlike a real self-driving car, this one had a big asterisk with it:
71
213103
3719
但這不像是自動駕駛的車, 上頭有一個大大的星號在車上,
03:36
They had to pay attention,
72
216822
1504
他們必須集中注意力開車,
03:38
because this was an experimental vehicle.
73
218326
2633
因為這些只是實驗車輛。
03:40
We tested it a lot, but it could still fail.
74
220959
3525
我們測試很多, 但仍有失敗狀況發生。
03:44
And so we gave them two hours of training,
75
224484
2059
所以我們給車主 2 個小時的訓練,
03:46
we put them in the car, we let them use it,
76
226543
2092
再讓他們進入車內使用它,
03:48
and what we heard back was something awesome,
77
228635
2127
我們所收到的回覆讓人感到驚訝,
03:50
as someone trying to bring a product into the world.
78
230762
2524
當一個新產品嘗試進入這個世界。
03:53
Every one of them told us they loved it.
79
233286
1925
每一個人都跟我們說他們愛上了它。
03:55
In fact, we had a Porsche driver who came in and told us on the first day,
80
235211
3566
事實上,第一天有一個 開保時捷的駕駛跟我們說,
03:58
"This is completely stupid. What are we thinking?"
81
238777
2663
「這完全是件愚蠢的事情, 不知道我們在想些什麼?」
04:01
But at the end of it, he said, "Not only should I have it,
82
241850
2840
但是在他測試結束後,他說 「不該只有我可以使用它,
04:04
everyone else should have it, because people are terrible drivers."
83
244690
3175
每個人都該使用它, 因為許多人都是個糟糕的駕駛。」
04:09
So this was music to our ears,
84
249135
1735
這對我們來說有很大的鼓勵,
04:10
but then we started to look at what the people inside the car were doing,
85
250870
3803
然後我們開始研究 人們在車裡做些什麼,
04:14
and this was eye-opening.
86
254673
1579
真讓人大開眼界。
04:16
Now, my favorite story is this gentleman
87
256252
2438
我最喜歡的故事裡有一位男士
04:18
who looks down at his phone and realizes the battery is low,
88
258690
3829
他低頭看手機 發現電池快沒電了,
04:22
so he turns around like this in the car and digs around in his backpack,
89
262519
4548
然後在車裡像這樣轉過身來, 並且在背包裡找尋東西,
04:27
pulls out his laptop,
90
267067
2153
拿出一台筆記型電腦,
04:29
puts it on the seat,
91
269220
1567
放在前座,
04:30
goes in the back again,
92
270787
1764
再回頭一次,
04:32
digs around, pulls out the charging cable for his phone,
93
272551
3367
繼續搜尋,拿出手機的充電線,
04:35
futzes around, puts it into the laptop, puts it on the phone.
94
275918
3367
轉身回來, 把電源線接上筆電跟手機。
04:39
Sure enough, the phone is charging.
95
279285
2043
當然他的手機已經開始充電了。
04:41
All the time he's been doing 65 miles per hour down the freeway.
96
281328
3994
同時他以 65 英哩的速度 在高速公路上行駛。
04:45
Right? Unbelievable.
97
285322
2484
讓人無法置信。
04:47
So we thought about this and we said, it's kind of obvious, right?
98
287806
3121
我們思考這整件事情, 有明顯的結論
04:50
The better the technology gets,
99
290927
2263
有更好的科技輔助,
04:53
the less reliable the driver is going to get.
100
293190
2121
駕駛就越不可靠。
04:55
So by just making the cars incrementally smarter,
101
295311
2396
若只讓車子變得更聰明,
04:57
we're probably not going to see the wins we really need.
102
297707
2902
那就和我們希望達到的結果不同。
05:00
Let me talk about something a little technical for a moment here.
103
300609
3901
讓我來談論有關技術的部分。
05:04
So we're looking at this graph, and along the bottom
104
304510
2438
我們來看這圖型,底部的部分,
05:06
is how often does the car apply the brakes when it shouldn't.
105
306948
3051
是在不該踩煞車的情況下 卻踩煞車的頻率,
05:09
You can ignore most of that axis,
106
309999
1621
你可以忽略大部分的 X 軸,
05:11
because if you're driving around town, and the car starts stopping randomly,
107
311620
3719
因為如果在你開車到鎮上的路程中, 隨時煞車的話,
05:15
you're never going to buy that car.
108
315339
1701
你將不會買這部車。
05:17
And the vertical axis is how often the car is going to apply the brakes
109
317040
3375
從垂直軸上 可以看到當車輛踩煞車後
05:20
when it's supposed to to help you avoid an accident.
110
320415
3049
可以幫助你避免意外的頻率。
05:23
Now, if we look at the bottom left corner here,
111
323464
2221
現在,我們看到左下角這個點,
05:25
this is your classic car.
112
325685
1845
這是我們一般的車輛。
05:27
It doesn't apply the brakes for you, it doesn't do anything goofy,
113
327530
3133
他不會幫忙煞車 傻傻的也不會幫忙任何事,
05:30
but it also doesn't get you out of an accident.
114
330663
2779
當然也無法幫你避免意外。
05:33
Now, if we want to bring a driver assistance system into a car,
115
333442
3018
現在, 如果我們想要引進駕駛輔助系統,
05:36
say with collision mitigation braking,
116
336460
1828
如碰撞減輕煞車系統。
05:38
we're going to put some package of technology on there,
117
338288
2612
我們將在這上面導入一些技術方案,
05:40
and that's this curve, and it's going to have some operating properties,
118
340900
3418
由這個曲線得知, 這系統可以發揮一些功效,
05:44
but it's never going to avoid all of the accidents,
119
344318
2490
但仍不可能避免所有的意外,
05:46
because it doesn't have that capability.
120
346808
2059
因為尚未有足夠的能力。
05:48
But we'll pick some place along the curve here,
121
348867
2249
但我們可以在這個曲線中挑一點,
05:51
and maybe it avoids half of accidents that the human driver misses,
122
351116
3254
它也許就足夠避免掉一半 人為疏失所造成的意外,
05:54
and that's amazing, right?
123
354370
1297
非常神奇,對吧?
05:55
We just reduced accidents on our roads by a factor of two.
124
355667
2727
我們改變一、兩個因素 就可以把路上的意外事故減少一半。
05:58
There are now 17,000 less people dying every year in America.
125
358394
3987
在美國每年有接近 一萬七千人 死於交通事故。
06:02
But if we want a self-driving car,
126
362381
2020
但如果我們想要有自動駕駛車輛,
06:04
we need a technology curve that looks like this.
127
364401
2307
我們需要像這條的技術曲線。
06:06
We're going to have to put more sensors in the vehicle,
128
366708
2599
需要將更多的感測器放在車上,
06:09
and we'll pick some operating point up here
129
369307
2021
將功能調整在曲線上這一點
06:11
where it basically never gets into a crash.
130
371328
2019
基本上這點不會導致車禍發生。
06:13
They'll happen, but very low frequency.
131
373347
2443
就算是有,也是個很低的機率。
06:15
Now you and I could look at this and we could argue
132
375790
2461
當然你可以跟我辯論這一部分
06:18
about whether it's incremental, and I could say something like "80-20 rule,"
133
378251
3605
曲線是否有增量性,我只能說 有些事情就像「80-20 法則」,
06:21
and it's really hard to move up to that new curve.
134
381856
2568
向上移動成為一個新的曲線 是非常困難的。
06:24
But let's look at it from a different direction for a moment.
135
384424
2934
我們暫時由另一個方向來看這件事。
06:27
So let's look at how often the technology has to do the right thing.
136
387358
3512
可以發現科技 做正出確的判斷有多高。
06:30
And so this green dot up here is a driver assistance system.
137
390870
3506
這條綠線代表的是駕駛輔助系統。
06:34
It turns out that human drivers
138
394376
2485
結果說明了一般駕駛
06:36
make mistakes that lead to traffic accidents
139
396861
2647
的錯誤行為而導致意外發生
06:39
about once every 100,000 miles in America.
140
399508
3172
在美國約每十萬英哩發生一次。
06:42
In contrast, a self-driving system is probably making decisions
141
402680
3167
相對的,自動駕駛系統做出決定
06:45
about 10 times per second,
142
405847
3663
每秒大約 10 次,
06:49
so order of magnitude,
143
409510
1422
在這個數量級,
06:50
that's about 1,000 times per mile.
144
410932
2832
大約每英哩 1,000 次。
06:53
So if you compare the distance between these two,
145
413764
2485
所以如果你比較這兩個的距離,
06:56
it's about 10 to the eighth, right?
146
416249
2600
大約是 10 的 8 次方,對吧?
06:58
Eight orders of magnitude.
147
418849
1765
8 次方的數量級。
07:00
That's like comparing how fast I run
148
420614
2809
這個對比有點像是 以我跑步的速度
07:03
to the speed of light.
149
423423
2206
與光速作比較。
07:05
It doesn't matter how hard I train, I'm never actually going to get there.
150
425629
3785
所以不管我如何努力訓練, 都不可能實際達到那個程度。
07:09
So there's a pretty big gap there.
151
429414
2438
他們之間有一個很大的差距。
07:11
And then finally, there's how the system can handle uncertainty.
152
431852
3729
最後的部分, 這個系統可以處理一些突發狀況。
07:15
So this pedestrian here might be stepping into the road, might not be.
153
435581
3323
這個人有可能是走在馬路上, 也有可能不是。
07:18
I can't tell, nor can any of our algorithms,
154
438904
3395
我不能預測, 我們的演算法也無法預測,
07:22
but in the case of a driver assistance system,
155
442310
2284
但是駕駛輔助系統在這情況下,
07:24
that means it can't take action, because again,
156
444594
2806
無法採取任何行動,
07:27
if it presses the brakes unexpectedly, that's completely unacceptable.
157
447400
3339
如果無預期的踩煞車 是完全無法被接受的。
07:30
Whereas a self-driving system can look at that pedestrian and say,
158
450739
3133
當自動駕駛系統發現這位行人會說,
07:33
I don't know what they're about to do,
159
453872
1890
我不知道他們打算做什麼,
07:35
slow down, take a better look, and then react appropriately after that.
160
455762
3762
減慢速度,仔細觀察, 之後再採取更適當的回應。
07:39
So it can be much safer than a driver assistance system can ever be.
161
459524
3702
比起駕駛輔助系統它將會更為安全。
07:43
So that's enough about the differences between the two.
162
463226
2730
這是兩個不同系統之間的差別。
07:45
Let's spend some time talking about how the car sees the world.
163
465956
3484
我們花點時間來探討 車輛所看到的世界。
07:49
So this is our vehicle.
164
469440
1252
這是我們的測試車。
07:50
It starts by understanding where it is in the world,
165
470692
2438
從理解目前所在的位置開始,
07:53
by taking a map and its sensor data and aligning the two,
166
473130
2787
比對地圖與感應到的訊息,
07:55
and then we layer on top of that what it sees in the moment.
167
475917
2948
然後把當下所看到的訊息 再加上另一訊息。
07:58
So here, all the purple boxes you can see are other vehicles on the road,
168
478865
3655
在裏頭,你所看到的所有紫色方框 都是路上的其他車輛,
08:02
and the red thing on the side over there is a cyclist,
169
482520
2528
旁邊的紅色部分則是自行車,
08:05
and up in the distance, if you look really closely,
170
485048
2402
如果你仔細看 上方較遠處,
08:07
you can see some cones.
171
487450
1794
可以看到一些三角錐。
08:09
Then we know where the car is in the moment,
172
489244
2773
然後就可以知道車輛當時的位置,
08:12
but we have to do better than that: we have to predict what's going to happen.
173
492017
3833
但是我們需要做得更好: 要能夠預測出將會發生的事情,
08:15
So here the pickup truck in top right is about to make a left lane change
174
495850
3488
右上角有一輛小貨卡 將會切換到左邊車道
08:19
because the road in front of it is closed,
175
499338
2223
因為前方的路段將會關閉,
08:21
so it needs to get out of the way.
176
501561
1731
所以需要變更車道
08:23
Knowing that one pickup truck is great,
177
503292
1863
可以預測小貨車的行徑 是件很棒的事,
08:25
but we really need to know what everybody's thinking,
178
505155
2479
但我們還需要知道每個人的想法,
08:27
so it becomes quite a complicated problem.
179
507634
2507
這變成一個非常複雜的問題。
08:30
And then given that, we can figure out how the car should respond in the moment,
180
510141
4749
有了這資訊後,我們便可以 推測出當下車輛該如何反應。
08:34
so what trajectory it should follow, how quickly it should slow down or speed up.
181
514890
3866
該跟隨哪一條路線, 該多快反應減速或加速。
08:38
And then that all turns into just following a path:
182
518756
3065
匯集所有項目後 只要跟隨著路線,
08:41
turning the steering wheel left or right, pressing the brake or gas.
183
521821
3197
向左或向右轉動方向盤, 加速或踩油門。
08:45
It's really just two numbers at the end of the day.
184
525018
2464
只要這兩個數值 就可以持續到一天結束。
08:47
So how hard can it really be?
185
527482
2241
所以會有多難呢?
08:50
Back when we started in 2009,
186
530433
1952
在 2009 年我們剛開始時,
08:52
this is what our system looked like.
187
532385
1798
我的系統看起來像這樣。
08:54
So you can see our car in the middle and the other boxes on the road,
188
534183
3391
你可以看到在中心有我們的車輛, 路上還有其他小方框,
08:57
driving down the highway.
189
537574
1271
行駛在高速公路上。
08:58
The car needs to understand where it is and roughly where the other vehicles are.
190
538845
3818
這輛測試車需要知道它現在位置 以及其他車輛大約位置。
09:02
It's really a geometric understanding of the world.
191
542663
2429
用幾何方式來理解這個世界。
09:05
Once we started driving on neighborhood and city streets,
192
545092
2948
當開始行駛在近郊及街道中時,
09:08
the problem becomes a whole new level of difficulty.
193
548040
2445
這問題又變為更複雜的層次。
09:10
You see pedestrians crossing in front of us, cars crossing in front of us,
194
550485
3494
可以看到行人及車輛 都會在我們前面穿過,
09:13
going every which way,
195
553979
1811
往各個方向移動,
09:15
the traffic lights, crosswalks.
196
555790
1527
紅綠燈,行人穿越道。
09:17
It's an incredibly complicated problem by comparison.
197
557317
2797
相對而言 這是個相當複雜的問題。
09:20
And then once you have that problem solved,
198
560114
2103
一旦這問題可以被解決掉,
09:22
the vehicle has to be able to deal with construction.
199
562217
2512
車輛就有辦法去處理 這建構出來的環境。
09:24
So here are the cones on the left forcing it to drive to the right,
200
564729
3151
如果左邊有三角錐 它就會要求往右邊開,
09:27
but not just construction in isolation, of course.
201
567880
2402
當然不只是個封閉的施工環境。
09:30
It has to deal with other people moving through that construction zone as well.
202
570282
3723
它也還必須去處理 有人走在施工區的路段。
09:34
And of course, if anyone's breaking the rules, the police are there
203
574005
3263
當然,如果有人違規,警察在場
09:37
and the car has to understand that that flashing light on the top of the car
204
577268
3622
車輛必須知道車頂上有閃著燈的車輛
09:40
means that it's not just a car, it's actually a police officer.
205
580890
3105
代表的是警車而不是一般車輛。
09:43
Similarly, the orange box on the side here,
206
583995
2032
相似的情況下, 在路旁的橘色小方框,
09:46
it's a school bus,
207
586027
1109
是一輛校車,
09:47
and we have to treat that differently as well.
208
587136
2520
我們也必需對它做出不同的回應。
09:50
When we're out on the road, other people have expectations:
209
590576
2793
當車輛在行駛的時候, 有些人會預期,
09:53
So, when a cyclist puts up their arm,
210
593369
1780
當自行車騎士舉起他們的手臂,
09:55
it means they're expecting the car to yield to them and make room for them
211
595149
3518
是預期汽車可以注意到他們 並且挪出空間
09:58
to make a lane change.
212
598667
2053
讓他們可以變換車道。
10:01
And when a police officer stood in the road,
213
601030
2173
當一位警察站在路上,
10:03
our vehicle should understand that this means stop,
214
603203
2740
測試車輛必須了解要停下來,
10:05
and when they signal to go, we should continue.
215
605943
3506
如果手勢指揮通行的話, 則要繼續走。
10:09
Now, the way we accomplish this is by sharing data between the vehicles.
216
609449
3761
經由交通工具資料共享 我們完成這個成就。
10:13
The first, most crude model of this
217
613210
1696
首先,最原始的模型
10:14
is when one vehicle sees a construction zone,
218
614906
2113
當車輛遇到施工區域,
10:17
having another know about it so it can be in the correct lane
219
617019
3062
讓其他人收到這個訊息 然後它會選擇正確的車道
10:20
to avoid some of the difficulty.
220
620081
1570
而避開施工的地方。
10:21
But we actually have a much deeper understanding of this.
221
621651
2664
但我們對這狀況有更進一步的了解。
10:24
We could take all of the data that the cars have seen over time,
222
624315
3009
取得車子所看到的歷史資料,
10:27
the hundreds of thousands of pedestrians, cyclists,
223
627324
2376
數十萬的行人,自行車,
10:29
and vehicles that have been out there
224
629700
1787
以及視線內的車輛
10:31
and understand what they look like
225
631487
1695
理解他們看起來像什麼
10:33
and use that to infer what other vehicles should look like
226
633182
2831
再用來推斷其他車輛的樣式
10:36
and other pedestrians should look like.
227
636013
1926
及其他行人的長相。
10:37
And then, even more importantly, we could take from that a model
228
637939
3021
最重要的是, 我們會依此作為模型
10:40
of how we expect them to move through the world.
229
640960
2330
以及預測他們是如何移動,
10:43
So here the yellow box is a pedestrian crossing in front of us.
230
643290
2963
黃色方框指的是 一位行人從我們面前穿越。
10:46
Here the blue box is a cyclist and we anticipate
231
646253
2250
藍色方框指的是自行車 而且我們預測
10:48
that they're going to nudge out and around the car to the right.
232
648503
3312
他們將會沿著車輛的右邊前行。 。
10:52
Here there's a cyclist coming down the road
233
652115
2092
這是另一輛自行車從對向而來
10:54
and we know they're going to continue to drive down the shape of the road.
234
654207
3486
而且我們知道他會沿著道路過來。
10:57
Here somebody makes a right turn,
235
657693
1867
另外有一個人要右轉,
10:59
and in a moment here, somebody's going to make a U-turn in front of us,
236
659560
3360
同時正前方有一個人 正準備要迴轉,
11:02
and we can anticipate that behavior and respond safely.
237
662920
2614
我們可以預測這個行為 並安全的反應。
11:05
Now, that's all well and good for things that we've seen,
238
665534
2728
這些是我們一般常見的好的狀況,
11:08
but of course, you encounter lots of things that you haven't
239
668262
2865
當然有時也會遇到一些事情
11:11
seen in the world before.
240
671127
1231
是之前從不曾遇到過。
11:12
And so just a couple of months ago,
241
672358
1741
幾個月前,
11:14
our vehicles were driving through Mountain View,
242
674099
2235
測試車輛行經山景城時,
11:16
and this is what we encountered.
243
676334
1644
我們遇到一個狀況。
11:17
This is a woman in an electric wheelchair
244
677978
2082
一位坐著電動輪椅的女人
11:20
chasing a duck in circles on the road. (Laughter)
245
680060
2617
在路上追逐著繞圈圈鴨子。 (笑聲)
11:22
Now it turns out, there is nowhere in the DMV handbook
246
682677
3111
在加州管理局中的駕駛手冊中 找不到任何說明
11:25
that tells you how to deal with that,
247
685788
2245
告訴你如何處理以上狀況,
11:28
but our vehicles were able to encounter that,
248
688033
2143
但是我們測試車輛有辦法處理它。
11:30
slow down, and drive safely.
249
690176
2255
減速,安全地行駛而過。
11:32
Now, we don't have to deal with just ducks.
250
692431
2041
我們不只是要對付鴨子。
11:34
Watch this bird fly across in front of us. The car reacts to that.
251
694472
3708
看到一隻鳥在前方飛越而過 車子也對它們做出反應。
11:38
Here we're dealing with a cyclist
252
698180
1615
這裡我們正在應付一位自行車騎士
11:39
that you would never expect to see anywhere other than Mountain View.
253
699795
3290
除了在山景城外 你從來無法預期會遇到的。
11:43
And of course, we have to deal with drivers,
254
703085
2068
當然,我們還得應付一些駕駛,
11:45
even the very small ones.
255
705153
3715
甚至是很小事也要處理。
11:48
Watch to the right as someone jumps out of this truck at us.
256
708868
4131
注意右邊有一個人 在我們面前從卡車上跳下來。
11:54
And now, watch the left as the car with the green box decides
257
714460
2929
左邊有綠色方框所代表的車輛
11:57
he needs to make a right turn at the last possible moment.
258
717389
3325
在最後一個的關頭決定右轉。
12:00
Here, as we make a lane change, the car to our left decides
259
720714
2851
當我們決定要變換車道時, 左邊的車輛
12:03
it wants to as well.
260
723565
3553
也決定要變換車道。
12:07
And here, we watch a car blow through a red light
261
727118
2693
這邊我們看到一輛車子闖紅燈
12:09
and yield to it.
262
729811
2090
就讓他先過。
12:11
And similarly, here, a cyclist blowing through that light as well.
263
731901
3854
相同的情況, 則是另一輛自行車闖紅燈。
12:15
And of course, the vehicle responds safely.
264
735755
2746
當然測試車輛可以安全地回應。
12:18
And of course, we have people who do I don't know what
265
738501
2601
有時候人們會在路上 做一些無法理解的事
12:21
sometimes on the road, like this guy pulling out between two self-driving cars.
266
741102
3823
就像這位仁兄一樣,直接把車輛停在兩輛自動駕駛車之間。
12:24
You have to ask, "What are you thinking?"
267
744925
2045
你就會很想問,「你在想些什麼?」
12:26
(Laughter)
268
746970
1212
(笑聲)
12:28
Now, I just fire-hosed you with a lot of stuff there,
269
748182
2521
我剛才描述了許多狀況給大家,
12:30
so I'm going to break one of these down pretty quickly.
270
750703
2650
我將用很快的方式 來分析其中一個狀況。
12:33
So what we're looking at is the scene with the cyclist again,
271
753353
2940
我們再回到自行車這個例子,
12:36
and you might notice in the bottom, we can't actually see the cyclist yet,
272
756293
3491
可以注意到下方這部分, 我們還無法真正的看到自行車,
12:39
but the car can: it's that little blue box up there,
273
759784
2504
但是車輛可以: 是這個藍色小方框的部分,
12:42
and that comes from the laser data.
274
762288
2081
這資訊是由雷射所得來的。
12:44
And that's not actually really easy to understand,
275
764369
2418
確實無法很容易去理解,
12:46
so what I'm going to do is I'm going to turn that laser data and look at it,
276
766787
3584
我將要做的是轉換雷射資料 然後再來看,
12:50
and if you're really good at looking at laser data, you can see
277
770371
3029
如果你對分析雷射資料很拿手, 你將可以看到
12:53
a few dots on the curve there,
278
773400
1487
在曲線上面的一些小點,
12:54
right there, and that blue box is that cyclist.
279
774887
2372
就在這上面, 上面藍色的小方框就是自行車,
12:57
Now as our light is red,
280
777259
1149
這時我們是紅燈,
12:58
the cyclist's light has turned yellow already,
281
778408
2192
自行車這邊已經轉變為黃燈,
13:00
and if you squint, you can see that in the imagery.
282
780600
2438
如果你斜眼看的話, 可以從這張圖案看到。
13:03
But the cyclist, we see, is going to proceed through the intersection.
283
783038
3286
這輛我們所看到的自行車, 將打算穿越這個路口。
13:06
Our light has now turned green, his is solidly red,
284
786324
2394
我們的燈號已經轉為綠燈, 他的則是紅燈,
13:08
and we now anticipate that this bike is going to come all the way across.
285
788718
4292
我們預測這輛自行車 將會穿越整個路口。
13:13
Unfortunately the other drivers next to us were not paying as much attention.
286
793010
3742
不巧的是旁邊的 其他司機並未注意到這點。
13:16
They started to pull forward, and fortunately for everyone,
287
796752
3157
他們開始往前移動, 不過很幸運的是,
13:19
this cyclists reacts, avoids,
288
799909
3011
自行車反應很快地避開,
13:22
and makes it through the intersection.
289
802920
2191
而且穿越了路口。
13:25
And off we go.
290
805111
1568
結束後我們才往前。
13:26
Now, as you can see, we've made some pretty exciting progress,
291
806679
2948
就如你所見的, 我們有了一些卓越的進展,
13:29
and at this point we're pretty convinced
292
809627
1902
在這個階段我們很有自信
13:31
this technology is going to come to market.
293
811529
2010
這個技術是可以上市的。
13:33
We do three million miles of testing in our simulators every single day,
294
813539
4783
在模擬系統下 我們每天做三百萬哩的測試,
13:38
so you can imagine the experience that our vehicles have.
295
818322
2689
你可以想像我們車輛的豐富經歷。
13:41
We are looking forward to having this technology on the road,
296
821011
2864
我們正設法把這技術 用於實際道路上,
13:43
and we think the right path is to go through the self-driving
297
823875
2890
我們認為正確的方向 應該是自動駕駛
13:46
rather than driver assistance approach
298
826765
1844
而不是駕駛輔助系統
13:48
because the urgency is so large.
299
828609
2621
因為有迫切的需求。
13:51
In the time I have given this talk today,
300
831230
2393
在我今天演說的同時,
13:53
34 people have died on America's roads.
301
833623
3135
有 34 個美國人死於交通事故。
13:56
How soon can we bring it out?
302
836758
2368
我們可以多快讓它上市?
13:59
Well, it's hard to say because it's a really complicated problem,
303
839126
3832
嗯,這很難說 因為這是一個很複雜的問題,
14:02
but these are my two boys.
304
842958
2214
這是我兩個兒子。
14:05
My oldest son is 11, and that means in four and a half years,
305
845172
3623
大的兒子 11 歲,表示再 4 年半,
14:08
he's going to be able to get his driver's license.
306
848795
2577
他就可以拿到駕照。
14:11
My team and I are committed to making sure that doesn't happen.
307
851372
3204
我跟我的團隊承諾 確保不會讓這件事情發生。
14:14
Thank you.
308
854576
1904
謝謝。
14:16
(Laughter) (Applause)
309
856480
3667
(笑聲)(掌聲)
14:21
Chris Anderson: Chris, I've got a question for you.
310
861110
2568
克里斯·安德森: 克里斯,我有一個問題。
14:23
Chris Urmson: Sure.
311
863678
2809
克里斯·厄姆森:好。
14:26
CA: So certainly, the mind of your cars is pretty mind-boggling.
312
866487
3924
克里斯·安德森: 的確,你車輛的智慧系統讓人驚訝。
14:30
On this debate between driver-assisted and fully driverless --
313
870411
4459
尤其在輔助駕駛與 自動駕駛的辯論中,
14:34
I mean, there's a real debate going on out there right now.
314
874870
3041
現在有一個真實的辯論就存在那邊。
14:37
So some of the companies, for example, Tesla,
315
877911
2833
有一些公司,如:特斯拉,
14:40
are going the driver-assisted route.
316
880744
2159
正在研究一些駕駛輔助系統。
14:42
What you're saying is that that's kind of going to be a dead end
317
882903
5248
根據你所說的 這個發展將會是個死胡同
14:48
because you can't just keep improving that route and get to fully driverless
318
888151
5456
因為無法藉由改善輔助系統 最後完全取代自動駕駛
14:53
at some point, and then a driver is going to say, "This feels safe,"
319
893607
3530
在某一點上,駕駛可能會說, 「這感覺到是安全的」,
14:57
and climb into the back, and something ugly will happen.
320
897137
2647
然後爬到後座去, 一些可怕的事情就可能會發生。
14:59
CU: Right. No, that's exactly right, and it's not to say
321
899784
2676
克里斯·厄姆森: 完全正確,現在還無法說
15:02
that the driver assistance systems aren't going to be incredibly valuable.
322
902460
3537
駕駛輔助系統不具有價值。
15:05
They can save a lot of lives in the interim,
323
905997
2058
在這段過渡期間 它們仍可挽救許多生命,
15:08
but to see the transformative opportunity to help someone like Steve get around,
324
908055
3833
但是看到這是一個改變的機會, 可以幫助像史蒂夫一樣的人,
15:11
to really get to the end case in safety,
325
911888
1969
而且最終是個安全的方案,
15:13
to have the opportunity to change our cities
326
913857
2479
去擁有這機會去改變我們的城市
15:16
and move parking out and get rid of these urban craters we call parking lots,
327
916336
4204
可以擺脫城市裡一個個的停車場,
15:20
it's the only way to go.
328
920540
1240
這是唯一的辦法。
15:21
CA: We will be tracking your progress with huge interest.
329
921780
2718
克里斯·安德森: 我們非常有興趣持續追蹤你的進度
15:24
Thanks so much, Chris. CU: Thank you. (Applause)
330
924498
4232
謝謝你,克里斯。 克里斯·厄姆森:謝謝。(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog