Chris Urmson: How a driverless car sees the road

865,908 views ・ 2015-06-26

TED


請雙擊下方英文字幕播放視頻。

譯者: Kenny Lo 審譯者: Yamei Huang
00:12
So in 1885, Karl Benz invented the automobile.
0
12528
3949
1885年,卡爾·賓士發明汽車。
00:16
Later that year, he took it out for the first public test drive,
1
16707
3762
那年底, 他開著那台車做了第一次公開試駕,
00:20
and -- true story -- crashed into a wall.
2
20469
3375
結果,撞毀了。
00:24
For the last 130 years,
3
24184
2043
過去 130 年來,
00:26
we've been working around that least reliable part of the car, the driver.
4
26227
4319
我們一直致力於改進 車裡最不可靠的部分,駕駛。
00:30
We've made the car stronger.
5
30546
1354
我們讓車子更堅固。
00:32
We've added seat belts, we've added air bags,
6
32200
2548
我們加上安全帶和安全氣囊,
00:34
and in the last decade, we've actually started trying to make the car smarter
7
34748
3971
過去十年, 我們想辦法讓車子變得更聰明
00:38
to fix that bug, the driver.
8
38719
2938
來修正駕駛這個問題。
00:41
Now, today I'm going to talk to you a little bit about the difference
9
41657
3261
現在,我要告訴你
00:44
between patching around the problem with driver assistance systems
10
44918
3808
使用駕駛輔助系統來修正這問題,
00:48
and actually having fully self-driving cars
11
48726
2564
和完全自動化駕駛其中的差異
00:51
and what they can do for the world.
12
51290
1880
以及在世界上所產生的影響。
00:53
I'm also going to talk to you a little bit about our car
13
53170
2995
我也將告訴你 關於我們車子的一些細節
00:56
and allow you to see how it sees the world and how it reacts and what it does,
14
56165
3999
讓你可以了解它所看到的世界 以及如何對外界做出反應,
01:00
but first I'm going to talk a little bit about the problem.
15
60164
3187
首先我先來探討一個問題。
01:03
And it's a big problem:
16
63651
1648
是一個大問題:
01:05
1.2 million people are killed on the world's roads every year.
17
65299
3089
全世界每年有 120 萬人 死於交通事故。
01:08
In America alone, 33,000 people are killed each year.
18
68388
3784
僅僅美國, 每年就佔了 33,000 人。
01:12
To put that in perspective,
19
72172
2028
依此數據與飛機事故比較,
01:14
that's the same as a 737 falling out of the sky every working day.
20
74200
4797
等於每個上班日, 都有一台 737 從空中掉下。
01:19
It's kind of unbelievable.
21
79342
1786
有點讓人無法置信。
01:21
Cars are sold to us like this,
22
81548
2298
車輛以這種模式賣給我們,
01:23
but really, this is what driving's like.
23
83846
2717
但實際上, 這才是我們開車所遇到的狀況,
01:26
Right? It's not sunny, it's rainy,
24
86563
2159
對吧?不是晴天,而是雨天,
01:28
and you want to do anything other than drive.
25
88722
2488
除了開車外你還想要做其他事。
01:31
And the reason why is this:
26
91210
1622
就是這個原因:
01:32
Traffic is getting worse.
27
92832
1858
交通變得更糟糕了。
01:34
In America, between 1990 and 2010,
28
94690
3506
在美國,1990 年到 2010 年間,
01:38
the vehicle miles traveled increased by 38 percent.
29
98196
3504
汽車行駛哩程數增加百分之三十八,
01:42
We grew by six percent of roads,
30
102213
2749
但是道路只增加百分之六,
01:44
so it's not in your brains.
31
104962
1602
所以不是錯覺。
01:46
Traffic really is substantially worse than it was not very long ago.
32
106564
4276
跟幾年前比起來 交通其實是變差。
01:50
And all of this has a very human cost.
33
110840
2409
所有這一切都代表大量的人力成本。
01:53
So if you take the average commute time in America, which is about 50 minutes,
34
113529
3948
以美國平均通勤時間來看, 大約 50 分鐘,
01:57
you multiply that by the 120 million workers we have,
35
117477
3649
乘以目前約一億兩千萬工作人口,
02:01
that turns out to be about six billion minutes
36
121126
2225
將會是六十億分鐘的時間
02:03
wasted in commuting every day.
37
123351
2026
浪費在每天的通勤上。
02:05
Now, that's a big number, so let's put it in perspective.
38
125377
2827
這是個很大的數值, 這個數據,相當於
02:08
You take that six billion minutes
39
128204
1774
把六十億分鐘的時間
02:09
and you divide it by the average life expectancy of a person,
40
129978
3784
除以一般人的平均壽命,
02:13
that turns out to be 162 lifetimes
41
133762
3135
將會是 162 個人一生的時間
02:16
spent every day, wasted,
42
136897
2925
每天浪費在這交通上面,
02:19
just getting from A to B.
43
139822
2044
只是要從 A 點移動到 B 點。
02:21
It's unbelievable.
44
141866
1730
讓人無法置信。
02:23
And then, there are those of us who don't have the privilege
45
143596
2844
而且,有些在交通上
02:26
of sitting in traffic.
46
146440
1672
弱勢的人,
02:28
So this is Steve.
47
148112
1578
這是史蒂夫。
02:29
He's an incredibly capable guy,
48
149690
1765
一個非常有才能力的人,
02:31
but he just happens to be blind,
49
151455
2516
但是他卻是眼睛失明,
02:33
and that means instead of a 30-minute drive to work in the morning,
50
153971
3217
他不是每天早上 花 30 分鐘開車上班,
02:37
it's a two-hour ordeal of piecing together bits of public transit
51
157188
3979
而是要痛苦的花兩個時 轉搭大眾運輸工具
02:41
or asking friends and family for a ride.
52
161167
2385
或請求朋友或親人接送。
02:43
He doesn't have that same freedom that you and I have to get around.
53
163552
3669
他無法像你我一樣 有到處走動的自由。
02:47
We should do something about that.
54
167221
2460
我們應該做一些事情。
02:49
Now, conventional wisdom would say
55
169891
1757
在現在傳統的思慮會提到
02:51
that we'll just take these driver assistance systems
56
171648
2492
我們可以使用一些駕駛輔助系統
02:54
and we'll kind of push them and incrementally improve them,
57
174140
3750
我們則持續的推動及改善整個系統,
02:57
and over time, they'll turn into self-driving cars.
58
177890
2542
隨著時間演進, 轉變為自動駕駛系統。
03:00
Well, I'm here to tell you that's like me saying
59
180432
2409
在這我要告訴你們就像我所說的
03:02
that if I work really hard at jumping, one day I'll be able to fly.
60
182841
4057
如果我可以很努力的跳躍, 有一天我可以飛上天
03:06
We actually need to do something a little different.
61
186898
2728
我們確實需要 用一些不同的方式去做事情。
03:09
And so I'm going to talk to you about three different ways
62
189626
2711
我將告訴你 在自動駕駛系統
03:12
that self-driving systems are different than driver assistance systems.
63
192337
3346
與駕駛輔助系統之間, 有三個不同點。
03:15
And I'm going to start with some of our own experience.
64
195683
2651
從我們本身的經驗開始談起。
03:18
So back in 2013,
65
198334
2253
2013 年。
03:20
we had the first test of a self-driving car
66
200587
2663
我們第一次做自動駕駛車的測試
03:23
where we let regular people use it.
67
203250
2027
我們讓一般大眾人去開它。
03:25
Well, almost regular -- they were 100 Googlers,
68
205277
2202
嗯,幾乎算是 -- 他們是 100 位谷歌的員工,
03:27
but they weren't working on the project.
69
207479
2003
但他們的工作都不屬於這個專案,
03:29
And we gave them the car and we allowed them to use it in their daily lives.
70
209482
3621
我們提供車輛 並允許在每天的日常生活中使用。
03:33
But unlike a real self-driving car, this one had a big asterisk with it:
71
213103
3719
但這不像是自動駕駛的車, 上頭有一個大大的星號在車上,
03:36
They had to pay attention,
72
216822
1504
他們必須集中注意力開車,
03:38
because this was an experimental vehicle.
73
218326
2633
因為這些只是實驗車輛。
03:40
We tested it a lot, but it could still fail.
74
220959
3525
我們測試很多, 但仍有失敗狀況發生。
03:44
And so we gave them two hours of training,
75
224484
2059
所以我們給車主 2 個小時的訓練,
03:46
we put them in the car, we let them use it,
76
226543
2092
再讓他們進入車內使用它,
03:48
and what we heard back was something awesome,
77
228635
2127
我們所收到的回覆讓人感到驚訝,
03:50
as someone trying to bring a product into the world.
78
230762
2524
當一個新產品嘗試進入這個世界。
03:53
Every one of them told us they loved it.
79
233286
1925
每一個人都跟我們說他們愛上了它。
03:55
In fact, we had a Porsche driver who came in and told us on the first day,
80
235211
3566
事實上,第一天有一個 開保時捷的駕駛跟我們說,
03:58
"This is completely stupid. What are we thinking?"
81
238777
2663
「這完全是件愚蠢的事情, 不知道我們在想些什麼?」
04:01
But at the end of it, he said, "Not only should I have it,
82
241850
2840
但是在他測試結束後,他說 「不該只有我可以使用它,
04:04
everyone else should have it, because people are terrible drivers."
83
244690
3175
每個人都該使用它, 因為許多人都是個糟糕的駕駛。」
04:09
So this was music to our ears,
84
249135
1735
這對我們來說有很大的鼓勵,
04:10
but then we started to look at what the people inside the car were doing,
85
250870
3803
然後我們開始研究 人們在車裡做些什麼,
04:14
and this was eye-opening.
86
254673
1579
真讓人大開眼界。
04:16
Now, my favorite story is this gentleman
87
256252
2438
我最喜歡的故事裡有一位男士
04:18
who looks down at his phone and realizes the battery is low,
88
258690
3829
他低頭看手機 發現電池快沒電了,
04:22
so he turns around like this in the car and digs around in his backpack,
89
262519
4548
然後在車裡像這樣轉過身來, 並且在背包裡找尋東西,
04:27
pulls out his laptop,
90
267067
2153
拿出一台筆記型電腦,
04:29
puts it on the seat,
91
269220
1567
放在前座,
04:30
goes in the back again,
92
270787
1764
再回頭一次,
04:32
digs around, pulls out the charging cable for his phone,
93
272551
3367
繼續搜尋,拿出手機的充電線,
04:35
futzes around, puts it into the laptop, puts it on the phone.
94
275918
3367
轉身回來, 把電源線接上筆電跟手機。
04:39
Sure enough, the phone is charging.
95
279285
2043
當然他的手機已經開始充電了。
04:41
All the time he's been doing 65 miles per hour down the freeway.
96
281328
3994
同時他以 65 英哩的速度 在高速公路上行駛。
04:45
Right? Unbelievable.
97
285322
2484
讓人無法置信。
04:47
So we thought about this and we said, it's kind of obvious, right?
98
287806
3121
我們思考這整件事情, 有明顯的結論
04:50
The better the technology gets,
99
290927
2263
有更好的科技輔助,
04:53
the less reliable the driver is going to get.
100
293190
2121
駕駛就越不可靠。
04:55
So by just making the cars incrementally smarter,
101
295311
2396
若只讓車子變得更聰明,
04:57
we're probably not going to see the wins we really need.
102
297707
2902
那就和我們希望達到的結果不同。
05:00
Let me talk about something a little technical for a moment here.
103
300609
3901
讓我來談論有關技術的部分。
05:04
So we're looking at this graph, and along the bottom
104
304510
2438
我們來看這圖型,底部的部分,
05:06
is how often does the car apply the brakes when it shouldn't.
105
306948
3051
是在不該踩煞車的情況下 卻踩煞車的頻率,
05:09
You can ignore most of that axis,
106
309999
1621
你可以忽略大部分的 X 軸,
05:11
because if you're driving around town, and the car starts stopping randomly,
107
311620
3719
因為如果在你開車到鎮上的路程中, 隨時煞車的話,
05:15
you're never going to buy that car.
108
315339
1701
你將不會買這部車。
05:17
And the vertical axis is how often the car is going to apply the brakes
109
317040
3375
從垂直軸上 可以看到當車輛踩煞車後
05:20
when it's supposed to to help you avoid an accident.
110
320415
3049
可以幫助你避免意外的頻率。
05:23
Now, if we look at the bottom left corner here,
111
323464
2221
現在,我們看到左下角這個點,
05:25
this is your classic car.
112
325685
1845
這是我們一般的車輛。
05:27
It doesn't apply the brakes for you, it doesn't do anything goofy,
113
327530
3133
他不會幫忙煞車 傻傻的也不會幫忙任何事,
05:30
but it also doesn't get you out of an accident.
114
330663
2779
當然也無法幫你避免意外。
05:33
Now, if we want to bring a driver assistance system into a car,
115
333442
3018
現在, 如果我們想要引進駕駛輔助系統,
05:36
say with collision mitigation braking,
116
336460
1828
如碰撞減輕煞車系統。
05:38
we're going to put some package of technology on there,
117
338288
2612
我們將在這上面導入一些技術方案,
05:40
and that's this curve, and it's going to have some operating properties,
118
340900
3418
由這個曲線得知, 這系統可以發揮一些功效,
05:44
but it's never going to avoid all of the accidents,
119
344318
2490
但仍不可能避免所有的意外,
05:46
because it doesn't have that capability.
120
346808
2059
因為尚未有足夠的能力。
05:48
But we'll pick some place along the curve here,
121
348867
2249
但我們可以在這個曲線中挑一點,
05:51
and maybe it avoids half of accidents that the human driver misses,
122
351116
3254
它也許就足夠避免掉一半 人為疏失所造成的意外,
05:54
and that's amazing, right?
123
354370
1297
非常神奇,對吧?
05:55
We just reduced accidents on our roads by a factor of two.
124
355667
2727
我們改變一、兩個因素 就可以把路上的意外事故減少一半。
05:58
There are now 17,000 less people dying every year in America.
125
358394
3987
在美國每年有接近 一萬七千人 死於交通事故。
06:02
But if we want a self-driving car,
126
362381
2020
但如果我們想要有自動駕駛車輛,
06:04
we need a technology curve that looks like this.
127
364401
2307
我們需要像這條的技術曲線。
06:06
We're going to have to put more sensors in the vehicle,
128
366708
2599
需要將更多的感測器放在車上,
06:09
and we'll pick some operating point up here
129
369307
2021
將功能調整在曲線上這一點
06:11
where it basically never gets into a crash.
130
371328
2019
基本上這點不會導致車禍發生。
06:13
They'll happen, but very low frequency.
131
373347
2443
就算是有,也是個很低的機率。
06:15
Now you and I could look at this and we could argue
132
375790
2461
當然你可以跟我辯論這一部分
06:18
about whether it's incremental, and I could say something like "80-20 rule,"
133
378251
3605
曲線是否有增量性,我只能說 有些事情就像「80-20 法則」,
06:21
and it's really hard to move up to that new curve.
134
381856
2568
向上移動成為一個新的曲線 是非常困難的。
06:24
But let's look at it from a different direction for a moment.
135
384424
2934
我們暫時由另一個方向來看這件事。
06:27
So let's look at how often the technology has to do the right thing.
136
387358
3512
可以發現科技 做正出確的判斷有多高。
06:30
And so this green dot up here is a driver assistance system.
137
390870
3506
這條綠線代表的是駕駛輔助系統。
06:34
It turns out that human drivers
138
394376
2485
結果說明了一般駕駛
06:36
make mistakes that lead to traffic accidents
139
396861
2647
的錯誤行為而導致意外發生
06:39
about once every 100,000 miles in America.
140
399508
3172
在美國約每十萬英哩發生一次。
06:42
In contrast, a self-driving system is probably making decisions
141
402680
3167
相對的,自動駕駛系統做出決定
06:45
about 10 times per second,
142
405847
3663
每秒大約 10 次,
06:49
so order of magnitude,
143
409510
1422
在這個數量級,
06:50
that's about 1,000 times per mile.
144
410932
2832
大約每英哩 1,000 次。
06:53
So if you compare the distance between these two,
145
413764
2485
所以如果你比較這兩個的距離,
06:56
it's about 10 to the eighth, right?
146
416249
2600
大約是 10 的 8 次方,對吧?
06:58
Eight orders of magnitude.
147
418849
1765
8 次方的數量級。
07:00
That's like comparing how fast I run
148
420614
2809
這個對比有點像是 以我跑步的速度
07:03
to the speed of light.
149
423423
2206
與光速作比較。
07:05
It doesn't matter how hard I train, I'm never actually going to get there.
150
425629
3785
所以不管我如何努力訓練, 都不可能實際達到那個程度。
07:09
So there's a pretty big gap there.
151
429414
2438
他們之間有一個很大的差距。
07:11
And then finally, there's how the system can handle uncertainty.
152
431852
3729
最後的部分, 這個系統可以處理一些突發狀況。
07:15
So this pedestrian here might be stepping into the road, might not be.
153
435581
3323
這個人有可能是走在馬路上, 也有可能不是。
07:18
I can't tell, nor can any of our algorithms,
154
438904
3395
我不能預測, 我們的演算法也無法預測,
07:22
but in the case of a driver assistance system,
155
442310
2284
但是駕駛輔助系統在這情況下,
07:24
that means it can't take action, because again,
156
444594
2806
無法採取任何行動,
07:27
if it presses the brakes unexpectedly, that's completely unacceptable.
157
447400
3339
如果無預期的踩煞車 是完全無法被接受的。
07:30
Whereas a self-driving system can look at that pedestrian and say,
158
450739
3133
當自動駕駛系統發現這位行人會說,
07:33
I don't know what they're about to do,
159
453872
1890
我不知道他們打算做什麼,
07:35
slow down, take a better look, and then react appropriately after that.
160
455762
3762
減慢速度,仔細觀察, 之後再採取更適當的回應。
07:39
So it can be much safer than a driver assistance system can ever be.
161
459524
3702
比起駕駛輔助系統它將會更為安全。
07:43
So that's enough about the differences between the two.
162
463226
2730
這是兩個不同系統之間的差別。
07:45
Let's spend some time talking about how the car sees the world.
163
465956
3484
我們花點時間來探討 車輛所看到的世界。
07:49
So this is our vehicle.
164
469440
1252
這是我們的測試車。
07:50
It starts by understanding where it is in the world,
165
470692
2438
從理解目前所在的位置開始,
07:53
by taking a map and its sensor data and aligning the two,
166
473130
2787
比對地圖與感應到的訊息,
07:55
and then we layer on top of that what it sees in the moment.
167
475917
2948
然後把當下所看到的訊息 再加上另一訊息。
07:58
So here, all the purple boxes you can see are other vehicles on the road,
168
478865
3655
在裏頭,你所看到的所有紫色方框 都是路上的其他車輛,
08:02
and the red thing on the side over there is a cyclist,
169
482520
2528
旁邊的紅色部分則是自行車,
08:05
and up in the distance, if you look really closely,
170
485048
2402
如果你仔細看 上方較遠處,
08:07
you can see some cones.
171
487450
1794
可以看到一些三角錐。
08:09
Then we know where the car is in the moment,
172
489244
2773
然後就可以知道車輛當時的位置,
08:12
but we have to do better than that: we have to predict what's going to happen.
173
492017
3833
但是我們需要做得更好: 要能夠預測出將會發生的事情,
08:15
So here the pickup truck in top right is about to make a left lane change
174
495850
3488
右上角有一輛小貨卡 將會切換到左邊車道
08:19
because the road in front of it is closed,
175
499338
2223
因為前方的路段將會關閉,
08:21
so it needs to get out of the way.
176
501561
1731
所以需要變更車道
08:23
Knowing that one pickup truck is great,
177
503292
1863
可以預測小貨車的行徑 是件很棒的事,
08:25
but we really need to know what everybody's thinking,
178
505155
2479
但我們還需要知道每個人的想法,
08:27
so it becomes quite a complicated problem.
179
507634
2507
這變成一個非常複雜的問題。
08:30
And then given that, we can figure out how the car should respond in the moment,
180
510141
4749
有了這資訊後,我們便可以 推測出當下車輛該如何反應。
08:34
so what trajectory it should follow, how quickly it should slow down or speed up.
181
514890
3866
該跟隨哪一條路線, 該多快反應減速或加速。
08:38
And then that all turns into just following a path:
182
518756
3065
匯集所有項目後 只要跟隨著路線,
08:41
turning the steering wheel left or right, pressing the brake or gas.
183
521821
3197
向左或向右轉動方向盤, 加速或踩油門。
08:45
It's really just two numbers at the end of the day.
184
525018
2464
只要這兩個數值 就可以持續到一天結束。
08:47
So how hard can it really be?
185
527482
2241
所以會有多難呢?
08:50
Back when we started in 2009,
186
530433
1952
在 2009 年我們剛開始時,
08:52
this is what our system looked like.
187
532385
1798
我的系統看起來像這樣。
08:54
So you can see our car in the middle and the other boxes on the road,
188
534183
3391
你可以看到在中心有我們的車輛, 路上還有其他小方框,
08:57
driving down the highway.
189
537574
1271
行駛在高速公路上。
08:58
The car needs to understand where it is and roughly where the other vehicles are.
190
538845
3818
這輛測試車需要知道它現在位置 以及其他車輛大約位置。
09:02
It's really a geometric understanding of the world.
191
542663
2429
用幾何方式來理解這個世界。
09:05
Once we started driving on neighborhood and city streets,
192
545092
2948
當開始行駛在近郊及街道中時,
09:08
the problem becomes a whole new level of difficulty.
193
548040
2445
這問題又變為更複雜的層次。
09:10
You see pedestrians crossing in front of us, cars crossing in front of us,
194
550485
3494
可以看到行人及車輛 都會在我們前面穿過,
09:13
going every which way,
195
553979
1811
往各個方向移動,
09:15
the traffic lights, crosswalks.
196
555790
1527
紅綠燈,行人穿越道。
09:17
It's an incredibly complicated problem by comparison.
197
557317
2797
相對而言 這是個相當複雜的問題。
09:20
And then once you have that problem solved,
198
560114
2103
一旦這問題可以被解決掉,
09:22
the vehicle has to be able to deal with construction.
199
562217
2512
車輛就有辦法去處理 這建構出來的環境。
09:24
So here are the cones on the left forcing it to drive to the right,
200
564729
3151
如果左邊有三角錐 它就會要求往右邊開,
09:27
but not just construction in isolation, of course.
201
567880
2402
當然不只是個封閉的施工環境。
09:30
It has to deal with other people moving through that construction zone as well.
202
570282
3723
它也還必須去處理 有人走在施工區的路段。
09:34
And of course, if anyone's breaking the rules, the police are there
203
574005
3263
當然,如果有人違規,警察在場
09:37
and the car has to understand that that flashing light on the top of the car
204
577268
3622
車輛必須知道車頂上有閃著燈的車輛
09:40
means that it's not just a car, it's actually a police officer.
205
580890
3105
代表的是警車而不是一般車輛。
09:43
Similarly, the orange box on the side here,
206
583995
2032
相似的情況下, 在路旁的橘色小方框,
09:46
it's a school bus,
207
586027
1109
是一輛校車,
09:47
and we have to treat that differently as well.
208
587136
2520
我們也必需對它做出不同的回應。
09:50
When we're out on the road, other people have expectations:
209
590576
2793
當車輛在行駛的時候, 有些人會預期,
09:53
So, when a cyclist puts up their arm,
210
593369
1780
當自行車騎士舉起他們的手臂,
09:55
it means they're expecting the car to yield to them and make room for them
211
595149
3518
是預期汽車可以注意到他們 並且挪出空間
09:58
to make a lane change.
212
598667
2053
讓他們可以變換車道。
10:01
And when a police officer stood in the road,
213
601030
2173
當一位警察站在路上,
10:03
our vehicle should understand that this means stop,
214
603203
2740
測試車輛必須了解要停下來,
10:05
and when they signal to go, we should continue.
215
605943
3506
如果手勢指揮通行的話, 則要繼續走。
10:09
Now, the way we accomplish this is by sharing data between the vehicles.
216
609449
3761
經由交通工具資料共享 我們完成這個成就。
10:13
The first, most crude model of this
217
613210
1696
首先,最原始的模型
10:14
is when one vehicle sees a construction zone,
218
614906
2113
當車輛遇到施工區域,
10:17
having another know about it so it can be in the correct lane
219
617019
3062
讓其他人收到這個訊息 然後它會選擇正確的車道
10:20
to avoid some of the difficulty.
220
620081
1570
而避開施工的地方。
10:21
But we actually have a much deeper understanding of this.
221
621651
2664
但我們對這狀況有更進一步的了解。
10:24
We could take all of the data that the cars have seen over time,
222
624315
3009
取得車子所看到的歷史資料,
10:27
the hundreds of thousands of pedestrians, cyclists,
223
627324
2376
數十萬的行人,自行車,
10:29
and vehicles that have been out there
224
629700
1787
以及視線內的車輛
10:31
and understand what they look like
225
631487
1695
理解他們看起來像什麼
10:33
and use that to infer what other vehicles should look like
226
633182
2831
再用來推斷其他車輛的樣式
10:36
and other pedestrians should look like.
227
636013
1926
及其他行人的長相。
10:37
And then, even more importantly, we could take from that a model
228
637939
3021
最重要的是, 我們會依此作為模型
10:40
of how we expect them to move through the world.
229
640960
2330
以及預測他們是如何移動,
10:43
So here the yellow box is a pedestrian crossing in front of us.
230
643290
2963
黃色方框指的是 一位行人從我們面前穿越。
10:46
Here the blue box is a cyclist and we anticipate
231
646253
2250
藍色方框指的是自行車 而且我們預測
10:48
that they're going to nudge out and around the car to the right.
232
648503
3312
他們將會沿著車輛的右邊前行。 。
10:52
Here there's a cyclist coming down the road
233
652115
2092
這是另一輛自行車從對向而來
10:54
and we know they're going to continue to drive down the shape of the road.
234
654207
3486
而且我們知道他會沿著道路過來。
10:57
Here somebody makes a right turn,
235
657693
1867
另外有一個人要右轉,
10:59
and in a moment here, somebody's going to make a U-turn in front of us,
236
659560
3360
同時正前方有一個人 正準備要迴轉,
11:02
and we can anticipate that behavior and respond safely.
237
662920
2614
我們可以預測這個行為 並安全的反應。
11:05
Now, that's all well and good for things that we've seen,
238
665534
2728
這些是我們一般常見的好的狀況,
11:08
but of course, you encounter lots of things that you haven't
239
668262
2865
當然有時也會遇到一些事情
11:11
seen in the world before.
240
671127
1231
是之前從不曾遇到過。
11:12
And so just a couple of months ago,
241
672358
1741
幾個月前,
11:14
our vehicles were driving through Mountain View,
242
674099
2235
測試車輛行經山景城時,
11:16
and this is what we encountered.
243
676334
1644
我們遇到一個狀況。
11:17
This is a woman in an electric wheelchair
244
677978
2082
一位坐著電動輪椅的女人
11:20
chasing a duck in circles on the road. (Laughter)
245
680060
2617
在路上追逐著繞圈圈鴨子。 (笑聲)
11:22
Now it turns out, there is nowhere in the DMV handbook
246
682677
3111
在加州管理局中的駕駛手冊中 找不到任何說明
11:25
that tells you how to deal with that,
247
685788
2245
告訴你如何處理以上狀況,
11:28
but our vehicles were able to encounter that,
248
688033
2143
但是我們測試車輛有辦法處理它。
11:30
slow down, and drive safely.
249
690176
2255
減速,安全地行駛而過。
11:32
Now, we don't have to deal with just ducks.
250
692431
2041
我們不只是要對付鴨子。
11:34
Watch this bird fly across in front of us. The car reacts to that.
251
694472
3708
看到一隻鳥在前方飛越而過 車子也對它們做出反應。
11:38
Here we're dealing with a cyclist
252
698180
1615
這裡我們正在應付一位自行車騎士
11:39
that you would never expect to see anywhere other than Mountain View.
253
699795
3290
除了在山景城外 你從來無法預期會遇到的。
11:43
And of course, we have to deal with drivers,
254
703085
2068
當然,我們還得應付一些駕駛,
11:45
even the very small ones.
255
705153
3715
甚至是很小事也要處理。
11:48
Watch to the right as someone jumps out of this truck at us.
256
708868
4131
注意右邊有一個人 在我們面前從卡車上跳下來。
11:54
And now, watch the left as the car with the green box decides
257
714460
2929
左邊有綠色方框所代表的車輛
11:57
he needs to make a right turn at the last possible moment.
258
717389
3325
在最後一個的關頭決定右轉。
12:00
Here, as we make a lane change, the car to our left decides
259
720714
2851
當我們決定要變換車道時, 左邊的車輛
12:03
it wants to as well.
260
723565
3553
也決定要變換車道。
12:07
And here, we watch a car blow through a red light
261
727118
2693
這邊我們看到一輛車子闖紅燈
12:09
and yield to it.
262
729811
2090
就讓他先過。
12:11
And similarly, here, a cyclist blowing through that light as well.
263
731901
3854
相同的情況, 則是另一輛自行車闖紅燈。
12:15
And of course, the vehicle responds safely.
264
735755
2746
當然測試車輛可以安全地回應。
12:18
And of course, we have people who do I don't know what
265
738501
2601
有時候人們會在路上 做一些無法理解的事
12:21
sometimes on the road, like this guy pulling out between two self-driving cars.
266
741102
3823
就像這位仁兄一樣,直接把車輛停在兩輛自動駕駛車之間。
12:24
You have to ask, "What are you thinking?"
267
744925
2045
你就會很想問,「你在想些什麼?」
12:26
(Laughter)
268
746970
1212
(笑聲)
12:28
Now, I just fire-hosed you with a lot of stuff there,
269
748182
2521
我剛才描述了許多狀況給大家,
12:30
so I'm going to break one of these down pretty quickly.
270
750703
2650
我將用很快的方式 來分析其中一個狀況。
12:33
So what we're looking at is the scene with the cyclist again,
271
753353
2940
我們再回到自行車這個例子,
12:36
and you might notice in the bottom, we can't actually see the cyclist yet,
272
756293
3491
可以注意到下方這部分, 我們還無法真正的看到自行車,
12:39
but the car can: it's that little blue box up there,
273
759784
2504
但是車輛可以: 是這個藍色小方框的部分,
12:42
and that comes from the laser data.
274
762288
2081
這資訊是由雷射所得來的。
12:44
And that's not actually really easy to understand,
275
764369
2418
確實無法很容易去理解,
12:46
so what I'm going to do is I'm going to turn that laser data and look at it,
276
766787
3584
我將要做的是轉換雷射資料 然後再來看,
12:50
and if you're really good at looking at laser data, you can see
277
770371
3029
如果你對分析雷射資料很拿手, 你將可以看到
12:53
a few dots on the curve there,
278
773400
1487
在曲線上面的一些小點,
12:54
right there, and that blue box is that cyclist.
279
774887
2372
就在這上面, 上面藍色的小方框就是自行車,
12:57
Now as our light is red,
280
777259
1149
這時我們是紅燈,
12:58
the cyclist's light has turned yellow already,
281
778408
2192
自行車這邊已經轉變為黃燈,
13:00
and if you squint, you can see that in the imagery.
282
780600
2438
如果你斜眼看的話, 可以從這張圖案看到。
13:03
But the cyclist, we see, is going to proceed through the intersection.
283
783038
3286
這輛我們所看到的自行車, 將打算穿越這個路口。
13:06
Our light has now turned green, his is solidly red,
284
786324
2394
我們的燈號已經轉為綠燈, 他的則是紅燈,
13:08
and we now anticipate that this bike is going to come all the way across.
285
788718
4292
我們預測這輛自行車 將會穿越整個路口。
13:13
Unfortunately the other drivers next to us were not paying as much attention.
286
793010
3742
不巧的是旁邊的 其他司機並未注意到這點。
13:16
They started to pull forward, and fortunately for everyone,
287
796752
3157
他們開始往前移動, 不過很幸運的是,
13:19
this cyclists reacts, avoids,
288
799909
3011
自行車反應很快地避開,
13:22
and makes it through the intersection.
289
802920
2191
而且穿越了路口。
13:25
And off we go.
290
805111
1568
結束後我們才往前。
13:26
Now, as you can see, we've made some pretty exciting progress,
291
806679
2948
就如你所見的, 我們有了一些卓越的進展,
13:29
and at this point we're pretty convinced
292
809627
1902
在這個階段我們很有自信
13:31
this technology is going to come to market.
293
811529
2010
這個技術是可以上市的。
13:33
We do three million miles of testing in our simulators every single day,
294
813539
4783
在模擬系統下 我們每天做三百萬哩的測試,
13:38
so you can imagine the experience that our vehicles have.
295
818322
2689
你可以想像我們車輛的豐富經歷。
13:41
We are looking forward to having this technology on the road,
296
821011
2864
我們正設法把這技術 用於實際道路上,
13:43
and we think the right path is to go through the self-driving
297
823875
2890
我們認為正確的方向 應該是自動駕駛
13:46
rather than driver assistance approach
298
826765
1844
而不是駕駛輔助系統
13:48
because the urgency is so large.
299
828609
2621
因為有迫切的需求。
13:51
In the time I have given this talk today,
300
831230
2393
在我今天演說的同時,
13:53
34 people have died on America's roads.
301
833623
3135
有 34 個美國人死於交通事故。
13:56
How soon can we bring it out?
302
836758
2368
我們可以多快讓它上市?
13:59
Well, it's hard to say because it's a really complicated problem,
303
839126
3832
嗯,這很難說 因為這是一個很複雜的問題,
14:02
but these are my two boys.
304
842958
2214
這是我兩個兒子。
14:05
My oldest son is 11, and that means in four and a half years,
305
845172
3623
大的兒子 11 歲,表示再 4 年半,
14:08
he's going to be able to get his driver's license.
306
848795
2577
他就可以拿到駕照。
14:11
My team and I are committed to making sure that doesn't happen.
307
851372
3204
我跟我的團隊承諾 確保不會讓這件事情發生。
14:14
Thank you.
308
854576
1904
謝謝。
14:16
(Laughter) (Applause)
309
856480
3667
(笑聲)(掌聲)
14:21
Chris Anderson: Chris, I've got a question for you.
310
861110
2568
克里斯·安德森: 克里斯,我有一個問題。
14:23
Chris Urmson: Sure.
311
863678
2809
克里斯·厄姆森:好。
14:26
CA: So certainly, the mind of your cars is pretty mind-boggling.
312
866487
3924
克里斯·安德森: 的確,你車輛的智慧系統讓人驚訝。
14:30
On this debate between driver-assisted and fully driverless --
313
870411
4459
尤其在輔助駕駛與 自動駕駛的辯論中,
14:34
I mean, there's a real debate going on out there right now.
314
874870
3041
現在有一個真實的辯論就存在那邊。
14:37
So some of the companies, for example, Tesla,
315
877911
2833
有一些公司,如:特斯拉,
14:40
are going the driver-assisted route.
316
880744
2159
正在研究一些駕駛輔助系統。
14:42
What you're saying is that that's kind of going to be a dead end
317
882903
5248
根據你所說的 這個發展將會是個死胡同
14:48
because you can't just keep improving that route and get to fully driverless
318
888151
5456
因為無法藉由改善輔助系統 最後完全取代自動駕駛
14:53
at some point, and then a driver is going to say, "This feels safe,"
319
893607
3530
在某一點上,駕駛可能會說, 「這感覺到是安全的」,
14:57
and climb into the back, and something ugly will happen.
320
897137
2647
然後爬到後座去, 一些可怕的事情就可能會發生。
14:59
CU: Right. No, that's exactly right, and it's not to say
321
899784
2676
克里斯·厄姆森: 完全正確,現在還無法說
15:02
that the driver assistance systems aren't going to be incredibly valuable.
322
902460
3537
駕駛輔助系統不具有價值。
15:05
They can save a lot of lives in the interim,
323
905997
2058
在這段過渡期間 它們仍可挽救許多生命,
15:08
but to see the transformative opportunity to help someone like Steve get around,
324
908055
3833
但是看到這是一個改變的機會, 可以幫助像史蒂夫一樣的人,
15:11
to really get to the end case in safety,
325
911888
1969
而且最終是個安全的方案,
15:13
to have the opportunity to change our cities
326
913857
2479
去擁有這機會去改變我們的城市
15:16
and move parking out and get rid of these urban craters we call parking lots,
327
916336
4204
可以擺脫城市裡一個個的停車場,
15:20
it's the only way to go.
328
920540
1240
這是唯一的辦法。
15:21
CA: We will be tracking your progress with huge interest.
329
921780
2718
克里斯·安德森: 我們非常有興趣持續追蹤你的進度
15:24
Thanks so much, Chris. CU: Thank you. (Applause)
330
924498
4232
謝謝你,克里斯。 克里斯·厄姆森:謝謝。(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7