Danny Hillis: Back to the future (of 1994)

80,866 views ・ 2012-02-03

TED


请双击下面的英文字幕来播放视频。

翻译人员: YANGYANG HU 校对人员: Angelia King
00:15
Because I usually take the role
0
15260
3000
由于我经常
00:18
of trying to explain to people
1
18260
2000
向人们解释
00:20
how wonderful the new technologies
2
20260
3000
即将到来的新科技
00:23
that are coming along are going to be,
3
23260
2000
将会多么的美妙
00:25
and I thought that, since I was among friends here,
4
25260
3000
我想既然我跟各位朋友们一起在这
00:28
I would tell you what I really think
5
28260
4000
就让我来说说我真正的想法
00:32
and try to look back and try to understand
6
32260
2000
并试着回顾和理解
00:34
what is really going on here
7
34260
3000
这到底是如何发生的
00:37
with these amazing jumps in technology
8
37260
5000
有了这些科技上的惊人进步。
00:42
that seem so fast that we can barely keep on top of it.
9
42260
3000
科技的进步似乎快到我们根本无法赶上它的脚步。
00:45
So I'm going to start out
10
45260
2000
让我先从这开始
00:47
by showing just one very boring technology slide.
11
47260
3000
一页很无趣的科技幻灯片。
00:50
And then, so if you can just turn on the slide that's on.
12
50260
3000
然后可以开始放幻灯片了。(对工作人员说)
00:56
This is just a random slide
13
56260
2000
这只是我从我的文件中
00:58
that I picked out of my file.
14
58260
2000
随机挑选出的一张。
01:00
What I want to show you is not so much the details of the slide,
15
60260
3000
我想要你们看的并不是它的细节,
01:03
but the general form of it.
16
63260
2000
而是它的总体形式。
01:05
This happens to be a slide of some analysis that we were doing
17
65260
3000
这个是我们做的
01:08
about the power of RISC microprocessors
18
68260
3000
关于RISC精简指令集微处理器功率
01:11
versus the power of local area networks.
19
71260
3000
与本地网路功率分析的幻灯片。
01:14
And the interesting thing about it
20
74260
2000
有趣的是
01:16
is that this slide,
21
76260
2000
这页幻灯片
01:18
like so many technology slides that we're used to,
22
78260
3000
就像很多我们所熟悉的幻灯片一样,
01:21
is a sort of a straight line
23
81260
2000
是半对数曲线图
01:23
on a semi-log curve.
24
83260
2000
上的一条直线。
01:25
In other words, every step here
25
85260
2000
也就是这里的每一层,
01:27
represents an order of magnitude
26
87260
2000
代表了性能程度
01:29
in performance scale.
27
89260
2000
大小的一级。
01:31
And this is a new thing
28
91260
2000
在半对数曲线图上
01:33
that we talk about technology
29
93260
2000
讨论科技,
01:35
on semi-log curves.
30
95260
2000
这很新鲜。
01:37
Something really weird is going on here.
31
97260
2000
这其中有点奇特。
01:39
And that's basically what I'm going to be talking about.
32
99260
3000
这基本上是我接下来要说的。
01:42
So, if you could bring up the lights.
33
102260
3000
(对工作人员)麻烦开一下灯。
01:47
If you could bring up the lights higher,
34
107260
2000
请把灯开亮点,
01:49
because I'm just going to use a piece of paper here.
35
109260
3000
因为我要用张纸。
01:52
Now why do we draw technology curves
36
112260
2000
为什么我们要用对数曲线
01:54
in semi-log curves?
37
114260
2000
描绘科技曲线呢?
01:56
Well the answer is, if I drew it on a normal curve
38
116260
3000
嗯,答案是,如果我用普通曲线画,
01:59
where, let's say, this is years,
39
119260
2000
我们说,这是年份,
02:01
this is time of some sort,
40
121260
2000
这是某个时间,
02:03
and this is whatever measure of the technology
41
123260
3000
这是我准备画的
02:06
that I'm trying to graph,
42
126260
3000
科技的某种测量值,
02:09
the graphs look sort of silly.
43
129260
3000
这图看起来有点傻。
02:12
They sort of go like this.
44
132260
3000
就有点像是这样。
02:15
And they don't tell us much.
45
135260
3000
而且并没有提供什么资讯。
02:18
Now if I graph, for instance,
46
138260
3000
现在,如果我画,比如说,
02:21
some other technology, say transportation technology,
47
141260
2000
另一种技术,像是交通运输,
02:23
on a semi-log curve,
48
143260
2000
在半对数曲线上,
02:25
it would look very stupid, it would look like a flat line.
49
145260
3000
它看起来很蠢,会像条很平的线。
02:28
But when something like this happens,
50
148260
2000
但是如果出现像这种
02:30
things are qualitatively changing.
51
150260
2000
质变的情况。
02:32
So if transportation technology
52
152260
2000
如果交通运输技术
02:34
was moving along as fast as microprocessor technology,
53
154260
3000
进步地像微处理器技术一样快的话,
02:37
then the day after tomorrow,
54
157260
2000
那,后天
02:39
I would be able to get in a taxi cab
55
159260
2000
我就能搭一辆出租车
02:41
and be in Tokyo in 30 seconds.
56
161260
2000
然后在30秒内到东京。
02:43
It's not moving like that.
57
163260
2000
但它并没有进步得那么快。
02:45
And there's nothing precedented
58
165260
2000
在科技发展历史中
02:47
in the history of technology development
59
167260
2000
也没有任何
02:49
of this kind of self-feeding growth
60
169260
2000
这种自给自足,
02:51
where you go by orders of magnitude every few years.
61
171260
3000
每几年程度翻倍增长的先例。
02:54
Now the question that I'd like to ask is,
62
174260
3000
现在我想要问的是,
02:57
if you look at these exponential curves,
63
177260
3000
如果你观察这些指数曲线,
03:00
they don't go on forever.
64
180260
3000
它们并非永远的持续下去。
03:03
Things just can't possibly keep changing
65
183260
3000
事物不可能一直
03:06
as fast as they are.
66
186260
2000
改变得那么快。
03:08
One of two things is going to happen.
67
188260
3000
两件事会发生,
03:11
Either it's going to turn into a sort of classical S-curve like this,
68
191260
4000
要么它会变成像这样典型的S曲线
03:15
until something totally different comes along,
69
195260
4000
直到完全不同的情况出现。
03:19
or maybe it's going to do this.
70
199260
2000
或是会变成这样。
03:21
That's about all it can do.
71
201260
2000
这就是所有可能。
03:23
Now I'm an optimist,
72
203260
2000
现在我是个乐观主义者,
03:25
so I sort of think it's probably going to do something like that.
73
205260
3000
所以我觉得它很有可能就会变成这样。
03:28
If so, that means that what we're in the middle of right now
74
208260
3000
如果是这样,意味着我们目前所在的
03:31
is a transition.
75
211260
2000
是过渡阶段。
03:33
We're sort of on this line
76
213260
2000
我们似乎在这条线上,
03:35
in a transition from the way the world used to be
77
215260
2000
在世界从过去
03:37
to some new way that the world is.
78
217260
3000
到将来的转变中。
03:40
And so what I'm trying to ask, what I've been asking myself,
79
220260
3000
所有我要问的,我一直在问自己的,
03:43
is what's this new way that the world is?
80
223260
3000
就是这世界未来道路在哪?
03:46
What's that new state that the world is heading toward?
81
226260
3000
它趋向的新时代是什么样的?
03:49
Because the transition seems very, very confusing
82
229260
3000
由于这个变化似乎非常,非常迷惑人,
03:52
when we're right in the middle of it.
83
232260
2000
当我们正处于其中时。
03:54
Now when I was a kid growing up,
84
234260
3000
我小时候,在长大过程中
03:57
the future was kind of the year 2000,
85
237260
3000
未来就像是2000年,
04:00
and people used to talk about what would happen in the year 2000.
86
240260
4000
人们都在讨论2000年将会发生什么。
04:04
Now here's a conference
87
244260
2000
现在这个会议上,
04:06
in which people talk about the future,
88
246260
2000
大家在讨论未来,
04:08
and you notice that the future is still at about the year 2000.
89
248260
3000
而且你能发现这未来指的还是那个“2000年”。
04:11
It's about as far as we go out.
90
251260
2000
这就是我们能达到的程度。
04:13
So in other words, the future has kind of been shrinking
91
253260
3000
换句话说,在我一生中
04:16
one year per year
92
256260
3000
未来正在
04:19
for my whole lifetime.
93
259260
3000
逐年缩短。
04:22
Now I think that the reason
94
262260
2000
我想原因是
04:24
is because we all feel
95
264260
2000
我们都感觉到
04:26
that something's happening there.
96
266260
2000
正在发生些什么。
04:28
That transition is happening. We can all sense it.
97
268260
2000
变化正在发生。我们都能察觉到。
04:30
And we know that it just doesn't make too much sense
98
270260
2000
我们知道去考虑那未来的三、五十年
04:32
to think out 30, 50 years
99
272260
2000
已经没什么意义了,
04:34
because everything's going to be so different
100
274260
3000
因为每件事都将如此不同
04:37
that a simple extrapolation of what we're doing
101
277260
2000
以至于推测将来
04:39
just doesn't make any sense at all.
102
279260
3000
不再有意义。
04:42
So what I would like to talk about
103
282260
2000
所以我要聊聊
04:44
is what that could be,
104
284260
2000
那会是怎样,
04:46
what that transition could be that we're going through.
105
286260
3000
我们正在经历的转变会是怎样。
04:49
Now in order to do that
106
289260
3000
为达到这个目的,
04:52
I'm going to have to talk about a bunch of stuff
107
292260
2000
我得介绍一堆东西
04:54
that really has nothing to do
108
294260
2000
它们与
04:56
with technology and computers.
109
296260
2000
科技和电脑完全无关。
04:58
Because I think the only way to understand this
110
298260
2000
因为我决定理解这个的唯一方法
05:00
is to really step back
111
300260
2000
就是回顾过去
05:02
and take a long time scale look at things.
112
302260
2000
拉长时间轴去看。
05:04
So the time scale that I would like to look at this on
113
304260
3000
而我所要看的时间轴
05:07
is the time scale of life on Earth.
114
307260
3000
是以地球上生命的时间跨度来看。
05:13
So I think this picture makes sense
115
313260
2000
我想这幅图合理了
05:15
if you look at it a few billion years at a time.
116
315260
4000
如果你每次从几十亿年跨度来看。
05:19
So if you go back
117
319260
2000
所以如果你回溯个
05:21
about two and a half billion years,
118
321260
2000
大概25亿年,
05:23
the Earth was this big, sterile hunk of rock
119
323260
3000
地球这么大,贫瘠的大块石头
05:26
with a lot of chemicals floating around on it.
120
326260
3000
上面浮着些化学物质。
05:29
And if you look at the way
121
329260
2000
要是观察
05:31
that the chemicals got organized,
122
331260
2000
这些化学物质怎样组合的,
05:33
we begin to get a pretty good idea of how they do it.
123
333260
3000
我们开始弄明白它们怎么形成的。
05:36
And I think that there's theories that are beginning to understand
124
336260
3000
我想有些理论是从理解
05:39
about how it started with RNA,
125
339260
2000
生命怎样从核糖核酸演变开始,
05:41
but I'm going to tell a sort of simple story of it,
126
341260
3000
但是我想讲一个生命的简单故事,
05:44
which is that, at that time,
127
344260
2000
就是,在那个时候,
05:46
there were little drops of oil floating around
128
346260
3000
有一滴滴的油四处浮动,
05:49
with all kinds of different recipes of chemicals in them.
129
349260
3000
里面有各种不同化学成分组合。
05:52
And some of those drops of oil
130
352260
2000
有些油滴
05:54
had a particular combination of chemicals in them
131
354260
2000
里面含有特殊的化学构成
05:56
which caused them to incorporate chemicals from the outside
132
356260
3000
这导致它们可以从外界聚集化学物质
05:59
and grow the drops of oil.
133
359260
3000
并慢慢变大。
06:02
And those that were like that
134
362260
2000
像这样的油滴
06:04
started to split and divide.
135
364260
2000
又开始分化,分离。
06:06
And those were the most primitive forms of cells in a sense,
136
366260
3000
最原始的那些在某种程度上形成了细胞,
06:09
those little drops of oil.
137
369260
2000
这些小小的油滴。
06:11
But now those drops of oil weren't really alive, as we say it now,
138
371260
3000
但目前为止这些油滴不是真正活着的,在我们现在看来,
06:14
because every one of them
139
374260
2000
因为每一个
06:16
was a little random recipe of chemicals.
140
376260
2000
都是化学物质的随机合成。
06:18
And every time it divided,
141
378260
2000
每分裂一次,
06:20
they got sort of unequal division
142
380260
3000
都不是平均分布
06:23
of the chemicals within them.
143
383260
2000
内部的化学物。
06:25
And so every drop was a little bit different.
144
385260
3000
所以每个油滴都有点不同。
06:28
In fact, the drops that were different in a way
145
388260
2000
实际上,油滴不同的方式
06:30
that caused them to be better
146
390260
2000
是让它们能更好地
06:32
at incorporating chemicals around them,
147
392260
2000
集成周围的化合物,
06:34
grew more and incorporated more chemicals and divided more.
148
394260
3000
长得更大,吸收更多,分裂更多。
06:37
So those tended to live longer,
149
397260
2000
所以它们会活得更长,
06:39
get expressed more.
150
399260
3000
表现得更多。
06:42
Now that's sort of just a very simple
151
402260
3000
这就有点像个很简单的
06:45
chemical form of life,
152
405260
2000
生命的化学形式,
06:47
but when things got interesting
153
407260
3000
但过程变得有趣
06:50
was when these drops
154
410260
2000
是当这些油滴
06:52
learned a trick about abstraction.
155
412260
3000
学会了一个提供资讯的技巧时。
06:55
Somehow by ways that we don't quite understand,
156
415260
3000
不知怎么用我们不能完全理解的方式,
06:58
these little drops learned to write down information.
157
418260
3000
这些小油滴学会了记录资讯。
07:01
They learned to record the information
158
421260
2000
它们学会把
07:03
that was the recipe of the cell
159
423260
2000
细胞形成的秘诀
07:05
onto a particular kind of chemical
160
425260
2000
记录到一种特殊物质上,
07:07
called DNA.
161
427260
2000
叫做去氧核糖核酸。
07:09
So in other words, they worked out,
162
429260
2000
也就是说,它们想出了,
07:11
in this mindless sort of evolutionary way,
163
431260
3000
以这种随性的进化方式,
07:14
a form of writing that let them write down what they were,
164
434260
3000
可以写下它们基因信息的记录方式,
07:17
so that that way of writing it down could get copied.
165
437260
3000
以便这种记录方式能被复制。
07:20
The amazing thing is that that way of writing
166
440260
3000
惊奇的是这种记录方式
07:23
seems to have stayed steady
167
443260
2000
似乎可以保持稳定
07:25
since it evolved two and a half billion years ago.
168
445260
2000
由于它25亿年前演化出来的。
07:27
In fact the recipe for us, our genes,
169
447260
3000
实际上我们,我们基因的组成
07:30
is exactly that same code and that same way of writing.
170
450260
3000
就是完全一样的代码,一样的记录方式。
07:33
In fact, every living creature is written
171
453260
3000
实际上,任何生物都是
07:36
in exactly the same set of letters and the same code.
172
456260
2000
用完全一样的字母和代码记录下来的。
07:38
In fact, one of the things that I did
173
458260
2000
实际上,我所做的
07:40
just for amusement purposes
174
460260
2000
仅是为了娱乐效果的一件事
07:42
is we can now write things in this code.
175
462260
2000
就是我们能用这个代码记录事件。
07:44
And I've got here a little 100 micrograms of white powder,
176
464260
6000
我这有100微克的白粉,
07:50
which I try not to let the security people see at airports.
177
470260
4000
我尽力不让机场安检人员发现它们。
07:54
(Laughter)
178
474260
2000
(笑声)
07:56
But this has in it --
179
476260
2000
不过这里面有代码
07:58
what I did is I took this code --
180
478260
2000
我所做的是我拿着这代码
08:00
the code has standard letters that we use for symbolizing it --
181
480260
3000
它里面有我们用来标记它的标准字母,
08:03
and I wrote my business card onto a piece of DNA
182
483260
3000
然后我把我的名片写到一条去氧核糖核酸上
08:06
and amplified it 10 to the 22 times.
183
486260
3000
再放大10到22倍。
08:09
So if anyone would like a hundred million copies of my business card,
184
489260
3000
所以如果有人需要数百万份我的名片,
08:12
I have plenty for everyone in the room,
185
492260
2000
我有足够多份给在座每个人,
08:14
and, in fact, everyone in the world,
186
494260
2000
甚至是全世界每个人,
08:16
and it's right here.
187
496260
3000
就在这。
08:19
(Laughter)
188
499260
5000
(笑声)
08:26
If I had really been a egotist,
189
506260
2000
要是我是个自大的人,
08:28
I would have put it into a virus and released it in the room.
190
508260
3000
我就会把它放到病毒里散布到屋子中。
08:31
(Laughter)
191
511260
5000
(笑声)
08:39
So what was the next step?
192
519260
2000
所以下一步是什么?
08:41
Writing down the DNA was an interesting step.
193
521260
2000
记录去氧核糖核酸是有趣的一步。
08:43
And that caused these cells --
194
523260
2000
它导致了细胞的形成——
08:45
that kept them happy for another billion years.
195
525260
2000
让它们又高兴了几十亿年。
08:47
But then there was another really interesting step
196
527260
2000
不过还有个很有趣的环节
08:49
where things became completely different,
197
529260
3000
事情开始变得完全不同,
08:52
which is these cells started exchanging and communicating information,
198
532260
3000
那就是这些细胞开始交换和交流资讯,
08:55
so that they began to get communities of cells.
199
535260
2000
从而形成细胞团体。
08:57
I don't know if you know this,
200
537260
2000
我不知道你们是否知道这个,
08:59
but bacteria can actually exchange DNA.
201
539260
2000
细菌实际上就可以交换去氧核糖核酸。
09:01
Now that's why, for instance,
202
541260
2000
这就是为什么,比如,
09:03
antibiotic resistance has evolved.
203
543260
2000
演变出抗菌免疫。
09:05
Some bacteria figured out how to stay away from penicillin,
204
545260
3000
有些细菌知道怎么远离青霉素,
09:08
and it went around sort of creating its little DNA information
205
548260
3000
然后它创造它这点去氧核糖核酸资讯,
09:11
with other bacteria,
206
551260
2000
并在别的细菌中到处游走,
09:13
and now we have a lot of bacteria that are resistant to penicillin,
207
553260
3000
现在我们有很多对青霉素免疫的细菌了,
09:16
because bacteria communicate.
208
556260
2000
因为细菌会交流资讯。
09:18
Now what this communication allowed
209
558260
2000
这样,这些交流致使
09:20
was communities to form
210
560260
2000
群落的形成,
09:22
that, in some sense, were in the same boat together;
211
562260
2000
在某种意义上,它们在同一条船上了;
09:24
they were synergistic.
212
564260
2000
它们是协作的。
09:26
So they survived
213
566260
2000
因此它们一起幸存下来
09:28
or they failed together,
214
568260
2000
或者一起死去,
09:30
which means that if a community was very successful,
215
570260
2000
也就是说如果一个群落成功了,
09:32
all the individuals in that community
216
572260
2000
所有群落里的个体
09:34
were repeated more
217
574260
2000
都能复制更多,
09:36
and they were favored by evolution.
218
576260
3000
进化得更有利。
09:39
Now the transition point happened
219
579260
2000
于是,转换点到了,
09:41
when these communities got so close
220
581260
2000
当这些族群很亲近时,
09:43
that, in fact, they got together
221
583260
2000
事实上,它们聚集到一起
09:45
and decided to write down the whole recipe for the community
222
585260
3000
并决定在一条去氧核糖核酸上
09:48
together on one string of DNA.
223
588260
3000
写下整个族群的成分谱。
09:51
And so the next stage that's interesting in life
224
591260
2000
生命中下一个有趣的阶段
09:53
took about another billion years.
225
593260
2000
又要几十亿年。
09:55
And at that stage,
226
595260
2000
在这个时期,
09:57
we have multi-cellular communities,
227
597260
2000
有多细胞族群,
09:59
communities of lots of different types of cells,
228
599260
2000
就是有很多种不同细胞的群落,
10:01
working together as a single organism.
229
601260
2000
作为有机体一起合作。
10:03
And in fact, we're such a multi-cellular community.
230
603260
3000
实际上,我们就是这样的多细胞族群。
10:06
We have lots of cells
231
606260
2000
我们有很多细胞,
10:08
that are not out for themselves anymore.
232
608260
2000
它们不再是只为自己存活。
10:10
Your skin cell is really useless
233
610260
3000
皮肤细胞根本没用,
10:13
without a heart cell, muscle cell,
234
613260
2000
要是没有心脏细胞,肌肉细胞,
10:15
a brain cell and so on.
235
615260
2000
脑细胞等等。
10:17
So these communities began to evolve
236
617260
2000
所以这些族群开始进化
10:19
so that the interesting level on which evolution was taking place
237
619260
3000
这样发生有趣的进化的
10:22
was no longer a cell,
238
622260
2000
不再仅仅是单一细胞。
10:24
but a community which we call an organism.
239
624260
3000
而是我们称为有机体的族群。
10:28
Now the next step that happened
240
628260
2000
接下来发生
10:30
is within these communities.
241
630260
2000
就是在这些族群中。
10:32
These communities of cells,
242
632260
2000
这些细胞群落,
10:34
again, began to abstract information.
243
634260
2000
再次,开始提取资讯。
10:36
And they began building very special structures
244
636260
3000
它们开始构建非常特别的
10:39
that did nothing but process information within the community.
245
639260
3000
专门处理群落内资讯的结构。
10:42
And those are the neural structures.
246
642260
2000
这些就是神经结构。
10:44
So neurons are the information processing apparatus
247
644260
3000
所以神经元是
10:47
that those communities of cells built up.
248
647260
3000
这些细胞群建立的资讯处理仪器。
10:50
And in fact, they began to get specialists in the community
249
650260
2000
实际上,群落里开始出现专家
10:52
and special structures
250
652260
2000
以及特殊结构
10:54
that were responsible for recording,
251
654260
2000
负责记录,
10:56
understanding, learning information.
252
656260
3000
理解,学习资讯。
10:59
And that was the brains and the nervous system
253
659260
2000
这就是这些细胞群的
11:01
of those communities.
254
661260
2000
大脑和神经系统。
11:03
And that gave them an evolutionary advantage.
255
663260
2000
这给了它们进化的有利条件。
11:05
Because at that point,
256
665260
3000
因为这样的话,
11:08
an individual --
257
668260
3000
对每个个体——
11:11
learning could happen
258
671260
2000
学习可以发生
11:13
within the time span of a single organism,
259
673260
2000
在单个有机体的时间跨度内,
11:15
instead of over this evolutionary time span.
260
675260
3000
而不是整个进化时间跨度。
11:18
So an organism could, for instance,
261
678260
2000
所以一个有机体能够,比如说,
11:20
learn not to eat a certain kind of fruit
262
680260
2000
学会不吃某种水果
11:22
because it tasted bad and it got sick last time it ate it.
263
682260
4000
因为它不好吃而且上次吃的觉得恶心。
11:26
That could happen within the lifetime of a single organism,
264
686260
3000
这可以发生在一个单个有机体的一生中,
11:29
whereas before they'd built these special information processing structures,
265
689260
4000
然后在这种特殊信息处理结构建成前,
11:33
that would have had to be learned evolutionarily
266
693260
2000
这得要进化学习
11:35
over hundreds of thousands of years
267
695260
3000
千万年,
11:38
by the individuals dying off that ate that kind of fruit.
268
698260
3000
通过吃了这种水果前仆后继死去的个体。
11:41
So that nervous system,
269
701260
2000
所以神经系统,
11:43
the fact that they built these special information structures,
270
703260
3000
生物组建这种特殊结构的事实,
11:46
tremendously sped up the whole process of evolution.
271
706260
3000
极大地加速了进化的进程。
11:49
Because evolution could now happen within an individual.
272
709260
3000
因为至此进化可以在个体中发生了。
11:52
It could happen in learning time scales.
273
712260
3000
它能发生在学习的时间跨度内。
11:55
But then what happened
274
715260
2000
但是接下来发生的
11:57
was the individuals worked out,
275
717260
2000
是每个个体发现了,
11:59
of course, tricks of communicating.
276
719260
2000
当然,交流的秘诀。
12:01
And for example,
277
721260
2000
比如说,
12:03
the most sophisticated version that we're aware of is human language.
278
723260
3000
我们所知道的最精密的版本就是人类语言。
12:06
It's really a pretty amazing invention if you think about it.
279
726260
3000
想想看,这真是个奇妙的发明。
12:09
Here I have a very complicated, messy,
280
729260
2000
我脑子里有个很复杂,混乱,
12:11
confused idea in my head.
281
731260
3000
疑惑的想法。
12:14
I'm sitting here making grunting sounds basically,
282
734260
3000
我坐在这,基本上就是吐字发声,
12:17
and hopefully constructing a similar messy, confused idea in your head
283
737260
3000
希望在你们头脑里建立一个类似的混乱
12:20
that bears some analogy to it.
284
740260
2000
跟它有点类似的想法。
12:22
But we're taking something very complicated,
285
742260
2000
但是我们正在把很复杂的东西
12:24
turning it into sound, sequences of sounds,
286
744260
3000
转化成声音,一连串的声音,
12:27
and producing something very complicated in your brain.
287
747260
4000
并在你们大脑产生很复杂的东西。
12:31
So this allows us now
288
751260
2000
所以现在这推动我们
12:33
to begin to start functioning
289
753260
2000
开始运作
12:35
as a single organism.
290
755260
3000
作为单个有机体。
12:38
And so, in fact, what we've done
291
758260
3000
所以,实际上,我们已经完成的
12:41
is we, humanity,
292
761260
2000
就是我们,人类,
12:43
have started abstracting out.
293
763260
2000
开始抽离出来。
12:45
We're going through the same levels
294
765260
2000
我们正在经历多细胞有机体经历的
12:47
that multi-cellular organisms have gone through --
295
767260
2000
相同的阶段——
12:49
abstracting out our methods of recording,
296
769260
3000
提取我们记录,
12:52
presenting, processing information.
297
772260
2000
展示,处理资讯的方式。
12:54
So for example, the invention of language
298
774260
2000
比如说,语言的发明
12:56
was a tiny step in that direction.
299
776260
3000
就是这个方向上很小一步。
12:59
Telephony, computers,
300
779260
2000
电话,电脑,
13:01
videotapes, CD-ROMs and so on
301
781260
3000
影碟,光碟等等
13:04
are all our specialized mechanisms
302
784260
2000
都是我们的特殊机制,
13:06
that we've now built within our society
303
786260
2000
我们正在社会里构建
13:08
for handling that information.
304
788260
2000
用来处理资讯的机制。
13:10
And it all connects us together
305
790260
3000
这些都是把我们联系在一起,
13:13
into something
306
793260
2000
变的
13:15
that is much bigger
307
795260
2000
比我们之前
13:17
and much faster
308
797260
2000
更大,
13:19
and able to evolve
309
799260
2000
更快,
13:21
than what we were before.
310
801260
2000
更有能力进化。
13:23
So now, evolution can take place
311
803260
2000
所以,现在进化可以发生在
13:25
on a scale of microseconds.
312
805260
2000
微妙的时间跨度级上。
13:27
And you saw Ty's little evolutionary example
313
807260
2000
你们看过泰伊的那个进化的小例子
13:29
where he sort of did a little bit of evolution
314
809260
2000
它好像就在你们眼前的卷积程式上
13:31
on the Convolution program right before your eyes.
315
811260
3000
展现了一点进化了。
13:34
So now we've speeded up the time scales once again.
316
814260
3000
所以现在我们再次加快时间跨度。
13:37
So the first steps of the story that I told you about
317
817260
2000
我讲的故事的第一步
13:39
took a billion years a piece.
318
819260
2000
每一步花费了几十亿年。
13:41
And the next steps,
319
821260
2000
下一步,
13:43
like nervous systems and brains,
320
823260
2000
像神经系统和大脑,
13:45
took a few hundred million years.
321
825260
2000
消耗几百万年。
13:47
Then the next steps, like language and so on,
322
827260
3000
再接下来,像语言等等,
13:50
took less than a million years.
323
830260
2000
需要不到一百万年。
13:52
And these next steps, like electronics,
324
832260
2000
再下一步,像电子器件,
13:54
seem to be taking only a few decades.
325
834260
2000
仿佛只要几十年。
13:56
The process is feeding on itself
326
836260
2000
这个过程是自给自足,
13:58
and becoming, I guess, autocatalytic is the word for it --
327
838260
3000
并且变成,我猜,应该自我催化描述更合适——
14:01
when something reinforces its rate of change.
328
841260
3000
当事物加快改变的速度。
14:04
The more it changes, the faster it changes.
329
844260
3000
变化越多,变化就越快。
14:07
And I think that that's what we're seeing here in this explosion of curve.
330
847260
3000
我想这就是我们在这看到的激增曲线。
14:10
We're seeing this process feeding back on itself.
331
850260
3000
我们看到这个过程回馈到自己。
14:13
Now I design computers for a living,
332
853260
3000
我现在工作就是自己设计电脑,
14:16
and I know that the mechanisms
333
856260
2000
我知道用来设计电脑的
14:18
that I use to design computers
334
858260
3000
这些机制
14:21
would be impossible
335
861260
2000
不可能存在,
14:23
without recent advances in computers.
336
863260
2000
要是没有近期电脑的进步。
14:25
So right now, what I do
337
865260
2000
现在,我做的
14:27
is I design objects at such complexity
338
867260
3000
是设计复杂到
14:30
that it's really impossible for me to design them in the traditional sense.
339
870260
3000
不可能从传统意义上设计的物体。
14:33
I don't know what every transistor in the connection machine does.
340
873260
4000
我不知道连接机器上每个电晶体的作用。
14:37
There are billions of them.
341
877260
2000
有几十亿电晶体。
14:39
Instead, what I do
342
879260
2000
实际上,我所做的
14:41
and what the designers at Thinking Machines do
343
881260
3000
思考机器的设计师们做的,
14:44
is we think at some level of abstraction
344
884260
2000
我们认为是为某种程度的资讯抽取,
14:46
and then we hand it to the machine
345
886260
2000
然后把它传给机器
14:48
and the machine takes it beyond what we could ever do,
346
888260
3000
而机器把它运用到超出我们所能做的范围,
14:51
much farther and faster than we could ever do.
347
891260
3000
而且比我们从前所做的更深远更快。
14:54
And in fact, sometimes it takes it by methods
348
894260
2000
实际上,有时候它采用的方法
14:56
that we don't quite even understand.
349
896260
3000
我们并不很懂。
14:59
One method that's particularly interesting
350
899260
2000
有个尤其有趣
15:01
that I've been using a lot lately
351
901260
3000
我最近一直在用的
15:04
is evolution itself.
352
904260
2000
就是进化本身。
15:06
So what we do
353
906260
2000
我们做的就是
15:08
is we put inside the machine
354
908260
2000
在机器里
15:10
a process of evolution
355
910260
2000
放入一个进化进程,
15:12
that takes place on the microsecond time scale.
356
912260
2000
这个进程在微妙时间跨度上就能发生。
15:14
So for example,
357
914260
2000
比如,
15:16
in the most extreme cases,
358
916260
2000
大部分极端情况下,
15:18
we can actually evolve a program
359
918260
2000
我们实际上能
15:20
by starting out with random sequences of instructions.
360
920260
4000
通过从随机的指令序列开始进化一个程式。
15:24
Say, "Computer, would you please make
361
924260
2000
(就像)说“电脑,请你产生
15:26
a hundred million random sequences of instructions.
362
926260
3000
一亿随机指令序列。
15:29
Now would you please run all of those random sequences of instructions,
363
929260
3000
现在请你运行所有这些随机指令列,
15:32
run all of those programs,
364
932260
2000
运行所有程式,
15:34
and pick out the ones that came closest to doing what I wanted."
365
934260
3000
并选出最接近我想要的。”
15:37
So in other words, I define what I wanted.
366
937260
2000
也就是说,我定义我要什么。
15:39
Let's say I want to sort numbers,
367
939260
2000
假设我需要分类资料,
15:41
as a simple example I've done it with.
368
941260
2000
这是个我用它试验过的简单例子。
15:43
So find the programs that come closest to sorting numbers.
369
943260
3000
找到最接近资料分类的程式。
15:46
So of course, random sequences of instructions
370
946260
3000
当然,随机的指令序列
15:49
are very unlikely to sort numbers,
371
949260
2000
非常不可能分类资料,
15:51
so none of them will really do it.
372
951260
2000
所以它们中没有一个能完成。
15:53
But one of them, by luck,
373
953260
2000
但是中间有一个,运气很好,
15:55
may put two numbers in the right order.
374
955260
2000
可能会把两个数按顺序排列。
15:57
And I say, "Computer,
375
957260
2000
我说,“电脑,
15:59
would you please now take the 10 percent
376
959260
3000
请你现在选出序列中百分之十
16:02
of those random sequences that did the best job.
377
962260
2000
完成得最好的。
16:04
Save those. Kill off the rest.
378
964260
2000
保存这些。删掉其他的。
16:06
And now let's reproduce
379
966260
2000
现在来复制
16:08
the ones that sorted numbers the best.
380
968260
2000
资料分类得最好的这些。
16:10
And let's reproduce them by a process of recombination
381
970260
3000
以类似交配的重组过程
16:13
analogous to sex."
382
973260
2000
来复制它们。
16:15
Take two programs and they produce children
383
975260
3000
取两个程式
16:18
by exchanging their subroutines,
384
978260
2000
交换它们的副程式让它们产生子女,
16:20
and the children inherit the traits of the subroutines of the two programs.
385
980260
3000
这些子女继承了两个程式副程式的特征。
16:23
So I've got now a new generation of programs
386
983260
3000
所以我得到新一代的
16:26
that are produced by combinations
387
986260
2000
由组合做的比较好的程式
16:28
of the programs that did a little bit better job.
388
988260
2000
而产生的程式。
16:30
Say, "Please repeat that process."
389
990260
2000
(指令)说,“请重复这个过程。”
16:32
Score them again.
390
992260
2000
再做一次。
16:34
Introduce some mutations perhaps.
391
994260
2000
可能引入一些突变。
16:36
And try that again and do that for another generation.
392
996260
3000
再试一次并用在新的一代上。
16:39
Well every one of those generations just takes a few milliseconds.
393
999260
3000
这一代上每个程式只需要几毫秒。
16:42
So I can do the equivalent
394
1002260
2000
所以我在电脑上用几分钟
16:44
of millions of years of evolution on that
395
1004260
2000
能做等同于
16:46
within the computer in a few minutes,
396
1006260
3000
几百万年的进化过程,
16:49
or in the complicated cases, in a few hours.
397
1009260
2000
或者,情况复杂时,在几小时内完成。
16:51
At the end of that, I end up with programs
398
1011260
3000
结束时,我得到
16:54
that are absolutely perfect at sorting numbers.
399
1014260
2000
绝对完美的分类资料的程式。
16:56
In fact, they are programs that are much more efficient
400
1016260
3000
实际上,这些程式比我手写的
16:59
than programs I could have ever written by hand.
401
1019260
2000
任何程式都要有效率。
17:01
Now if I look at those programs,
402
1021260
2000
现在,如果我读这些程式,
17:03
I can't tell you how they work.
403
1023260
2000
我说不出它们怎么工作的。
17:05
I've tried looking at them and telling you how they work.
404
1025260
2000
我尝试过阅读并且解释它们如何工作的。
17:07
They're obscure, weird programs.
405
1027260
2000
它们很抽象,奇怪。
17:09
But they do the job.
406
1029260
2000
但是它们能完成任务。
17:11
And in fact, I know, I'm very confident that they do the job
407
1031260
3000
实际上,我知道,我很有信心,它们能完成任务
17:14
because they come from a line
408
1034260
2000
因为它们来自于一行
17:16
of hundreds of thousands of programs that did the job.
409
1036260
2000
上千万能完成认为的程式。
17:18
In fact, their life depended on doing the job.
410
1038260
3000
事实上,它们的生命就是靠着这工作。
17:21
(Laughter)
411
1041260
4000
(笑声)
17:26
I was riding in a 747
412
1046260
2000
我曾经有一次
17:28
with Marvin Minsky once,
413
1048260
2000
和马文·明斯基一起坐747,
17:30
and he pulls out this card and says, "Oh look. Look at this.
414
1050260
3000
他拿出一张卡,说,“看,看这。
17:33
It says, 'This plane has hundreds of thousands of tiny parts
415
1053260
4000
这上面说,‘本飞机有很多精密部件
17:37
working together to make you a safe flight.'
416
1057260
4000
协作,保障你飞行安全。’
17:41
Doesn't that make you feel confident?"
417
1061260
2000
这是不是让你很有信心?”
17:43
(Laughter)
418
1063260
2000
(笑声)
17:45
In fact, we know that the engineering process doesn't work very well
419
1065260
3000
事实上,我们知道工程过程复杂化
17:48
when it gets complicated.
420
1068260
2000
并不能很好工作。
17:50
So we're beginning to depend on computers
421
1070260
2000
所以我们开始依赖电脑
17:52
to do a process that's very different than engineering.
422
1072260
4000
来做与工程有很大不同的一个过程。
17:56
And it lets us produce things of much more complexity
423
1076260
3000
它能让我们生产出
17:59
than normal engineering lets us produce.
424
1079260
2000
比普通工程能生产的更复杂的东西。
18:01
And yet, we don't quite understand the options of it.
425
1081260
3000
然而,我们还不明白它的选择。
18:04
So in a sense, it's getting ahead of us.
426
1084260
2000
从某种意义上说,电脑比我们超前。
18:06
We're now using those programs
427
1086260
2000
我们现在正用这些程式
18:08
to make much faster computers
428
1088260
2000
创造更快的电脑
18:10
so that we'll be able to run this process much faster.
429
1090260
3000
以便能更快地运行这个进程。
18:13
So it's feeding back on itself.
430
1093260
3000
所以它是自我回馈的。
18:16
The thing is becoming faster
431
1096260
2000
这正变得更快,
18:18
and that's why I think it seems so confusing.
432
1098260
2000
这也是为什么我觉得电脑似乎很让人摸不清。
18:20
Because all of these technologies are feeding back on themselves.
433
1100260
3000
由于所有这些技术都回馈给自己。
18:23
We're taking off.
434
1103260
2000
我们正在起飞。
18:25
And what we are is we're at a point in time
435
1105260
3000
我们正是在时间的某一点,
18:28
which is analogous to when single-celled organisms
436
1108260
2000
这一点类似于单细胞有机体
18:30
were turning into multi-celled organisms.
437
1110260
3000
正转变成多细胞机体的时刻。
18:33
So we're the amoebas
438
1113260
2000
我们就像变形虫。
18:35
and we can't quite figure out what the hell this thing is we're creating.
439
1115260
3000
搞不清自己正在创造的是什么东西。
18:38
We're right at that point of transition.
440
1118260
2000
我们正在转折点上。
18:40
But I think that there really is something coming along after us.
441
1120260
3000
不过我认为一定有跟随着我们的东西。
18:43
I think it's very haughty of us
442
1123260
2000
我想它是很崇拜我们的,
18:45
to think that we're the end product of evolution.
443
1125260
3000
认为我们是进化的终极产物。
18:48
And I think all of us here
444
1128260
2000
我认为我们这所有人
18:50
are a part of producing
445
1130260
2000
都是繁衍的一部分,
18:52
whatever that next thing is.
446
1132260
2000
无论下一步是什么。
18:54
So lunch is coming along,
447
1134260
2000
午饭时间快到了,
18:56
and I think I will stop at that point,
448
1136260
2000
趁我还没被选走,
18:58
before I get selected out.
449
1138260
2000
我想我就在这里结束。
19:00
(Applause)
450
1140260
3000
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7