Danny Hillis: Back to the future (of 1994)

80,866 views ใƒป 2012-02-03

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Zeeva Livshitz ืžื‘ืงืจ: Ido Dekkers
00:15
Because I usually take the role
0
15260
3000
ื›ื™ื•ื•ืŸ ืฉืื ื™ ื‘ื“"ื› ื ื•ื˜ืœ ืขืœ ืขืฆืžื™ ืืช ื”ืชืคืงื™ื“
00:18
of trying to explain to people
1
18260
2000
ืฉืœ ืื—ื“ ืฉืžื ืกื” ืœื”ืกื‘ื™ืจ ืœืื ืฉื™ื
00:20
how wonderful the new technologies
2
20260
3000
ื›ืžื” ื ืคืœืื•ืช ื”ื•ืœื›ื•ืช ืœื”ื™ื•ืช,
00:23
that are coming along are going to be,
3
23260
2000
ื”ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ื”ื—ื“ืฉื•ืช ืฉื™ื’ื™ืขื•,
00:25
and I thought that, since I was among friends here,
4
25260
3000
ื•ื—ืฉื‘ืชื™ ืฉื›ื™ื•ื•ืŸ ืฉืื ื™ ื‘ื™ืŸ ื—ื‘ืจื™ื ืคื”,
00:28
I would tell you what I really think
5
28260
4000
ืื•ืžืจ ืœื›ื ืืช ืžื” ืฉืื ื™ ื‘ืืžืช ื—ื•ืฉื‘
00:32
and try to look back and try to understand
6
32260
2000
ื•ืื ืกื” ืœื”ืกืชื›ืœ ืœืื—ื•ืจ ื•ืœื”ื‘ื™ืŸ
00:34
what is really going on here
7
34260
3000
ืžื” ื‘ืืžืช ืงื•ืจื” ืคื”
00:37
with these amazing jumps in technology
8
37260
5000
ืขื ื”ืงืคื™ืฆื•ืช ื”ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ื”ืžื“ื”ื™ืžื•ืช ื”ืืœื”
00:42
that seem so fast that we can barely keep on top of it.
9
42260
3000
ืฉื ืจืื” ืฉืงื•ืจื•ืช ื›"ื› ืžื”ืจ ืฉืงืฉื” ืœืขืงื•ื‘ ืื—ืจื™ื”ืŸ.
00:45
So I'm going to start out
10
45260
2000
ืื– ืืชื—ื™ืœ
00:47
by showing just one very boring technology slide.
11
47260
3000
ื•ืืฆื™ื’ ืจืง ืฉืงื•ืคื™ืช ื˜ื›ื ื•ืœื•ื’ื™ืช ืžืฉืขืžืžืช ืื—ืช.
00:50
And then, so if you can just turn on the slide that's on.
12
50260
3000
ื•ืื–, ืื– ืื ืชื•ื›ืœ ืœื”ืจืื•ืช ืืช ื”ืฉืงื•ืคื™ืช.
00:56
This is just a random slide
13
56260
2000
ื–ืืช ืจืง ืฉืงื•ืคื™ืช ืืงืจืื™ืช
00:58
that I picked out of my file.
14
58260
2000
ืฉืœื™ืงื˜ืชื™ ืžื”ืชื™ืง ืฉืœื™.
01:00
What I want to show you is not so much the details of the slide,
15
60260
3000
ืžื” ืฉืื ื™ ืจื•ืฆื” ืœื”ืจืื•ืช ืœื›ื ื”ื•ื ืœื ื“ื•ื•ืงื ืืช ื”ืคืจื˜ื™ื ืฉื‘ืฉืงื•ืคื™ืช,
01:03
but the general form of it.
16
63260
2000
ืืœื ืืช ื”ืฆื•ืจื” ื”ื›ืœืœื™ืช ืฉืœื”.
01:05
This happens to be a slide of some analysis that we were doing
17
65260
3000
ื‘ืžืงืจื” ื–ืืช ืฉืงื•ืคื™ืช ื”ืžืชืืจืช ื ื™ืชื•ื— ืฉืื ื• ืขื•ืจื›ื™ื
01:08
about the power of RISC microprocessors
18
68260
3000
ืขืœ ืขื•ืฆืžืช ืžื™ืงืจื•-ืžืขื‘ื“ื™ "ืจื™ืกืง"
01:11
versus the power of local area networks.
19
71260
3000
ืœืขื•ืžืช ื”ืขื•ืฆืžื” ืฉืœ ืจืฉืชื•ืช ืžืงื•ืžื™ื•ืช.
01:14
And the interesting thing about it
20
74260
2000
ื•ื”ื“ื‘ืจ ื”ืžืขื ื™ื™ืŸ ื‘ื”
01:16
is that this slide,
21
76260
2000
ื”ื•ื ืฉืฉืงื•ืคื™ืช ื–ื•,
01:18
like so many technology slides that we're used to,
22
78260
3000
ื›ืžื• ื›"ื› ื”ืจื‘ื” ืฉืงื•ืคื™ื•ืช ื˜ื›ื ื•ืœื•ื’ื™ื” ืื—ืจื•ืช ืœื”ืŸ ืื ื• ืจื’ื™ืœื™ื,
01:21
is a sort of a straight line
23
81260
2000
ื”ื™ื ืกื•ื’ ืฉืœ ืงื• ื™ืฉืจ
01:23
on a semi-log curve.
24
83260
2000
ืขืœ ืขืงื•ืžืช ืกืžื™-ืœื•ื’
01:25
In other words, every step here
25
85260
2000
ื‘ืžื™ืœื™ื ืื—ืจื•ืช, ื›ืœ ืžื“ืจื’ื” ื›ืืŸ
01:27
represents an order of magnitude
26
87260
2000
ืžื™ื™ืฆื’ืช ืกื“ืจ ื’ื•ื“ืœ
01:29
in performance scale.
27
89260
2000
ื‘ืกืงืืœืช ื‘ื™ืฆื•ืขื™ื
01:31
And this is a new thing
28
91260
2000
ื•ื–ื” ื“ื‘ืจ ื—ื“ืฉ
01:33
that we talk about technology
29
93260
2000
ืฉืื ื• ืžื“ื‘ืจื™ื ืขืœื™ื• ื‘ื˜ื›ื ื•ืœื•ื’ื™ื”
01:35
on semi-log curves.
30
95260
2000
ืขืœ ืขืงื•ืžื•ืช ืกืžื™-ืœื•ื’.
01:37
Something really weird is going on here.
31
97260
2000
ืžืฉื”ื• ืžืžืฉ ืžื•ื–ืจ ืงื•ืจื” ื›ืืŸ.
01:39
And that's basically what I'm going to be talking about.
32
99260
3000
ื•ื–ื” ืžื™ืกื•ื“ื• ืžื” ืฉืื ื™ ืขื•ืžื“ ืœื“ื‘ืจ ืขืœื™ื•.
01:42
So, if you could bring up the lights.
33
102260
3000
ื›ืš, ืื ืชื•ื›ืœ ืœื”ืขืœื•ืช ืืช ื”ืื•ืจื•ืช.
01:47
If you could bring up the lights higher,
34
107260
2000
ืื ืชื•ื›ืœ ืœื”ืขืœื•ืช ืืช ื”ืื•ืจื•ืช ื’ื‘ื•ื” ื™ื•ืชืจ,
01:49
because I'm just going to use a piece of paper here.
35
109260
3000
ืžืฉื•ื ืฉืื ื™ ืขื•ืžื“ ื›ืืŸ ืœื”ืฉืชืžืฉ ื‘ืคื™ืกืช ื ื™ื™ืจ.
01:52
Now why do we draw technology curves
36
112260
2000
ื›ืขืช, ืžื“ื•ืข ืื ื—ื ื• ืžืฉืจื˜ื˜ื™ื ืขืงื•ืžื•ืช ื˜ื›ื ื•ืœื•ื’ื™ื”
01:54
in semi-log curves?
37
114260
2000
ื‘ืขืงื•ืžื•ืช ืกืžื™-ืœื•ื’?
01:56
Well the answer is, if I drew it on a normal curve
38
116260
3000
ื˜ื•ื‘ ื”ืชืฉื•ื‘ื” ื”ื™ื, ืื ื”ื™ื™ืชื™ ืžืฉืจื˜ื˜ ื–ืืช ืขืœ ืขืงื•ืžื” ืจื’ื™ืœื”
01:59
where, let's say, this is years,
39
119260
2000
ื”ื™ื›ืŸ, ืฉื™ืฉ ืœืžืฉืœ, ืืœื• ื”ืŸ ืฉื ื™ื,
02:01
this is time of some sort,
40
121260
2000
ื–ื” ื–ืžืŸ ืžืกื•ื’ ื›ืœืฉื”ื•,
02:03
and this is whatever measure of the technology
41
123260
3000
ื•ื–ื•ื”ื™ ืžื™ื“ื” ื›ืœืฉื”ื™ ืฉืœ ื˜ื›ื ื•ืœื•ื’ื™ื”
02:06
that I'm trying to graph,
42
126260
3000
ืฉืื ื™ ืžื ืกื” ืœืฉืจื˜ื˜ ื‘ื’ืจืฃ,
02:09
the graphs look sort of silly.
43
129260
3000
ื”ื’ืจืฃ ื ืจืื” ืžื˜ื•ืคืฉ ื›ืœืฉื”ื•.
02:12
They sort of go like this.
44
132260
3000
ื”ื ืžืฉื”ื• ื›ืžื• ื–ื”.
02:15
And they don't tell us much.
45
135260
3000
ื•ื”ื ืœื ืื•ืžืจื™ื ืœื ื• ื”ืจื‘ื”.
02:18
Now if I graph, for instance,
46
138260
3000
ื›ืขืช ืื ืื ื™ ืžืฉืจื˜ื˜ ื’ืจืฃ, ืœื“ื•ื’ืžื
02:21
some other technology, say transportation technology,
47
141260
2000
ื˜ื›ื ื•ืœื•ื’ื™ื” ืื—ืจืช ื›ืœืฉื”ื™, ื ื ื™ื— ื˜ื›ื ื•ืœื•ื’ื™ื™ืช ืชื—ื‘ื•ืจื”,
02:23
on a semi-log curve,
48
143260
2000
ืขืœ ืขืงื•ืžืช ืกืžื™-ืœื•ื’,
02:25
it would look very stupid, it would look like a flat line.
49
145260
3000
ื–ื” ื™ื™ืจืื” ืžืื“ ื˜ืคืฉื™, ื–ื”ื™ื™ืจืื” ื›ืžื• ืงื• ืฉื˜ื•ื—.
02:28
But when something like this happens,
50
148260
2000
ืื‘ืœ ื›ืฉืงื•ืจื” ืžืฉื”ื• ื›ื–ื”,
02:30
things are qualitatively changing.
51
150260
2000
ื“ื‘ืจื™ื ืžืฉืชื ื™ื ืžื‘ื—ื™ื ื” ืื™ื›ื•ืชื™ืช.
02:32
So if transportation technology
52
152260
2000
ื›ืš ืฉืื ื˜ื›ื ื•ืœื•ื’ื™ื™ืช ืชื—ื‘ื•ืจื”
02:34
was moving along as fast as microprocessor technology,
53
154260
3000
ื”ื™ืชื” ืžืชืงื“ืžืช ื‘ืžื”ื™ืจื•ืช ื›ืžื• ื˜ื›ื ื•ืœื•ื’ื™ื™ืช ืžื™ืงืจื•-ืžืขื‘ื“
02:37
then the day after tomorrow,
54
157260
2000
ืื– ืžื—ืจืชื™ื™ื
02:39
I would be able to get in a taxi cab
55
159260
2000
ื”ื™ื™ืชื™ ื™ื›ื•ืœ ืœื”ื™ื›ื ืก ืœืžื•ื ื™ืช
02:41
and be in Tokyo in 30 seconds.
56
161260
2000
ื•ืœื”ื™ื•ืช ื‘ื˜ื•ืงื™ื• ื‘-30 ืฉื ื™ื•ืช
02:43
It's not moving like that.
57
163260
2000
ื–ื” ืœื ืžืชืงื“ื ื›ืš.
02:45
And there's nothing precedented
58
165260
2000
ื•ืื™ืŸ ืฉื•ื ืชืงื“ื™ื ืœื›ืš
02:47
in the history of technology development
59
167260
2000
ื‘ื”ื™ืกื˜ื•ืจื™ื™ืช ื”ืชืคืชื—ื•ืช ื”ื˜ื›ื ื•ืœื•ื’ื™ื”
02:49
of this kind of self-feeding growth
60
169260
2000
ืฉืœ ืกื•ื’ ื–ื” ืฉืœ ื”ืชืคืชื—ื•ืช ื‘ื”ื–ื ื” ืขืฆืžื™ืช
02:51
where you go by orders of magnitude every few years.
61
171260
3000
ืฉื‘ื” ืžืชืงื“ืžื™ื ืœืคื™ ืกื“ืจื™ ื’ื•ื“ืœ ื›ืœ ื›ืžื” ืฉื ื™ื.
02:54
Now the question that I'd like to ask is,
62
174260
3000
ื›ืขืช ื”ืฉืืœื” ืฉื”ื™ื™ืชื™ ืจื•ืฆื” ืœืฉืื•ืœ ื”ื™ื,
02:57
if you look at these exponential curves,
63
177260
3000
ืื ืืชื ืžืกืชื›ืœื™ื ื‘ืžืขืจื™ื›ื™ ืขืงื•ืžื•ืช ืืœื•
03:00
they don't go on forever.
64
180260
3000
ื”ืŸ ืœื ื ืžืฉื›ื•ืช ืœื ืฆื—.
03:03
Things just can't possibly keep changing
65
183260
3000
ื”ื“ื‘ืจื™ื ืคืฉื•ื˜ ืœื ื™ื›ื•ืœื™ื ืœื”ืžืฉื™ืš ืœื”ืฉืชื ื•ืช
03:06
as fast as they are.
66
186260
2000
ืžื”ืจ ื›ืคื™ ืฉื”ื.
03:08
One of two things is going to happen.
67
188260
3000
ืื—ื“ ืžืฉื ื™ ื“ื‘ืจื™ื ืขื•ืžื“ ืœืงืจื•ืช.
03:11
Either it's going to turn into a sort of classical S-curve like this,
68
191260
4000
ืื• ืฉื–ื” ืขื•ืžื“ ืœื”ื™ื•ืช ืกื•ื’ ืฉืœ ืขืงื•ืžืช S ืงืœืกื™ืช ื›ื–ื•,
03:15
until something totally different comes along,
69
195260
4000
ืขื“ ืฉืžืฉื”ื• ืฉื•ื ื” ื‘ืชื›ืœื™ืช ื™ื’ื™ืข,
03:19
or maybe it's going to do this.
70
199260
2000
ืื• ืื•ืœื™ ื–ื” ื™ืขืฉื” ืืช ื–ื”.
03:21
That's about all it can do.
71
201260
2000
ื–ื” ื‘ืขืจืš ื›ืœ ืžื” ืฉื”ื•ื ื™ื•ื›ืœ ืœืขืฉื•ืช.
03:23
Now I'm an optimist,
72
203260
2000
ื›ืขืช, ืื ื™ ืื•ืคื˜ื™ืžื™ืกื˜,
03:25
so I sort of think it's probably going to do something like that.
73
205260
3000
ืื– ืื ื™ ืื™ื›ืฉื”ื• ื—ื•ืฉื‘ ืฉื–ื” ื›ื ืจืื” ื”ื•ืœืš ืœืขืฉื•ืช ืžืฉื”ื• ื›ืžื• ื–ื”.
03:28
If so, that means that what we're in the middle of right now
74
208260
3000
ืื ื›ืš, ื–ื” ืื•ืžืจ ืฉืื ื—ื ื• ื‘ืืžืฆืข ืžืžืฉ ื›ืขืช
03:31
is a transition.
75
211260
2000
ืฉืœ ืฉื™ื ื•ื™.
03:33
We're sort of on this line
76
213260
2000
ืื ื—ื ื• ืžืฉื”ื• ื›ืžื• ืขืœ ื”ืงื• ื”ื–ื”
03:35
in a transition from the way the world used to be
77
215260
2000
ื‘ืžืขื‘ืจ ืžื”ื“ืจืš ืฉื‘ื” ื”ืขื•ืœื ื ื”ื’ ืœื”ื™ื•ืช
03:37
to some new way that the world is.
78
217260
3000
ืœื“ืจืš ื—ื“ืฉื” ื›ืœืฉื”ื™ ืฉื‘ื” ื”ืขื•ืœื ื ืžืฆื.
03:40
And so what I'm trying to ask, what I've been asking myself,
79
220260
3000
ื•ื›ืš, ืžื” ืฉืื ื™ ืžื ืกื” ืœืฉืื•ืœ, ืžื” ืฉืฉืืœืชื™ ืืช ืขืฆืžื™,
03:43
is what's this new way that the world is?
80
223260
3000
ื”ื•ื ืžื”ื™ ื“ืจืš ื—ื“ืฉื” ื–ื• ืฉื”ืขื•ืœื ื ืžืฆื ื‘ื”?
03:46
What's that new state that the world is heading toward?
81
226260
3000
ืžื”ื• ืžืฆื‘ ื—ื“ืฉ ื–ื” ืฉื”ืขื•ืœื ื”ื•ืœืš ืœืงืจืืชื•?
03:49
Because the transition seems very, very confusing
82
229260
3000
ืžืฉื•ื ืฉื”ืžืขื‘ืจ ื ืจืื” ืžืื“, ืžืื“ ืžื‘ืœื‘ืœ
03:52
when we're right in the middle of it.
83
232260
2000
ื›ืืฉืจ ืื ื—ื ื• ืžืฆื•ื™ื™ื ื‘ืืžืฆืขื™ืชื•.
03:54
Now when I was a kid growing up,
84
234260
3000
ื›ืขืช, ื›ืฉื”ื™ื™ืชื™ ื™ืœื“ ืฉื’ื“ืœ,
03:57
the future was kind of the year 2000,
85
237260
3000
ื”ืขืชื™ื“ ื”ื™ื” ืกื•ื’ ืฉืœ ืฉื ืช 2000,
04:00
and people used to talk about what would happen in the year 2000.
86
240260
4000
ื•ืื ืฉื™ื ื ื”ื’ื• ืœื“ื‘ืจ ืขืœ ืžื” ื™ืงืจื” ื‘ืฉื ืช 2000.
04:04
Now here's a conference
87
244260
2000
ื›ืขืช ืžืชืงื™ื™ื ื“ื™ื•ืŸ
04:06
in which people talk about the future,
88
246260
2000
ืฉื‘ื• ืื ืฉื™ื ืžื“ื‘ืจื™ื ืขืœ ื”ืขืชื™ื“,
04:08
and you notice that the future is still at about the year 2000.
89
248260
3000
ื•ืืชื ืฉืžื™ื ืœื‘ ืœื›ืš ืฉื”ืขืชื™ื“ ื”ื•ื ืขื“ื™ื™ืŸ ืขืœ ืฉื ืช 2000.
04:11
It's about as far as we go out.
90
251260
2000
ื–ื” ื”ื›ื™ ืจื—ื•ืง ืฉืื ื—ื ื• ืžื’ื™ืขื™ื.
04:13
So in other words, the future has kind of been shrinking
91
253260
3000
ื›ืš, ื‘ืžื™ืœื™ื ืื—ืจื•ืช, ื”ืขืชื™ื“ ื”ืชื›ื•ื•ืฅ ืžืฉื”ื•
04:16
one year per year
92
256260
3000
ื‘ืฉื ื” ืื—ืช, ื›ืœ ืฉื ื”
04:19
for my whole lifetime.
93
259260
3000
ืœืื•ืจืš ื›ืœ ื™ืžื™ ื—ื™ื™.
04:22
Now I think that the reason
94
262260
2000
ื›ืขืช, ื ืจืื” ืœื™ ืฉื–ื”
04:24
is because we all feel
95
264260
2000
ืžืฉื•ื ืฉื›ื•ืœื ื• ืžืจื’ื™ืฉื™ื
04:26
that something's happening there.
96
266260
2000
ืฉืžืฉื”ื• ืงื•ืจื” ืฉื.
04:28
That transition is happening. We can all sense it.
97
268260
2000
ื”ืฉื™ื ื•ื™ ืงื•ืจื”. ื›ื•ืœื ื• ื™ื›ื•ืœื™ื ืœื”ืจื’ื™ืฉ ื‘ื–ื”.
04:30
And we know that it just doesn't make too much sense
98
270260
2000
ื•ืื ื—ื ื• ื™ื•ื“ืขื™ื ืฉื–ื” ืคืฉื•ื˜ ืœื ื›ืœ ื›ืš ื”ื’ื™ื•ื ื™
04:32
to think out 30, 50 years
99
272260
2000
ืœืขืกื•ืง ื‘ื ื™ืชื•ื— 30, 50 ืฉื ื™ื ืงื“ื™ืžื”
04:34
because everything's going to be so different
100
274260
3000
ืžืฉื•ื ืฉื”ื›ืœ ืขื•ืžื“ ืœื”ื™ื•ืช ื›ื” ืฉื•ื ื”
04:37
that a simple extrapolation of what we're doing
101
277260
2000
ืฉืื•ืžื“ืŸ ืคืฉื•ื˜ ืฉืœ ืžื” ืฉืื ื• ืขื•ืฉื™ื
04:39
just doesn't make any sense at all.
102
279260
3000
ืคืฉื•ื˜ ืื™ื ื• ื”ื™ื’ื™ื•ื ื™ ื›ืœืœ.
04:42
So what I would like to talk about
103
282260
2000
ื›ืš ืฉืžื” ืฉื”ื™ื™ืชื™ ืจื•ืฆื” ืœื“ื‘ืจ ืขืœื™ื•
04:44
is what that could be,
104
284260
2000
ื”ื•ื ืžื” ืฉื–ื” ื™ื•ื›ืœ ืœื”ื™ื•ืช,
04:46
what that transition could be that we're going through.
105
286260
3000
ืžื” ื™ื”ื™ื” ื”ืฉื™ื ื•ื™ ืฉืื ื—ื ื• ืขื•ืžื“ื™ื ืœืขื‘ื•ืจ.
04:49
Now in order to do that
106
289260
3000
ื›ืขืช, ืขืœ ืžื ืช ืœืขืฉื•ืช ื–ืืช
04:52
I'm going to have to talk about a bunch of stuff
107
292260
2000
ืื ื™ ืขื•ืžื“ ืœื“ื‘ืจ ืขืœ ืื•ืกืฃ ื“ื‘ืจื™ื
04:54
that really has nothing to do
108
294260
2000
ืฉื‘ืืžืช ืœื ืงืฉื•ืจื™ื
04:56
with technology and computers.
109
296260
2000
ืœื˜ื›ื ื•ืœื•ื’ื™ื” ื•ืœืžื—ืฉื‘ื™ื.
04:58
Because I think the only way to understand this
110
298260
2000
ืžืฉื•ื ืฉืื ื™ ื—ื•ืฉื‘ ืฉื”ื“ืจืš ื”ื™ื—ื™ื“ื” ืœื”ื‘ื™ืŸ ื–ืืช
05:00
is to really step back
111
300260
2000
ื”ื™ื ื‘ืืžืช ืœืœื›ืช ืื—ื•ืจื”
05:02
and take a long time scale look at things.
112
302260
2000
ื•ืœื”ืชื‘ื•ื ืŸ ื‘ื“ื‘ืจื™ื ื‘ืกืงืืœืช ื–ืžืŸ ืืจื•ื›ื”.
05:04
So the time scale that I would like to look at this on
113
304260
3000
ื›ืš ืฉืกืงืืœืช ื”ื–ืžืŸ ืฉื‘ื” ืฉื”ื™ื™ืชื™ ืจื•ืฆื” ืœื”ืชื‘ื•ื ืŸ ื‘ื–ื”
05:07
is the time scale of life on Earth.
114
307260
3000
ื”ื•ื ืกืงืืœืช ื”ื–ืžืŸ ืฉืœ ื”ื—ื™ื™ื ืขืœ ืคื ื™ ื”ืื“ืžื”
05:13
So I think this picture makes sense
115
313260
2000
ื›ืš, ืื ื™ ื—ื•ืฉื‘ ืฉืชืžื•ื ื” ื–ื• ืžืชืงื‘ืœืช ืขืœ ื”ื“ืขืช
05:15
if you look at it a few billion years at a time.
116
315260
4000
ืื ืžืกืชื›ืœื™ื ื‘ื” ื›ืžื” ืžื™ืœื™ืืจื“ ืฉื ื™ื ื‘ื›ืœ ืคืขื.
05:19
So if you go back
117
319260
2000
ืื– ืื ื”ื•ืœื›ื™ื ืื—ื•ืจื”
05:21
about two and a half billion years,
118
321260
2000
ืžืฉื”ื• ื›ืžื• 2.5 ืžื™ืœื™ืืจื“ ืฉื ื™ื,
05:23
the Earth was this big, sterile hunk of rock
119
323260
3000
ื”ืืจืฅ ื”ื™ืชื” ื’ื•ืฉ ืกืœืข ื’ื“ื•ืœ ื•ืกื˜ืจื™ืœื™ ื–ื”
05:26
with a lot of chemicals floating around on it.
120
326260
3000
ืขื ื›ื™ืžื™ืงืœื™ื ืจื‘ื™ื ืฉืฆืคื™ื ืกื‘ื™ื‘ื•.
05:29
And if you look at the way
121
329260
2000
ื•ืื ืชืชื‘ื•ื ื ื• ื‘ื“ืจืš
05:31
that the chemicals got organized,
122
331260
2000
ืฉื›ื™ืžื™ืงืœื™ื ืืœื” ื”ืชืืจื’ื ื•,
05:33
we begin to get a pretty good idea of how they do it.
123
333260
3000
ืื ื—ื ื• ืžืชื—ื™ืœื™ื ืœืงื‘ืœ ืจืขื™ื•ืŸ ื˜ื•ื‘ ืžืื“ ืขืœ ื”ื“ืจืš ืฉื‘ื” ื”ื ืขื•ืฉื™ื ื–ืืช.
05:36
And I think that there's theories that are beginning to understand
124
336260
3000
ื•ืื ื™ ื—ื•ืฉื‘ ืฉื™ืฉ ืชืื•ืจื™ื•ืช ืฉืžืชื—ื™ืœื•ืช ืœื”ื‘ื™ืŸ
05:39
about how it started with RNA,
125
339260
2000
ื›ื™ืฆื“ ื–ื” ื”ื—ืœ ืขื ืจื "ื,
05:41
but I'm going to tell a sort of simple story of it,
126
341260
3000
ืื‘ืœ ืื ื™ ืขื•ืžื“ ืœืกืคืจ ืกื™ืคื•ืจ ืคืฉื•ื˜ ืขืœ ื–ื”,
05:44
which is that, at that time,
127
344260
2000
ืฉื–ื”, ืฉื‘ื–ืžืŸ ื”ื”ื•ื
05:46
there were little drops of oil floating around
128
346260
3000
ื”ื™ื• ื˜ื™ืคื•ืช ืฉืžืŸ ืงื˜ื ื•ืช ืฉืฆืคื• ืกื‘ื™ื‘
05:49
with all kinds of different recipes of chemicals in them.
129
349260
3000
ืขื ื›ืœ ืžื™ื ื™ ืžืจืฉืžื™ื ืฉื•ื ื™ื ืฉืœ ื›ื™ืžื™ืงืœื™ื ื‘ืชื•ื›ืŸ.
05:52
And some of those drops of oil
130
352260
2000
ื•ืœื—ืœืง ืžื˜ื™ืคื•ืช ืฉืžืŸ ืืœื•
05:54
had a particular combination of chemicals in them
131
354260
2000
ื”ื™ื” ื”ืจื›ื‘ ืžื™ื•ื—ื“ ืฉืœ ื›ื™ืžื™ืงืœื™ื ื‘ืชื•ื›ืŸ
05:56
which caused them to incorporate chemicals from the outside
132
356260
3000
ืฉื’ืจื ืœื”ืŸ ืœืฉืœื‘ ืœืชื•ื›ืŸ ื›ื™ืžื™ืงืœื™ื ืžื‘ื—ื•ืฅ
05:59
and grow the drops of oil.
133
359260
3000
ื•ืœื”ื’ื“ื™ืœ ืืช ื˜ื™ืคื•ืช ื”ืฉืžืŸ.
06:02
And those that were like that
134
362260
2000
ื•ืืœื• ืฉื”ื™ื• ื›ืืœื•
06:04
started to split and divide.
135
364260
2000
ื”ื—ืœื• ืœื”ืชืคืฆืœ ื•ืœื”ืชื—ืœืง.
06:06
And those were the most primitive forms of cells in a sense,
136
366260
3000
ื•ืืœื• ื”ื™ื• ื‘ืžื•ื‘ืŸ ืžืกื•ื™ื ื”ืฆื•ืจื•ืช ื”ื›ื™ ืคืจื™ืžื™ื˜ื™ื‘ื™ื•ืช ืฉืœ ืชืื™ื,
06:09
those little drops of oil.
137
369260
2000
ื˜ื™ืคื•ืช ืฉืžืŸ ืงื˜ื ื•ืช ืืœื•.
06:11
But now those drops of oil weren't really alive, as we say it now,
138
371260
3000
ืื‘ืœ ืขืชื” ื˜ื™ืคื•ืช ืฉืžืŸ ืืœื• ืœื ื”ื™ื• ื‘ืืžืช ื—ื™ื•ืช, ื›ืคื™ ืฉืื ื• ืื•ืžืจื™ื ื–ืืช ื›ืขืช,
06:14
because every one of them
139
374260
2000
ืžืฉื•ื ืฉื›ืœ ืื—ืช ืžื”ืŸ
06:16
was a little random recipe of chemicals.
140
376260
2000
ื”ื™ืชื” ืžืจืฉื ืืงืจืื™ ืฉืœ ื›ื™ืžื™ืงืœื™ื.
06:18
And every time it divided,
141
378260
2000
ื•ื‘ื›ืœ ืคืขื ืฉื–ื” ื”ืชื—ืœืง,
06:20
they got sort of unequal division
142
380260
3000
ื”ื ื ื—ืœืงื• ื‘ืื•ืคืŸ ืฉื”ื•ื ืœื—ืœื•ืงื” ืœื ืฉื•ื•ื”
06:23
of the chemicals within them.
143
383260
2000
ืฉืœ ื”ื›ื™ืžื™ืงืœื™ื ืฉื‘ืชื•ื›ืŸ.
06:25
And so every drop was a little bit different.
144
385260
3000
ื•ื›ืš, ื›ืœ ื˜ื™ืคื” ื”ื™ืชื” ืฉื•ื ื” ืžืขื˜
06:28
In fact, the drops that were different in a way
145
388260
2000
ืœืžืขืฉื”, ื”ื˜ื™ืคื•ืช ืฉื”ื™ื• ืฉื•ื ื•ืช ื›ืš ืฉื–ื”
06:30
that caused them to be better
146
390260
2000
ื’ืจื ืœื”ื ืœื”ื™ื•ืช ื˜ื•ื‘ื•ืช ื™ื•ืชืจ
06:32
at incorporating chemicals around them,
147
392260
2000
ื‘ื”ื›ืœืœืช ื›ื™ืžื™ืงืœื™ื ืฉืกื‘ื™ื‘ืŸ,
06:34
grew more and incorporated more chemicals and divided more.
148
394260
3000
ื’ื“ืœื• ื™ื•ืชืจ, ื•ื”ื›ืœื™ืœื• ื™ื•ืชืจ ื›ื™ืžื™ืงืœื™ื ื•ื”ืชื—ืœืงื• ื™ื•ืชืจ.
06:37
So those tended to live longer,
149
397260
2000
ื›ืš ืฉืืœื• ืฉื ื˜ื• ืœื—ื™ื•ืช ื™ื•ืชืจ ื–ืžืŸ
06:39
get expressed more.
150
399260
3000
ื–ื›ื• ืœื‘ื™ื˜ื•ื™ ื’ื“ื•ืœ ื™ื•ืชืจ.
06:42
Now that's sort of just a very simple
151
402260
3000
ื›ืขืช, ื–ื” ืคืฉื•ื˜ ืกื•ื’ ืฉืœ
06:45
chemical form of life,
152
405260
2000
ืฆื•ืจื” ื›ื™ืžื™ืช ืคืฉื•ื˜ื” ืžืื“ ืฉืœ ื—ื™ื™ื,
06:47
but when things got interesting
153
407260
3000
ืื‘ืœ ื”ื“ื‘ืจื™ื ื ืขืฉื• ืžืขื ื™ื™ื ื™ื
06:50
was when these drops
154
410260
2000
ื›ืืฉืจ ื˜ื™ืคื•ืช ืืœื•
06:52
learned a trick about abstraction.
155
412260
3000
ืœืžื“ื• ืชื›ืกื™ืก ืฉืœ ืื‘ืกื˜ืจืงืฆื™ื”.
06:55
Somehow by ways that we don't quite understand,
156
415260
3000
ืื™ื›ืฉื”ื• ื‘ื“ืจื›ื™ื ืฉืื ื—ื ื• ืœื ืžืžืฉ ืžื‘ื™ื ื™ื,
06:58
these little drops learned to write down information.
157
418260
3000
ื˜ื™ืคื•ืช ืงื˜ื ื•ืช ืœืžื“ื• ืœื›ืชื•ื‘ ืžื™ื“ืข.
07:01
They learned to record the information
158
421260
2000
ื”ื ืœืžื“ื• ืœืจืฉื•ื ืืช ื”ืžื™ื“ืข
07:03
that was the recipe of the cell
159
423260
2000
ืฉื”ื™ื” ื”ืžืจืฉื ืฉืœ ื”ืชื
07:05
onto a particular kind of chemical
160
425260
2000
ืœืกื•ื’ ืฉืœ ื›ื™ืžื™ืงืœ ืžื™ื•ื—ื“
07:07
called DNA.
161
427260
2000
ืฉื ืงืจื ื“.ื .ื.
07:09
So in other words, they worked out,
162
429260
2000
ื›ืš, ื‘ืžื™ืœื™ื ืื—ืจื•ืช, ื”ื ืคื™ืชื—ื•
07:11
in this mindless sort of evolutionary way,
163
431260
3000
ื‘ืกื•ื’ ื–ื” ืฉืœ ื“ืจืš ืื‘ื•ืœื•ืฆื™ื•ื ื™ืช ืœื ืžื•ื“ืขืช
07:14
a form of writing that let them write down what they were,
164
434260
3000
ืฆื•ืจื” ืฉืœ ืจื™ืฉื•ื ืฉืื™ืคืฉืจื” ืœื”ื ืœืจืฉื•ื ืืช ืžื” ืฉื”ื ื”ื™ื•,
07:17
so that that way of writing it down could get copied.
165
437260
3000
ื›ืš ืฉืื•ืคืŸ ื–ื” ืฉืœ ืจื™ืฉื•ื ื™ื•ื›ืœ ืœื”ื™ื•ืช ืžื•ืขืชืง.
07:20
The amazing thing is that that way of writing
166
440260
3000
ื”ื“ื‘ืจ ื”ืžื•ืคืœื ื”ื•ื ืฉื ืจืื” ืฉืื•ืคืŸ ื›ืชื™ื‘ื” ื–ื”
07:23
seems to have stayed steady
167
443260
2000
ื ืฉืืจ ื™ืฆื™ื‘
07:25
since it evolved two and a half billion years ago.
168
445260
2000
ืžืื– ืฉื”ื•ื ื”ืชืคืชื— ืœืคื ื™ ืฉื ื™ื™ื ื•ื—ืฆื™ ืžื™ืœื™ืืจื“ ืฉื ื”.
07:27
In fact the recipe for us, our genes,
169
447260
3000
ืœืืžื™ืชื• ืฉืœ ื“ื‘ืจ, ื”ืžืจืฉื ืฉืœ ืžื” ืฉืื ื—ื ื•, ื”ื’ื ื™ื ืฉืœื ื•,
07:30
is exactly that same code and that same way of writing.
170
450260
3000
ื”ื•ื ื‘ื“ื™ื•ืง ืื•ืชื• ืงื•ื“ ื•ืื•ืชื• ืื•ืคืŸ ืฉืœ ืจื™ืฉื•ื.
07:33
In fact, every living creature is written
171
453260
3000
ืœืžืขืฉื”, ื›ืœ ื™ืฆื•ืจ ื—ื™ ื ืจืฉื
07:36
in exactly the same set of letters and the same code.
172
456260
2000
ื‘ื“ื™ื•ืง ื‘ืื•ืชื” ืžืขืจื›ืช ืฉืœ ืื•ืชื™ื•ืช ื•ื‘ืื•ืชื• ืงื•ื“.
07:38
In fact, one of the things that I did
173
458260
2000
ืœืžืขืฉื”, ืื—ื“ ื”ื“ื‘ืจื™ื ืฉืขืฉื™ืชื™
07:40
just for amusement purposes
174
460260
2000
ืจืง ืœืžื˜ืจื•ืช ืฉืขืฉื•ืข
07:42
is we can now write things in this code.
175
462260
2000
ื”ื•ื ืฉืื ื• ื™ื›ื•ืœื™ื ื›ืขืช ืœื›ืชื•ื‘ ื“ื‘ืจื™ื ื‘ืื•ืชื• ืงื•ื“.
07:44
And I've got here a little 100 micrograms of white powder,
176
464260
6000
ื•ื™ืฉ ืœื™ ื›ืืŸ ืžืขื˜, 100 ืžื™ืงืจื•ื’ืจืžื™ื ืฉืœ ืื‘ืงื” ืœื‘ื ื”,
07:50
which I try not to let the security people see at airports.
177
470260
4000
ืฉืื ื™ ืžื ืกื” ืœื”ืกืชื™ืจ ืžืขื™ื ื™ ืื ืฉื™ ื”ื‘ื™ื˜ื—ื•ืŸ ื‘ื ืžืœื™ ื”ืชืขื•ืคื”.
07:54
(Laughter)
178
474260
2000
(ืฆื—ื•ืง)
07:56
But this has in it --
179
476260
2000
ืื‘ืœ ื™ืฉ ื‘ื” --
07:58
what I did is I took this code --
180
478260
2000
ืžื” ืฉืขืฉื™ืชื™ ื”ื•ื, ืœืงื—ืชื™ ืืช ื”ืงื•ื“ --
08:00
the code has standard letters that we use for symbolizing it --
181
480260
3000
ืœืงื•ื“ ื™ืฉ ืื•ืชื™ื•ืช ืกื˜ื ื“ืจืชื™ื•ืช ืฉืื ื• ืžืฉืชืžืฉื™ื ื‘ื”ืŸ ื›ื“ื™ ืœืกืžืœ ื–ืืช --
08:03
and I wrote my business card onto a piece of DNA
182
483260
3000
ื•ื›ืชื‘ืชื™ ืืช ื›ืจื˜ื™ืก ื”ื‘ื™ืงื•ืจ ืฉืœื™ ืขืœ ืคื ื™ ืคื™ืกืช ื“ื™.ืื .ืื™
08:06
and amplified it 10 to the 22 times.
183
486260
3000
ื•ื”ื’ื“ืœืชื™ ืื•ืชื• ืคื™ 10 ื‘ื—ื–ืงืช 22 ืคืขืžื™ื.
08:09
So if anyone would like a hundred million copies of my business card,
184
489260
3000
ื›ืš ืฉืื ืžื™ืฉื”ื• ื™ืจืฆื” 100 ืžื™ืœื™ื•ืŸ ื”ืขืชืงื™ื ืฉืœ ื›ืจื˜ื™ืก ื”ื‘ื™ืงื•ืจ ืฉืœื™,
08:12
I have plenty for everyone in the room,
185
492260
2000
ื™ืฉ ืœื™ ื”ืจื‘ื” ืžืžื ื• ืขื‘ื•ืจ ื›ืœ ืื—ื“ ื‘ืื•ืœื ื–ื”,
08:14
and, in fact, everyone in the world,
186
494260
2000
ื•ืœืžืขืฉื” ืœื›ืœ ืื—ื“ ื‘ืขื•ืœื,
08:16
and it's right here.
187
496260
3000
ื•ื–ื” ืžืžืฉ ื›ืืŸ.
08:19
(Laughter)
188
499260
5000
(ืฆื—ื•ืง)
08:26
If I had really been a egotist,
189
506260
2000
ืื™ืœื• ื”ื™ื™ืชื™ ื‘ืืžืช ืื’ื•ืื™ืกื˜,
08:28
I would have put it into a virus and released it in the room.
190
508260
3000
ื”ื™ื™ืชื™ ืฉื ื–ืืช ืœืชื•ืš ื•ื™ืจื•ืก ื•ืžืฉื—ืจืจ ืื•ืชื• ื‘ืื•ืœื.
08:31
(Laughter)
191
511260
5000
(ืฆื—ื•ืง)
08:39
So what was the next step?
192
519260
2000
ืื ื›ืŸ ืžื” ื”ื™ื” ื”ืฆืขื“ ื”ื‘ื?
08:41
Writing down the DNA was an interesting step.
193
521260
2000
ืœืจืฉื•ื ืืช ื”ื“.ื .ื. ื”ื™ื” ืฆืขื“ ืžืขื ื™ื™ืŸ.
08:43
And that caused these cells --
194
523260
2000
ื•ื–ื” ื’ืจื ืœืชืื™ื ื”ืืœื” --
08:45
that kept them happy for another billion years.
195
525260
2000
ืœื”ื™ื•ืช ืžืจื•ืฆื™ื ืœืžืฉืš ืขื•ื“ ืžื™ืœื™ืืจื“ ืฉื ื™ื.
08:47
But then there was another really interesting step
196
527260
2000
ืื‘ืœ ืื– ืงืจื” ืฆืขื“ ื‘ืืžืช ืžืขื ื™ื™ืŸ
08:49
where things became completely different,
197
529260
3000
ืฉื”ื“ื‘ืจื™ื ื”ืคื›ื• ืœื”ื™ื•ืช ืฉื•ื ื™ื ืœื’ืžืจื™,
08:52
which is these cells started exchanging and communicating information,
198
532260
3000
ื•ื”ื•ื ืฉืชืื™ื ืืœื” ื”ืชื—ื™ืœื• ื”ืชื—ื™ืœื• ืœืชืงืฉืจ ื•ืœื”ื—ืœื™ืฃ ื‘ื™ื ื™ื”ื ืื™ื ืคื•ืจืžืฆื™ื” ,
08:55
so that they began to get communities of cells.
199
535260
2000
ื›ืš ืฉื”ื ื”ืคื›ื• ืœื”ื™ื•ืช ืžื•ืฉื‘ื•ืช ืชืื™ื.
08:57
I don't know if you know this,
200
537260
2000
ืื™ื ื ื™ ื™ื•ื“ืข ืื ืืชื ื™ื•ื“ืขื™ื ื–ืืช
08:59
but bacteria can actually exchange DNA.
201
539260
2000
ืื‘ืœ ื‘ืงื˜ืจื™ื” ื™ื›ื•ืœื” ืœืžืขืฉื” ืœื”ื—ืœื™ืฃ ื“.ื .ื.
09:01
Now that's why, for instance,
202
541260
2000
ื›ืขืช, ืžืฉื•ื ื›ืš, ืœืžืฉืœ
09:03
antibiotic resistance has evolved.
203
543260
2000
ื”ืชืคืชื—ื” ืขืžื™ื“ื•ืช ืœืื ื˜ื™ื‘ื™ื•ื˜ื™ืงื” .
09:05
Some bacteria figured out how to stay away from penicillin,
204
545260
3000
ื‘ืงื˜ืจื™ื” ืžืกื•ื™ืžืช ืœืžื“ื” ื›ื™ืฆื“ ืœื”ื™ืฉืžืจ ืžืคื ื™ืฆื™ืœื™ืŸ,
09:08
and it went around sort of creating its little DNA information
205
548260
3000
ื•ืื™ื›ืฉื”ื• ื™ืฆืจื” ืฉืœ ืžื™ื“ืข ื“.ื .ื ืขืฆืžื™ ืงื˜ืŸ
09:11
with other bacteria,
206
551260
2000
ื™ื—ื“ ืขื ื‘ืงื˜ืจื™ื•ืช ืื—ืจื•ืช,
09:13
and now we have a lot of bacteria that are resistant to penicillin,
207
553260
3000
ื•ื›ืขืช ื™ืฉ ืœื ื• ื”ืจื‘ื” ื‘ืงื˜ืจื™ื•ืช ืขืžื™ื“ื•ืช ืœืคื ื™ืฆื™ืœื™ืŸ,
09:16
because bacteria communicate.
208
556260
2000
ืžืฉื•ื ืฉื‘ืงื˜ืจื™ื” ืžืชืงืฉืจืช
09:18
Now what this communication allowed
209
558260
2000
ื›ืขืช, ืžื” ืฉืกื•ื’ ืชืงืฉื•ืจืช ื–ื• ืžืืคืฉืจืช
09:20
was communities to form
210
560260
2000
ื–ื” ืœืžื•ืฉื‘ื•ืช ืœื”ื™ื•ื•ืฆืจ
09:22
that, in some sense, were in the same boat together;
211
562260
2000
ืฉื‘ืžื•ื‘ืŸ ืžืกื•ื™ื ื”ื™ื• ื™ื—ื“ ื‘ืื•ืชื” ืกื™ืจื”,
09:24
they were synergistic.
212
564260
2000
ื”ืŸ ื”ื™ื• ืกื™ื ืจื’'ื™ืกื˜ื™ื•ืช.
09:26
So they survived
213
566260
2000
ื›ืš ืฉื”ืŸ ืฉืจื“ื•
09:28
or they failed together,
214
568260
2000
ืื• ืฉื”ืŸ ื ื›ืฉืœื• ื™ื—ื“,
09:30
which means that if a community was very successful,
215
570260
2000
ืžื” ืฉืื•ืžืจ ืฉืื ืžื•ืฉื‘ื” ื”ื™ืชื” ืžืื“ ืžืฆืœื™ื—ื”
09:32
all the individuals in that community
216
572260
2000
ื›ืœ ื”ื™ื—ื™ื“ื™ื ื‘ืžื•ืฉื‘ื”
09:34
were repeated more
217
574260
2000
ื”ืชืจื‘ื• ื™ื•ืชืจ
09:36
and they were favored by evolution.
218
576260
3000
ื•ื–ื›ื• ืœื”ืขื“ืคื” ืื‘ื•ืœื•ืฆื™ื•ื ื™ืช.
09:39
Now the transition point happened
219
579260
2000
ื›ืขืช, ื ืงื•ื“ืช ื”ืžืขื‘ืจ ืงืจืชื”
09:41
when these communities got so close
220
581260
2000
ื›ืืฉืจ ืžื•ืฉื‘ื•ืช ืืœื• ื”ืชืงืจื‘ื• ื›ืœ ื›ืš
09:43
that, in fact, they got together
221
583260
2000
ืฉืœืžืขืฉื” ื”ืŸ ื”ืชื—ื‘ืจื• ื™ื—ื“
09:45
and decided to write down the whole recipe for the community
222
585260
3000
ื•ื”ื—ืœื™ื˜ื• ืœืจืฉื•ื ืืช ื”ืžืจืฉื ื”ืžืœื ืขื‘ื•ืจ ื”ืžื•ืฉื‘ื”
09:48
together on one string of DNA.
223
588260
3000
ื™ื—ื“ ืขืœ ืฉืจืฉืจืช ื“ื™.ืื .ืื™ื™.
09:51
And so the next stage that's interesting in life
224
591260
2000
ื•ื›ืš ื”ืฉืœื‘ ื”ื‘ื ื”ืžืขื ื™ื™ืŸ ื‘ื—ื™ื™ื
09:53
took about another billion years.
225
593260
2000
ืืจืš ื‘ืขืจืš ืขื•ื“ ืžื™ืœื™ืืจื“ ืฉื ื™ื.
09:55
And at that stage,
226
595260
2000
ื•ื‘ืฉืœื‘ ื–ื”
09:57
we have multi-cellular communities,
227
597260
2000
ื™ืฉ ืœื ื• ืžื•ืฉื‘ื•ืช ืจื‘-ืชืื™ื•ืช,
09:59
communities of lots of different types of cells,
228
599260
2000
ืžื•ืฉื‘ื•ืช ืฉืœ ื”ืจื‘ื” ืกื•ื’ื™ ืชืื™ื,
10:01
working together as a single organism.
229
601260
2000
ืฉืขื•ื‘ื“ื™ื ื™ื—ื“ ื›ืื•ืจื’ื ื™ื–ื ืื—ื“.
10:03
And in fact, we're such a multi-cellular community.
230
603260
3000
ื•ื”ืืžืช, ืื ื—ื ื• ื”ื ื ื• ื›ืืœื• ืžื•ืฉื‘ื•ืช ืจื‘-ืชืื™ื•ืช.
10:06
We have lots of cells
231
606260
2000
ื™ืฉ ืœื ื• ื”ืจื‘ื” ืชืื™ื
10:08
that are not out for themselves anymore.
232
608260
2000
ืฉืื™ื ื ืงื™ื™ืžื™ื ื™ื•ืชืจ ืœืขืฆืžื.
10:10
Your skin cell is really useless
233
610260
3000
ืชื ื”ืขื•ืจ ืฉืœืš ื‘ืืžืช ื—ืกืจ ืชื•ืขืœืช
10:13
without a heart cell, muscle cell,
234
613260
2000
ืœืœื ืชื ืœื‘, ืชื ืฉืจื™ืจ,
10:15
a brain cell and so on.
235
615260
2000
ืชื ืžื•ื— ื•ื›ื•'.
10:17
So these communities began to evolve
236
617260
2000
ื›ืš ืฉืžื•ืฉื‘ื•ืช ืืœื• ื”ื—ืœื• ืœื”ืชืคืชื—
10:19
so that the interesting level on which evolution was taking place
237
619260
3000
ื•ื›ืš ื”ืจืžื” ื”ืžืขื ื™ื™ื ืช ืฉื‘ื” ื”ืื‘ื•ืœื•ืฆื™ื” ื”ืชืจื—ืฉื”
10:22
was no longer a cell,
238
622260
2000
ืœื ื”ื™ื™ืชื” ื™ื•ืชืจ ื”ืชื
10:24
but a community which we call an organism.
239
624260
3000
ืืœื ื”ืžื•ืฉื‘ื” ืฉืื ื• ืงื•ืจืื™ื ืœื” ืื•ืจื’ื ื™ื–ื.
10:28
Now the next step that happened
240
628260
2000
ื›ืขืช, ื”ืฆืขื“ ื”ื‘ื ืฉืงืจื”
10:30
is within these communities.
241
630260
2000
ื”ื•ื ืฉื‘ืชื•ืš ืžื•ืฉื‘ื•ืช ืืœื•.
10:32
These communities of cells,
242
632260
2000
ืžื•ืฉื‘ื•ืช ืชืื™ื ืืœื•,
10:34
again, began to abstract information.
243
634260
2000
ืฉื•ื‘ ื”ื—ืœื• ืœืขืฉื•ืช ืื‘ืกื˜ืจืงืฆื™ื” ืฉืœ ืžื™ื“ืข
10:36
And they began building very special structures
244
636260
3000
ื•ื”ื ื”ื—ืœื• ืœื‘ื ื•ืช ืืช ื”ืžื‘ื ื™ื ื”ืžื™ื•ื—ื“ื™ื ืฉืœื”ื
10:39
that did nothing but process information within the community.
245
639260
3000
ื•ื›ืœ ืžื” ืฉืขืฉื• ื”ื™ื” ืœืขื‘ื“ ืžื™ื“ืข ื‘ืชื•ืš ื”ืžื•ืฉื‘ื”
10:42
And those are the neural structures.
246
642260
2000
ื•ืืœื” ื”ื ื”ืžื‘ื ื™ื ื”ืขืฆื‘ื™ื™ื.
10:44
So neurons are the information processing apparatus
247
644260
3000
ื›ืš ืฉื ื•ื™ืจื•ื ื™ื ื”ื ื”ืžื ื’ื ื•ืŸ ืฉืžืขื‘ื“ ืžื™ื“ืข
10:47
that those communities of cells built up.
248
647260
3000
ืฉืžื•ืฉื‘ื•ืช ืชืื™ื ืืœื• ื‘ื ื•.
10:50
And in fact, they began to get specialists in the community
249
650260
2000
ื•ืœืžืขืฉื”, ื”ื ื”ื—ืœื• ืœืงื‘ืœ ืžื•ืžื—ื™ื ื‘ืžื•ืฉื‘ื”
10:52
and special structures
250
652260
2000
ื•ืžื‘ื ื™ื ืžื™ื•ื—ื“ื™ื
10:54
that were responsible for recording,
251
654260
2000
ืฉื”ื™ื• ืื—ืจืื™ื ืœืจื™ืฉื•ื,
10:56
understanding, learning information.
252
656260
3000
ืœื”ื‘ื ื”, ืœืœืžื™ื“ืช ืžื™ื“ืข
10:59
And that was the brains and the nervous system
253
659260
2000
ื•ืืœื” ื”ื™ื• ื”ืžื•ื—ื•ืช ื•ืžืขืจื›ืช ื”ืขืฆื‘ื™ื
11:01
of those communities.
254
661260
2000
ืฉืœ ืžื•ืฉื‘ื•ืช ืืœื•.
11:03
And that gave them an evolutionary advantage.
255
663260
2000
ื•ื–ื” ื ืชืŸ ืœื”ื ื™ืชืจื•ืŸ ืื‘ื•ืœื•ืฆื™ื•ื ื™.
11:05
Because at that point,
256
665260
3000
ืžืฉื•ื ืฉื‘ื ืงื•ื“ื” ื–ื•,
11:08
an individual --
257
668260
3000
ื›ืคืจื˜ --
11:11
learning could happen
258
671260
2000
ืœืžื™ื“ื” ื™ื›ื•ืœื” ืœื”ืชืจื—ืฉ
11:13
within the time span of a single organism,
259
673260
2000
ื‘ืชื•ืš ื˜ื•ื•ื— ื–ืžืŸ ืฉืœ ืื•ืจื’ื ื™ื–ื ื™ื—ื™ื“.
11:15
instead of over this evolutionary time span.
260
675260
3000
ื‘ืžืงื•ื ื‘ืžืฉืš ื–ืžืŸ ืื‘ื•ืœื•ืฆื™ื•ื ื™
11:18
So an organism could, for instance,
261
678260
2000
ื›ืš ืฉืื•ืจื’ื ื™ื–ื ื™ื•ื›ืœ, ืœื“ื•ื’ืžื
11:20
learn not to eat a certain kind of fruit
262
680260
2000
ืœืœืžื•ื“ ืœื ืœืื›ื•ืœ ืกื•ื’ ืžืกื•ื™ื ืฉืœ ืคืจื™
11:22
because it tasted bad and it got sick last time it ate it.
263
682260
4000
ืžืฉื•ื ืฉื˜ืขืžื• ื”ื™ื” ืจืข ื•ื”ื•ื ื ืขืฉื” ื—ื•ืœื” ื‘ืคืขื ื”ืื—ืจื•ื ื” ืฉืื›ืœ ืื•ืชื•.
11:26
That could happen within the lifetime of a single organism,
264
686260
3000
ื–ื” ื™ื›ื•ืœ ื”ื™ื” ืœืงืจื•ืช ื‘ืชื•ืš ืชืงื•ืคืช ื—ื™ื™ื ืฉืœ ืื•ืจื’ื ื™ื–ื ื™ื—ื™ื“,
11:29
whereas before they'd built these special information processing structures,
265
689260
4000
ื‘ืขื•ื“ ืฉืงื•ื“ื ื”ื ื‘ื ื• ืžื‘ื ื™ื ืžื™ื•ื—ื“ื™ื ืœืขื™ื‘ื•ื“ ืžื™ื“ืข,
11:33
that would have had to be learned evolutionarily
266
693260
2000
ืฉื”ื™ื• ื™ื›ื•ืœื™ื ืœื”ื™ืœืžื“ ื‘ื“ืจืš ืื‘ื•ืœื•ืฆื™ื•ื ื™ืช
11:35
over hundreds of thousands of years
267
695260
3000
ืœืื•ืจืš ืžืื•ืช ืืœืคื™ ืฉื ื™ื
11:38
by the individuals dying off that ate that kind of fruit.
268
698260
3000
ืขืœ ื™ื“ื™ ื™ื—ื™ื“ื™ื ืฉืžืชื• ืœืื—ืจ ืฉืื›ืœื• ืกื•ื’ ื–ื” ืฉืœ ืคืจื™.
11:41
So that nervous system,
269
701260
2000
ืื– ืžืขืจื›ืช ื”ืขืฆื‘ื™ื ื”ื–ื•,
11:43
the fact that they built these special information structures,
270
703260
3000
ื”ืขื•ื‘ื“ื” ืฉื”ื ื‘ื ื• ืžื‘ื ื™ ืžื™ื“ืข ืžื™ื•ื—ื“ื™ื ืืœื”
11:46
tremendously sped up the whole process of evolution.
271
706260
3000
ื”ืื™ืฆื” ืžืื•ื“ ืืช ื›ืœ ืชื”ืœื™ืš ื”ืื‘ื•ืœื•ืฆื™ื”.
11:49
Because evolution could now happen within an individual.
272
709260
3000
ืžืฉื•ื ืฉืื‘ื•ืœื•ืฆื™ื” ื™ื›ื•ืœื” ื›ืขืช ืœืงืจื•ืช ื‘ืชื•ืš ื”ื™ื—ื™ื“.
11:52
It could happen in learning time scales.
273
712260
3000
ื–ื” ื™ื›ื•ืœ ืœืงืจื•ืช ื‘ืœื™ืžื•ื“ ืกื•ืœืžื•ืช ื–ืžืŸ.
11:55
But then what happened
274
715260
2000
ืื‘ืœ ืื– ืžื” ืฉืงืจื”
11:57
was the individuals worked out,
275
717260
2000
ื”ื™ื” ืฉื”ื™ื—ื™ื“ื™ื ืคื™ืชื—ื•,
11:59
of course, tricks of communicating.
276
719260
2000
ื›ืžื•ื‘ืŸ ืชื›ืกื™ืกื™ ืชืงืฉื•ืจืช
12:01
And for example,
277
721260
2000
ื•ืœื“ื•ื’ืžื,
12:03
the most sophisticated version that we're aware of is human language.
278
723260
3000
ื”ื’ื™ืจืกื” ื”ืžืชื•ื—ื›ืžืช ื‘ื™ื•ืชืจ ืฉืื ื• ืžื•ื“ืขื™ื ืœื” ื”ื™ื ื”ืฉืคื” ื”ืื ื•ืฉื™ืช.
12:06
It's really a pretty amazing invention if you think about it.
279
726260
3000
ื–ื• ื‘ืืžืช ื”ืžืฆืื” ืžื“ื”ื™ืžื” ื‘ื™ื•ืชืจ ืื ืชื—ืฉื‘ื• ืขืœ ื–ื”.
12:09
Here I have a very complicated, messy,
280
729260
2000
ื›ืืŸ ืขื•ืœื” ื‘ืจืืฉื™ ืจืขื™ื•ืŸ ืžืื•ื“ ืžื‘ื•ืœื’ืŸ,
12:11
confused idea in my head.
281
731260
3000
ืžืกื•ื‘ืš, ื•ืžื‘ื•ืœื‘ืœ.
12:14
I'm sitting here making grunting sounds basically,
282
734260
3000
ืื ื™ ื™ื•ืฉื‘ ื›ืืŸ ื•ืžืฉืžื™ืข ื‘ืื•ืคืŸ ื‘ืกื™ืกื™ ืงื•ืœื•ืช ื ื”ื™ืžื”,
12:17
and hopefully constructing a similar messy, confused idea in your head
283
737260
3000
ื‘ืชืงื•ื•ื” ืœื‘ื ื•ืช ืจืขื™ื•ืŸ ืžื‘ื•ืœื’ืŸ ื•ืžื‘ื•ืœื‘ืœ ื“ื•ืžื” ื‘ืชื•ืš ืจืืฉื™
12:20
that bears some analogy to it.
284
740260
2000
ืฉื™ืขืœื” ืื™ื–ื•ืฉื”ื™ ืื ืœื•ื’ื™ื” ืœื›ืš.
12:22
But we're taking something very complicated,
285
742260
2000
ืื‘ืœ ืื ื—ื ื• ืœื•ืงื—ื™ื ืžืฉื”ื• ืžืื•ื“ ืžืกื•ื‘ืš,
12:24
turning it into sound, sequences of sounds,
286
744260
3000
ื”ื•ืคื›ื™ื ืื•ืชื• ืœืงื•ืœ, ืœืจืฆืคื™ื ืฉืœ ืงื•ืœื•ืช,
12:27
and producing something very complicated in your brain.
287
747260
4000
ื•ื™ื•ืฆืจื™ื ืžืฉื”ื• ืžืื“ ืžื•ืจื›ื‘ ื‘ืชื•ืš ื”ืžื•ื— ืฉืœื ื•.
12:31
So this allows us now
288
751260
2000
ื›ืš ืฉื–ื” ื›ืขืช ืžืืคืฉืจ ืœื ื•
12:33
to begin to start functioning
289
753260
2000
ืœื”ืชื—ื™ืœ ืœื”ืคืขื™ืœ ืืช ื”ืชืคืงื•ื“
12:35
as a single organism.
290
755260
3000
ื›ืื•ืจื’ื ื™ื–ื ื™ื—ื™ื“.
12:38
And so, in fact, what we've done
291
758260
3000
ื•ื›ืš, ืœืžืขืฉื”, ืžื” ืฉืขืฉื™ื ื•
12:41
is we, humanity,
292
761260
2000
ื”ื•ื ืฉืื ื•, ื”ืื ื•ืฉื•ืช
12:43
have started abstracting out.
293
763260
2000
ื”ืชื—ืœื ื• ืœืขืฉื•ืช ืื‘ืกื˜ืจืงืฆื™ื”
12:45
We're going through the same levels
294
765260
2000
ืื ื• ืขื•ื‘ืจื™ื ื“ืจืš ืื•ืชื ืฉืœื‘ื™ื
12:47
that multi-cellular organisms have gone through --
295
767260
2000
ืฉืื•ืจื’ื ื™ื–ืžื™ื ืžืจื•ื‘ื™-ืชืื™ื ืขื‘ืจื• ื“ืจื›ื --
12:49
abstracting out our methods of recording,
296
769260
3000
ืขื•ืฉื™ื ืื‘ืกื˜ืจืงืฆื™ื” ืฉืœ ืฉื™ื˜ื•ืช ื”ืจื™ืฉื•ื ืฉืœื ื•,
12:52
presenting, processing information.
297
772260
2000
ื‘ื”ืฆื’ื”, ื‘ืขื™ื‘ื•ื“ ืžื™ื“ืข.
12:54
So for example, the invention of language
298
774260
2000
ื›ืš ืœืžืฉืœ, ื”ืžืฆืืช ื”ืฉืคื”
12:56
was a tiny step in that direction.
299
776260
3000
ื”ื™ืชื” ืฆืขื“ ืงื˜ืŸ ื‘ื›ื™ื•ื•ืŸ ื–ื”.
12:59
Telephony, computers,
300
779260
2000
ื˜ืœืคื•ื ื™ื”, ืžื—ืฉื‘ื™ื,
13:01
videotapes, CD-ROMs and so on
301
781260
3000
ืงืœื˜ื•ืช, ืชืงืœื™ื˜ื•ืจื™ื ื•ื›ื“ื•ืžื”
13:04
are all our specialized mechanisms
302
784260
2000
ื”ื ื›ื•ืœื ืžื ื’ื ื•ื ื™ ื”ื”ืชืžืงืฆืขื•ืช ืฉืœื ื•
13:06
that we've now built within our society
303
786260
2000
ืฉื›ืขืช ื‘ื ื™ื ื• ื‘ืชื•ืš ื”ื—ื‘ืจื” ืฉืœื ื•
13:08
for handling that information.
304
788260
2000
ื›ื“ื™ ืœื˜ืคืœ ื‘ืžื™ื“ืข ื–ื”.
13:10
And it all connects us together
305
790260
3000
ื•ื›ืœ ื–ื” ืžืงืฉืจ ืื•ืชื ื• ื™ื—ื“
13:13
into something
306
793260
2000
ืœืžืฉื”ื•
13:15
that is much bigger
307
795260
2000
ื”ืจื‘ื” ื™ื•ืชืจ ื’ื“ื•ืœ
13:17
and much faster
308
797260
2000
ื•ื”ืจื‘ื” ื™ื•ืชืจ ืžื”ื™ืจ
13:19
and able to evolve
309
799260
2000
ื•ืžืกื•ื’ืœ ืœื”ืชืคืชื—
13:21
than what we were before.
310
801260
2000
ืžืืฉืจ ืžื” ืฉื”ื™ื™ื ื• ืœืคื ื™ ื›ืŸ.
13:23
So now, evolution can take place
311
803260
2000
ืื– ืขื›ืฉื™ื•, ื”ืื‘ื•ืœื•ืฆื™ื” ื™ื›ื•ืœื” ืœืงืจื•ืช
13:25
on a scale of microseconds.
312
805260
2000
ื‘ืกื•ืœื ืฉืœ ืžื™ืœื™ื•ื ื™ืช-ืฉื ื™ื”.
13:27
And you saw Ty's little evolutionary example
313
807260
2000
ื•ืจืื™ืชื ืืช ื”ื“ื•ื’ืžื” ื”ืื‘ื•ืœื•ืฆื™ื•ื ื™ืช ื”ืงื˜ื ื” ืฉืœ TY
13:29
where he sort of did a little bit of evolution
314
809260
2000
ืฉืขืฉื” ืกื•ื’ ืฉืœ ืžืขื˜ ืื‘ื•ืœื•ืฆื™ื”
13:31
on the Convolution program right before your eyes.
315
811260
3000
ื‘ืชื•ื›ื ื™ืช ื”ืงื•ื ื‘ื•ืœื•ืฆื™ื” ืžื•ืœ ืขื™ื ื™ื›ื.
13:34
So now we've speeded up the time scales once again.
316
814260
3000
ืื– ืขื›ืฉื™ื• ืื ื—ื ื• ืฉื•ื‘ ื”ืืฆื ื• ืžืขืœื” ืืช ืกืงืืœื•ืช ื”ื–ืžืŸ.
13:37
So the first steps of the story that I told you about
317
817260
2000
ืื– ื”ืฉืœื‘ื™ื ื”ืจืืฉื•ื ื™ื ืฉืœ ื”ืกื™ืคื•ืจ ืฉืกื™ืคืจืชื™ ืœื›ื ืขืœื™ื•
13:39
took a billion years a piece.
318
819260
2000
ืืจืš ืžื™ืœื™ืืจื“ ืฉื ื™ื ืœื™ื—ื™ื“ื”.
13:41
And the next steps,
319
821260
2000
ื•ื”ืฆืขื“ื™ื ื”ื‘ืื™ื,
13:43
like nervous systems and brains,
320
823260
2000
ื›ืžื• ืžืขืจื›ื•ืช ื”ืขืฆื‘ื™ื ื•ื”ืžื•ื—ื•ืช,
13:45
took a few hundred million years.
321
825260
2000
ืืจื›ื• ื›ืžื” ืžืื•ืช ืžื™ืœื™ื•ื ื™ ืฉื ื™ื.
13:47
Then the next steps, like language and so on,
322
827260
3000
ื•ืื– ื”ืฆืขื“ื™ื ื”ื‘ืื™ื, ื›ืžื• ื”ืฉืคื” ื•ื›ืŸ ื”ืœืื”,
13:50
took less than a million years.
323
830260
2000
ืืจื›ื• ืคื—ื•ืช ืžืžื™ืœื™ื•ืŸ ืฉื ื™ื.
13:52
And these next steps, like electronics,
324
832260
2000
ื•ื”ืฆืขื“ื™ื ื”ื‘ืื™ื ื”ืืœื”, ื›ืžื• ืืœืงื˜ืจื•ื ื™ืงื”,
13:54
seem to be taking only a few decades.
325
834260
2000
ื ืจืื” ืฉืืจื›ื• ืจืง ื›ืžื” ืขืฉืจื•ืช ืฉื ื™ื.
13:56
The process is feeding on itself
326
836260
2000
ื•ื”ืชื”ืœื™ืš ื ื™ื–ื•ืŸ ืžืขืฆืžื•
13:58
and becoming, I guess, autocatalytic is the word for it --
327
838260
3000
ื•ื”ื•ืคืš, ืื•ื˜ื•ืงื˜ืœื™ื˜ื™, ืฉืื ื™ ืžื ื™ื—, ืฉื”ื™ื ื”ืžื™ืœื” ืœื›ืš-
14:01
when something reinforces its rate of change.
328
841260
3000
ื›ืืฉืจ ืžืฉื”ื• ืžืชื’ื‘ืจ ืืช ืงืฆื‘ ื”ืฉื™ื ื•ื™ ืฉืœื•.
14:04
The more it changes, the faster it changes.
329
844260
3000
ื›ื›ืœ ืฉื”ื•ื ืžืฉืชื ื” ื™ื•ืชืจ, ื›ืš ื”ื•ื ืžืฉืชื ื” ืžื”ืจ ื™ื•ืชืจ.
14:07
And I think that that's what we're seeing here in this explosion of curve.
330
847260
3000
ื•ืื ื™ ื—ื•ืฉื‘ ืฉื–ื” ืžื” ืฉืื ื—ื ื• ืจื•ืื™ื ื›ืืŸ ื‘ืคื™ืฆื•ืฅ ื–ื” ืฉืœ ืขืงื•ืžื”.
14:10
We're seeing this process feeding back on itself.
331
850260
3000
ืื ื• ืจื•ืื™ื ืชื”ืœื™ืš ื–ื” ืฉื‘ ื•ืžื–ื™ืŸ ืืช ืขืฆืžื•.
14:13
Now I design computers for a living,
332
853260
3000
ืขื›ืฉื™ื• ืื ื™ ืžืขืฆื‘ ืžื—ืฉื‘ื™ื ื›ื“ื™ ืœื”ืชืคืจื ืก,
14:16
and I know that the mechanisms
333
856260
2000
ื•ืื ื™ ื™ื•ื“ืข ื›ื™ ื”ืžื ื’ื ื•ื ื™ื
14:18
that I use to design computers
334
858260
3000
ืฉื‘ื”ื ืื ื™ ืžืฉืชืžืฉ ื›ื“ื™ ืœืขืฆื‘ ืžื—ืฉื‘ื™ื
14:21
would be impossible
335
861260
2000
ืœื ื”ื™ื• ืืคืฉืจื™ื™ื
14:23
without recent advances in computers.
336
863260
2000
ืœืœื ื”ืชืคืชื—ื•ื™ื•ืช ื”ืื—ืจื•ื ื•ืช ื‘ืžื—ืฉื‘ื™ื.
14:25
So right now, what I do
337
865260
2000
ืื– ืขื›ืฉื™ื•, ืžื” ืฉืื ื™ ืขื•ืฉื”
14:27
is I design objects at such complexity
338
867260
3000
ื”ื•ื ืฉืื ื™ ืžืขืฆื‘ ืื•ื‘ื™ื™ืงื˜ื™ื ื‘ื›ื–ื• ืžื•ืจื›ื‘ื•ืช
14:30
that it's really impossible for me to design them in the traditional sense.
339
870260
3000
ืฉื–ื” ื‘ืืžืช ื‘ืœืชื™ ืืคืฉืจื™ ืขื‘ื•ืจื™ ืœืขืฆื‘ ื‘ืžื•ื‘ืŸ ื”ืžืกื•ืจืชื™.
14:33
I don't know what every transistor in the connection machine does.
340
873260
4000
ืื ื™ ืœื ื™ื•ื“ืข ืžื” ืขื•ืฉื” ื›ืœ ื˜ืจื ื–ื™ืกื˜ื•ืจ ื‘ืžื›ืฉื™ืจ ื—ื™ื‘ื•ืจ.
14:37
There are billions of them.
341
877260
2000
ื™ืฉื ื ืžื™ืœื™ืืจื“ื™ื ื›ืืœื”.
14:39
Instead, what I do
342
879260
2000
ื‘ืžืงื•ื ื–ื”, ืžื” ืื ื™ ืขื•ืฉื”
14:41
and what the designers at Thinking Machines do
343
881260
3000
ื•ืžื” ืขื•ืฉื™ื ื”ืžืขืฆื‘ื™ื ื‘"ืกื™ื ืงื™ื ื’ ืžืฉื™ื ื–" (ืžื›ืฉื™ืจื™ ื—ืฉื™ื‘ื”)
14:44
is we think at some level of abstraction
344
884260
2000
ื”ื•ื ืฉืื—ื ื• ื—ื•ืฉื‘ื™ื ื‘ืจืžื” ืžืกื•ื™ืžืช ืฉืœ ื”ืคืฉื˜ื”
14:46
and then we hand it to the machine
345
886260
2000
ื•ืœืื—ืจ ืžื›ืŸ ืื ื• ืžื•ืกืจื™ื ื–ืืช ืœืžื›ืฉื™ืจ
14:48
and the machine takes it beyond what we could ever do,
346
888260
3000
ื•ื”ืžื›ืฉื™ืจ ืœื•ืงื— ืื•ืชื• ืืœ ืžืขื‘ืจ ืœืžื” ืฉืื™ ืคืขื ื ื•ื›ืœ,
14:51
much farther and faster than we could ever do.
347
891260
3000
ื”ืจื‘ื” ื™ื•ืชืจ ืจื—ื•ืง ื•ืžื”ืจ ื™ื•ืชืจ ืžืืฉืจ ืื™ ืคืขื ื ื•ื›ืœ.
14:54
And in fact, sometimes it takes it by methods
348
894260
2000
ื•ืœืžืขืฉื”, ืœืคืขืžื™ื ื”ื ืขื•ืฉื™ื ื–ืืช ื‘ืฉื™ื˜ื•ืช
14:56
that we don't quite even understand.
349
896260
3000
ืฉืื ื—ื ื• ืืคื™ืœื• ืœื ืžืžืฉ ืžื‘ื™ื ื™ื.
14:59
One method that's particularly interesting
350
899260
2000
ืื—ืช ื”ืฉื™ื˜ื•ืช ืฉื”ื™ื ืžืขื ื™ื™ื ืช ื‘ืžื™ื•ื—ื“
15:01
that I've been using a lot lately
351
901260
3000
ืฉืื ื™ ืžืฉืชืžืฉ ื‘ื” ื”ืจื‘ื” ื‘ื–ืžืŸ ื”ืื—ืจื•ืŸ
15:04
is evolution itself.
352
904260
2000
ื”ื™ื ื”ืื‘ื•ืœื•ืฆื™ื” ืขืฆืžื”.
15:06
So what we do
353
906260
2000
ืื– ืžื” ืฉืื ื—ื ื• ืขื•ืฉื™ื
15:08
is we put inside the machine
354
908260
2000
ื”ื•ื ืฉืฉืžื ื• ื‘ืชื•ืš ื”ืžื›ืฉื™ืจ
15:10
a process of evolution
355
910260
2000
ืชื”ืœื™ืš ืฉืœ ืื‘ื•ืœื•ืฆื™ื”
15:12
that takes place on the microsecond time scale.
356
912260
2000
ืฉืงื•ืจื” ืขืœ ืกืจื’ืœ ื–ืžืŸ ืฉืœ ืžื™ืœื™ื•ื ื™ืช-ืฉื ื™ื™ื”
15:14
So for example,
357
914260
2000
ื›ืš ืœืžืฉืœ,
15:16
in the most extreme cases,
358
916260
2000
ื‘ืžืงืจื™ื ื”ืงื™ืฆื•ื ื™ื™ื ื‘ื™ื•ืชืจ,
15:18
we can actually evolve a program
359
918260
2000
ืื ื• ื™ื›ื•ืœื™ื ืœืžืขืฉื” ืœืคืชื— ืชื•ื›ื ื™ืช
15:20
by starting out with random sequences of instructions.
360
920260
4000
ืขืœ-ื™ื“ื™ ื›ืš ืฉืžืชื—ื™ืœื™ื ืขื ืจืฆืคื™ื ืืงืจืื™ื™ื ืฉืœ ื”ื•ืจืื•ืช.
15:24
Say, "Computer, would you please make
361
924260
2000
ื ื ื™ื—, "ืžื—ืฉื‘, ื”ืื ืชื•ื›ืœ ื‘ื‘ืงืฉื” ืœืขืฉื•ืช
15:26
a hundred million random sequences of instructions.
362
926260
3000
ืžืื” ืžื™ืœื™ื•ืŸ ืจืฆืคื™ื ืืงืจืื™ื™ื ืฉืœ ื”ื•ืจืื•ืช.
15:29
Now would you please run all of those random sequences of instructions,
363
929260
3000
ืขื›ืฉื™ื• ืชื•ื›ืœ ื‘ื‘ืงืฉื” ืœื”ืคืขื™ืœ ืืช ื›ืœ ื”ืจืฆืคื™ื ื”ืืงืจืื™ื™ื ืฉืœ ื”ื”ื•ืจืื•ืช,
15:32
run all of those programs,
364
932260
2000
ืœื”ืคืขื™ืœ ืืช ื›ืœ ื”ืชื•ื›ื ื™ื•ืช ื”ืืœื”
15:34
and pick out the ones that came closest to doing what I wanted."
365
934260
3000
ื•ืœื‘ื—ื•ืจ ืืช ืืœื” ืฉื”ื’ื™ืขื• ื”ื›ื™ ืงืจื•ื‘ ื›ื“ื™ ืœืขืฉื•ืช ืืช ืžื” ืฉืจืฆื™ืชื™."
15:37
So in other words, I define what I wanted.
366
937260
2000
ืื– ื‘ืžื™ืœื™ื ืื—ืจื•ืช, ืื ื™ ืžื’ื“ื™ืจ ืืช ืžื” ืฉืจืฆื™ืชื™.
15:39
Let's say I want to sort numbers,
367
939260
2000
ื ื ื™ื— ืฉืื ื™ ืจื•ืฆื” ืœืžื™ื™ืŸ ืžืกืคืจื™ื,
15:41
as a simple example I've done it with.
368
941260
2000
ื›ื“ื•ื’ืžื” ืคืฉื•ื˜ื” ืขืฉื™ืชื™ ืืช ื–ื”.
15:43
So find the programs that come closest to sorting numbers.
369
943260
3000
ืื– ืžืฆื ืขื‘ื•ืจื™ ืืช ื”ืชื•ื›ื ื™ื•ืช ืฉืžื’ื™ืขื•ืช ื”ื›ื™ ืงืจื•ื‘ ืœืžื™ื•ืŸ ืžืกืคืจื™ื.
15:46
So of course, random sequences of instructions
370
946260
3000
ืื– ื›ืžื•ื‘ืŸ, ืจืฆืคื™ื ืืงืจืื™ื™ื ืฉืœ ื”ื•ืจืื•ืช
15:49
are very unlikely to sort numbers,
371
949260
2000
ืื™ื ื ืžืื•ื“ ืกื‘ื™ืจื™ื ื›ื“ื™ ืœืžื™ื™ืŸ ืžืกืคืจื™ื,
15:51
so none of them will really do it.
372
951260
2000
ื›ืš ืฉืืฃ ืื—ื“ ืžื”ื ืœื ื‘ืืžืช ื™ืขืฉื” ื–ืืช.
15:53
But one of them, by luck,
373
953260
2000
ืื‘ืœ ืื—ื“ ืžื”ื, ื‘ืžื–ืœ,
15:55
may put two numbers in the right order.
374
955260
2000
ืขืฉื•ื™ ืœืฉื™ื ืฉื ื™ ืžืกืคืจื™ื ื‘ืกื“ืจ ื”ื ื›ื•ืŸ.
15:57
And I say, "Computer,
375
957260
2000
ื•ืื ื™ ืื•ืžืจ, "ืžื—ืฉื‘,
15:59
would you please now take the 10 percent
376
959260
3000
ื‘ื‘ืงืฉื” ืงื— ืขื›ืฉื™ื• ืืช 10 ื”ืื—ื•ื–ื™ื
16:02
of those random sequences that did the best job.
377
962260
2000
ืฉืœ ื”ืจืฆืคื™ื ื”ืืงืจืื™ื™ื ืฉืขืฉื• ืืช ื”ืขื‘ื•ื“ื” ื”ื˜ื•ื‘ื” ื‘ื™ื•ืชืจ.
16:04
Save those. Kill off the rest.
378
964260
2000
ืฉืžื•ืจ ืื•ืชื. ื”ืจื•ื’ ืืช ื”ืฉืืจ.
16:06
And now let's reproduce
379
966260
2000
ื•ืขื›ืฉื™ื• ื‘ื•ืื• ื•ื ืฉื—ื–ืจ
16:08
the ones that sorted numbers the best.
380
968260
2000
ืืช ืืœื” ืฉืžื™ื™ื ื• ืžืกืคืจื™ื ื”ื›ื™ ื˜ื•ื‘.
16:10
And let's reproduce them by a process of recombination
381
970260
3000
ื•ื‘ื•ืื• ื ืฉื—ื–ืจ ืื•ืชื ื‘ืชื”ืœื™ืš ืฉืœ ืจืงื•ืžื‘ื™ื ืฆื™ื”
16:13
analogous to sex."
382
973260
2000
ื‘ืื•ืคืŸ ืื ืœื•ื’ื™ ืœืจื‘ื™ื™ื”."
16:15
Take two programs and they produce children
383
975260
3000
ืงื— ืฉืชื™ ืชื•ื›ื ื™ื•ืช, ื•ื”ืŸ ืžื™ื™ืฆืจื•ืช ื™ืœื“ื™ื
16:18
by exchanging their subroutines,
384
978260
2000
ืขืœ ื™ื“ื™ ื”ื—ืœืคืช ื”ืกื‘-ืจื•ื˜ื™ื ื•ืช ืฉืœื”ื,
16:20
and the children inherit the traits of the subroutines of the two programs.
385
980260
3000
ื•ื”ื™ืœื“ื™ื ืžืงื‘ืœื™ื ื‘ื™ืจื•ืฉื” ืืช ืชื›ื•ื ื•ืช ื”ืกื‘-ืจื•ื˜ื™ื ื•ืช ืฉืœ ืฉืชื™ ื”ืชื•ื›ื ื™ื•ืช.
16:23
So I've got now a new generation of programs
386
983260
3000
ืื– ื™ืฉ ืœื™ ืขื›ืฉื™ื• ื“ื•ืจ ื—ื“ืฉ ืฉืœ ืชื•ื›ื ื™ื•ืช
16:26
that are produced by combinations
387
986260
2000
ืฉืžื™ื•ืฆืจื•ืช ืขืœ ื™ื“ื™ ืฉื™ืœื•ื‘ื™ื
16:28
of the programs that did a little bit better job.
388
988260
2000
ืฉืœ ื”ืชื•ื›ื ื™ื•ืช ืฉืขืฉื• ืขื‘ื•ื“ื” ืžืขื˜ ื˜ื•ื‘ื” ื™ื•ืชืจ.
16:30
Say, "Please repeat that process."
389
990260
2000
ืื•ืžืจื™ื, "ืื ื ื—ื–ื•ืจ ืขืœ ืชื”ืœื™ืš ื–ื”."
16:32
Score them again.
390
992260
2000
ื“ืจื’ ืื•ืชื ืฉื•ื‘.
16:34
Introduce some mutations perhaps.
391
994260
2000
ื”ืฆื’ ื›ืžื” ืžื•ื˜ืฆื™ื•ืช ืื•ืœื™.
16:36
And try that again and do that for another generation.
392
996260
3000
ื•ื ืกื” ื–ืืช ืฉื•ื‘ ื‘ืฉื‘ื™ืœ ื“ื•ืจ ืื—ืจ.
16:39
Well every one of those generations just takes a few milliseconds.
393
999260
3000
ื˜ื•ื‘, ื›ืœ ืื—ื“ ืžื“ื•ืจื•ืช ืืœื” ืคืฉื•ื˜ ืื•ืจืš ื›ืžื” ืืœืคื™ื•ืช ื”ืฉื ื™ื”.
16:42
So I can do the equivalent
394
1002260
2000
ืื– ืื ื™ ื™ื›ื•ืœ ืœืขืฉื•ืช ืืช ื”ืžืงื‘ื™ืœื”
16:44
of millions of years of evolution on that
395
1004260
2000
ืฉืœ ืžื™ืœื™ื•ื ื™ ืฉื ื™ื ืฉืœ ืื‘ื•ืœื•ืฆื™ื” ืขืœ ื›ืš
16:46
within the computer in a few minutes,
396
1006260
3000
ื‘ืชื•ืš ื”ืžื—ืฉื‘ ื‘ื“ืงื•ืช ืกืคื•ืจื•ืช,
16:49
or in the complicated cases, in a few hours.
397
1009260
2000
ืื• ื‘ืžืงืจื™ื ืžื•ืจื›ื‘ื™ื, ืชื•ืš ืฉืขื•ืช ืกืคื•ืจื•ืช.
16:51
At the end of that, I end up with programs
398
1011260
3000
ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ ื–ื” ืื ื™ ืžืกื™ื™ื ืขื ืชื•ื›ื ื™ื•ืช
16:54
that are absolutely perfect at sorting numbers.
399
1014260
2000
ืžื•ืฉืœืžื•ืช ืœื—ืœื•ื˜ื™ืŸ ื‘ืžื™ื•ืŸ ืžืกืคืจื™ื.
16:56
In fact, they are programs that are much more efficient
400
1016260
3000
ืœืžืขืฉื”,ื”ืŸ ืชื•ื›ื ื™ื•ืช ื”ืจื‘ื” ื™ื•ืชืจ ื™ืขื™ืœื•ืช
16:59
than programs I could have ever written by hand.
401
1019260
2000
ืžืชื•ื›ื ื™ื•ืช ืฉื™ื›ื•ืœืชื™ ืื™-ืคืขื ืœื›ืชื•ื‘ ื‘ื›ืชื‘ ื™ื“.
17:01
Now if I look at those programs,
402
1021260
2000
ืขื›ืฉื™ื• ืื ืื ื™ ืžืกืชื›ืœ ืขืœ ืชื•ื›ื ื™ื•ืช ืืœื”,
17:03
I can't tell you how they work.
403
1023260
2000
ืื ื™ ืœื ื™ื›ื•ืœ ืœื•ืžืจ ืœื›ื ืื™ืš ื”ืŸ ืขื•ื‘ื“ื•ืช.
17:05
I've tried looking at them and telling you how they work.
404
1025260
2000
ื ื™ืกื™ืชื™ ืœื”ืกืชื›ืœ ืขืœื™ื”ื ื•ืœืกืคืจ ืœื›ื ืื™ืš ื”ืŸ ืขื•ื‘ื“ื•ืช.
17:07
They're obscure, weird programs.
405
1027260
2000
ื”ืŸ ืชื•ื›ื ื™ื•ืช ืžืขื•ืจืคืœื•ืช, ืžื•ื–ืจื•ืช.
17:09
But they do the job.
406
1029260
2000
ืื‘ืœ ื”ืŸ ืขื•ืฉื•ืช ืืช ื”ืขื‘ื•ื“ื”.
17:11
And in fact, I know, I'm very confident that they do the job
407
1031260
3000
ื•ืœืžืขืฉื”, ืื ื™ ื™ื•ื“ืข, ืื ื™ ืœื’ืžืจื™ ื‘ื˜ื•ื— ืฉื”ืŸ ืขื•ืฉื•ืช ืืช ื”ืขื‘ื•ื“ื”
17:14
because they come from a line
408
1034260
2000
ืžื›ื™ื•ื•ืŸ ืฉื”ืŸ ื‘ืื•ืช ืžืงื•
17:16
of hundreds of thousands of programs that did the job.
409
1036260
2000
ืฉืœ ืžืื•ืช ืืœืคื™ ืชื•ื›ื ื™ื•ืช ืฉืขืฉื• ืืช ื”ืขื‘ื•ื“ื”.
17:18
In fact, their life depended on doing the job.
410
1038260
3000
ืœืžืขืฉื”, ื”ื—ื™ื™ื ืฉืœื”ื ืชืœื•ื™ื™ื ื‘ื›ืš ืฉื™ืขืฉื• ืืช ื”ืขื‘ื•ื“ื”.
17:21
(Laughter)
411
1041260
4000
(ืฆื—ื•ืง)
17:26
I was riding in a 747
412
1046260
2000
ื˜ืกืชื™ ืคืขื ืื—ืช ื‘-747
17:28
with Marvin Minsky once,
413
1048260
2000
ืขื ืžืจื•ื•ื™ืŸ ืžื™ื ืกืงื™,
17:30
and he pulls out this card and says, "Oh look. Look at this.
414
1050260
3000
ื•ื”ื•ื ืฉื•ืœืฃ ื›ืจื˜ื™ืก ื•ืื•ืžืจ: "ื”ื• ืจืื”. ื”ืกืชื›ืœ ืขืœ ื–ื”.
17:33
It says, 'This plane has hundreds of thousands of tiny parts
415
1053260
4000
ื–ื” ืื•ืžืจ, ' ืœืžื˜ื•ืก ื–ื” ื™ืฉ ืžืื•ืช ืืœืคื™ ื—ืœืงื™ื ื–ืขื™ืจื™ื
17:37
working together to make you a safe flight.'
416
1057260
4000
ืฉืขื•ื‘ื“ื™ื ื™ื—ื“ ื›ื“ื™ ืฉืชื”ื™ื” ืœืš ื˜ื™ืกื” ื‘ื˜ื•ื—ื”.'
17:41
Doesn't that make you feel confident?"
417
1061260
2000
ื”ืื™ืŸ ื–ื” ื’ื•ืจื ืœืš ืœื”ืจื’ื™ืฉ ื‘ื˜ื•ื—? "
17:43
(Laughter)
418
1063260
2000
(ืฆื—ื•ืง)
17:45
In fact, we know that the engineering process doesn't work very well
419
1065260
3000
ืœืžืขืฉื”, ืื ื• ื™ื•ื“ืขื™ื ื›ื™ ืชื”ืœื™ืš ื”ื”ื ื“ืกื” ืื™ื ื• ืคื•ืขืœ ื”ื™ื˜ื‘
17:48
when it gets complicated.
420
1068260
2000
ื›ืืฉืจ ื–ื” ื ื”ื™ื” ืžืกื•ื‘ืš.
17:50
So we're beginning to depend on computers
421
1070260
2000
ืื– ืื ื—ื ื• ืžืชื—ื™ืœื™ื ืœืกืžื•ืš ืขืœ ืžื—ืฉื‘ื™ื
17:52
to do a process that's very different than engineering.
422
1072260
4000
ื›ื“ื™ ืœืขืฉื•ืช ืชื”ืœื™ืš ืฉื•ื ื” ืžืื•ื“ ืžื”ื ื“ืกื”.
17:56
And it lets us produce things of much more complexity
423
1076260
3000
ื•ื”ื•ื ืžืืคืฉืจ ืœื ื• ืœื™ื™ืฆืจ ื“ื‘ืจื™ื ืขื ื”ืจื‘ื” ื™ื•ืชืจ ืžื•ืจื›ื‘ื•ืช
17:59
than normal engineering lets us produce.
424
1079260
2000
ืžืืฉืจ ื”ื ื“ืกื” ืจื’ื™ืœื” ืžืืคืฉืจืช ืœื ื• ืœื™ื™ืฆืจ.
18:01
And yet, we don't quite understand the options of it.
425
1081260
3000
ื•ื‘ื›ืœ ื–ืืช, ืื ื—ื ื• ืœื ืžื‘ื™ื ื™ื ืžืกืคื™ืง ืืช ื”ืืคืฉืจื•ื™ื•ืช ืฉืœ ื–ื”.
18:04
So in a sense, it's getting ahead of us.
426
1084260
2000
ืื– ื‘ืžื•ื‘ืŸ ืžืกื•ื™ื, ื–ื” ืžืงื“ื™ื ืื•ืชื ื•.
18:06
We're now using those programs
427
1086260
2000
ืื ื• ืžืฉืชืžืฉื™ื ื›ืขืช ื‘ืชื•ื›ื ื™ื•ืช ืืœื”
18:08
to make much faster computers
428
1088260
2000
ื›ื“ื™ ืœืขืฉื•ืช ืžื—ืฉื‘ื™ื ื”ืจื‘ื” ื™ื•ืชืจ ืžื”ื™ืจื™ื
18:10
so that we'll be able to run this process much faster.
429
1090260
3000
ื›ืš ืฉื ื•ื›ืœ ืœื”ืคืขื™ืœ ืชื”ืœื™ืš ื–ื” ื”ืจื‘ื” ื™ื•ืชืจ ืžื”ืจ.
18:13
So it's feeding back on itself.
430
1093260
3000
ื›ืš ืฉื”ื•ื ืžื–ื™ืŸ ื—ื–ืจื” ืืช ืขืฆืžื•.
18:16
The thing is becoming faster
431
1096260
2000
ื”ื“ื‘ืจ ื”ื•ืคืš ืœื”ื™ื•ืช ืžื”ื™ืจ ื™ื•ืชืจ
18:18
and that's why I think it seems so confusing.
432
1098260
2000
ื•ื–ื• ื”ืกื™ื‘ื” ืœื“ืขืชื™ ืฉื–ื” ื ืจืื” ื›ืœ ื›ืš ืžื‘ืœื‘ืœ.
18:20
Because all of these technologies are feeding back on themselves.
433
1100260
3000
ื›ื™ ื›ืœ ื”ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ื”ืืœื• ืฉื‘ื•ืช ื•ืžื–ื™ื ื•ืช ืืช ืขืฆืžืŸ ืžืขืฆืžืŸ.
18:23
We're taking off.
434
1103260
2000
ืื ื—ื ื• ืžืžืจื™ืื™ื.
18:25
And what we are is we're at a point in time
435
1105260
3000
ื•ืžื” ืฉืื ื—ื ื• ื”ื•ื, ืฉืื ื—ื ื• ื ืžืฆืื™ื ื‘ื ืงื•ื“ื” ื‘ื–ืžืŸ
18:28
which is analogous to when single-celled organisms
436
1108260
2000
ืฉื”ื™ื ืื ืœื•ื’ื™ืช ืœืชื”ืœื™ืš ืฉื‘ื• ืื•ืจื’ื ื™ื–ืžื™ื ื—ื“ ืชืื™ื™ื
18:30
were turning into multi-celled organisms.
437
1110260
3000
ื”ืคื›ื• ืœืื•ืจื’ื ื™ื–ืžื™ื ืจื‘-ืชืื™ื™ื.
18:33
So we're the amoebas
438
1113260
2000
ืื– ืื ื—ื ื• ืืžื‘ื•ืช
18:35
and we can't quite figure out what the hell this thing is we're creating.
439
1115260
3000
ื•ืื™ื ื ื• ื™ื›ื•ืœื™ื ืžืžืฉ ืœื”ืกื‘ื™ืจ ืžื” ืœืขื–ืื–ืœ ื”ื“ื‘ืจ ื”ื–ื” ืฉืื ื—ื ื• ื™ื•ืฆืจื™ื.
18:38
We're right at that point of transition.
440
1118260
2000
ืื ื—ื ื• ืžืžืฉ ื‘ืื•ืชื” ื ืงื•ื“ืช ืžืขื‘ืจ.
18:40
But I think that there really is something coming along after us.
441
1120260
3000
ืื‘ืœ ืื ื™ ื—ื•ืฉื‘ ืฉื‘ืืžืช ื™ืฉ ืžืฉื”ื• ืฉื‘ื ืื—ืจื™ื ื•.
18:43
I think it's very haughty of us
442
1123260
2000
ืื ื™ ื—ื•ืฉื‘ ืฉื–ื” ืžืื•ื“ ืžืชื ืฉื ืžืฆื“ื ื•
18:45
to think that we're the end product of evolution.
443
1125260
3000
ืœื—ืฉื•ื‘ ืฉืื ื—ื ื• ื”ืžื•ืฆืจ ื”ืกื•ืคื™ ืฉืœ ื”ืื‘ื•ืœื•ืฆื™ื”.
18:48
And I think all of us here
444
1128260
2000
ื•ืื ื™ ื—ื•ืฉื‘ ืฉื›ืœ ืื—ื“ ืžืื™ืชื ื• ื›ืืŸ
18:50
are a part of producing
445
1130260
2000
ื”ื•ื ื—ืœืง ื‘ื”ืคืงื”
18:52
whatever that next thing is.
446
1132260
2000
ืฉืœ ืžื” ืฉืœื ื™ื”ื™ื” ื”ื“ื‘ืจ ื”ื‘ื.
18:54
So lunch is coming along,
447
1134260
2000
ืื– ืžื’ื™ืขื” ืืจื•ื—ืช ื”ืฆื”ืจื™ื™ื,
18:56
and I think I will stop at that point,
448
1136260
2000
ื•ืื ื™ ื—ื•ืฉื‘ ืฉืืคืกื™ืง ื‘ื ืงื•ื“ื” ื–ื•,
18:58
before I get selected out.
449
1138260
2000
ืœืคื ื™ ืฉื™ืจืื• ืœื™ ืืช ื”ื“ืœืช ื”ื—ื•ืฆื”.
19:00
(Applause)
450
1140260
3000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7