Danny Hillis: Back to the future (of 1994)

81,067 views ・ 2012-02-03

TED


請雙擊下方英文字幕播放視頻。

譯者: yinxi zhang 審譯者: Zoe Chen
00:15
Because I usually take the role
0
15260
3000
由於我經常
00:18
of trying to explain to people
1
18260
2000
向人們解釋
00:20
how wonderful the new technologies
2
20260
3000
即將到來的新科技
00:23
that are coming along are going to be,
3
23260
2000
將會多麼的美妙
00:25
and I thought that, since I was among friends here,
4
25260
3000
我想既然我跟各位朋友們一起在這
00:28
I would tell you what I really think
5
28260
4000
就讓我來說說我真正的想法
00:32
and try to look back and try to understand
6
32260
2000
並試著回顧和理解
00:34
what is really going on here
7
34260
3000
這到底是如何發生的
00:37
with these amazing jumps in technology
8
37260
5000
有了這些科技上的驚人進步。
00:42
that seem so fast that we can barely keep on top of it.
9
42260
3000
科技的進步似乎快到我們根本無法趕上它的腳步。
00:45
So I'm going to start out
10
45260
2000
讓我先從這開始
00:47
by showing just one very boring technology slide.
11
47260
3000
一頁很無趣的科技幻燈片。
00:50
And then, so if you can just turn on the slide that's on.
12
50260
3000
然後現在可以放幻燈片了。(對工作人員說)
00:56
This is just a random slide
13
56260
2000
這只是我從我的文件中
00:58
that I picked out of my file.
14
58260
2000
隨機挑選出的一張。
01:00
What I want to show you is not so much the details of the slide,
15
60260
3000
我想要你們看的並不是它的細節,
01:03
but the general form of it.
16
63260
2000
而是它的總體形式。
01:05
This happens to be a slide of some analysis that we were doing
17
65260
3000
這個是我們做的
01:08
about the power of RISC microprocessors
18
68260
3000
關於RISC微處理器功率
01:11
versus the power of local area networks.
19
71260
3000
與本地網路功率分析的幻燈片。
01:14
And the interesting thing about it
20
74260
2000
有趣的是
01:16
is that this slide,
21
76260
2000
這頁幻燈片
01:18
like so many technology slides that we're used to,
22
78260
3000
就像很多我們所熟悉的幻燈片一樣,
01:21
is a sort of a straight line
23
81260
2000
是半對數曲線圖
01:23
on a semi-log curve.
24
83260
2000
上的一條直線。
01:25
In other words, every step here
25
85260
2000
也就是這裡的每一層,
01:27
represents an order of magnitude
26
87260
2000
代表了性能程度
01:29
in performance scale.
27
89260
2000
大小的一級。
01:31
And this is a new thing
28
91260
2000
在半對數曲線圖上
01:33
that we talk about technology
29
93260
2000
討論科技,
01:35
on semi-log curves.
30
95260
2000
這很新鮮。
01:37
Something really weird is going on here.
31
97260
2000
這其中有點奇特。
01:39
And that's basically what I'm going to be talking about.
32
99260
3000
這基本上是我接下來要說的。
01:42
So, if you could bring up the lights.
33
102260
3000
(對工作人員)麻煩開一下燈。
01:47
If you could bring up the lights higher,
34
107260
2000
請把燈開亮點,
01:49
because I'm just going to use a piece of paper here.
35
109260
3000
因為我要用張紙。
01:52
Now why do we draw technology curves
36
112260
2000
為什麼我們要用對數曲線
01:54
in semi-log curves?
37
114260
2000
描繪科技曲線呢?
01:56
Well the answer is, if I drew it on a normal curve
38
116260
3000
嗯,答案是,如果我用普通曲線畫,
01:59
where, let's say, this is years,
39
119260
2000
我們說,這是年份,
02:01
this is time of some sort,
40
121260
2000
這是某個時間,
02:03
and this is whatever measure of the technology
41
123260
3000
這是我準備畫的
02:06
that I'm trying to graph,
42
126260
3000
科技的某種測量值,
02:09
the graphs look sort of silly.
43
129260
3000
這圖看起來有點傻。
02:12
They sort of go like this.
44
132260
3000
就有點像是這樣。
02:15
And they don't tell us much.
45
135260
3000
而且並沒有提供什麼資訊。
02:18
Now if I graph, for instance,
46
138260
3000
現在,如果我畫,比如說,
02:21
some other technology, say transportation technology,
47
141260
2000
另一種技術,像是交通運輸,
02:23
on a semi-log curve,
48
143260
2000
在半對數曲線上,
02:25
it would look very stupid, it would look like a flat line.
49
145260
3000
它看起來很蠢,會像條很平的線。
02:28
But when something like this happens,
50
148260
2000
但是如果出現像這種
02:30
things are qualitatively changing.
51
150260
2000
質變的情況。
02:32
So if transportation technology
52
152260
2000
如果交通運輸技術
02:34
was moving along as fast as microprocessor technology,
53
154260
3000
進步地像微處理器業一樣快的話,
02:37
then the day after tomorrow,
54
157260
2000
那,後天
02:39
I would be able to get in a taxi cab
55
159260
2000
我就能搭量計程車
02:41
and be in Tokyo in 30 seconds.
56
161260
2000
然後在30秒內到東京。
02:43
It's not moving like that.
57
163260
2000
但它並沒有進步得那麼快。
02:45
And there's nothing precedented
58
165260
2000
在科技發展歷史中
02:47
in the history of technology development
59
167260
2000
也沒有任何
02:49
of this kind of self-feeding growth
60
169260
2000
這種自給自足,
02:51
where you go by orders of magnitude every few years.
61
171260
3000
每幾年程度翻倍增長的先例。
02:54
Now the question that I'd like to ask is,
62
174260
3000
現在我想要問的是,
02:57
if you look at these exponential curves,
63
177260
3000
如果你觀察這些指數曲線,
03:00
they don't go on forever.
64
180260
3000
他們並非永遠的持續下去。
03:03
Things just can't possibly keep changing
65
183260
3000
事物不可能一直
03:06
as fast as they are.
66
186260
2000
改變得那麼快。
03:08
One of two things is going to happen.
67
188260
3000
兩件事會發生,
03:11
Either it's going to turn into a sort of classical S-curve like this,
68
191260
4000
要麼它會變成像這樣典型的S曲線
03:15
until something totally different comes along,
69
195260
4000
直到完全不同的情況出現。
03:19
or maybe it's going to do this.
70
199260
2000
或是會變成這樣。
03:21
That's about all it can do.
71
201260
2000
這就是所有可能。
03:23
Now I'm an optimist,
72
203260
2000
現在我是個樂觀主義者,
03:25
so I sort of think it's probably going to do something like that.
73
205260
3000
所以我覺得它很有可能就會變成這樣。
03:28
If so, that means that what we're in the middle of right now
74
208260
3000
如果是這樣,意味著我們目前所在的
03:31
is a transition.
75
211260
2000
是過渡階段。
03:33
We're sort of on this line
76
213260
2000
我們似乎在這條線上,
03:35
in a transition from the way the world used to be
77
215260
2000
在世界從過去
03:37
to some new way that the world is.
78
217260
3000
到將來的轉變中。
03:40
And so what I'm trying to ask, what I've been asking myself,
79
220260
3000
所有我要問的,我一直在問自己的,
03:43
is what's this new way that the world is?
80
223260
3000
就是這世界未來道路在哪?
03:46
What's that new state that the world is heading toward?
81
226260
3000
它趨向的新時代是什麼樣的?
03:49
Because the transition seems very, very confusing
82
229260
3000
由於這個變化似乎非常,非常迷惑人,
03:52
when we're right in the middle of it.
83
232260
2000
當我們正處在其中時。
03:54
Now when I was a kid growing up,
84
234260
3000
我小時候,長大過程中
03:57
the future was kind of the year 2000,
85
237260
3000
未來就像是2000年,
04:00
and people used to talk about what would happen in the year 2000.
86
240260
4000
人們都在討論2000年將會發生什麼。
04:04
Now here's a conference
87
244260
2000
現在這個會議上,
04:06
in which people talk about the future,
88
246260
2000
大家在談論未來,
04:08
and you notice that the future is still at about the year 2000.
89
248260
3000
而且你能發現這未來指的還是那個"2000年"。
04:11
It's about as far as we go out.
90
251260
2000
這就是我們能達到的程度。
04:13
So in other words, the future has kind of been shrinking
91
253260
3000
換句話說,未來正在縮水,
04:16
one year per year
92
256260
3000
一生中
04:19
for my whole lifetime.
93
259260
3000
每年縮短一年。
04:22
Now I think that the reason
94
262260
2000
我想原因是
04:24
is because we all feel
95
264260
2000
我們都感覺到
04:26
that something's happening there.
96
266260
2000
正在發生些什麼。
04:28
That transition is happening. We can all sense it.
97
268260
2000
變化正在發生。我們都能查覺到。
04:30
And we know that it just doesn't make too much sense
98
270260
2000
我們知道去考慮那未來的三,五十年
04:32
to think out 30, 50 years
99
272260
2000
已經沒什麼意義了,
04:34
because everything's going to be so different
100
274260
3000
因為每件事都將如此不同
04:37
that a simple extrapolation of what we're doing
101
277260
2000
以至於推測將來
04:39
just doesn't make any sense at all.
102
279260
3000
不再有意義。
04:42
So what I would like to talk about
103
282260
2000
所以我要聊聊
04:44
is what that could be,
104
284260
2000
那會是怎樣,
04:46
what that transition could be that we're going through.
105
286260
3000
我們正在經歷的轉變會是怎樣。
04:49
Now in order to do that
106
289260
3000
為達到這個目的,
04:52
I'm going to have to talk about a bunch of stuff
107
292260
2000
我得介紹一堆東西
04:54
that really has nothing to do
108
294260
2000
它們與
04:56
with technology and computers.
109
296260
2000
科技和電腦完全無關。
04:58
Because I think the only way to understand this
110
298260
2000
因為我決定理解這個的唯一方法
05:00
is to really step back
111
300260
2000
就是回顧過去
05:02
and take a long time scale look at things.
112
302260
2000
拉長時間軸去看。
05:04
So the time scale that I would like to look at this on
113
304260
3000
而我所要看的時間軸
05:07
is the time scale of life on Earth.
114
307260
3000
是以地球上生命的時間尺來看。
05:13
So I think this picture makes sense
115
313260
2000
我想這幅圖合理了
05:15
if you look at it a few billion years at a time.
116
315260
4000
如果你一次從幾十億年來看。
05:19
So if you go back
117
319260
2000
如果回溯/所以如果你回溯個
05:21
about two and a half billion years,
118
321260
2000
大概25億年,
05:23
the Earth was this big, sterile hunk of rock
119
323260
3000
地球這麼大,貧瘠的大塊石頭
05:26
with a lot of chemicals floating around on it.
120
326260
3000
上面浮著些化學物質。
05:29
And if you look at the way
121
329260
2000
要是觀察
05:31
that the chemicals got organized,
122
331260
2000
這些化學物質怎樣組合的,
05:33
we begin to get a pretty good idea of how they do it.
123
333260
3000
我們開始弄明白它們怎麼形成的。
05:36
And I think that there's theories that are beginning to understand
124
336260
3000
我想有些理論是從理解
05:39
about how it started with RNA,
125
339260
2000
生命怎樣從核糖核酸演變開始,
05:41
but I'm going to tell a sort of simple story of it,
126
341260
3000
但是我想講一個生命簡單的故事,
05:44
which is that, at that time,
127
344260
2000
就是,在那個時候,
05:46
there were little drops of oil floating around
128
346260
3000
有一滴滴的油四處浮動,
05:49
with all kinds of different recipes of chemicals in them.
129
349260
3000
裡面有各種不同化學成分組合。
05:52
And some of those drops of oil
130
352260
2000
有些油滴
05:54
had a particular combination of chemicals in them
131
354260
2000
裡面含有特殊的化學構成
05:56
which caused them to incorporate chemicals from the outside
132
356260
3000
這導致它們可以從外界聚集化學物質
05:59
and grow the drops of oil.
133
359260
3000
並慢慢變大。
06:02
And those that were like that
134
362260
2000
像這樣的油滴
06:04
started to split and divide.
135
364260
2000
又開始分化,分離。
06:06
And those were the most primitive forms of cells in a sense,
136
366260
3000
最原始的那些在某種程度上形成了細胞,
06:09
those little drops of oil.
137
369260
2000
這些小小的油滴。
06:11
But now those drops of oil weren't really alive, as we say it now,
138
371260
3000
但目前為止這些油滴不是真的活的,在我們現在看來,
06:14
because every one of them
139
374260
2000
因為每一個
06:16
was a little random recipe of chemicals.
140
376260
2000
都是化學物質的隨機合成。
06:18
And every time it divided,
141
378260
2000
每分裂一次,
06:20
they got sort of unequal division
142
380260
3000
都不是平均分佈
06:23
of the chemicals within them.
143
383260
2000
內部的化學物。
06:25
And so every drop was a little bit different.
144
385260
3000
所以每個油滴都有點不同。
06:28
In fact, the drops that were different in a way
145
388260
2000
實際上,油滴不同的方式
06:30
that caused them to be better
146
390260
2000
是讓它們能更好地
06:32
at incorporating chemicals around them,
147
392260
2000
集成周圍的化合物,
06:34
grew more and incorporated more chemicals and divided more.
148
394260
3000
長的更大,吸收更多,分裂更多。
06:37
So those tended to live longer,
149
397260
2000
所以它們會活的更長,
06:39
get expressed more.
150
399260
3000
表現的更多。
06:42
Now that's sort of just a very simple
151
402260
3000
這就有點像個很簡單的
06:45
chemical form of life,
152
405260
2000
生命的化學形式,
06:47
but when things got interesting
153
407260
3000
但過程變得有趣
06:50
was when these drops
154
410260
2000
是當這些油滴
06:52
learned a trick about abstraction.
155
412260
3000
學會了一個提取資訊的技巧時。
06:55
Somehow by ways that we don't quite understand,
156
415260
3000
不知怎麼用我們不能完全理解的方式,
06:58
these little drops learned to write down information.
157
418260
3000
這些小油滴學會了記錄資訊。
07:01
They learned to record the information
158
421260
2000
它們學會把
07:03
that was the recipe of the cell
159
423260
2000
細胞形成的秘訣
07:05
onto a particular kind of chemical
160
425260
2000
記錄到一種特殊物質上,
07:07
called DNA.
161
427260
2000
叫做去氧核糖核酸。
07:09
So in other words, they worked out,
162
429260
2000
也就是說,它們想出了,
07:11
in this mindless sort of evolutionary way,
163
431260
3000
以這種隨性的進化方式,
07:14
a form of writing that let them write down what they were,
164
434260
3000
可以寫下它們是什麼的記錄方式,
07:17
so that that way of writing it down could get copied.
165
437260
3000
以便這種記錄方式能被複製。
07:20
The amazing thing is that that way of writing
166
440260
3000
驚奇的是這種記錄方式
07:23
seems to have stayed steady
167
443260
2000
似乎可以保持穩定
07:25
since it evolved two and a half billion years ago.
168
445260
2000
由於它25億年前演化出來的。
07:27
In fact the recipe for us, our genes,
169
447260
3000
實際上我們,我們的基因的組成
07:30
is exactly that same code and that same way of writing.
170
450260
3000
就是完全一樣的代碼,一樣的記錄方式。
07:33
In fact, every living creature is written
171
453260
3000
事實上,任何生物都是
07:36
in exactly the same set of letters and the same code.
172
456260
2000
用完全一樣的字母和代碼記錄下來的。
07:38
In fact, one of the things that I did
173
458260
2000
實際上,我所做的
07:40
just for amusement purposes
174
460260
2000
僅是為了娛樂效果的一件事
07:42
is we can now write things in this code.
175
462260
2000
就是我們能用這個代碼記錄事件。
07:44
And I've got here a little 100 micrograms of white powder,
176
464260
6000
我這有100微克的白粉,
07:50
which I try not to let the security people see at airports.
177
470260
4000
我盡力不讓機場安檢人員發現它們。
07:54
(Laughter)
178
474260
2000
(笑聲)
07:56
But this has in it --
179
476260
2000
不過這裡面有代碼
07:58
what I did is I took this code --
180
478260
2000
我所做的是我拿著這代碼
08:00
the code has standard letters that we use for symbolizing it --
181
480260
3000
它裡面有我們用來標記它的標準字母,
08:03
and I wrote my business card onto a piece of DNA
182
483260
3000
然後我把我的名片寫到一條去氧核糖核酸上
08:06
and amplified it 10 to the 22 times.
183
486260
3000
再放大10到22倍。
08:09
So if anyone would like a hundred million copies of my business card,
184
489260
3000
所以如果有人需要數百萬我的名片,
08:12
I have plenty for everyone in the room,
185
492260
2000
我有足夠多分給在座每個人,
08:14
and, in fact, everyone in the world,
186
494260
2000
甚至是全世界每個人,
08:16
and it's right here.
187
496260
3000
就在這。
08:19
(Laughter)
188
499260
5000
(笑聲)
08:26
If I had really been a egotist,
189
506260
2000
要是我是個自大的人,
08:28
I would have put it into a virus and released it in the room.
190
508260
3000
我就會把它放大病毒裡散步到屋子中。
08:31
(Laughter)
191
511260
5000
(笑聲)
08:39
So what was the next step?
192
519260
2000
所以下一步是什麼?
08:41
Writing down the DNA was an interesting step.
193
521260
2000
記錄去氧核糖核酸是有趣的一步。
08:43
And that caused these cells --
194
523260
2000
它導致了細胞的形成——
08:45
that kept them happy for another billion years.
195
525260
2000
讓它們又高興了幾十億年。
08:47
But then there was another really interesting step
196
527260
2000
不過還有個很有趣的環節
08:49
where things became completely different,
197
529260
3000
事情開始變得完全不同,
08:52
which is these cells started exchanging and communicating information,
198
532260
3000
那就是這些細胞開始交換和交流資訊,
08:55
so that they began to get communities of cells.
199
535260
2000
從而形成細胞團體。
08:57
I don't know if you know this,
200
537260
2000
我不知道你們是否知道這個,
08:59
but bacteria can actually exchange DNA.
201
539260
2000
細菌實際上就可以交換去氧核糖核酸。
09:01
Now that's why, for instance,
202
541260
2000
這就是為什麼,比如,
09:03
antibiotic resistance has evolved.
203
543260
2000
演變出抗菌免疫。
09:05
Some bacteria figured out how to stay away from penicillin,
204
545260
3000
有些細菌知道怎麼遠離青黴素,
09:08
and it went around sort of creating its little DNA information
205
548260
3000
然後它創造它這點去氧核糖核酸資訊,
09:11
with other bacteria,
206
551260
2000
並在別的細菌中到處遊走,
09:13
and now we have a lot of bacteria that are resistant to penicillin,
207
553260
3000
現在我們有很多對青黴素免疫的細菌了,
09:16
because bacteria communicate.
208
556260
2000
因為細菌會交流資訊。
09:18
Now what this communication allowed
209
558260
2000
這樣,這些交流致使
09:20
was communities to form
210
560260
2000
群落的形成,
09:22
that, in some sense, were in the same boat together;
211
562260
2000
在某種意義上,它們在同一條船上了;
09:24
they were synergistic.
212
564260
2000
它們是協作的。
09:26
So they survived
213
566260
2000
因此它們一起倖存下來
09:28
or they failed together,
214
568260
2000
或者一起死去,
09:30
which means that if a community was very successful,
215
570260
2000
也就是說如果一個群落成功了,
09:32
all the individuals in that community
216
572260
2000
所有群落裡的個體
09:34
were repeated more
217
574260
2000
都能複製更多,
09:36
and they were favored by evolution.
218
576260
3000
在進化更有利。
09:39
Now the transition point happened
219
579260
2000
於是,轉捩點到了,
09:41
when these communities got so close
220
581260
2000
當這些族群很親近時,
09:43
that, in fact, they got together
221
583260
2000
事實上,它們聚集到一起
09:45
and decided to write down the whole recipe for the community
222
585260
3000
並決定一起在一條去氧核糖核酸上
09:48
together on one string of DNA.
223
588260
3000
寫下整個族群的成分譜。
09:51
And so the next stage that's interesting in life
224
591260
2000
生命中下一個有趣的階段
09:53
took about another billion years.
225
593260
2000
又要幾十億年。
09:55
And at that stage,
226
595260
2000
在這個時期,
09:57
we have multi-cellular communities,
227
597260
2000
有多細胞族群,
09:59
communities of lots of different types of cells,
228
599260
2000
就是有很多種不同細胞的群落,
10:01
working together as a single organism.
229
601260
2000
作為有機體一起合作。
10:03
And in fact, we're such a multi-cellular community.
230
603260
3000
實際上,我們就是這樣的多細胞族群。
10:06
We have lots of cells
231
606260
2000
我們有很多細胞,
10:08
that are not out for themselves anymore.
232
608260
2000
它們不再是是只為自己存活。
10:10
Your skin cell is really useless
233
610260
3000
皮膚細胞根本沒用,
10:13
without a heart cell, muscle cell,
234
613260
2000
要是沒有心臟細胞,肌肉細胞,
10:15
a brain cell and so on.
235
615260
2000
腦細胞等等。
10:17
So these communities began to evolve
236
617260
2000
所以這些族群開始進化
10:19
so that the interesting level on which evolution was taking place
237
619260
3000
這樣發生有趣的進化的
10:22
was no longer a cell,
238
622260
2000
不再僅僅是單一細胞。
10:24
but a community which we call an organism.
239
624260
3000
而是我們稱為機體的族群。
10:28
Now the next step that happened
240
628260
2000
接下來發生
10:30
is within these communities.
241
630260
2000
就是在這些族群中。
10:32
These communities of cells,
242
632260
2000
這些細胞群落,
10:34
again, began to abstract information.
243
634260
2000
再次,開始提取資訊。
10:36
And they began building very special structures
244
636260
3000
它們開始構建非常特別的
10:39
that did nothing but process information within the community.
245
639260
3000
專門處理群落內資訊的結構。
10:42
And those are the neural structures.
246
642260
2000
這些就是神經結構。
10:44
So neurons are the information processing apparatus
247
644260
3000
所以神經元是
10:47
that those communities of cells built up.
248
647260
3000
這些細胞群建立的資訊處理儀器。
10:50
And in fact, they began to get specialists in the community
249
650260
2000
實際上,群落裡開始出現專家
10:52
and special structures
250
652260
2000
以及特殊結構
10:54
that were responsible for recording,
251
654260
2000
負責記錄,
10:56
understanding, learning information.
252
656260
3000
理解,學習資訊。
10:59
And that was the brains and the nervous system
253
659260
2000
這就是這些細胞群的
11:01
of those communities.
254
661260
2000
大腦和神經系統。
11:03
And that gave them an evolutionary advantage.
255
663260
2000
這給了它們進化的有力條件。
11:05
Because at that point,
256
665260
3000
因為這樣的話,
11:08
an individual --
257
668260
3000
對每個個體——
11:11
learning could happen
258
671260
2000
學習可以發生
11:13
within the time span of a single organism,
259
673260
2000
在單個機體的時間範圍內,
11:15
instead of over this evolutionary time span.
260
675260
3000
而不是整個進化時間跨度。
11:18
So an organism could, for instance,
261
678260
2000
所以一個機體能夠,比如說,
11:20
learn not to eat a certain kind of fruit
262
680260
2000
學會不吃某種水果
11:22
because it tasted bad and it got sick last time it ate it.
263
682260
4000
因為它不好吃而且上次吃的覺得噁心。
11:26
That could happen within the lifetime of a single organism,
264
686260
3000
這可以發生在一個機體的一生中,
11:29
whereas before they'd built these special information processing structures,
265
689260
4000
然後在這種特殊信心處理結構建成前,
11:33
that would have had to be learned evolutionarily
266
693260
2000
這得要進化學習
11:35
over hundreds of thousands of years
267
695260
3000
千萬年,
11:38
by the individuals dying off that ate that kind of fruit.
268
698260
3000
通過吃了這種水果前赴後繼死去的個體。
11:41
So that nervous system,
269
701260
2000
所以神經系統,
11:43
the fact that they built these special information structures,
270
703260
3000
生物組建這種特殊結構的事實,
11:46
tremendously sped up the whole process of evolution.
271
706260
3000
極大地加速了進化的進程。
11:49
Because evolution could now happen within an individual.
272
709260
3000
因為至此進化可以在個體中發生了。
11:52
It could happen in learning time scales.
273
712260
3000
它能發生在學習的時間刻度內。
11:55
But then what happened
274
715260
2000
但是接下來發生的
11:57
was the individuals worked out,
275
717260
2000
是每個個體發現了,
11:59
of course, tricks of communicating.
276
719260
2000
當然,交流的秘訣。
12:01
And for example,
277
721260
2000
比如說,
12:03
the most sophisticated version that we're aware of is human language.
278
723260
3000
我們所知道的最精密的版本就是人類語言。
12:06
It's really a pretty amazing invention if you think about it.
279
726260
3000
想想看,這真是個奇妙的發明。
12:09
Here I have a very complicated, messy,
280
729260
2000
我腦子裡有個很複雜,混亂,
12:11
confused idea in my head.
281
731260
3000
疑惑的的想法。
12:14
I'm sitting here making grunting sounds basically,
282
734260
3000
我坐在這,基本上就是吐字發聲,
12:17
and hopefully constructing a similar messy, confused idea in your head
283
737260
3000
希望在你們頭腦裡建立一個類似的混亂
12:20
that bears some analogy to it.
284
740260
2000
跟它有點類似的想法。
12:22
But we're taking something very complicated,
285
742260
2000
但是我們正在把很複雜的東西
12:24
turning it into sound, sequences of sounds,
286
744260
3000
轉化成聲音,一連串的聲音,
12:27
and producing something very complicated in your brain.
287
747260
4000
並在你們大腦產生很複雜的東西。
12:31
So this allows us now
288
751260
2000
所以現在這推動我們
12:33
to begin to start functioning
289
753260
2000
開始運作,
12:35
as a single organism.
290
755260
3000
作為單個機體。
12:38
And so, in fact, what we've done
291
758260
3000
所以,實際上,我們已經完成的
12:41
is we, humanity,
292
761260
2000
就是我們,人類,
12:43
have started abstracting out.
293
763260
2000
開始抽離出來。
12:45
We're going through the same levels
294
765260
2000
我們正在經歷多細胞機體經歷的
12:47
that multi-cellular organisms have gone through --
295
767260
2000
相同的階段——
12:49
abstracting out our methods of recording,
296
769260
3000
提取我們記錄,
12:52
presenting, processing information.
297
772260
2000
展示,處理資訊的方式。
12:54
So for example, the invention of language
298
774260
2000
比如說,語言的發明
12:56
was a tiny step in that direction.
299
776260
3000
就是這個方向上很小一步。
12:59
Telephony, computers,
300
779260
2000
電話,電腦,
13:01
videotapes, CD-ROMs and so on
301
781260
3000
影碟,光碟等等
13:04
are all our specialized mechanisms
302
784260
2000
都是我們的特殊機制,
13:06
that we've now built within our society
303
786260
2000
我們正在社會裡構建
13:08
for handling that information.
304
788260
2000
用來處理資訊的機制。
13:10
And it all connects us together
305
790260
3000
這些都是把我們聯繫在一起,
13:13
into something
306
793260
2000
變的
13:15
that is much bigger
307
795260
2000
比我們之前
13:17
and much faster
308
797260
2000
更大,
13:19
and able to evolve
309
799260
2000
更快,
13:21
than what we were before.
310
801260
2000
更有能力進化。
13:23
So now, evolution can take place
311
803260
2000
所以,現在進化可以發生在
13:25
on a scale of microseconds.
312
805260
2000
微秒的數量級上。
13:27
And you saw Ty's little evolutionary example
313
807260
2000
你們看過泰伊的那個的進化的小例子
13:29
where he sort of did a little bit of evolution
314
809260
2000
他好像就在你們眼前在卷積程式上
13:31
on the Convolution program right before your eyes.
315
811260
3000
展現了一點進化了。
13:34
So now we've speeded up the time scales once again.
316
814260
3000
所以現在我們再次加快時間跨度。
13:37
So the first steps of the story that I told you about
317
817260
2000
我講的故事的第一步
13:39
took a billion years a piece.
318
819260
2000
每一塊花費了幾十億年。
13:41
And the next steps,
319
821260
2000
下一步,
13:43
like nervous systems and brains,
320
823260
2000
像神經系統和大腦,
13:45
took a few hundred million years.
321
825260
2000
消耗幾百萬年。
13:47
Then the next steps, like language and so on,
322
827260
3000
再接下來,像語言等等,
13:50
took less than a million years.
323
830260
2000
需要不到一百萬年。
13:52
And these next steps, like electronics,
324
832260
2000
再下一步,像電子器件,
13:54
seem to be taking only a few decades.
325
834260
2000
仿佛只要幾十年。
13:56
The process is feeding on itself
326
836260
2000
這個過程是自給自足,
13:58
and becoming, I guess, autocatalytic is the word for it --
327
838260
3000
並且變成,我猜,應該自我催化描述更合適——
14:01
when something reinforces its rate of change.
328
841260
3000
當事物加快改變的速度。
14:04
The more it changes, the faster it changes.
329
844260
3000
變化越多,變化就越快。
14:07
And I think that that's what we're seeing here in this explosion of curve.
330
847260
3000
我想這就是我們在這看到的激增曲線。
14:10
We're seeing this process feeding back on itself.
331
850260
3000
我們看到這個過程回饋到自己。
14:13
Now I design computers for a living,
332
853260
3000
我現在工作就是自己設計電腦,
14:16
and I know that the mechanisms
333
856260
2000
我知道用來設計電腦的
14:18
that I use to design computers
334
858260
3000
這些機制
14:21
would be impossible
335
861260
2000
不可能存在,
14:23
without recent advances in computers.
336
863260
2000
要是沒有近期電腦的進步。
14:25
So right now, what I do
337
865260
2000
現在,我做的
14:27
is I design objects at such complexity
338
867260
3000
是設計複雜到
14:30
that it's really impossible for me to design them in the traditional sense.
339
870260
3000
不可能從傳統意義上設計的物體。
14:33
I don't know what every transistor in the connection machine does.
340
873260
4000
我不知道連接機器上每個電晶體的作用。
14:37
There are billions of them.
341
877260
2000
有幾十億電晶體。
14:39
Instead, what I do
342
879260
2000
實際上,我所做的
14:41
and what the designers at Thinking Machines do
343
881260
3000
思考機器的設計師們做的,
14:44
is we think at some level of abstraction
344
884260
2000
我們認為是在某種程度的資訊抽取,
14:46
and then we hand it to the machine
345
886260
2000
然後把它傳給機器
14:48
and the machine takes it beyond what we could ever do,
346
888260
3000
而機器把它運用到超出我們所能做的範圍,
14:51
much farther and faster than we could ever do.
347
891260
3000
而且比我們從前所做的更遠更快。
14:54
And in fact, sometimes it takes it by methods
348
894260
2000
實際上,有時候他採用的方法
14:56
that we don't quite even understand.
349
896260
3000
我們並不很懂。
14:59
One method that's particularly interesting
350
899260
2000
有個尤其有趣
15:01
that I've been using a lot lately
351
901260
3000
我最近一直在用的
15:04
is evolution itself.
352
904260
2000
就是進化本身。
15:06
So what we do
353
906260
2000
我們做的就是
15:08
is we put inside the machine
354
908260
2000
在機器裡
15:10
a process of evolution
355
910260
2000
放入一個進化進程,
15:12
that takes place on the microsecond time scale.
356
912260
2000
這個進程在微妙級別上就能發生。
15:14
So for example,
357
914260
2000
比如,
15:16
in the most extreme cases,
358
916260
2000
大部分極端情況下,
15:18
we can actually evolve a program
359
918260
2000
我們實際上能
15:20
by starting out with random sequences of instructions.
360
920260
4000
通過從隨機的指令序列開始進化一個程式。
15:24
Say, "Computer, would you please make
361
924260
2000
(就像)說“電腦,請你產生
15:26
a hundred million random sequences of instructions.
362
926260
3000
一億隨機指令序列。
15:29
Now would you please run all of those random sequences of instructions,
363
929260
3000
現在請你運行所有這些隨機指令列,
15:32
run all of those programs,
364
932260
2000
運行所有程式,
15:34
and pick out the ones that came closest to doing what I wanted."
365
934260
3000
並選出最接近我想要的。”
15:37
So in other words, I define what I wanted.
366
937260
2000
也就是說,我定義我要什麼。
15:39
Let's say I want to sort numbers,
367
939260
2000
假設我需要分類資料,
15:41
as a simple example I've done it with.
368
941260
2000
這是個我用它試驗過的簡單例子。
15:43
So find the programs that come closest to sorting numbers.
369
943260
3000
找到最接近資料分類的程式。
15:46
So of course, random sequences of instructions
370
946260
3000
當然,隨機的指令序列
15:49
are very unlikely to sort numbers,
371
949260
2000
很不可能分類資料,
15:51
so none of them will really do it.
372
951260
2000
所有它們中沒有一個能完成。
15:53
But one of them, by luck,
373
953260
2000
但是中間有一個,運氣很好,
15:55
may put two numbers in the right order.
374
955260
2000
可能會把兩個數按順序排列。
15:57
And I say, "Computer,
375
957260
2000
我說,“電腦,
15:59
would you please now take the 10 percent
376
959260
3000
請你現在選出序列中百分之十
16:02
of those random sequences that did the best job.
377
962260
2000
完成得最好的。
16:04
Save those. Kill off the rest.
378
964260
2000
保存這些。刪掉其他的。
16:06
And now let's reproduce
379
966260
2000
現在來複製
16:08
the ones that sorted numbers the best.
380
968260
2000
資料分類得最好的這些。
16:10
And let's reproduce them by a process of recombination
381
970260
3000
以類似交配的重組過程
16:13
analogous to sex."
382
973260
2000
來複製他們。”
16:15
Take two programs and they produce children
383
975260
3000
取兩個程式
16:18
by exchanging their subroutines,
384
978260
2000
交換他們的副程式讓它們產生子女,
16:20
and the children inherit the traits of the subroutines of the two programs.
385
980260
3000
這些子女繼承了兩個程式副程式的特徵。
16:23
So I've got now a new generation of programs
386
983260
3000
所以我得到新一代的
16:26
that are produced by combinations
387
986260
2000
由組合做的比較好的程式
16:28
of the programs that did a little bit better job.
388
988260
2000
而產生的程式。
16:30
Say, "Please repeat that process."
389
990260
2000
(指令)說,“請重複這個過程。”
16:32
Score them again.
390
992260
2000
再做一次。
16:34
Introduce some mutations perhaps.
391
994260
2000
可能引入一些突變。
16:36
And try that again and do that for another generation.
392
996260
3000
再試一次並用在新的一代上。
16:39
Well every one of those generations just takes a few milliseconds.
393
999260
3000
這一代上每個程式只需要幾毫秒。
16:42
So I can do the equivalent
394
1002260
2000
所以我在電腦上用幾分鐘
16:44
of millions of years of evolution on that
395
1004260
2000
能做等同於
16:46
within the computer in a few minutes,
396
1006260
3000
幾百萬年的進化過程,
16:49
or in the complicated cases, in a few hours.
397
1009260
2000
或者,情況複雜時,在幾小時內完成。
16:51
At the end of that, I end up with programs
398
1011260
3000
結束時,我得到
16:54
that are absolutely perfect at sorting numbers.
399
1014260
2000
絕對完美地分類資料的程式。
16:56
In fact, they are programs that are much more efficient
400
1016260
3000
實際上,這些程式比我手寫的
16:59
than programs I could have ever written by hand.
401
1019260
2000
任何程式都要有效率。
17:01
Now if I look at those programs,
402
1021260
2000
現在,如果我讀這些程式,
17:03
I can't tell you how they work.
403
1023260
2000
我說不出他們怎麼工作的。
17:05
I've tried looking at them and telling you how they work.
404
1025260
2000
我嘗試過閱讀並且解釋他們如何工作的。
17:07
They're obscure, weird programs.
405
1027260
2000
他們很抽象,奇怪。
17:09
But they do the job.
406
1029260
2000
但是他們能完成任務。
17:11
And in fact, I know, I'm very confident that they do the job
407
1031260
3000
實際上,我知道,我很有信心他們能完成任務
17:14
because they come from a line
408
1034260
2000
因為他們來自于一行
17:16
of hundreds of thousands of programs that did the job.
409
1036260
2000
上千萬能完成認為的程式。
17:18
In fact, their life depended on doing the job.
410
1038260
3000
事實上,他們的生命就是靠著這工作。
17:21
(Laughter)
411
1041260
4000
(笑聲)
17:26
I was riding in a 747
412
1046260
2000
我曾經有一次
17:28
with Marvin Minsky once,
413
1048260
2000
和馬文明斯基一起坐747,
17:30
and he pulls out this card and says, "Oh look. Look at this.
414
1050260
3000
他拿出一張卡,說,“看,看這。
17:33
It says, 'This plane has hundreds of thousands of tiny parts
415
1053260
4000
這上面說“本飛機有很多精密部件
17:37
working together to make you a safe flight.'
416
1057260
4000
協作,保障您飛行安全。”
17:41
Doesn't that make you feel confident?"
417
1061260
2000
這是不是讓你很有信心?”
17:43
(Laughter)
418
1063260
2000
(笑聲)
17:45
In fact, we know that the engineering process doesn't work very well
419
1065260
3000
事實上,我們知道工程過程複雜化
17:48
when it gets complicated.
420
1068260
2000
並不能很好工作。
17:50
So we're beginning to depend on computers
421
1070260
2000
所以我們開始依賴電腦
17:52
to do a process that's very different than engineering.
422
1072260
4000
來做與工程有很大不同的一個過程。
17:56
And it lets us produce things of much more complexity
423
1076260
3000
它能讓我們生產出
17:59
than normal engineering lets us produce.
424
1079260
2000
比普通工程能生產的更複雜的東西。
18:01
And yet, we don't quite understand the options of it.
425
1081260
3000
然而,我們還不明白他的選擇。
18:04
So in a sense, it's getting ahead of us.
426
1084260
2000
從某種意義上說,它比我們超前。
18:06
We're now using those programs
427
1086260
2000
我們現在正用這些程式
18:08
to make much faster computers
428
1088260
2000
創造更快的電腦
18:10
so that we'll be able to run this process much faster.
429
1090260
3000
以便能更快的運行這個進程。
18:13
So it's feeding back on itself.
430
1093260
3000
所以它是自我回饋的。
18:16
The thing is becoming faster
431
1096260
2000
這正變得更快,
18:18
and that's why I think it seems so confusing.
432
1098260
2000
這也是為什麼我覺得它似乎很讓人摸不清。
18:20
Because all of these technologies are feeding back on themselves.
433
1100260
3000
由於所有這些技術都回饋到自己。
18:23
We're taking off.
434
1103260
2000
我們正在起飛。
18:25
And what we are is we're at a point in time
435
1105260
3000
我們正是在時間的某一點,
18:28
which is analogous to when single-celled organisms
436
1108260
2000
這一點類似於單細胞機體
18:30
were turning into multi-celled organisms.
437
1110260
3000
正轉變成多細胞機體的時刻。
18:33
So we're the amoebas
438
1113260
2000
我們就像變形蟲,
18:35
and we can't quite figure out what the hell this thing is we're creating.
439
1115260
3000
搞不清自己正在創造的是什麼東西。
18:38
We're right at that point of transition.
440
1118260
2000
我們正在轉捩點上。
18:40
But I think that there really is something coming along after us.
441
1120260
3000
不過我認為一定有跟隨著我們的東西。
18:43
I think it's very haughty of us
442
1123260
2000
我想它是很崇拜我們的,
18:45
to think that we're the end product of evolution.
443
1125260
3000
認為我們是進化的終級產物。
18:48
And I think all of us here
444
1128260
2000
我認為我們這所有人
18:50
are a part of producing
445
1130260
2000
都是繁衍的一部分,
18:52
whatever that next thing is.
446
1132260
2000
無論下一步是什麼。
18:54
So lunch is coming along,
447
1134260
2000
午飯時間快到了,
18:56
and I think I will stop at that point,
448
1136260
2000
趁我還沒被選走,
18:58
before I get selected out.
449
1138260
2000
我就在這停下。/我想我就在這裡結束。
19:00
(Applause)
450
1140260
3000
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog