Danny Hillis: Back to the future (of 1994)

80,866 views ・ 2012-02-03

TED


Vă rugăm să faceți dublu clic pe subtitrările în limba engleză de mai jos pentru a reda videoclipul.

Traducător: anca tincu Corector: Aura Raducan
00:15
Because I usually take the role
0
15260
3000
Pentru ca imi asum de obicei rolul
00:18
of trying to explain to people
1
18260
2000
de a incerca sa explic oamenilor
00:20
how wonderful the new technologies
2
20260
3000
cat de extraordinare vor fi noile tehnologii
00:23
that are coming along are going to be,
3
23260
2000
care vor aparea
00:25
and I thought that, since I was among friends here,
4
25260
3000
si m-am gandit ca, fiind intre prieteni aici,
00:28
I would tell you what I really think
5
28260
4000
sa va spun ce cred cu adevarat
00:32
and try to look back and try to understand
6
32260
2000
si sa incerc sa privesc inapoi si sa inteleg
00:34
what is really going on here
7
34260
3000
ce se intampla de fapt aici
00:37
with these amazing jumps in technology
8
37260
5000
cu aceste salturi extraordinare in tehnologie
00:42
that seem so fast that we can barely keep on top of it.
9
42260
3000
care se deruleaza asa de repede incat abia mai putem tine pasul cu ele.
00:45
So I'm going to start out
10
45260
2000
Asa ca voi incepe
00:47
by showing just one very boring technology slide.
11
47260
3000
prin a arata o prezentare despre tehnologie.
00:50
And then, so if you can just turn on the slide that's on.
12
50260
3000
Si apoi, daca puteti da drumul prezentarii.
00:56
This is just a random slide
13
56260
2000
Aceasta prezentare este
00:58
that I picked out of my file.
14
58260
2000
una aleasa la intamplare.
01:00
What I want to show you is not so much the details of the slide,
15
60260
3000
Ceea ce vreau sa va arat nu sunt atat detaliile prezentarii,
01:03
but the general form of it.
16
63260
2000
ci forma ei generala.
01:05
This happens to be a slide of some analysis that we were doing
17
65260
3000
Aceasta prezentare se refera la o analiza facuta
01:08
about the power of RISC microprocessors
18
68260
3000
despre puterea microprocesoarelor RISC
01:11
versus the power of local area networks.
19
71260
3000
contra puterii retelelor locale.
01:14
And the interesting thing about it
20
74260
2000
Si ce este interesant la prezentare
01:16
is that this slide,
21
76260
2000
este ca aceasta,
01:18
like so many technology slides that we're used to,
22
78260
3000
ca multe altele de felul ei cu care suntem obisnuiti,
01:21
is a sort of a straight line
23
81260
2000
este o linie dreapta
01:23
on a semi-log curve.
24
83260
2000
intr-un grafic semilogaritmic.
01:25
In other words, every step here
25
85260
2000
Cu alte cuvinte, fiecare pas de aici
01:27
represents an order of magnitude
26
87260
2000
reprezinta o magnitudine
01:29
in performance scale.
27
89260
2000
pe scara performantei.
01:31
And this is a new thing
28
91260
2000
Si acesta este un lucru nou
01:33
that we talk about technology
29
93260
2000
sa vorbim despre tehnologie
01:35
on semi-log curves.
30
95260
2000
pe grafice semilogaritmice.
01:37
Something really weird is going on here.
31
97260
2000
`
01:39
And that's basically what I'm going to be talking about.
32
99260
3000
Si despre asta voi vorbi de fapt.
01:42
So, if you could bring up the lights.
33
102260
3000
Deci, daca puteti lumina sus.
01:47
If you could bring up the lights higher,
34
107260
2000
Daca puteti lumina mai sus,
01:49
because I'm just going to use a piece of paper here.
35
109260
3000
pentru ca voi folosi o bucata de hartie.
01:52
Now why do we draw technology curves
36
112260
2000
Acum de ce desenam grafice tehnologice
01:54
in semi-log curves?
37
114260
2000
in grafice semilogaritmice?
01:56
Well the answer is, if I drew it on a normal curve
38
116260
3000
Ei bine raspunsul este, daca as desena pe un grafic normal
01:59
where, let's say, this is years,
39
119260
2000
unde, sa spunem, acestia sunt anii,
02:01
this is time of some sort,
40
121260
2000
acesta este un fel de timp,
02:03
and this is whatever measure of the technology
41
123260
3000
si aceasta este masura tehnologiei
02:06
that I'm trying to graph,
42
126260
3000
pe care incerc sa o desenez,
02:09
the graphs look sort of silly.
43
129260
3000
diagramele par stupide.
02:12
They sort of go like this.
44
132260
3000
Arata cam asa.
02:15
And they don't tell us much.
45
135260
3000
Si nu ne spun prea multe.
02:18
Now if I graph, for instance,
46
138260
3000
Acum daca desenez, de exemplu,
02:21
some other technology, say transportation technology,
47
141260
2000
alte tehnologii, de exemplu tehnologia transportului,
02:23
on a semi-log curve,
48
143260
2000
pe un tabel semilogaritmic,
02:25
it would look very stupid, it would look like a flat line.
49
145260
3000
ar arata foarte stupid, ca o linie dreapta.
02:28
But when something like this happens,
50
148260
2000
Dar cand se intampla ceva de genul acesta,
02:30
things are qualitatively changing.
51
150260
2000
calitatea lucrurilor se imbunatateste.
02:32
So if transportation technology
52
152260
2000
Deci daca tehnologia transportului
02:34
was moving along as fast as microprocessor technology,
53
154260
3000
s-ar dezvolta la fel de repede ca cea a microprocesoarelor,
02:37
then the day after tomorrow,
54
157260
2000
atunci poimaine,
02:39
I would be able to get in a taxi cab
55
159260
2000
as putea sa ma urc intr-un taxi
02:41
and be in Tokyo in 30 seconds.
56
161260
2000
si sa ajung in Tokio in 30 de secunde.
02:43
It's not moving like that.
57
163260
2000
Nu se intampla asa.
02:45
And there's nothing precedented
58
165260
2000
Si nu exista precedent
02:47
in the history of technology development
59
167260
2000
in istoria dezvoltarii tehnologice
02:49
of this kind of self-feeding growth
60
169260
2000
a unei astfel de auto-crestere
02:51
where you go by orders of magnitude every few years.
61
171260
3000
unde vorbim de magnitudine la fiecare cativa ani.
02:54
Now the question that I'd like to ask is,
62
174260
3000
Acum intrebarea mea este,
02:57
if you look at these exponential curves,
63
177260
3000
daca te uiti la aceste grafice exponentiale
03:00
they don't go on forever.
64
180260
3000
nu continua la nesfarsit.
03:03
Things just can't possibly keep changing
65
183260
3000
Lucrurile nu pot fi intr-o continua schimbare
03:06
as fast as they are.
66
186260
2000
in ritmul alert in care o fac.
03:08
One of two things is going to happen.
67
188260
3000
Unul din doua lucruri se va intampla.
03:11
Either it's going to turn into a sort of classical S-curve like this,
68
191260
4000
Fie se va transforma intr-un grafic in forma de S ca acesta,
03:15
until something totally different comes along,
69
195260
4000
pana cand apare ceva cu totul diferit,
03:19
or maybe it's going to do this.
70
199260
2000
sau poate va face asta.
03:21
That's about all it can do.
71
201260
2000
Asta este cam tot ce poate face.
03:23
Now I'm an optimist,
72
203260
2000
Eu sunt un optimist,
03:25
so I sort of think it's probably going to do something like that.
73
205260
3000
deci cred ca va fi cam asa.
03:28
If so, that means that what we're in the middle of right now
74
208260
3000
Daca este asa, suntem in mijlocul
03:31
is a transition.
75
211260
2000
unei tranzitii.
03:33
We're sort of on this line
76
213260
2000
Suntem pe aceasta linie
03:35
in a transition from the way the world used to be
77
215260
2000
in tranzitia dintre cum era lumea
03:37
to some new way that the world is.
78
217260
3000
si noua ei forma.
03:40
And so what I'm trying to ask, what I've been asking myself,
79
220260
3000
Si ceea ce incerc sa intreb, ce m-am intrebat pe mine insumi,
03:43
is what's this new way that the world is?
80
223260
3000
este cum este aceasta noua lume?
03:46
What's that new state that the world is heading toward?
81
226260
3000
Care este acea stare noua catre care se indreapta lumea?
03:49
Because the transition seems very, very confusing
82
229260
3000
Pentru ca tranzitia pare foarte derutanta
03:52
when we're right in the middle of it.
83
232260
2000
cand suntem exact in mijlocul ei.
03:54
Now when I was a kid growing up,
84
234260
3000
Cand eram copil,
03:57
the future was kind of the year 2000,
85
237260
3000
viitorul era ca anul 2000,
04:00
and people used to talk about what would happen in the year 2000.
86
240260
4000
si oamenii vorbeau despre ce se va intampla in 2000.
04:04
Now here's a conference
87
244260
2000
Aceasta este o conferinta
04:06
in which people talk about the future,
88
246260
2000
in care oamenii vorbesc despre viitor,
04:08
and you notice that the future is still at about the year 2000.
89
248260
3000
si remarcati ca viitorul face referire tot la anul 2000.
04:11
It's about as far as we go out.
90
251260
2000
Cam atat de departe mergem.
04:13
So in other words, the future has kind of been shrinking
91
253260
3000
Cu alte cuvinte viitorul s-a cam micsorat
04:16
one year per year
92
256260
3000
an dupa an
04:19
for my whole lifetime.
93
259260
3000
pe parcursul intregii mele vieti.
04:22
Now I think that the reason
94
262260
2000
Cred ca motivul
04:24
is because we all feel
95
264260
2000
este ca simtim cu totii
04:26
that something's happening there.
96
266260
2000
ca se va intampla ceva acolo.
04:28
That transition is happening. We can all sense it.
97
268260
2000
Acea tranzitie se petrece. Cu totii o simtim.
04:30
And we know that it just doesn't make too much sense
98
270260
2000
Si stim ca nu are prea mult sens
04:32
to think out 30, 50 years
99
272260
2000
sa ne gandim peste 30, 50 de ani
04:34
because everything's going to be so different
100
274260
3000
pentru ca totul va fi asa de diferit
04:37
that a simple extrapolation of what we're doing
101
277260
2000
ca o simpla extrapolare a ceea ce facem
04:39
just doesn't make any sense at all.
102
279260
3000
nu are nici un sens.
04:42
So what I would like to talk about
103
282260
2000
Deci as dori sa vorbesc despre
04:44
is what that could be,
104
284260
2000
ce ar putea fi,
04:46
what that transition could be that we're going through.
105
286260
3000
ce ar putea fi acea tranzitie prin ceea ce trecem.
04:49
Now in order to do that
106
289260
3000
Pentru a putea face asta
04:52
I'm going to have to talk about a bunch of stuff
107
292260
2000
va trebui sa vorbesc despre multe lucruri
04:54
that really has nothing to do
108
294260
2000
care nu au de a face
04:56
with technology and computers.
109
296260
2000
cu tehnologia si computerele.
04:58
Because I think the only way to understand this
110
298260
2000
Deoarece cred ca singurul mod de a intelege asta
05:00
is to really step back
111
300260
2000
este sa faci un pas inapoi
05:02
and take a long time scale look at things.
112
302260
2000
si sa privesti lucrurile prin dimensiunea timpului.
05:04
So the time scale that I would like to look at this on
113
304260
3000
Deci scara temporala la care as dori sa privim
05:07
is the time scale of life on Earth.
114
307260
3000
este aceea a vietii pe pamant.
05:13
So I think this picture makes sense
115
313260
2000
Deci cred ca aceasta imagine are sens
05:15
if you look at it a few billion years at a time.
116
315260
4000
daca facem referire la ea odata la cateva miliarde de ani.
05:19
So if you go back
117
319260
2000
Deci daca mergi inapoi
05:21
about two and a half billion years,
118
321260
2000
acum doua miliarde si jumatate de ani,
05:23
the Earth was this big, sterile hunk of rock
119
323260
3000
Pamantul era o bucata mare de roca sterila
05:26
with a lot of chemicals floating around on it.
120
326260
3000
cu multe chimicale plutind in jurul sau.
05:29
And if you look at the way
121
329260
2000
Iar daca privim felul in care
05:31
that the chemicals got organized,
122
331260
2000
chimicalele s-au organizat,
05:33
we begin to get a pretty good idea of how they do it.
123
333260
3000
incepem sa intelegem destul de bine cum o fac.
05:36
And I think that there's theories that are beginning to understand
124
336260
3000
Si cred ca sunt teorii care incep sa inteleaga
05:39
about how it started with RNA,
125
339260
2000
cum a inceput RNA
05:41
but I'm going to tell a sort of simple story of it,
126
341260
3000
dar voi spune o poveste simpla despre asta,
05:44
which is that, at that time,
127
344260
2000
si anume, ca la acea data
05:46
there were little drops of oil floating around
128
346260
3000
erau picaturi mici de ulei care pluteau
05:49
with all kinds of different recipes of chemicals in them.
129
349260
3000
cu tot felul de diferite retete chimice in ele.
05:52
And some of those drops of oil
130
352260
2000
Si unele dintre acele stropi de ulei
05:54
had a particular combination of chemicals in them
131
354260
2000
aveau o combinatie de chimicale mai deosebita
05:56
which caused them to incorporate chemicals from the outside
132
356260
3000
care a cauzat incorporarea chimicalelor exterioare
05:59
and grow the drops of oil.
133
359260
3000
si cresterea picaturilor de ulei.
06:02
And those that were like that
134
362260
2000
Si cele care erau asa
06:04
started to split and divide.
135
364260
2000
au inceput sa se separe si sa se divida.
06:06
And those were the most primitive forms of cells in a sense,
136
366260
3000
Si acelea au fost cele mai primitive celule intr-un fel,
06:09
those little drops of oil.
137
369260
2000
acele picaturi de ulei.
06:11
But now those drops of oil weren't really alive, as we say it now,
138
371260
3000
Dar acele picaturi nu erau cu adevarat in viata, cum spunem acum,
06:14
because every one of them
139
374260
2000
pentru ca fiecare dintre ele
06:16
was a little random recipe of chemicals.
140
376260
2000
era o reteta de chimicale aleatorie.
06:18
And every time it divided,
141
378260
2000
Si ori de cate ori se diviza,
06:20
they got sort of unequal division
142
380260
3000
aveau o diviziune inegala
06:23
of the chemicals within them.
143
383260
2000
a chimicalelor din interior.
06:25
And so every drop was a little bit different.
144
385260
3000
Deci fiecare picatura era putin diferita.
06:28
In fact, the drops that were different in a way
145
388260
2000
De fapt picaturile care erau diferite intr-un fel
06:30
that caused them to be better
146
390260
2000
care le facea sa fie mai bune
06:32
at incorporating chemicals around them,
147
392260
2000
la incorporarea chimicalelor din jurul lor,
06:34
grew more and incorporated more chemicals and divided more.
148
394260
3000
cresteau mai mult si incorporau mai multe chimicale divizandu-se mai mult.
06:37
So those tended to live longer,
149
397260
2000
Deci cele mai longevive,
06:39
get expressed more.
150
399260
3000
sunt mai exprimate.
06:42
Now that's sort of just a very simple
151
402260
3000
Acesta este o simpla
06:45
chemical form of life,
152
405260
2000
forma chimica de viata,
06:47
but when things got interesting
153
407260
3000
dar lucrurile au devenit interesante
06:50
was when these drops
154
410260
2000
cand aceste picaturi
06:52
learned a trick about abstraction.
155
412260
3000
au invatat ce inseamna abstractia.
06:55
Somehow by ways that we don't quite understand,
156
415260
3000
Cumva, prin moduri pe care nu le prea intelegem,
06:58
these little drops learned to write down information.
157
418260
3000
aceste picaturi au invatat sa scrie informatia.
07:01
They learned to record the information
158
421260
2000
Au invatat sa inregistreze informatia
07:03
that was the recipe of the cell
159
423260
2000
care era reteta celulei
07:05
onto a particular kind of chemical
160
425260
2000
pe o anume chimicala
07:07
called DNA.
161
427260
2000
numita ADN.
07:09
So in other words, they worked out,
162
429260
2000
Cu alte cuvinte, au creat,
07:11
in this mindless sort of evolutionary way,
163
431260
3000
in evolutia lor haotica,
07:14
a form of writing that let them write down what they were,
164
434260
3000
o forma a scrisului care le permite sa transmita ce erau
07:17
so that that way of writing it down could get copied.
165
437260
3000
fiind posibila copierea.
07:20
The amazing thing is that that way of writing
166
440260
3000
Uimitor este faptul ca acea forma de scriere
07:23
seems to have stayed steady
167
443260
2000
pare sa fi ramas stabila
07:25
since it evolved two and a half billion years ago.
168
445260
2000
de la evolutia sa de acum doua miliarde si jumatate de ani.
07:27
In fact the recipe for us, our genes,
169
447260
3000
De fapt reteta genelor noastre,
07:30
is exactly that same code and that same way of writing.
170
450260
3000
este exact acelasi cod scris in acelasi fel.
07:33
In fact, every living creature is written
171
453260
3000
In fapt codul fiecarei creaturi este scris
07:36
in exactly the same set of letters and the same code.
172
456260
2000
cu aceleasi litere care sunt la fel.
07:38
In fact, one of the things that I did
173
458260
2000
De fapt, unul dintre lucrurile pe care le-am facut,
07:40
just for amusement purposes
174
460260
2000
doar pentru amuzament,
07:42
is we can now write things in this code.
175
462260
2000
este ca putem sa scriem lucruri in acest cod.
07:44
And I've got here a little 100 micrograms of white powder,
176
464260
6000
Am aici 100 micrograme de pudra alba,
07:50
which I try not to let the security people see at airports.
177
470260
4000
pe care incerc sa o ascund de paza din aeroport.
07:54
(Laughter)
178
474260
2000
(hohote de ras)
07:56
But this has in it --
179
476260
2000
Dar aceasta contine--
07:58
what I did is I took this code --
180
478260
2000
ce am facut a fost sa iau acest cod--
08:00
the code has standard letters that we use for symbolizing it --
181
480260
3000
codul are litere standard folosite pentru a-l simboliza--
08:03
and I wrote my business card onto a piece of DNA
182
483260
3000
si mi-am scris cartea de vizita pe o bucata de ADN
08:06
and amplified it 10 to the 22 times.
183
486260
3000
si am amplificat-o de 10 pana la 22 de ori.
08:09
So if anyone would like a hundred million copies of my business card,
184
489260
3000
Daca doreste cineva o suta de milioane de copii ale cartii mele de vizita,
08:12
I have plenty for everyone in the room,
185
492260
2000
am destule pentru toti cei de aici,
08:14
and, in fact, everyone in the world,
186
494260
2000
si pentru intreaga populatie,
08:16
and it's right here.
187
496260
3000
chiar aici.
08:19
(Laughter)
188
499260
5000
(hohote de ras)
08:26
If I had really been a egotist,
189
506260
2000
Daca as fi fost intr-adevar un egocentric,
08:28
I would have put it into a virus and released it in the room.
190
508260
3000
l-as fi pus intr-un virus si l-as fi eliberat in incapere.
08:31
(Laughter)
191
511260
5000
(hohote de ras)
08:39
So what was the next step?
192
519260
2000
Deci care era urmatorul pas?
08:41
Writing down the DNA was an interesting step.
193
521260
2000
Scrierea ADN-ului a fost interesanta.
08:43
And that caused these cells --
194
523260
2000
Si a dus la aparitia acestor celule--
08:45
that kept them happy for another billion years.
195
525260
2000
lucru care le-a bucurat inca un miliard de ani.
08:47
But then there was another really interesting step
196
527260
2000
Dar a existat un alt pas foarte interesant
08:49
where things became completely different,
197
529260
3000
cand lucrurile s-au schimbat complet,
08:52
which is these cells started exchanging and communicating information,
198
532260
3000
adica momentul in care celulele au inceput sa comunice si sa faca schimb de informatii,
08:55
so that they began to get communities of cells.
199
535260
2000
creand comunitati de celule.
08:57
I don't know if you know this,
200
537260
2000
Nu stiu daca stiti,
08:59
but bacteria can actually exchange DNA.
201
539260
2000
dar bacteriile pot chiar si sa schimbe ADN-ul.
09:01
Now that's why, for instance,
202
541260
2000
De aceea, spre exemplu,
09:03
antibiotic resistance has evolved.
203
543260
2000
rezistenta la antibiotice a evoluat.
09:05
Some bacteria figured out how to stay away from penicillin,
204
545260
3000
Unele bacterii si-au dat seama cum sa se fereasca de penicilina,
09:08
and it went around sort of creating its little DNA information
205
548260
3000
si a inceput sa isi creeze propria mini informatie ADN
09:11
with other bacteria,
206
551260
2000
cu alte bacterii,
09:13
and now we have a lot of bacteria that are resistant to penicillin,
207
553260
3000
avand acum multe bacterii rezistente la penicilina,
09:16
because bacteria communicate.
208
556260
2000
pentru ca bacteriile comunica.
09:18
Now what this communication allowed
209
558260
2000
Aceasta comunicare a permis
09:20
was communities to form
210
560260
2000
formarea de comunitati
09:22
that, in some sense, were in the same boat together;
211
562260
2000
aflate , oarecum, in aceeasi barca
09:24
they were synergistic.
212
564260
2000
fiind sinergetice.
09:26
So they survived
213
566260
2000
Deci au supravietuit
09:28
or they failed together,
214
568260
2000
sau au dat gres impreuna,
09:30
which means that if a community was very successful,
215
570260
2000
adica daca o comunitate avea mult succes,
09:32
all the individuals in that community
216
572260
2000
toti indivizii acelei comunitati
09:34
were repeated more
217
574260
2000
se multiplicau
09:36
and they were favored by evolution.
218
576260
3000
si erau favorizati de evolutie.
09:39
Now the transition point happened
219
579260
2000
Punctul de tranzitie a urmat
09:41
when these communities got so close
220
581260
2000
cand aceste comunitati s-au apropiat asa de mult
09:43
that, in fact, they got together
221
583260
2000
incat, de fapt, s-au reunit
09:45
and decided to write down the whole recipe for the community
222
585260
3000
si au decis sa scrie intreaga reteta pentru comunitate
09:48
together on one string of DNA.
223
588260
3000
pe un singur ADN.
09:51
And so the next stage that's interesting in life
224
591260
2000
Urmatorul pas interesant al vietii
09:53
took about another billion years.
225
593260
2000
a durat un alt miliard de ani.
09:55
And at that stage,
226
595260
2000
In aceasta etapa,
09:57
we have multi-cellular communities,
227
597260
2000
avem comunitati multi-celulare,
09:59
communities of lots of different types of cells,
228
599260
2000
comunitati cu multe tipuri diferite de celule,
10:01
working together as a single organism.
229
601260
2000
care lucreaza impreuna ca un singur organism.
10:03
And in fact, we're such a multi-cellular community.
230
603260
3000
Si de fapt, suntem o astfel de comunitate multicelulara.
10:06
We have lots of cells
231
606260
2000
Avem multe celule
10:08
that are not out for themselves anymore.
232
608260
2000
care nu mai sunt independente.
10:10
Your skin cell is really useless
233
610260
3000
Celula pielii este nefolositoare
10:13
without a heart cell, muscle cell,
234
613260
2000
fara o celula a inimii, a muschilor,
10:15
a brain cell and so on.
235
615260
2000
a creierului si asa mai departe.
10:17
So these communities began to evolve
236
617260
2000
Deci aceste comunitati au inceput sa evolueze
10:19
so that the interesting level on which evolution was taking place
237
619260
3000
in asa fel incat nivelul interesant la care lua loc evolutia
10:22
was no longer a cell,
238
622260
2000
nu mai era celula,
10:24
but a community which we call an organism.
239
624260
3000
.
10:28
Now the next step that happened
240
628260
2000
Urmatoarea schimbare a avut loc
10:30
is within these communities.
241
630260
2000
in aceste comunitati.
10:32
These communities of cells,
242
632260
2000
Aceste comunitati de celule,
10:34
again, began to abstract information.
243
634260
2000
au inceput din nou sa extraga informatii.
10:36
And they began building very special structures
244
636260
3000
Si au inceput sa construiasca structuri foarte speciale
10:39
that did nothing but process information within the community.
245
639260
3000
care nu faceau nimic in afara procesarii informatiilor in comunitate.
10:42
And those are the neural structures.
246
642260
2000
Si acelea sunt structurile neurologice.
10:44
So neurons are the information processing apparatus
247
644260
3000
Deci neuronii reprezinta dispozitivul procesator de informatie
10:47
that those communities of cells built up.
248
647260
3000
construit de comunitatile de celule.
10:50
And in fact, they began to get specialists in the community
249
650260
2000
Si au inceput sa aiba specialisti in comunitate
10:52
and special structures
250
652260
2000
si structuri speciale
10:54
that were responsible for recording,
251
654260
2000
care erau responsabile cu inregistrarea,
10:56
understanding, learning information.
252
656260
3000
intelegerea, invatarea informatiilor.
10:59
And that was the brains and the nervous system
253
659260
2000
Si acelea reprezentau creierul si sistemul nervos
11:01
of those communities.
254
661260
2000
al acelor comunitati.
11:03
And that gave them an evolutionary advantage.
255
663260
2000
Acest lucru le-a dat un avantaj evolutionar.
11:05
Because at that point,
256
665260
3000
Deoarece in acest punct,
11:08
an individual --
257
668260
3000
un individ--
11:11
learning could happen
258
671260
2000
procesul de invatare putea avea loc
11:13
within the time span of a single organism,
259
673260
2000
in intervalul de timp al unui singur organism,
11:15
instead of over this evolutionary time span.
260
675260
3000
in loc de intervalul de timp al evolutiei.
11:18
So an organism could, for instance,
261
678260
2000
Deci un organism, ar putea spre exemplu,
11:20
learn not to eat a certain kind of fruit
262
680260
2000
sa invete sa nu manance un anumit fel de fruct
11:22
because it tasted bad and it got sick last time it ate it.
263
682260
4000
pentru ca avea gust rau si l-a imbolnavit data trecuta cand l-a mancat.
11:26
That could happen within the lifetime of a single organism,
264
686260
3000
Acel lucru s-ar putea intampla de-a lungul vietii unui singur organism,
11:29
whereas before they'd built these special information processing structures,
265
689260
4000
pe cand inainte ar fi construit aceste structuri speciale de procesare a informatiilor,
11:33
that would have had to be learned evolutionarily
266
693260
2000
care ar fi trebuit sa fie invatate evolutionar
11:35
over hundreds of thousands of years
267
695260
3000
de-a lungul a sute de mii de ani
11:38
by the individuals dying off that ate that kind of fruit.
268
698260
3000
de catre indivizii care au murit pentru ca au mancat acel tip de fruct.
11:41
So that nervous system,
269
701260
2000
Deci acel sistem nervos,
11:43
the fact that they built these special information structures,
270
703260
3000
faptul ca au construit aceste structuri speciale de informatie,
11:46
tremendously sped up the whole process of evolution.
271
706260
3000
a grabit mult intreg procesul de evolutie.
11:49
Because evolution could now happen within an individual.
272
709260
3000
Pentru ca evolutia se putea manifesta acum in individ.
11:52
It could happen in learning time scales.
273
712260
3000
S-ar putea intampla in perioade de invatare
11:55
But then what happened
274
715260
2000
Dar ce s-a petrecut apoi
11:57
was the individuals worked out,
275
717260
2000
a fost faptul ca indivizii au creat,
11:59
of course, tricks of communicating.
276
719260
2000
desigur, trucuri pentru a comunica.
12:01
And for example,
277
721260
2000
Si spre exemplu,
12:03
the most sophisticated version that we're aware of is human language.
278
723260
3000
cea mai sofisticata versiune pe care o cunoastem este limbajul uman.
12:06
It's really a pretty amazing invention if you think about it.
279
726260
3000
Este de fapt o inventie destul de remarcabila daca te gandesti.
12:09
Here I have a very complicated, messy,
280
729260
2000
Am o foarte complicata, dezordonata,
12:11
confused idea in my head.
281
731260
3000
confuza idee in cap.
12:14
I'm sitting here making grunting sounds basically,
282
734260
3000
Stau aici mormaind practic,
12:17
and hopefully constructing a similar messy, confused idea in your head
283
737260
3000
si sper sa creez o idee la fel de dezordonata si confuza in capul vostru
12:20
that bears some analogy to it.
284
740260
2000
care are o oarecare analogie.
12:22
But we're taking something very complicated,
285
742260
2000
Dar luam ceva foarte complicat,
12:24
turning it into sound, sequences of sounds,
286
744260
3000
il transformam in sunete, secvente de sunete,
12:27
and producing something very complicated in your brain.
287
747260
4000
si producem ceva foarte complicat in creierul tau.
12:31
So this allows us now
288
751260
2000
Deci asta ne permite acum
12:33
to begin to start functioning
289
753260
2000
sa incepem sa functionam
12:35
as a single organism.
290
755260
3000
ca un singur organism.
12:38
And so, in fact, what we've done
291
758260
3000
Ceea ce am facut, de fapt,
12:41
is we, humanity,
292
761260
2000
este ca noi umanitatea,
12:43
have started abstracting out.
293
763260
2000
am inceput sa extragem.
12:45
We're going through the same levels
294
765260
2000
trecem prin aceleasi etape
12:47
that multi-cellular organisms have gone through --
295
767260
2000
prin care au trecut si organismele multi-celulare--
12:49
abstracting out our methods of recording,
296
769260
3000
prin crearea propriilor metode de inregistrare,
12:52
presenting, processing information.
297
772260
2000
prezentare, procesare de informatii.
12:54
So for example, the invention of language
298
774260
2000
Deci, spre exemplu, inventia limbajului
12:56
was a tiny step in that direction.
299
776260
3000
a fost un pas minuscul in acea directie.
12:59
Telephony, computers,
300
779260
2000
Telefonia, computerele,
13:01
videotapes, CD-ROMs and so on
301
781260
3000
casetele video, CD-ROMurile, si asa mai departe
13:04
are all our specialized mechanisms
302
784260
2000
sunt toate mecanismele noastre specializate
13:06
that we've now built within our society
303
786260
2000
pe care le-am construit in societatea noastra
13:08
for handling that information.
304
788260
2000
pentru a lucra cu acea informatie.
13:10
And it all connects us together
305
790260
3000
Si ne conecteaza unii cu altii
13:13
into something
306
793260
2000
in ceva
13:15
that is much bigger
307
795260
2000
care este mult mai mare
13:17
and much faster
308
797260
2000
si mult mai rapid
13:19
and able to evolve
309
799260
2000
si capabil de evolutie
13:21
than what we were before.
310
801260
2000
decat ce am fost inainte.
13:23
So now, evolution can take place
311
803260
2000
Asa ca acum evolutia poate avea loc
13:25
on a scale of microseconds.
312
805260
2000
pe o scara a microsecundelor.
13:27
And you saw Ty's little evolutionary example
313
807260
2000
Si ati vazut micul exemplu evolutionar al lui Ty
13:29
where he sort of did a little bit of evolution
314
809260
2000
unde a exersat putin evolutia
13:31
on the Convolution program right before your eyes.
315
811260
3000
in cadrul programului Convolution sub privirea noastra.
13:34
So now we've speeded up the time scales once again.
316
814260
3000
Si am accelerat scara temporala din nou.
13:37
So the first steps of the story that I told you about
317
817260
2000
Primii pasi ai povestii pe care tocmai v-am spus-o
13:39
took a billion years a piece.
318
819260
2000
au durat un miliard de ani fiecare.
13:41
And the next steps,
319
821260
2000
Si urmatorii pasi,
13:43
like nervous systems and brains,
320
823260
2000
cum ar fi sistemele nervoase si creierele
13:45
took a few hundred million years.
321
825260
2000
au durat cateva sute de milioane de ani.
13:47
Then the next steps, like language and so on,
322
827260
3000
Asa ca urmatorii pasi, ca limba si altele,
13:50
took less than a million years.
323
830260
2000
au durat mai putin de un milion de ani.
13:52
And these next steps, like electronics,
324
832260
2000
Si acesti pasi care urmeaza precum electronica,
13:54
seem to be taking only a few decades.
325
834260
2000
par sa dureze doar cateva decenii.
13:56
The process is feeding on itself
326
836260
2000
Procesul se hraneste din sine insusi
13:58
and becoming, I guess, autocatalytic is the word for it --
327
838260
3000
si devine, cred, autocatalitic este cuvantul corect--
14:01
when something reinforces its rate of change.
328
841260
3000
cand ceva isi consolideaza modul de dezvoltare.
14:04
The more it changes, the faster it changes.
329
844260
3000
Cu cat se schimba mai mult cu atat se schimba mai repede.
14:07
And I think that that's what we're seeing here in this explosion of curve.
330
847260
3000
Si cred ca asta vedem aici in explozia acestei diagrame.
14:10
We're seeing this process feeding back on itself.
331
850260
3000
Vedem cum acest proces se autodezvolta.
14:13
Now I design computers for a living,
332
853260
3000
Eu proiectez computere ca meserie,
14:16
and I know that the mechanisms
333
856260
2000
si stiu ca mecanismele
14:18
that I use to design computers
334
858260
3000
pe care le folosesc pentru a proiecta computere
14:21
would be impossible
335
861260
2000
nu ar putea exista
14:23
without recent advances in computers.
336
863260
2000
fara descoperirile recente in materie de computere.
14:25
So right now, what I do
337
865260
2000
Deci ce fac acum
14:27
is I design objects at such complexity
338
867260
3000
este sa proiectez obiecte de asa o complexitate
14:30
that it's really impossible for me to design them in the traditional sense.
339
870260
3000
incat este imposibil ca eu sa le proiectez in sensul traditional.
14:33
I don't know what every transistor in the connection machine does.
340
873260
4000
Nu stiu ce face fiecare tranzistor al masinariei.
14:37
There are billions of them.
341
877260
2000
Sunt miliarde.
14:39
Instead, what I do
342
879260
2000
In schimb, ceea ce fac
14:41
and what the designers at Thinking Machines do
343
881260
3000
si ce fac proiectantii de la Thinking Machines
14:44
is we think at some level of abstraction
344
884260
2000
este sa gandim la un nivel abstract
14:46
and then we hand it to the machine
345
886260
2000
si apoi lasam totul pe mana masinariei
14:48
and the machine takes it beyond what we could ever do,
346
888260
3000
si aceasta duce totul la un punct mult mai indepartat decat am putea noi sa o facem vreodata,
14:51
much farther and faster than we could ever do.
347
891260
3000
mai departe si mai repede decat am putea noi s-o facem.
14:54
And in fact, sometimes it takes it by methods
348
894260
2000
Si de fapt uneori o face prin metode
14:56
that we don't quite even understand.
349
896260
3000
pe care nu le prea intelegem.
14:59
One method that's particularly interesting
350
899260
2000
O metoda deosebit de interesanta
15:01
that I've been using a lot lately
351
901260
3000
pe care o folosesc mult in ultimul timp
15:04
is evolution itself.
352
904260
2000
este insasi evolutia.
15:06
So what we do
353
906260
2000
Ceea ce facem
15:08
is we put inside the machine
354
908260
2000
este sa punem in interiorul masinariei
15:10
a process of evolution
355
910260
2000
un proces de evolutie
15:12
that takes place on the microsecond time scale.
356
912260
2000
care are loc in timpul unei microsecunde.
15:14
So for example,
357
914260
2000
Deci spre exemplu,
15:16
in the most extreme cases,
358
916260
2000
in cele mai extreme cazuri,
15:18
we can actually evolve a program
359
918260
2000
putem evolua un program
15:20
by starting out with random sequences of instructions.
360
920260
4000
incepand cu secvente de instructiuni aleatorii.
15:24
Say, "Computer, would you please make
361
924260
2000
Sa spunem," Computer, vrei sa faci te rog
15:26
a hundred million random sequences of instructions.
362
926260
3000
o suta de milioane de succesiuni de instructiuni aleatorii.
15:29
Now would you please run all of those random sequences of instructions,
363
929260
3000
Acum te rog sa rulezi aceste instructiuni,
15:32
run all of those programs,
364
932260
2000
aceste programe,
15:34
and pick out the ones that came closest to doing what I wanted."
365
934260
3000
si sa le alegi pe cele care au fost cele mai apropiate de ceea ce cautam eu."
15:37
So in other words, I define what I wanted.
366
937260
2000
Cu alte cuvinte, definesc ceea ce voiam.
15:39
Let's say I want to sort numbers,
367
939260
2000
Sa spunem ca vreau sa sortez numere,
15:41
as a simple example I've done it with.
368
941260
2000
ca un exemplu a cum am facut-o.
15:43
So find the programs that come closest to sorting numbers.
369
943260
3000
Gaseste programele cele mai apropiate de sortarea numerelor.
15:46
So of course, random sequences of instructions
370
946260
3000
Desigur, secventele de instructiuni aleatorii
15:49
are very unlikely to sort numbers,
371
949260
2000
au putine sanse sa sorteze numere,
15:51
so none of them will really do it.
372
951260
2000
deci niciuna n-o va face cu adevarat.
15:53
But one of them, by luck,
373
953260
2000
Dar una dintre ele, cu putin noroc,
15:55
may put two numbers in the right order.
374
955260
2000
ar putea pune doua numere in ordinea corecta.
15:57
And I say, "Computer,
375
957260
2000
Si eu spun,"Computer,
15:59
would you please now take the 10 percent
376
959260
3000
ia acum cele 10 la suta
16:02
of those random sequences that did the best job.
377
962260
2000
din acele succesiuni aleatorii care au facut cea mai buna treaba.
16:04
Save those. Kill off the rest.
378
964260
2000
Salveaza-le pe acelea. Distruge-le pe restul.
16:06
And now let's reproduce
379
966260
2000
Si acum sa le reproducem
16:08
the ones that sorted numbers the best.
380
968260
2000
pe cele care au sortat numerele cel mai bine.
16:10
And let's reproduce them by a process of recombination
381
970260
3000
Si sa le reproducem printr-un proces de recombinare
16:13
analogous to sex."
382
973260
2000
asemanator cu sexul."
16:15
Take two programs and they produce children
383
975260
3000
Luam doua programe si ele produc copii
16:18
by exchanging their subroutines,
384
978260
2000
facand schimb de subprograme,
16:20
and the children inherit the traits of the subroutines of the two programs.
385
980260
3000
si copiii mostenesc trasaturile ambelor subprograme.
16:23
So I've got now a new generation of programs
386
983260
3000
Deci am o noua generatie de programe
16:26
that are produced by combinations
387
986260
2000
care sunt produse prin combinarea
16:28
of the programs that did a little bit better job.
388
988260
2000
programelor care au facut o treaba putin mai buna.
16:30
Say, "Please repeat that process."
389
990260
2000
Spunem,"Te rog repeta procesul."
16:32
Score them again.
390
992260
2000
Sortam din nou.
16:34
Introduce some mutations perhaps.
391
994260
2000
Introducem poate unele mutatii.
16:36
And try that again and do that for another generation.
392
996260
3000
Si incercam asta din nou facand-o pentru alta generatie.
16:39
Well every one of those generations just takes a few milliseconds.
393
999260
3000
Fiecare generatie necesita cateva milisecunde.
16:42
So I can do the equivalent
394
1002260
2000
Deci pot face echivalentul
16:44
of millions of years of evolution on that
395
1004260
2000
a milioane de ani de evolutie astfel
16:46
within the computer in a few minutes,
396
1006260
3000
pe un computer in cateva minute,
16:49
or in the complicated cases, in a few hours.
397
1009260
2000
sau in cazurile complicate, in cateva ore.
16:51
At the end of that, I end up with programs
398
1011260
3000
La sfarsit am programe
16:54
that are absolutely perfect at sorting numbers.
399
1014260
2000
care sunt absolut perfecte la sortarea numerelor.
16:56
In fact, they are programs that are much more efficient
400
1016260
3000
Sunt, in fapt, programe care sunt mult mai eficiente
16:59
than programs I could have ever written by hand.
401
1019260
2000
decat cele pe care as fi putut sa le scriu manual.
17:01
Now if I look at those programs,
402
1021260
2000
Daca ma uit la acele programe,
17:03
I can't tell you how they work.
403
1023260
2000
nu va pot spune cum functioneaza.
17:05
I've tried looking at them and telling you how they work.
404
1025260
2000
Am incercat sa le studiez si sa va spun cum functioneaza.
17:07
They're obscure, weird programs.
405
1027260
2000
Sunt programe obscure, ciudate.
17:09
But they do the job.
406
1029260
2000
Dar isi fac meseria.
17:11
And in fact, I know, I'm very confident that they do the job
407
1031260
3000
Si stiu, in fapt, sunt convins ca-si fac treaba
17:14
because they come from a line
408
1034260
2000
pentru ca provin dintr-o serie de
17:16
of hundreds of thousands of programs that did the job.
409
1036260
2000
sute de mii de programe care si-au facut treaba.
17:18
In fact, their life depended on doing the job.
410
1038260
3000
De fapt, viata lor depindea de infaptuirea scopului.
17:21
(Laughter)
411
1041260
4000
(hohote de ras)
17:26
I was riding in a 747
412
1046260
2000
Mergeam odata intr-un avion 747
17:28
with Marvin Minsky once,
413
1048260
2000
cu Marvin Minski,
17:30
and he pulls out this card and says, "Oh look. Look at this.
414
1050260
3000
si el scoate un card si spune," Priveste.
17:33
It says, 'This plane has hundreds of thousands of tiny parts
415
1053260
4000
Spune, " Acest avion are sute de mii de parti minuscule
17:37
working together to make you a safe flight.'
416
1057260
4000
care lucreaza impreuna pentru un zbor sigur."
17:41
Doesn't that make you feel confident?"
417
1061260
2000
Nu te face sa te simti increzator?"
17:43
(Laughter)
418
1063260
2000
(hohote de ras)
17:45
In fact, we know that the engineering process doesn't work very well
419
1065260
3000
Stim ca procesul tehnologic nu functioneaza foarte bine
17:48
when it gets complicated.
420
1068260
2000
cand devine complicat.
17:50
So we're beginning to depend on computers
421
1070260
2000
Deci incepem sa depindem de computere
17:52
to do a process that's very different than engineering.
422
1072260
4000
sa faca un procedeu foarte diferit de cel ingineresc.
17:56
And it lets us produce things of much more complexity
423
1076260
3000
Si ne permite sa producem lucruri mult mai complexe
17:59
than normal engineering lets us produce.
424
1079260
2000
decat ne permite ingineria normala.
18:01
And yet, we don't quite understand the options of it.
425
1081260
3000
Si totusi, nu intelegem pe deplin optiunile sale.
18:04
So in a sense, it's getting ahead of us.
426
1084260
2000
Deci pe de-o parte ne-o ia inainte.
18:06
We're now using those programs
427
1086260
2000
Acum folosim acele programe
18:08
to make much faster computers
428
1088260
2000
pentru a face computere mult mai rapide
18:10
so that we'll be able to run this process much faster.
429
1090260
3000
pentru a putea rula acest proces mult mai repede.
18:13
So it's feeding back on itself.
430
1093260
3000
Deci se auto dezvolta.
18:16
The thing is becoming faster
431
1096260
2000
Devine mai rapid
18:18
and that's why I think it seems so confusing.
432
1098260
2000
si de aceea cred ca produce confuzie.
18:20
Because all of these technologies are feeding back on themselves.
433
1100260
3000
Pentru ca toate aceste tehnologii se autodezvolta.
18:23
We're taking off.
434
1103260
2000
Decolam.
18:25
And what we are is we're at a point in time
435
1105260
3000
Si suntem intr-un punct in timp
18:28
which is analogous to when single-celled organisms
436
1108260
2000
analog cu acela in care organismele unicelulare
18:30
were turning into multi-celled organisms.
437
1110260
3000
se transformau in organisme multicelulare.
18:33
So we're the amoebas
438
1113260
2000
Suntem amibele
18:35
and we can't quite figure out what the hell this thing is we're creating.
439
1115260
3000
si nu ne prea putem da seama ce naiba cream.
18:38
We're right at that point of transition.
440
1118260
2000
Suntem in punctul de tranzitie.
18:40
But I think that there really is something coming along after us.
441
1120260
3000
Dar cred ca este cu adevarat ceva ce urmeaza dupa noi.
18:43
I think it's very haughty of us
442
1123260
2000
Cred ca este arogant din partea noastra
18:45
to think that we're the end product of evolution.
443
1125260
3000
sa credem ca suntem produsul finit al evolutiei.
18:48
And I think all of us here
444
1128260
2000
Si cred ca toti cei de aici
18:50
are a part of producing
445
1130260
2000
sunt o parte a producerii
18:52
whatever that next thing is.
446
1132260
2000
urmatorului lucru, indiferent care va fi acela.
18:54
So lunch is coming along,
447
1134260
2000
Se apropie pranzul,
18:56
and I think I will stop at that point,
448
1136260
2000
si cred ca ma voi opri in acest punct
18:58
before I get selected out.
449
1138260
2000
inainte sa fiu indepartat.
19:00
(Applause)
450
1140260
3000
(Aplauze)
Despre acest site

Acest site vă va prezenta videoclipuri de pe YouTube care sunt utile pentru a învăța limba engleză. Veți vedea lecții de engleză predate de profesori de top din întreaga lume. Faceți dublu clic pe subtitrările în limba engleză afișate pe fiecare pagină video pentru a reda videoclipul de acolo. Subtitrările se derulează în sincron cu redarea videoclipului. Dacă aveți comentarii sau solicitări, vă rugăm să ne contactați folosind acest formular de contact.

https://forms.gle/WvT1wiN1qDtmnspy7