Emily Oster: What do we really know about the spread of AIDS?

30,076 views ใƒป 2007-07-16

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Yubal Masalker ืžื‘ืงืจ: Amit Lampit
00:26
So I want to talk to you today about AIDS in sub-Saharan Africa.
0
26000
3000
ืื ื™ ืจื•ืฆื” ืœื“ื‘ืจ ืื™ืชื›ื ืขืœ ืื™ื™ื“ืก ื‘ืืคืจื™ืงื” ืฉืžื“ืจื•ื ืœืกื”ืจื”.
00:29
And this is a pretty well-educated audience,
1
29000
2000
ื•ืืชื ืงื”ืœ ืžืฉื›ื™ืœ ืœืžื“ื™ื™,
00:31
so I imagine you all know something about AIDS.
2
31000
3000
ืื– ืื ื™ ืžืชืืจืช ืœืขืฆืžื™ ืฉื›ื•ืœื›ื ื™ื•ื“ืขื™ื ืžืฉื”ื• ืขืœ ืื™ื™ื“ืก.
00:34
You probably know that roughly 25 million people in Africa
3
34000
2000
ืืชื ื‘ื˜ื— ื™ื•ื“ืขื™ื ืฉื‘ืกื‘ื™ื‘ื•ืช 25 ืžื™ืœื™ื•ืŸ ื‘ื ื™-ืื“ื ื‘ืืคืจื™ืงื”
00:36
are infected with the virus, that AIDS is a disease of poverty,
4
36000
4000
ื ื’ื•ืขื™ื ื‘ื•ื™ืจื•ืก ื”ืื™ื™ื“ืก, ื•ืฉืื™ื™ื“ืก ื”ื•ื ืžื—ืœืช ื”ืขื ื™ื™ื.
00:40
and that if we can bring Africa out of poverty, we would decrease AIDS as well.
5
40000
4000
ื•ืฉืื ื ื•ื›ืœ ืœื—ืœืฅ ืืช ืืคืจื™ืงื” ืžื”ืขื•ื ื™, ื ื•ื›ืœ ื’ื ืœืฆืžืฆื ืืช ื”ืื™ื™ื“ืก.
00:44
If you know something more, you probably know that Uganda, to date,
6
44000
3000
ืื ืžื™ืฉื”ื• ื™ื•ื“ืข ืงืฆืช ื™ื•ืชืจ, ื”ื•ื ืื•ืœื™ ืฉืžืข ืฉืื•ื’ื ื“ื”, ื ื›ื•ืŸ ืœื”ื™ื•ื,
00:47
is the only country in sub-Saharan Africa
7
47000
2000
ื”ื™ื ื”ืžื“ื™ื ื” ื”ื™ื—ื™ื“ื” ื‘ืืคืจื™ืงื” ืฉืžื“ืจื•ื ืœืกื”ืจื”
00:49
that has had success in combating the epidemic.
8
49000
3000
ืฉื”ืฆืœื™ื—ื” ืœื”ืชืžื•ื“ื“ ืขื ื”ืžื’ืคื”,
00:52
Using a campaign that encouraged people to abstain, be faithful, and use condoms --
9
52000
4000
ื‘ืขื–ืจืช ืงืžืคื™ื™ืŸ ืฉืขื•ื“ื“ ืื ืฉื™ื ืœื”ื™ืžื ืข, ืœื”ื™ื•ืช ื ืืžื ื™ื ื•ืœื”ืฉืชืžืฉ ื‘ืงื•ื ื“ื•ืžื™ื --
00:56
the ABC campaign -- they decreased their prevalence in the 1990s
10
56000
4000
ืงืžืคื™ื™ืŸ ื”-ABC. ื”ื ื”ืคื—ื™ืชื• ืืช ื”ืฉื›ื™ื—ื•ืช ื‘ืฉื ื•ืช ื”-90
01:00
from about 15 percent to 6 percent over just a few years.
11
60000
4000
ืž-15 ืื—ื•ื– ืœ-6 ืื—ื•ื– ื‘ืžื”ืœืš ืฉื ื™ื ื‘ื•ื“ื“ื•ืช.
01:04
If you follow policy, you probably know that a few years ago
12
64000
3000
ืื ืืชื ืžืชืขื ื™ื™ื ื™ื ื‘ืžื“ื™ื ื™ื•ืช, ืืชื ื•ื“ืื™ ื™ื•ื“ืขื™ื ืฉืœืคื ื™ ืžืกืคืจ ืฉื ื™ื
01:07
the president pledged 15 billion dollars to fight the epidemic over five years,
13
67000
4000
ื”ื ืฉื™ื ื‘ื™ืงืฉ 15 ืžื™ืœื™ืืจื“ ื“ื•ืœืจ ืœ-5 ืฉื ื™ื ื›ื“ื™ ืœื”ื™ืœื—ื ื ื’ื“ ื”ืžื’ืคื”,
01:11
and a lot of that money is going to go to programs that try to replicate Uganda
14
71000
3000
ื•ื”ืจื‘ื” ืžื”ื›ืกืฃ ื”ื–ื” ื”ื•ืœืš ืœื–ืจื•ื ืœืชื•ื›ื ื™ื•ืช ืฉื™ื ืกื• ืœื—ืงื•ืช ืืช ืื•ื’ื ื“ื”
01:14
and use behavior change to encourage people and decrease the epidemic.
15
74000
6000
ื•ืœื ืกื•ืช ืœืขื•ื“ื“ ืื ืฉื™ื ืœืฉื ื•ืช ืืช ื”ืชื ื”ื’ื•ืชื ื›ื“ื™ ืœืฆืžืฆื ืืช ื”ืžื’ืคื”.
01:20
So today I'm going to talk about some things
16
80000
2000
ืื–, ื”ื™ื•ื ืื ื™ ืขื•ืžื“ืช ืœื“ื‘ืจ ืขืœ ืžืกืคืจ ื“ื‘ืจื™ื
01:22
that you might not know about the epidemic,
17
82000
2000
ืฉืื•ืœื™ ืื™ื ื›ื ืžื›ื™ืจื™ื ื‘ื ื•ื’ืข ืœืžื’ืคื” ื–ื•.
01:24
and I'm actually also going to challenge
18
84000
2000
ื•ืื—ืจ-ื›ืš, ืื ื™ ื‘ืขืฆื ื”ื•ืœื›ืช ืœืืชื’ืจ
01:26
some of these things that you think that you do know.
19
86000
2000
ื—ืœืง ืžื”ื“ื‘ืจื™ื ืฉื ื“ืžื” ืœื›ื ืฉืืชื ื™ื•ื“ืขื™ื.
01:28
To do that I'm going to talk about my research
20
88000
3000
ื•ื›ื“ื™ ืœืขืฉื•ืช ื–ืืช, ืืกืคืจ ืœื›ื ืขืœ ื”ืžื—ืงืจ ืฉืœื™
01:31
as an economist on the epidemic.
21
91000
2000
ืขืœ ื”ืžื’ืคื” ื‘ืชื•ืจ ื›ืœื›ืœื ื™ืช.
01:33
And I'm not really going to talk much about the economy.
22
93000
2000
ื•ืื ื™ ืœื ื”ื•ืœื›ืช ืœื“ื‘ืจ ื›ืœ-ื›ืš ืขืœ ื”ื›ืœื›ืœื”.
01:35
I'm not going to tell you about exports and prices.
23
95000
3000
ืœื ืืกืคืจ ืœื›ื ืขืœ ื™ืฆื•ื ื•ืขืœ ืžื—ื™ืจื™ื.
01:38
But I'm going to use tools and ideas that are familiar to economists
24
98000
4000
ืื‘ืœ ืื ื™ ื”ื•ืœื›ืช ืœื”ืฉืชืžืฉ ื‘ื›ืœื™ื ื•ื‘ืจืขื™ื•ื ื•ืช ื”ืžื•ื›ืจื™ื ืœื›ืœื›ืœื ื™ื
01:42
to think about a problem that's more traditionally
25
102000
2000
ื›ื“ื™ ืœื—ืฉื•ื‘ ืขืœ ื‘ืขื™ื” ืฉื”ื™ื ื‘ืื•ืคืŸ ืžืกื•ืจืชื™
01:44
part of public health and epidemiology.
26
104000
2000
ืงืฉื•ืจื” ื™ื•ืชืจ ืœื‘ืจื™ืื•ืช ื”ืฆื™ื‘ื•ืจ ื•ืœื—ืงืจ ืžื’ื™ืคื•ืช.
01:46
And I think in that sense, this fits really nicely with this lateral thinking idea.
27
106000
4000
ื•ืื ื™ ืกื‘ื•ืจื” ืฉื‘ืžื•ื‘ืŸ ื–ื”, ื–ื” ืžืชืื™ื ื™ืคื” ืžืื•ื“ ืœืจืขื™ื•ืŸ ื”ื–ื” ื”ื“ื•ืจืฉ ื—ืฉื™ื‘ื” ืžืงื™ืคื”.
01:50
Here I'm really using the tools of one academic discipline
28
110000
3000
ื›ืืŸ ืื ื™ ืžืžืฉ ืžืฉืชืžืฉืช ื‘ื›ืœื™ื ืžืชื—ื•ื ืืงื“ืžื™ ืื—ื“
01:53
to think about problems of another.
29
113000
2000
ื›ื“ื™ ืœื—ืฉื•ื‘ ืขืœ ื‘ืขื™ื” ืžืชื—ื•ื ืื—ืจ.
01:55
So we think, first and foremost, AIDS is a policy issue.
30
115000
3000
ืื ื›ืš, ื ื“ืžื” ืœื ื• ืฉื‘ืจืืฉ ื•ื‘ืจืืฉื•ื ื” ืื™ื™ื“ืก ื”ื•ื ื ื•ืฉื ืคื•ืœื™ื˜ื™.
01:58
And probably for most people in this room, that's how you think about it.
31
118000
3000
ื•ื›ื ืจืื” ืฉืžืจื‘ื™ืช ื”ืื ืฉื™ื ื›ืืŸ ื—ื•ืฉื‘ื™ื ื›ืš.
02:01
But this talk is going to be about understanding facts about the epidemic.
32
121000
4000
ืื‘ืœ ื”ืจืฆืื” ื–ื• ื”ื•ืœื›ืช ืœื”ื™ื•ืช ืขืœ ื”ื‘ื ืช ื”ืขื•ื‘ื“ื•ืช ื”ื ื•ื’ืขื•ืช ืœืžื’ืคื”.
02:05
It's going to be about thinking about how it evolves, and how people respond to it.
33
125000
3000
ื‘ืžื”ืœื›ื” ื ื“ื•ืŸ ืขืœ ื”ืชืคืชื—ื•ืชื” ื•ื›ื™ืฆื“ ืื ืฉื™ื ืžื’ื™ื‘ื™ื ืœื–ื”.
02:08
I think it may seem like I'm ignoring the policy stuff,
34
128000
3000
ื™ื›ื•ืœ ืœื”ื™ื•ืช ืฉื–ื” ื ืจืื” ื›ืื™ืœื• ืื ื™ ืžืชืขืœืžืช ืžื ื•ืฉื ื”ืžื“ื™ื ื™ื•ืช,
02:11
which is really the most important,
35
131000
2000
ืฉื”ื•ื ื‘ืขืฆื ื”ื“ื‘ืจ ื”ื›ื™ ื—ืฉื•ื‘,
02:13
but I'm hoping that at the end of this talk you will conclude
36
133000
2000
ืื‘ืœ ืื ื™ ืžืงื•ื” ืฉื‘ืกื•ืฃ ื”ื”ืจืฆืื” ืชื’ื™ืขื• ืœืžืกืงื ื”
02:15
that we actually cannot develop effective policy
37
135000
2000
ืฉืื ื—ื ื• ืœืžืขืฉื” ืœื ื™ื›ื•ืœื™ื ืœืคืชื— ืžื“ื™ื ื™ื•ืช ื™ืขื™ืœื”
02:17
unless we really understand how the epidemic works.
38
137000
3000
ืืœื ืื ื ื‘ื™ืŸ ื‘ืืžืช ื›ื™ืฆื“ ื”ืžื’ืคื” ืคื•ืขืœืช.
02:20
And the first thing that I want to talk about,
39
140000
2000
ื•ื”ื“ื‘ืจ ื”ืจืืฉื•ืŸ ืฉืื ื™ ืจื•ืฆื” ืœื“ื‘ืจ ืขืœื™ื•,
02:22
the first thing I think we need to understand is:
40
142000
2000
ื”ื“ื‘ืจ ื”ืจืืฉื•ืŸ ืฉืื ื• ืฆืจื™ื›ื™ื ืœื”ื‘ื™ืŸ ื”ื•ื:
02:24
how do people respond to the epidemic?
41
144000
2000
ื›ื™ืฆื“ ื”ืื ืฉื™ื ืžื’ื™ื‘ื™ื ืœืžื’ืคื”?
02:26
So AIDS is a sexually transmitted infection, and it kills you.
42
146000
4000
ืื™ื™ื“ืก ื”ื•ื ืžื—ืœื” ืžื“ื‘ืงืช ื”ืžื•ืขื‘ืจืช ื“ืจืš ื™ื—ืกื™-ืžื™ืŸ ื•ื”ื™ื ื”ื•ืจื’ืช.
02:30
So this means that in a place with a lot of AIDS,
43
150000
2000
ื–ื” ืื•ืžืจ ืฉื‘ืžืงื•ื ื‘ื• ื”ืื™ื™ื“ืก ื ืคื•ืฅ,
02:32
there's a really significant cost of sex.
44
152000
2000
ื™ื—ืกื™-ืžื™ืŸ ื’ื•ื‘ื™ื ืžื—ื™ืจ ืžืฉืžืขื•ืชื™.
02:34
If you're an uninfected man living in Botswana, where the HIV rate is 30 percent,
45
154000
4000
ืื ืืชื” ืื“ื ืœื ื ื’ื•ืข ื”ื—ื™ ื‘ื‘ื•ื˜ืกื•ืื ื”, ืฉื ืฉืขื•ืจ ื”ืื™ื™ื“ืก ื”ื•ื 30 ืื—ื•ื–,
02:38
if you have one more partner this year -- a long-term partner, girlfriend, mistress --
46
158000
4000
ืื ื™ืฉ ืœืš ืขื•ื“ ื‘ืŸ/ื‘ืช-ื–ื•ื’ ื ื•ืกืคืช ื”ืฉื ื” -- ื‘ืŸ/ื‘ืช ืœื˜ื•ื•ื— ืืจื•ืš, ื—ื‘ืจื”, ืคื™ืœื’ืฉ --
02:42
your chance of dying in 10 years increases by three percentage points.
47
162000
4000
ื”ืกื™ื›ื•ื™ ืฉืœืš ืœืžื•ืช ืชื•ืš 10 ืฉื ื™ื ืขื•ืœื” ื‘ืฉืœื•ืฉื” ืื—ื•ื–ื™ื.
02:46
That is a huge effect.
48
166000
2000
ื–ื•ื”ื™ ื”ืฉืคืขื” ืขืฆื•ืžื”.
02:48
And so I think that we really feel like then people should have less sex.
49
168000
3000
ื•ืื– ื ื“ืžื” ืœื™ ืฉืื ื• ืžืจื’ื™ืฉื™ื ืฉืื ืฉื™ื ืฆืจื™ื›ื™ื ืœืงื™ื™ื ืคื—ื•ืช ื™ื—ืกื™-ืžื™ืŸ.
02:51
And in fact among gay men in the US
50
171000
2000
ื•ืœืžืขืฉื” ืืฆืœ ื”ื•ืžื•ืกืงืกื•ืืœื™ื ื‘ืืจื”"ื‘
02:53
we did see that kind of change in the 1980s.
51
173000
2000
ืื›ืŸ ืจืื™ื ื• ืฉื™ื ื•ื™ ื›ื–ื” ื‘ืฉื ื•ืช ื”-80.
02:55
So if we look in this particularly high-risk sample, they're being asked,
52
175000
4000
ืื ืื ื• ื‘ื•ื—ื ื™ื ืืช ืงื‘ื•ืฆืช ื”ืกื™ื›ื•ืŸ ื”ื–ื•, ื•ืฉื•ืืœื™ื ืื•ืชื,
02:59
"Did you have more than one unprotected sexual partner in the last two months?"
53
179000
3000
"ื”ืื ืงื™ื™ืžืช ื™ื—ืกื™ื ื‘ืœืชื™ ืžื•ื’ื ื™ื ืขื ื™ื•ืชืจ ืžื‘ืŸ-ื–ื•ื’ ืื—ื“ ื‘ื—ื•ื“ืฉื™ื™ื ื”ืื—ืจื•ื ื™ื?"
03:02
Over a period from '84 to '88, that share drops from about 85 percent to 55 percent.
54
182000
6000
ืœืื•ืจืš ื”ืชืงื•ืคื” ืž-84 ืขื“ 88, ื”ืื—ื•ื– ืฉืœ ืื ืฉื™ื ืฉืขืฉื• ื–ืืช ื ื•ืคืœ ืžื›-85 ืœ-55 ืื—ื•ื–.
03:08
It's a huge change in a very short period of time.
55
188000
2000
ื–ื”ื• ืฉื™ื ื•ื™ ืขืฆื•ื ื‘ืชืงื•ืคื” ืžืื•ื“ ืงืฆืจื”.
03:10
We didn't see anything like that in Africa.
56
190000
2000
ืœื ืจืื™ื ื• ืžืฉื”ื• ื“ื•ืžื” ืœื–ื” ื‘ืืคืจื™ืงื”.
03:12
So we don't have quite as good data, but you can see here
57
192000
3000
ืื™ืŸ ืœื ื• ื ืชื•ื ื™ื ื›ืœ-ื›ืš ื˜ื•ื‘ื™ื, ืื‘ืœ ื ื™ืชืŸ ืœืจืื•ืช ื›ืืŸ
03:15
the share of single men having pre-marital sex,
58
195000
2000
ื”ื—ืœืง ืฉืœ ื”ืจื•ื•ืงื™ื ื”ืžืงื™ื™ืžื™ื ื™ื—ืกื™-ืžื™ืŸ ืœืคื ื™ ื”ื ื™ืฉื•ืื™ืŸ,
03:17
or married men having extra-marital sex,
59
197000
2000
ืื• ืื ืฉื™ื ื ืฉื•ืื™ื ื”ืžืงื™ื™ืžื™ื ื™ื—ืกื™-ืžื™ืŸ ืžื—ื•ืฅ ืœื ื™ืฉื•ืื™ืŸ,
03:19
and how that changes from the early '90s to late '90s,
60
199000
3000
ื•ื›ื™ืฆื“ ื–ื” ืžืฉืชื ื” ืžืชื—ื™ืœืช ืฉื ื•ืช ื”-90 ืœืกื•ืฃ ื”ืขืฉื•ืจ,
03:22
and late '90s to early 2000s. The epidemic is getting worse.
61
202000
3000
ื•ืžืกื•ืฃ ืฉื ื•ืช ื”-90 ืœืชื—ื™ืœืช ืฉื ื•ืช ื”-2000. ื”ืžื’ืคื” ื”ื–ื• ืžื—ืจื™ืคื”.
03:25
People are learning more things about it.
62
205000
2000
ืื ืฉื™ื ืœื•ืžื“ื™ื ื™ื•ืชืจ ื“ื‘ืจื™ื ืขืœื™ื”...
03:27
We see almost no change in sexual behavior.
63
207000
2000
ืื ื• ืœื ืจื•ืื™ื ื›ืžืขื˜ ืฉื™ื ื•ื™ ื‘ื”ืชื ื”ื’ื•ืช ืžื™ื ื™ืช.
03:29
These are just tiny decreases -- two percentage points -- not significant.
64
209000
4000
ืืœื• ื”ืŸ ืจืง ื™ืจื™ื“ื•ืช ื–ืขื™ืจื•ืช -- ืฉื ื™ ืื—ื•ื–ื™ื -- ืœื ืžืฉืžืขื•ืชื™.
03:33
This seems puzzling. But I'm going to argue that you shouldn't be surprised by this,
65
213000
4000
ื–ื” ื ืจืื” ืžื•ื–ืจ, ืื‘ืœ ืื ื™ ื”ื•ืœื›ืช ืœื˜ืขื•ืŸ ืฉืื™ืŸ ืžื” ืœื”ื™ื•ืช ืžื•ืคืชืขื™ื ื‘ื’ืœืœ ื–ื”.
03:37
and that to understand this you need to think about health
66
217000
3000
ื•ื›ื“ื™ ืœื”ื‘ื™ืŸ ื–ืืช, ืฆืจื™ืš ืœื—ืฉื•ื‘ ืขืœ ื‘ืจื™ืื•ืช
03:40
the way than an economist does -- as an investment.
67
220000
3000
ื›ืžื• ืฉื”ื›ืœื›ืœืŸ ื—ื•ืฉื‘ - ื‘ืชื•ืจ ื”ืฉืงืขื”.
03:43
So if you're a software engineer and you're trying to think about
68
223000
3000
ื›ืš ืœื“ื•ื’ืžื ืื ืืชื” ืžื”ื ื“ืก ืชื•ื›ื ื” ื•ืืชื” ืžื ืกื” ืœื”ื—ืœื™ื˜
03:46
whether to add some new functionality to your program,
69
226000
3000
ืื ืœื”ื•ืกื™ืฃ ื™ื›ื•ืœื•ืช ื—ื“ืฉื•ืช ืœืชื•ื›ื ื” ืฉืœืš,
03:49
it's important to think about how much it costs.
70
229000
2000
ื–ื” ื—ืฉื•ื‘ ืœืืžื•ื“ ื›ืžื” ื–ื” ื™ืขืœื”.
03:51
It's also important to think about what the benefit is.
71
231000
2000
ื–ื” ื’ื ื—ืฉื•ื‘ ืœื—ืฉื•ื‘ ืžื” ืชื”ื™ื” ื”ืชื•ืขืœืช.
03:53
And one part of that benefit is how much longer
72
233000
2000
ื•ืื—ื“ ื”ืžืจื›ื™ื‘ื™ื ืฉืœ ื”ืชื•ืขืœืช ื–ื” ืขื•ื“ ื›ืžื” ื–ืžืŸ
03:55
you think this program is going to be active.
73
235000
2000
ื”ืชื•ื›ื ื” ืชืžืฉื™ืš ืœื”ื™ื•ืช ืฉื™ืžื•ืฉื™ืช.
03:57
If version 10 is coming out next week,
74
237000
2000
ืื ื’ืจืกื” 10 ื™ื•ืฆืืช ื‘ืฉื‘ื•ืข ื”ื‘ื,
03:59
there's no point in adding more functionality into version nine.
75
239000
3000
ืื™ืŸ ื˜ืขื ืœื”ื•ืกื™ืฃ ื™ื›ื•ืœื•ืช ื—ื“ืฉื•ืช ืœื’ืจืกื” 9.
04:02
But your health decisions are the same.
76
242000
2000
ื•ื‘ื›ืŸ, ื’ื ื”ื”ื—ืœื˜ื•ืช ืœื’ื‘ื™ ื”ื‘ืจื™ืื•ืช ืฉืœืš ื”ืŸ ืื•ืชื• ื”ื“ื‘ืจ.
04:04
Every time you have a carrot instead of a cookie,
77
244000
2000
ื‘ื›ืœ ืคืขื ืฉืืชื” ืœื•ืงื— ื’ื–ืจ ื‘ืžืงื•ื ืขื•ื’ื™ื”,
04:06
every time you go to the gym instead of going to the movies,
78
246000
3000
ื‘ื›ืœ ืคืขื ืฉืืชื” ื”ื•ืœืš ืœืžื›ื•ืŸ-ื›ื•ืฉืจ ื‘ืžืงื•ื ืœืกืจื˜,
04:09
that's a costly investment in your health.
79
249000
2000
ื–ื•ื”ื™ ื”ืฉืงืขื” ื™ืงืจื” ื‘ื‘ืจื™ืื•ืชืš.
04:11
But how much you want to invest is going to depend
80
251000
2000
ืื‘ืœ ื›ืžื” ืืชื” ืจื•ืฆื” ืœื”ืฉืงื™ืข, ื–ื” ืชืœื•ื™
04:13
on how much longer you expect to live in the future,
81
253000
2000
ื‘ื›ืžื” ืืชื” ืกื‘ื•ืจ ืฉืชื•ืกื™ืฃ ืœื—ื™ื•ืช ื‘ืขืชื™ื“ --
04:15
even if you don't make those investments.
82
255000
2000
ื’ื ืื ืœื ืชืขืฉื” ืืช ื”ื”ืฉืงืขื•ืช ื”ืืœื”.
04:17
AIDS is the same kind of thing. It's costly to avoid AIDS.
83
257000
3000
ืื™ื™ื“ืก ื–ื” ืื•ืชื• ื”ื“ื‘ืจ. ื–ื” ื™ืงืจ ืœื”ื™ืžื ืข ืžืื™ื™ื“ืก.
04:20
People really like to have sex.
84
260000
3000
ืื ืฉื™ื ื‘ืืžืช ืื•ื”ื‘ื™ื ืœืงื™ื™ื ื™ื—ืกื™-ืžื™ืŸ.
04:23
But, you know, it has a benefit in terms of future longevity.
85
263000
6000
ื›ืคื™ ืฉืืชื ื™ื•ื“ืขื™ื, ื™ืฉ ืœื–ื” ื™ืชืจื•ื ื•ืช ื‘ืžื•ื ื—ื™ื ืฉืœ ืืจื™ื›ื•ืช ื—ื™ื™ื.
04:29
But life expectancy in Africa, even without AIDS, is really, really low:
86
269000
4000
ืื‘ืœ ืชื•ื—ืœืช ื”ื—ื™ื™ื ื‘ืืคืจื™ืงื”, ืืคื™ืœื• ืœืœื ืื™ื™ื“ืก, ื”ื™ื ืžืžืฉ, ืžืžืฉ ื ืžื•ื›ื”:
04:33
40 or 50 years in a lot of places.
87
273000
3000
40 ืขื“ 50 ืฉื ื” ื‘ืžืงื•ืžื•ืช ืจื‘ื™ื.
04:36
I think it's possible, if we think about that intuition, and think about that fact,
88
276000
4000
ืื ื™ ื—ื•ืฉื‘ืช ืฉื–ื” ืืคืฉืจื™, ืื ื—ื•ืฉื‘ื™ื ืขืœ ื”ืื™ื ื˜ื•ืื™ืฆื™ื” ื”ื”ื™ื, ื•ื—ื•ืฉื‘ื™ื ืขืœ ื”ืขื•ื‘ื“ื”,
04:40
that maybe that explains some of this low behavior change.
89
280000
3000
ืฉืื•ืœื™ ื–ื” ืžืกื‘ื™ืจ ืืช ื”ืฉื™ื ื•ื™ ื”ื–ื ื™ื— ื”ื–ื” ื‘ื”ืชื ื”ื’ื•ืช.
04:43
But we really need to test that.
90
283000
2000
ืื‘ืœ ืื ื—ื ื• ื‘ืืžืช ืฆืจื™ื›ื™ื ืœื‘ื—ื•ืŸ ื–ืืช.
04:45
And a great way to test that is to look across areas in Africa and see:
91
285000
3000
ื•ื“ืจืš ื˜ื•ื‘ื” ืœื‘ื—ื•ืŸ ื–ืืช ื”ื™ื ืœื”ืกืชื›ืœ ืขืœ ืื–ื•ืจื™ื ื”ืฉื•ื ื™ื ื‘ืืคืจื™ืงื” ื•ืœื‘ื“ื•ืง:
04:48
do people with more life expectancy change their sexual behavior more?
92
288000
4000
ื”ืื ืื ืฉื™ื ื‘ืขืœื™ ืชื•ื—ืœืช ื—ื™ื™ื ื™ื•ืชืจ ืืจื•ื›ื” ืžืฉื ื™ื ืืช ื”ืชื ื”ื’ื•ืชื ื”ืžื™ื ื™ืช?
04:52
And the way that I'm going to do that is,
93
292000
2000
ื•ื”ื“ืจืš ื‘ื” ืื ื™ ื”ื•ืœื›ืช ืœืขืฉื•ืช ื–ืืช ื”ื™ื
04:54
I'm going to look across areas with different levels of malaria.
94
294000
3000
ืฉืื ื™ ื”ื•ืœื›ืช ืœื‘ื“ื•ืง ื‘ืื–ื•ืจื™ื ืฉื™ืฉ ื‘ื”ื ืจืžื•ืช ืฉื•ื ื•ืช ืฉืœ ืžืœืจื™ื”.
04:57
So malaria is a disease that kills you.
95
297000
3000
ืžืœืจื™ื” ื”ื™ื ืžื—ืœื” ืฉื”ื•ืจื’ืช.
05:00
It's a disease that kills a lot of adults in Africa, in addition to a lot of children.
96
300000
3000
ื–ื•ื”ื™ ืžื—ืœื” ืฉื”ื•ืจื’ืช ื”ืžื•ืŸ ืžื‘ื•ื’ืจื™ื ื‘ืืคืจื™ืงื”, ื‘ื ื•ืกืฃ ืœื”ืจื‘ื” ื™ืœื“ื™ื.
05:03
And so people who live in areas with a lot of malaria
97
303000
3000
ื•ื›ืš ืœืื ืฉื™ื ื”ื—ื™ื™ื ื‘ืื–ื•ืจื™ื ื‘ื”ื ื”ืžืœืจื™ื” ืžืื•ื“ ืฉื›ื™ื—ื”,
05:06
are going to have lower life expectancy than people who live in areas with limited malaria.
98
306000
4000
ืชื”ื™ื” ืชื•ื—ืœืช ื—ื™ื™ื ื™ื•ืชืจ ืงืฆืจื” ืžืืฉืจ ืื ืฉื™ื ื”ื—ื™ื™ื ื‘ืื–ื•ืจื™ื ื‘ื”ื ื”ืžืœืจื™ื” ืžื•ื’ื‘ืœืช.
05:10
So one way to test to see whether we can explain
99
310000
2000
ืื ื›ืš, ื“ืจืš ืื—ืช ืœื‘ื“ื•ืง ื‘ืื ืื ื• ื™ื›ื•ืœื™ื ืœื”ืกื‘ื™ืจ
05:12
some of this behavior change by differences in life expectancy
100
312000
3000
ืžืฉื”ื• ื‘ืฉื™ื ื•ื™ ื”ืชื ื”ื’ื•ืชื™ ื–ื” ื‘ืืžืฆืขื•ืช ื”ื”ื‘ื“ืœื™ื ื‘ืชื•ื—ืœืช ื”ื—ื™ื™ื
05:15
is to look and see is there more behavior change
101
315000
3000
ื”ื™ื ืœืจืื•ืช ืื ื™ืฉ ืฉื™ื ื•ื™ ื”ืชื ื”ื’ื•ืชื™ ื™ื•ืชืจ ื’ื“ื•ืœ
05:18
in areas where there's less malaria.
102
318000
2000
ื‘ืื–ื•ืจื™ื ื‘ื”ื ืฉื›ื™ื—ื•ืช ื”ืžืœืจื™ื” ื ืžื•ื›ื”.
05:20
So that's what this figure shows you.
103
320000
2000
ื•ื–ื” ืžื” ืฉืชืจืฉื™ื ื–ื” ืžืจืื”.
05:22
This shows you -- in areas with low malaria, medium malaria, high malaria --
104
322000
4000
ื”ื•ื ืžืจืื” -- ื‘ืื–ื•ืจื™ื ื‘ื”ื ืฉื›ื™ื—ื•ืช ื”ืžืœืจื™ื” ื ืžื•ื›ื”, ื‘ื™ื ื•ื ื™ืช, ื’ื‘ื•ื”ื” --
05:26
what happens to the number of sexual partners as you increase HIV prevalence.
105
326000
4000
ืžื” ืงื•ืจื” ืœืžืกืคืจ ืฉืœ ืฉื•ืชืคื™ื ืœื™ื—ืกื™-ืžื™ืŸ ื›ื›ืœ ืฉืฉื›ื™ื—ื•ืช ื”ืื™ื™ื“ืก ืขื•ืœื”.
05:30
If you look at the blue line,
106
330000
2000
ืื ืชืกืชื›ืœื• ืขืœ ื”ืงื• ื”ื›ื—ื•ืœ,
05:32
the areas with low levels of malaria, you can see in those areas,
107
332000
3000
ื‘ืื–ื•ืจื™ื ื‘ื”ื ืฉื›ื™ื—ื•ืช ื”ืžืœืจื™ื” ื ืžื•ื›ื”, ื ื™ืชืŸ ืœืจืื•ืช
05:35
actually, the number of sexual partners is decreasing a lot
108
335000
3000
ืฉื”ืžืกืคืจ ืฉืœ ื”ืฉื•ืชืคื™ื ืœื™ื—ืกื™-ืžื™ืŸ ื™ื•ืจื“ ืžืื•ื“
05:38
as HIV prevalence goes up.
109
338000
2000
ื›ื›ืœ ืฉืฉื›ื™ื—ื•ืช ื”ืื™ื™ื“ืก ืขื•ืœื”.
05:40
Areas with medium levels of malaria it decreases some --
110
340000
2000
ื‘ืื–ื•ืจื™ื ืขื ืฉื›ื™ื—ื•ืช ืžืœืจื™ื” ื‘ื™ื ื•ื ื™ืช ื”ื ื™ื•ืจื“ื™ื ื‘ืžื™ื“ืช ืžื” --
05:42
it doesn't decrease as much. And areas with high levels of malaria --
111
342000
3000
ื”ื ืœื ื™ื•ืจื“ื™ื ืขื“ ื›ื“ื™ ื›ืš. ื•ื‘ืื–ื•ืจื™ื ืขื ืฉื›ื™ื—ื•ืช ืžืœืจื™ื” ื’ื‘ื•ื”ื” --
05:45
actually, it's increasing a little bit, although that's not significant.
112
345000
5000
ืœืžืขืฉื”, ื”ื ืืคื™ืœื• ืขื•ืœื™ื ืงืฆืช, ืืฃ ืขืœ-ืคื™ ืฉื–ื” ืœื ืžืฉืžืขื•ืชื™.
05:50
This is not just through malaria.
113
350000
2000
ื–ื” ืœื ืจืง ืขื ืžืœืจื™ื”.
05:52
Young women who live in areas with high maternal mortality
114
352000
3000
ื ืฉื™ื ืฆืขื™ืจื•ืช ื”ื—ื™ื•ืช ื‘ืื–ื•ืจื™ื ื‘ื”ื ื™ืฉ ืชืžื•ืชืช ืืžื”ื•ืช ื’ื‘ื•ื”ื” ื‘ืœื™ื“ื”
05:55
change their behavior less in response to HIV
115
355000
3000
ืžืฉื ื•ืช ืืช ื”ืชื ื”ื’ื•ืชืŸ ืคื—ื•ืช ื‘ืชื’ื•ื‘ื” ืœืื™ื™ื“ืก
05:58
than young women who live in areas with low maternal mortality.
116
358000
3000
ืžืืฉืจ ื ืฉื™ื ืฆืขื™ืจื•ืช ื”ื—ื™ื•ืช ื‘ืื–ื•ืจื™ื ื‘ื”ื ืชืžื•ืชืช ืืžื”ื•ืช ื ืžื•ื›ื”.
06:01
There's another risk, and they respond less to this existing risk.
117
361000
4000
ืงื™ื™ื ืกื™ื›ื•ืŸ ืื—ืจ ื ื•ืกืฃ, ื•ื”ืŸ ืžื’ื™ื‘ื•ืช ืคื—ื•ืช ืœืกื™ื›ื•ืŸ ื–ื” ื”ืงื™ื™ื.
06:06
So by itself, I think this tells a lot about how people behave.
118
366000
3000
ื–ื” ืœื›ืฉืขืฆืžื•, ื›ืš ื ืจืื” ืœื™, ืื•ืžืจ ื”ืจื‘ื” ืขืœ ื”ืชื ื”ื’ื•ืช ืฉืœ ืื ืฉื™ื.
06:09
It tells us something about why we see limited behavior change in Africa.
119
369000
3000
ื–ื” ืžืกืคืจ ืœื ื• ืžื“ื•ืข ืื ื• ืจื•ืื™ื ืฉื™ื ื•ื™ ื”ืชื ื”ื’ื•ืชื™ ืžื•ื’ื‘ืœ ื‘ืืคืจื™ืงื”.
06:12
But it also tells us something about policy.
120
372000
2000
ืื‘ืœ ื–ื” ื’ื ืžืกืคืจ ืœื ื• ืžืฉื”ื• ืขืœ ืžื“ื™ื ื™ื•ืช.
06:14
Even if you only cared about AIDS in Africa,
121
374000
3000
ื’ื ืื ืืš ื•ืจืง ื”ื™ื” ืื›ืคืช ืœื ื• ืžืื™ื™ื“ืก ื‘ืืคืจื™ืงื”,
06:17
it might still be a good idea to invest in malaria,
122
377000
3000
ืขื“ื™ื™ืŸ ื–ื” ื”ื™ื” ืžืฉืชืœื ืœื”ืฉืงื™ืข ื‘ืžืœืจื™ื”,
06:20
in combating poor indoor air quality,
123
380000
2000
ื‘ืžืื‘ืง ื ื’ื“ ืื™ื›ื•ืช ืื•ื™ืจ ื™ืจื•ื“ื” ื‘ื‘ืชื™ื,
06:22
in improving maternal mortality rates.
124
382000
2000
ื”ืคื—ืชืช ืฉื™ืขื•ืจื™ ืชืžื•ืชื” ืฉืœ ืืžื”ื•ืช.
06:24
Because if you improve those things,
125
384000
2000
ืžื›ื™ื•ื•ืŸ ืฉืื ืžืฉืคืจื™ื ืืช ื”ื“ื‘ืจื™ื ื”ืืœื”,
06:26
then people are going to have an incentive to avoid AIDS on their own.
126
386000
4000
ืื– ื™ื”ื™ื” ืœืื ืฉื™ื ืชืžืจื™ืฅ ืœื”ื™ืžื ืข ืžืื™ื™ื“ืก ื‘ื›ื•ื—ื•ืช ืขืฆืžื.
06:30
But it also tells us something about one of these facts that we talked about before.
127
390000
4000
ืื‘ืœ ื–ื” ื’ื ืื•ืžืจ ืœื ื• ืžืฉื”ื• ืขืœ ืื—ืช ืžื”ืขื•ื‘ื“ื•ืช ืฉื”ื–ื›ืจื ื• ื›ืืŸ ืงื•ื“ื.
06:34
Education campaigns, like the one that the president is focusing on in his funding,
128
394000
4000
ืงืžืคื™ื™ื ื™ื ื—ื™ื ื•ื›ื™ื™ื, ื›ืžื• ื–ื” ืฉื”ื ืฉื™ื ืžืชืžืงื“ ื‘ื• ื‘ื”ืงืฆื‘ื•ืช ืฉืœื•,
06:38
may not be enough, at least not alone.
129
398000
2000
ืขืœื•ืœ ืฉืœื ืœื”ืกืคื™ืง. ืœืคื—ื•ืช ืœื ืœื‘ื“ื•.
06:40
If people have no incentive to avoid AIDS on their own,
130
400000
2000
ืื ืœืื ืฉื™ื ืื™ืŸ ืชืžืจื™ืฅ ืœื”ื™ืžื ืข ืžืื™ื™ื“ืก ื‘ื›ื•ื—ื•ืช ืขืฆืžื --
06:42
even if they know everything about the disease,
131
402000
2000
ื’ื ืื ื”ื ื™ื•ื“ืขื™ื ื”ื›ืœ ืขืœ ื”ืžื—ืœื” --
06:44
they still may not change their behavior.
132
404000
2000
ืขื“ื™ื™ืŸ ื”ื ืขืœื•ืœื™ื ืฉืœื ืœืฉื ื•ืช ืืช ื”ืชื ื”ื’ื•ืชื.
06:46
So the other thing that I think we learn here is that AIDS is not going to fix itself.
133
406000
3000
ื”ื“ื‘ืจ ื”ืื—ืจ ืฉื ืจืื” ืœื™ ืฉืื ื• ืœื•ืžื“ื™ื ื›ืืŸ ื”ื•ื ืฉื”ืื™ื™ื“ืก ืœื ื”ื•ืœืš ืœืชืงืŸ ืืช ืขืฆืžื•.
06:49
People aren't changing their behavior enough
134
409000
2000
ืื ืฉื™ื ืื™ื ื ืžืฉื ื™ื ืืช ื”ืชื ื”ื’ื•ืชื ืžืกืคื™ืง
06:51
to decrease the growth in the epidemic.
135
411000
3000
ื›ื“ื™ ืœื’ืจื•ื ืœื™ืจื™ื“ื” ื‘ื”ืชืคืฉื˜ื•ืช ื”ืžื’ืคื”.
06:54
So we're going to need to think about policy
136
414000
2000
ืœื›ืŸ ื ืฆื˜ืจืš ืœื—ืฉื•ื‘ ืขืœ ืžื“ื™ื ื™ื•ืช
06:56
and what kind of policies might be effective.
137
416000
2000
ื•ืื™ื–ื• ืกื•ื’ ืฉืœ ืžื“ื™ื ื™ื•ืช ืชื”ื™ื” ื™ืขื™ืœื”.
06:58
And a great way to learn about policy is to look at what worked in the past.
138
418000
3000
ื“ืจืš ืžืฆื•ื™ื™ื ืช ืœืœืžื•ื“ ืขืœ ืžื“ื™ื ื™ื•ืช ื”ื™ื ืœื‘ื“ื•ืง ืžื” ืขื‘ื“ ื‘ืขื‘ืจ.
07:01
The reason that we know that the ABC campaign
139
421000
2000
ื”ืกื™ื‘ื” ืฉืื ื• ื™ื•ื“ืขื™ื ืฉืงืžืคื™ื™ืŸ ื”-ABC
07:03
was effective in Uganda is we have good data on prevalence over time.
140
423000
3000
ื”ื™ื” ื™ืขื™ืœ ื‘ืื•ื’ื ื“ื” ื”ื™ื ืฉื‘ืื•ื’ื ื“ื” ื”ื™ื• ืœื ื• ื ืชื•ื ื™ื ื™ืขื™ืœื™ื ืœืื•ืจืš ื–ืžืŸ ืขืœ ืฉื›ื™ื—ื•ืช ื”ืžื—ืœื”.
07:06
In Uganda we see the prevalence went down.
141
426000
2000
ื‘ืื•ื’ื ื“ื” ืื ื• ืจื•ืื™ื ืฉื”ืฉื›ื™ื—ื•ืช ื™ืจื“ื”.
07:08
We know they had this campaign. That's how we learn about what works.
142
428000
3000
ืื ื• ื™ื•ื“ืขื™ื ืฉื”ื™ื” ืœื”ื ืงืžืคื™ื™ืŸ ื”ื–ื”. ื›ืš ืื ื• ืœื•ืžื“ื™ื ืขืœ ืžื” ืฉื›ืŸ ืžืฉืคื™ืข.
07:11
It's not the only place we had any interventions.
143
431000
2000
ื–ื” ืœื ื”ืžืงื•ื ื”ื™ื—ื™ื“ ืฉื”ื™ืชื” ืฉื ื”ืชืขืจื‘ื•ืช.
07:13
Other places have tried things, so why don't we look at those places
144
433000
4000
ื’ื ื‘ืžืงื•ืžื•ืช ืื—ืจื™ื ื ื•ืกื• ื“ื‘ืจื™ื. ืื– ืœืžื” ืฉืœื ื ืกืชื›ืœ ืขืœ ืžืงื•ืžื•ืช ื”ืœืœื•
07:17
and see what happened to their prevalence?
145
437000
3000
ื•ื ืจืื” ืžื” ืงืจื” ืœืฉื›ื™ื—ื•ืช ืฉืœื”ื?
07:20
Unfortunately, there's almost no good data
146
440000
2000
ืœืจื•ืข ื”ืžื–ืœ, ืื™ืŸ ื›ืžืขื˜ ื ืชื•ื ื™ื ืจืื•ื™ื™ื
07:22
on HIV prevalence in the general population in Africa until about 2003.
147
442000
5000
ืขืœ ืฉื›ื™ื—ื•ืช ื”ืื™ื™ื“ืก ื‘ืื•ื›ืœื•ืกื™ื” ื”ื›ืœืœื™ืช ื‘ืืคืจื™ืงื” ืขื“ ื‘ืขืจืš 2003.
07:27
So if I asked you, "Why don't you go and find me
148
447000
2000
ืื– ืื ื”ื™ื™ืชื™ ืฉื•ืืœืช ืืชื›ื, "ืžื“ื•ืข ืฉืœื ืชืžืฆืื•
07:29
the prevalence in Burkina Faso in 1991?"
149
449000
3000
ืืช ื”ืฉื›ื™ื—ื•ืช ื‘ื‘ื•ืจืงื™ื ื”-ืคืืกื• ื‘-1991?"
07:32
You get on Google, you Google, and you find,
150
452000
3000
ืชืœื›ื• ืœื’ื•ื’ืœ, ืชื—ืคืฉื• -- ื•ืื– ืชืžืฆืื•,
07:35
actually the only people tested in Burkina Faso in 1991
151
455000
3000
ืฉืœืžืขืฉื” ื”ืื•ื›ืœื•ืกื™ื” ื”ื™ื—ื™ื“ื” ืฉื ื‘ื“ืงื” ื‘ื‘ื•ืจืงื™ื ื”-ืคืืกื• ื‘-1991
07:38
are STD patients and pregnant women,
152
458000
2000
ื”ื ื—ื•ืœื™ื ื‘ืžื—ืœื•ืช-ืžื™ืŸ ื•ื ืฉื™ื ื‘ื”ืจื™ื•ืŸ.
07:40
which is not a terribly representative group of people.
153
460000
2000
ืฉื”ื ืœื ืงื‘ื•ืฆื” ืžื™ื™ืฆื’ืช ื‘ืžื™ื•ื—ื“ ืฉืœ ื”ืื•ื›ืœื•ืกื™ื”.
07:42
Then if you poked a little more, you looked a little more at what was going on,
154
462000
3000
ืื ื”ื™ื™ืชื ื—ื•ืคืจื™ื ืขื•ื“ ืงืฆืช, ืื ื”ื™ื™ืชื ืžืกืชื›ืœื™ื ืงืฆืช ื™ื•ืชืจ ืœืขื•ืžืง,
07:45
you'd find that actually that was a pretty good year,
155
465000
3000
ื”ื™ื™ืชื ืžื•ืฆืื™ื ืฉื‘ืขืฆื ื–ื• ื”ื™ืชื” ืฉื ื” ื“ื™ ื˜ื•ื‘ื”.
07:48
because in some years the only people tested are IV drug users.
156
468000
3000
ืžื›ื™ื•ื•ืŸ ืฉื‘ืฉื ื™ื ืžืกื•ื™ื™ืžื•ืช ื”ืื•ื›ืœื•ืกื™ื” ื”ื™ื—ื™ื“ื” ืฉื ื‘ื“ืงื” ื”ื™ื ืžืฉืชืžืฉื™ ืกืžื™ื.
07:51
But even worse -- some years it's only IV drug users,
157
471000
2000
ืื‘ืœ ืžื” ืฉื™ื•ืชืจ ื’ืจื•ืข -- ื‘ืฉื ื™ื ืžืกื•ื™ื™ืžื•ืช ื–ื” ืจืง ืžืฉืชืžืฉื™ ืกืžื™ื ื ื’ื•ืขื™ ืื™ื™ื“ืก,
07:53
some years it's only pregnant women.
158
473000
2000
ื‘ืฉื ื™ื ืื—ืจื•ืช ื–ื” ืจืง ื ืฉื™ื ื‘ื”ืจื™ื•ืŸ.
07:55
We have no way to figure out what happened over time.
159
475000
2000
ืื™ืŸ ืœื ื• ืฉื•ื ื“ืจืš ืœื“ืขืช ืžื” ืงื•ืจื” ืœืื•ืจืš ื–ืžืŸ.
07:57
We have no consistent testing.
160
477000
2000
ืื™ืŸ ืœื ื• ื‘ื“ื™ืงื•ืช ืขืงื‘ื™ื•ืช.
07:59
Now in the last few years, we actually have done some good testing.
161
479000
5000
ื•ื‘ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช, ืขืจื›ื ื• ืžืกืคืจ ืžื—ืงืจื™ื ื˜ื•ื‘ื™ื.
08:04
In Kenya, in Zambia, and a bunch of countries,
162
484000
3000
ื‘ืงื ื™ื”, ื‘ื–ืžื‘ื™ื” ื•ืงื‘ื•ืฆื” ืฉืœ ืžื“ื™ื ื•ืช,
08:07
there's been testing in random samples of the population.
163
487000
3000
ื ืขืจื›ื•ืช ื›ื™ื•ื ื‘ื“ื™ืงื•ืช ืฉืœ ืงื‘ื•ืฆื•ืช ืืงืจืื™ื•ืช ืžื”ืื•ื›ืœื•ืกื™ื”.
08:10
But this leaves us with a big gap in our knowledge.
164
490000
3000
ืื‘ืœ ื–ื” ืžืฉืื™ืจ ืื•ืชื ื• ืขื ื—ืœืœ ื’ื“ื•ืœ ื‘ื™ื“ืข.
08:13
So I can tell you what the prevalence was in Kenya in 2003,
165
493000
3000
ื›ื™ ืื ื™ ื™ื›ื•ืœื” ืœืกืคืจ ืœื›ื ืžื” ื”ื™ืชื” ื”ืฉื›ื™ื—ื•ืช ื‘ืงื ื™ื” ื‘-2003,
08:16
but I can't tell you anything about 1993 or 1983.
166
496000
3000
ืื‘ืœ ืื™ื ื™ ื™ื›ื•ืœื” ืœืกืคืจ ืœื›ื ื“ื‘ืจ ืขืœ 1993 ืื• 1983.
08:19
So this is a problem for policy. It was a problem for my research.
167
499000
4000
ืœื›ืŸ ื–ื• ื‘ืขื™ื” ืฉืœ ืžื“ื™ื ื™ื•ืช, ื–ื• ื”ื™ืชื” ื”ื‘ืขื™ื” ื‘ืžื—ืงืจ ืฉืœื™.
08:23
And I started thinking about how else might we figure out
168
503000
4000
ืื– ื”ืชื—ืœืชื™ ืœื—ืฉื•ื‘ ืขืœ ื›ื™ืฆื“ ื ื™ืชืŸ ืœืžืฆื•ื ื‘ื“ืจืš ืื—ืจืช
08:27
what the prevalence of HIV was in Africa in the past.
169
507000
2000
ืžื” ื”ื™ืชื” ื”ืฉื›ื™ื—ื•ืช ืฉืœ ืื™ื™ื“ืก ื‘ืืคืจื™ืงื” ื‘ืขื‘ืจ.
08:29
And I think that the answer is, we can look at mortality data,
170
509000
4000
ื•ืื ื™ ืกื‘ื•ืจื” ืฉื”ืชืฉื•ื‘ื” ื”ื™ื, ืื ื• ื™ื›ื•ืœื™ื ืœื”ืกืชื›ืœ ื‘ื ืชื•ื ื™ ืชืžื•ืชื”,
08:33
and we can use mortality data to figure out what the prevalence was in the past.
171
513000
4000
ื•ืื ื• ื™ื›ื•ืœื™ื ืœื”ืฉืชืžืฉ ื‘ื ืชื•ื ื™ ืชืžื•ืชื” ื›ื“ื™ ืœืžืฆื•ื ืžื” ื”ื™ืชื” ื”ืฉื›ื™ื—ื•ืช ื‘ืขื‘ืจ.
08:37
To do this, we're going to have to rely on the fact
172
517000
2000
ื›ื“ื™ ืœืขืฉื•ืช ื–ืืช, ืื ื• ื ืกืชืžืš ืขืœ ื”ืขื•ื‘ื“ื”
08:39
that AIDS is a very specific kind of disease.
173
519000
2000
ืฉืื™ื™ื“ืก ื”ื™ื ืžื—ืœื” ืžืกื•ื’ ืžืื•ื“ ืžืกื•ื™ื™ื.
08:41
It kills people in the prime of their lives.
174
521000
2000
ื”ื™ื ืžื—ืกืœืช ืื ืฉื™ื ื‘ืื‘ื™ื‘ ื—ื™ื™ื”ื.
08:43
Not a lot of other diseases have that profile. And you can see here --
175
523000
3000
ืœื ืœื”ืจื‘ื” ืžื—ืœื•ืช ื™ืฉ ืคืจื•ืคื™ืœ ื›ื–ื”. ื•ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ื›ืืŸ:
08:46
this is a graph of death rates by age in Botswana and Egypt.
176
526000
4000
ื–ื”ื• ื’ืจืฃ ืฉืœ ืฉื™ืขื•ืจื™ ืชืžื•ืชื” ืœืคื™ ื’ื™ืœ ื‘ื‘ื•ืฆื•ื•ืื ื” ื•ืžืฆืจื™ื.
08:50
Botswana is a place with a lot of AIDS,
177
530000
2000
ื‘ื•ืฆื•ื•ืื ื” ื”ื™ื ืžืงื•ื ืฉื™ืฉ ื‘ื• ื”ืจื‘ื” ืื™ื™ื“ืก,
08:52
Egypt is a place without a lot of AIDS.
178
532000
2000
ืžืฆืจื™ื ื”ื™ื ืžืงื•ื ืœืœื ื”ืจื‘ื” ืื™ื™ื“ืก.
08:54
And you see they have pretty similar death rates among young kids and old people.
179
534000
3000
ื•ืืชื ืจื•ืื™ื ืฉื™ืฉ ืœื”ืŸ ืฉื™ืขื•ืจื™ ืชืžื•ืชื” ื“ื™ ื“ื•ืžื™ื ื‘ื™ืŸ ื™ืœื“ื™ื ื•ืื ืฉื™ื ื–ืงื ื™ื.
08:57
That suggests it's pretty similar levels of development.
180
537000
3000
ื–ื” ืจื•ืžื– ืฉืฉื ื™ืฉ ืจืžื•ืช ื”ืชืคืชื—ื•ืช ื“ื™ ื“ื•ืžื•ืช.
09:00
But in this middle region, between 20 and 45,
181
540000
3000
ืื‘ืœ ื‘ืชื—ื•ื ื”ืžืจื›ื–ื™, ื‘ื™ืŸ 25 ืœ-45,
09:03
the death rates in Botswana are much, much, much higher than in Egypt.
182
543000
4000
ืฉื™ืขื•ืจื™ ื”ืชืžื•ืชื” ื‘ื‘ื•ืฆื•ื•ืื ื” ื”ืจื‘ื” ื™ื•ืชืจ ื’ื‘ื•ื”ื™ื ืžืืฉืจ ื‘ืžืฆืจื™ื.
09:07
But since there are very few other diseases that kill people,
183
547000
4000
ืื‘ืœ ืžืื—ืจ ื•ื™ืฉื ืŸ ืžืขื˜ ืžืื•ื“ ืžื—ืœื•ืช ืื—ืจื•ืช ืฉื”ื•ืจื’ื•ืช ืื ืฉื™ื,
09:11
we can really attribute that mortality to HIV.
184
551000
3000
ืื ื• ืœืžืขืฉื” ื™ื›ื•ืœื™ื ืœื™ื—ืก ืืช ื”ืชืžื•ืชื” ืœืื™ื™ื“ืก.
09:14
But because people who died this year of AIDS got it a few years ago,
185
554000
4000
ืื‘ืœ ืžื›ื™ื•ื•ืŸ ืฉืื ืฉื™ื ืฉืžืชื• ื”ืฉื ื” ืžืื™ื™ื“ืก ื ื“ื‘ืงื• ื‘ื” ืœืคื ื™ ืžืกืคืจ ืฉื ื™ื,
09:18
we can use this data on mortality to figure out what HIV prevalence was in the past.
186
558000
5000
ืื ื• ื™ื›ื•ืœื™ื ืœื”ืฉืชืžืฉ ื‘ื ืชื•ื ื™ื ื”ืœืœื• ื›ื“ื™ ืœืžืฆื•ื ืžื” ื”ื™ืชื” ืฉื›ื™ื—ื•ืช ื”ืื™ื™ื“ืก ื‘ืขื‘ืจ.
09:23
So it turns out, if you use this technique,
187
563000
2000
ื›ืš ืžืชื‘ืจืจ, ืื ืžืฉืชืžืฉื™ื ื‘ื˜ื›ื ื™ืงื” ื–ื•,
09:25
actually your estimates of prevalence are very close
188
565000
2000
ื”ืื•ืžื“ื ื™ื ืฉืœื›ื ืขืœ ืฉื›ื™ื—ื•ืช ืงืจื•ื‘ื™ื ืžืื•ื“
09:27
to what we get from testing random samples in the population,
189
567000
3000
ืœืžื” ืฉืžืชืงื‘ืœ ืžื‘ื“ื™ืงืช ื“ื•ื’ืžืื•ืช ืืงืจืื™ื•ืช ืžืื•ื›ืœื•ืกื™ื” --
09:30
but they're very, very different than what UNAIDS tells us the prevalences are.
190
570000
5000
ืื‘ืœ ื”ื ืžืื•ื“ ืžืื•ื“ ืฉื•ื ื™ื ืžืžื” ืฉื”ืื™ืจื’ื•ืŸ ืœืžืœื—ืžื” ื‘ืื™ื™ื“ืก ืฉืœ ื”ืื•"ื ืžืกืคืจ ืœื ื• ืขืœ ื”ืฉื›ื™ื—ื•ื™ื•ืช.
09:35
So this is a graph of prevalence estimated by UNAIDS,
191
575000
3000
ืื– ื–ื”ื• ื”ื’ืจืฃ ืฉืœ ืฉื›ื™ื—ื•ืช ืœืคื™ ื”ืื•ืžื“ืŸ ืฉืœ ืื•"ื,
09:38
and prevalence based on the mortality data
192
578000
2000
ื•ืฉื›ื™ื—ื•ืช ื”ืžื‘ื•ืกืกืช ืขืœ ื ืชื•ื ื™ ื”ืชืžื•ืชื”
09:40
for the years in the late 1990s in nine countries in Africa.
193
580000
4000
ื‘ืฉื ื™ื ื”ืžืื•ื—ืจื•ืช ืฉืœ ืฉื ื•ืช ื”-90 ื‘ืชืฉืข ืžื“ื™ื ื•ืช ื‘ืืคืจื™ืงื”.
09:44
You can see, almost without exception,
194
584000
2000
ื ื™ืชืŸ ืœืจืื•ืช ื›ืžืขื˜ ืœืœื ื™ื•ืฆื ืžื”ื›ืœืœ,
09:46
the UNAIDS estimates are much higher than the mortality-based estimates.
195
586000
4000
ืฉื”ืื•ืžื“ื ื™ื ืฉืœ ื”ืื•"ื ื’ื‘ื•ื”ื™ื ื‘ื”ืจื‘ื” ืžื”ืื•ืžื“ื ื™ื ื”ืžื‘ื•ืกืกื™ื ืขืœ ืฉื™ืขื•ืจื™ ื”ืชืžื•ืชื”.
09:50
UNAIDS tell us that the HIV rate in Zambia is 20 percent,
196
590000
4000
ื”ืื•"ื ืžืกืคืจ ืœื ื• ืฉืฉื™ืขื•ืจ ื”ืื™ื™ื“ืก ื‘ื–ืžื‘ื™ื” ื”ื•ื 20 ืื—ื•ื–,
09:54
and mortality estimates suggest it's only about 5 percent.
197
594000
4000
ื•ื”ืื•ืžื“ืŸ ืœืคื™ ืฉื™ืขื•ืจื™ ื”ืชืžื•ืชื” ื”ื•ื ืจืง ื›-5 ืื—ื•ื–.
09:58
And these are not trivial differences in mortality rates.
198
598000
3000
ื•ืืœื” ื”ื ืœื ื”ื‘ื“ืœื™ื ื–ื ื™ื—ื™ื ื‘ืฉื™ืขื•ืจื™ ืชืžื•ืชื”.
10:01
So this is another way to see this.
199
601000
2000
ืื– ื–ื•ื”ื™ ื“ืจืš ืื—ืจืช ืœื”ืกืชื›ืœ ืขืœ ื–ื”.
10:03
You can see that for the prevalence to be as high as UNAIDS says,
200
603000
2000
ื ื™ืชืŸ ืœืจืื•ืช ืฉื›ื“ื™ ืฉื”ืฉื›ื™ื—ื•ืช ืชื”ื™ื” ื’ื‘ื•ื”ื” ื›ืžื• ืฉื”ืื•"ื ื˜ื•ืขืŸ,
10:05
we have to really see 60 deaths per 10,000
201
605000
2000
ื”ื™ื• ืฆืจื™ื›ื•ืช ืœื”ื™ื•ืช 60 ืžื™ืชื•ืช ืœื›ืœ 10,000 ื ืคืฉ
10:07
rather than 20 deaths per 10,000 in this age group.
202
607000
4000
ืœืขื•ืžืช 20 ืžื™ืชื•ืช ืœื›ืœ 10,000 ื‘ืงื‘ื•ืฆืช ื’ื™ืœ ื–ื•.
10:11
I'm going to talk a little bit in a minute
203
611000
2000
ื‘ืขื•ื“ ืจื’ืข ืื“ื‘ืจ ื‘ืงืฆืจื”
10:13
about how we can use this kind of information to learn something
204
613000
3000
ืขืœ ืื™ืš ื‘ืขืฆื ื ื™ืชืŸ ืœื”ืฉืชืžืฉ ื‘ืžื™ื“ืข ื›ื–ื” ื›ื“ื™ ืœืœืžื•ื“ ืžืฉื”ื•
10:16
that's going to help us think about the world.
205
616000
2000
ืฉื™ืกื™ื™ืข ืœื ื• ืœื—ืฉื•ื‘ ืขืœ ื”ืขื•ืœื.
10:18
But this also tells us that one of these facts
206
618000
2000
ืื‘ืœ ื–ื” ื’ื ืื•ืžืจ ืœื ื• ืฉืื—ืช ืžื”ืขื•ื‘ื“ื•ืช
10:20
that I mentioned in the beginning may not be quite right.
207
620000
3000
ืฉื”ื–ื›ืจืชื™ ื‘ื”ืชื—ืœื” ืขืœื•ืœื” ืœื”ื™ื•ืช ื‘ืœืชื™ ืžื“ื•ื™ื™ืงืช.
10:23
If you think that 25 million people are infected,
208
623000
2000
ืื ืืชื ืกื‘ื•ืจื™ื ืฉ-25 ืžื™ืœื™ื•ืŸ ืื ืฉื™ื ื ื“ื‘ืงื•,
10:25
if you think that the UNAIDS numbers are much too high,
209
625000
3000
ืื ืืชื ืกื‘ื•ืจื™ื ืฉื”ืžืกืคืจื™ื ืฉืœ ืื•"ื ื’ื‘ื•ื”ื™ื ืžื“ื™ื™,
10:28
maybe that's more like 10 or 15 million.
210
628000
2000
ืื•ืœื™ ื–ื” ื™ื•ืชืจ ืžืฉื”ื• ื›ืžื• 10 ืื• 15 ืžื™ืœื™ื•ืŸ.
10:30
It doesn't mean that AIDS isn't a problem. It's a gigantic problem.
211
630000
4000
ื–ื” ืœื ืื•ืžืจ ืฉืื™ื™ื“ืก ืœื ืžื”ื•ื•ื” ื‘ืขื™ื”. ื–ื• ื‘ืขื™ื” ืื“ื™ืจื”.
10:34
But it does suggest that that number might be a little big.
212
634000
4000
ืื‘ืœ ื–ื” ืžืฆื‘ื™ืข ืขืœ ื›ืš ืฉื”ืžืกืคืจื™ื ื”ื ื’ื‘ื•ื”ื™ื ืžื“ื™ื™.
10:38
What I really want to do, is I want to use this new data
213
638000
2000
ืžื” ืฉืื ื™ ื‘ืืžืช ืจื•ืฆื” ืœืขืฉื•ืช, ื–ื” ืœื”ืฉืชืžืฉ ื‘ื ืชื•ื ื™ื ื”ื—ื“ืฉื™ื
10:40
to try to figure out what makes the HIV epidemic grow faster or slower.
214
640000
4000
ื›ื“ื™ ืœื ืกื•ืช ืœืžืฆื•ื ืžื” ื’ื•ืจื ืœืžื’ืคืช ื”ืื™ื™ื“ืก ืœื”ืชืคืฉื˜ ืžื”ืจ ื™ื•ืชืจ ืื• ืœืื˜ ื™ื•ืชืจ.
10:44
And I said in the beginning, I wasn't going to tell you about exports.
215
644000
3000
ื•ืืžืจืชื™ ื‘ื”ืชื—ืœื” ืฉืื ื™ ืœื ื”ื•ืœื›ืช ืœื“ื‘ืจ ืื™ืชื›ื ืขืœ ื™ืฆื•ื.
10:47
When I started working on these projects,
216
647000
2000
ื›ืืฉืจ ื”ืชื—ืœืชื™ ืœืขื‘ื•ื“ ืขืœ ื”ื ื•ืฉืื™ื ื”ืœืœื•,
10:49
I was not thinking at all about economics,
217
649000
2000
ื›ืœืœ ืœื ื—ืฉื‘ืชื™ ืขืœ ื›ืœื›ืœื”,
10:51
but eventually it kind of sucks you back in.
218
651000
3000
ืื‘ืœ ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ ื”ื›ืœื›ืœื” ืฉื•ืื‘ืช ืื•ืชืš ืคื ื™ืžื”.
10:54
So I am going to talk about exports and prices.
219
654000
3000
ืœื›ืŸ ืื“ื‘ืจ ืขืœ ื™ืฆื•ื ื•ืžื—ื™ืจื™ื.
10:57
And I want to talk about the relationship between economic activity,
220
657000
3000
ืื ื™ ืจื•ืฆื” ืœื“ื‘ืจ ืขืœ ื”ืงืฉืจ ื‘ื™ืŸ ืคืขื™ืœื•ืช ื›ืœื›ืœื™ืช,
11:00
in particular export volume, and HIV infections.
221
660000
4000
ื‘ืขื™ืงืจ ื‘ื™ืŸ ื ืคื— ื™ืฆื•ื, ืœื‘ื™ืŸ ื”ื™ื“ื‘ืงื•ืช ื‘ืื™ื™ื“ืก.
11:04
So obviously, as an economist, I'm deeply familiar
222
664000
4000
ื‘ืจื•ืจ ืฉื‘ืชื•ืจ ื›ืœื›ืœื ื™ืช ืื ื™ ื™ื•ื“ืขืช ื˜ื•ื‘ ืžืื•ื“
11:08
with the fact that development, that openness to trade,
223
668000
2000
ืฉืคื™ืชื•ื— ื•ืคืชื™ื—ื•ืช ืžืกื—ืจื™ืช
11:10
is really good for developing countries.
224
670000
2000
ืžืžืฉ ืžื•ืขื™ืœื™ื ืœืžื“ื™ื ื•ืช ืžืชืคืชื—ื•ืช.
11:12
It's good for improving people's lives.
225
672000
3000
ื”ื ื˜ื•ื‘ื™ื ืœืฉื™ืคื•ืจ ื—ื™ื™ ืื ืฉื™ื.
11:15
But openness and inter-connectedness, it comes with a cost
226
675000
2000
ืื‘ืœ ืคืชื™ื—ื•ืช ื•ืงืฉืจื™ื ื”ื“ื“ื™ื™ื ื’ื ื’ื•ื‘ื™ื ืžื—ื™ืจ
11:17
when we think about disease. I don't think this should be a surprise.
227
677000
3000
ื”ื ื•ื’ืข ืœืžื—ืœื•ืช. ืื™ื ื™ ื—ื•ืฉื‘ืช ืฉื–ื• ื”ืคืชืขื”.
11:20
On Wednesday, I learned from Laurie Garrett
228
680000
2000
ื‘ื™ื•ื ืจื‘ื™ืขื™, ืœืžื“ืชื™ ืžืœื•ืจื™ ื’ืืจื˜
11:22
that I'm definitely going to get the bird flu,
229
682000
2000
ืฉืื ื™ ืœื‘ื˜ื— ื”ื•ืœื›ืช ืœื—ืœื•ืช ื‘ืฉืคืขืช ื”ืขื•ืคื•ืช.
11:24
and I wouldn't be at all worried about that
230
684000
3000
ื•ืื ื™ ื›ืœืœ ืœื ื”ื™ื™ืชื™ ืžื•ื“ืื’ืช ื‘ืฉืœ ื›ืš
11:27
if we never had any contact with Asia.
231
687000
3000
ืื ืœื ื”ื™ื” ืœื ื• ื›ืœ ืžื’ืข ืขื ืืกื™ื”.
11:30
And HIV is actually particularly closely linked to transit.
232
690000
4000
ื•ืื™ื™ื“ืก ืงืฉื•ืจ ืงืฉืจ ื”ื“ื•ืง ืœืชื—ื‘ื•ืจื”.
11:34
The epidemic was introduced to the US
233
694000
2000
ื”ืžื—ืœื” ื—ื“ืจื” ืœืืจื”"ื‘
11:36
by actually one male steward on an airline flight,
234
696000
4000
ืขืœ-ื™ื“ื™ ื“ื™ื™ืœ ืื—ื“ ื‘ื˜ื™ืกื” ืืฉืจ ื ื“ื‘ืง
11:40
who got the disease in Africa and brought it back.
235
700000
2000
ื‘ืžื—ืœื” ื‘ืืคืจื™ืงื” ื•ื”ื‘ื™ื ืื•ืชื” ืœื›ืืŸ.
11:42
And that was the genesis of the entire epidemic in the US.
236
702000
3000
ื•ื–ื• ื”ื™ืชื” ื”ื”ืชื—ืœื” ืฉืœ ื›ืœ ื”ืžื’ื™ืคื” ื‘ืืจื”"ื‘.
11:45
In Africa, epidemiologists have noted for a long time
237
705000
4000
ื‘ืืคืจื™ืงื”, ื—ื•ืงืจื™ ืžื—ืœื•ืช ื›ื‘ืจ ืžื–ืžืŸ ืฉืžื• ืœื‘ ืฉื ื”ื’ื™ ืžืฉืื™ื•ืช ื•ืžื”ื’ืจื™ื
11:49
that truck drivers and migrants are more likely to be infected than other people.
238
709000
4000
ื”ื ื‘ืขืœื™ ื”ืกื™ื›ื•ื™ื™ื ื”ื’ื‘ื•ื”ื™ื ื‘ื™ื•ืชืจ ืœื”ื™ื“ื‘ืง ื‘ืžื—ืœื” ืœืขื•ืžืช ืื ืฉื™ื ืื—ืจื™ื.
11:53
Areas with a lot of economic activity --
239
713000
2000
ื”ืื–ื•ืจื™ื ื‘ืขืœื™ ื”ืคืขื™ืœื•ืช ื”ื›ืœื›ืœื™ืช ื”ื’ื“ื•ืœื” --
11:55
with a lot of roads, with a lot of urbanization --
240
715000
3000
ืขื ื”ืจื‘ื” ื›ื‘ื™ืฉื™ื ื•ื”ืจื‘ื” ืขื™ื•ืจ --
11:58
those areas have higher prevalence than others.
241
718000
2000
ื‘ืื•ืชื ื”ืื–ื•ืจื™ื ื”ืฉื›ื™ื—ื•ืช ื”ื™ื ื”ื’ื‘ื•ื”ื” ื‘ื™ื•ืชืจ.
12:00
But that actually doesn't mean at all
242
720000
2000
ืื‘ืœ ืื™ืŸ ืคื™ืจื•ืฉ ื”ื“ื‘ืจ ื›ืœืœ
12:02
that if we gave people more exports, more trade, that that would increase prevalence.
243
722000
4000
ืฉืื ื”ื™ื™ื ื• ืžืืคืฉืจื™ื ื™ื•ืชืจ ื™ืฆื•ื, ื™ื•ืชืจ ืžืกื—ืจ, ืื– ื–ื” ื”ื™ื” ืžื’ื‘ื™ืจ ืืช ื”ืฉื›ื™ื—ื•ืช.
12:06
By using this new data, using this information about prevalence over time,
244
726000
4000
ืขืœ-ื™ื“ื™ ืฉื™ืžื•ืฉ ื‘ื ืชื•ื ื™ื ื”ื—ื“ืฉื™ื, ืฉื™ืžื•ืฉ ื‘ืžื™ื“ืข ื–ื” ืขืœ ืฉื›ื™ื—ื•ืช ืœืื•ืจืš ื–ืžืŸ,
12:10
we can actually test that. And so it seems to be --
245
730000
4000
ืื ื• ืœืžืขืฉื” ื™ื›ื•ืœื™ื ืœื‘ื—ื•ืŸ ื–ืืช. ื•ื ืจืื” ืฉื–ื” --
12:14
fortunately, I think -- it seems to be the case
246
734000
2000
ืœืžืจื‘ื” ื”ืžื–ืœ, ืื ื™ ื—ื•ืฉื‘ืช -- ืฉื›ืš ื–ื” ื‘ืืžืช.
12:16
that these things are positively related.
247
736000
2000
ืฉื™ืฉ ืงืฉืจ ื—ื™ื•ื‘ื™ ื‘ื™ืŸ ื”ื“ื‘ืจื™ื.
12:18
More exports means more AIDS. And that effect is really big.
248
738000
4000
ื™ื•ืชืจ ื™ืฆื•ื ืคื™ืจื•ืฉื• ื™ื•ืชืจ ืื™ื™ื“ืก. ื•ื”ื”ืฉืคืขื” ื”ื™ื ืžืื•ื“ ื’ื“ื•ืœื”.
12:22
So the data that I have suggests that if you double export volume,
249
742000
4000
ื”ื ืชื•ื ื™ื ืฉื™ืฉ ืœื™ ืžืฆื‘ื™ืขื™ื ืขืœ ื›ืš ืฉืื ืžื›ืคื™ืœื™ื ืืช ื”ื™ืฆื•ื,
12:26
it will lead to a quadrupling of new HIV infections.
250
746000
5000
ื–ื” ื™ื‘ื™ื ืœืคื™-4 ื™ื•ืชืจ ื”ื“ื‘ืงื•ืช ื‘ืื™ื™ื“ืก.
12:31
So this has important implications both for forecasting and for policy.
251
751000
3000
ืœื›ืŸ ื™ืฉ ืœื–ื” ืžืฉืžืขื•ืช ืืžื™ืชื™ืช ื‘ืฉื‘ื™ืœ ื—ื™ื–ื•ื™ ื•ืœืงื‘ื™ืขืช ืžื“ื™ื ื™ื•ืช.
12:34
From a forecasting perspective, if we know where trade is likely to change,
252
754000
4000
ืžื”ื™ื‘ื˜ ืฉืœ ื—ื™ื–ื•ื™, ืื ืื ื• ื™ื•ื“ืขื™ื ื”ื™ื›ืŸ ื”ืžืกื—ืจ ื”ื•ืœืš ืœื”ืฉืชื ื•ืช,
12:38
for example, because of the African Growth and Opportunities Act
253
758000
3000
ืœื“ื•ื’ืžื, ื‘ื’ืœืœ ื—ื•ืง ื”ืฆืžื™ื—ื” ื•ื”ื–ื“ืžื ื•ื™ื•ืช ื‘ืืคืจื™ืงื”,
12:41
or other policies that encourage trade,
254
761000
2000
ืื• ืžื“ื™ื ื™ื•ืช ืื—ืจืช ื”ืžืขื•ื“ื“ืช ืžืกื—ืจ,
12:43
we can actually think about which areas are likely to be heavily infected with HIV.
255
763000
5000
ืื ื• ื™ื›ื•ืœื™ื ืœื—ื–ื•ืช ืืœื• ืžืงื•ืžื•ืช ืขืœื•ืœื™ื ืœื”ื™ื•ืช ื ื’ื•ืขื™ื ืงืฉื” ื‘ืื™ื™ื“ืก.
12:48
And we can go and we can try to have pre-emptive preventive measures there.
256
768000
6000
ื•ืื– ื ื•ื›ืœ ืœื ืกื•ืช ื•ืœื ืงื•ื˜ ืฆืขื“ื™ ืžื ื™ืขื” ื‘ืื•ืชื ื”ืžืงื•ืžื•ืช.
12:54
Likewise, as we're developing policies to try to encourage exports,
257
774000
3000
ื›ืžื•-ื›ืŸ, ื›ื›ืœ ืฉืื ื• ืžืคืชื—ื™ื ืžื“ื™ื ื™ื•ืช ืœืขื™ื“ื•ื“ ื”ื™ืฆื•ื,
12:57
if we know there's this externality --
258
777000
2000
ืื ืื ื• ื™ื•ื“ืขื™ื ืฉื™ืฉ ืžื’ืžืช ื”ื—ืฆื ื” --
12:59
this extra thing that's going to happen as we increase exports --
259
779000
2000
ื”ื“ื‘ืจ ื”ื ื•ืกืฃ ื”ื–ื” ืืฉืจ ื”ื•ืœืš ืœื”ืชืจื—ืฉ ืขื ื”ื’ื“ืœืช ื”ื™ืฆื•ื --
13:01
we can think about what the right kinds of policies are.
260
781000
3000
ื ื•ื›ืœ ืœื—ืฉื•ื‘ ืขืœ ืžื”ื™ ื”ืžื“ื™ื ื™ื•ืช ื”ื ื›ื•ื ื”.
13:04
But it also tells us something about one of these things that we think that we know.
261
784000
3000
ืื‘ืœ ื–ื” ื’ื ืื•ืžืจ ืœื ื• ืžืฉื”ื• ืขืœ ืื—ื“ ื”ื“ื‘ืจื™ื ืฉื ื“ืžื” ืœื ื• ืฉืื ื• ื™ื•ื“ืขื™ื.
13:07
Even though it is the case that poverty is linked to AIDS,
262
787000
3000
ืืฃ ืขืœ-ืคื™ ืฉื‘ืžืงืจื” ื–ื” ื”ืขื•ื ื™ ืงืฉื•ืจ ื‘ืื™ื™ื“ืก,
13:10
in the sense that Africa is poor and they have a lot of AIDS,
263
790000
3000
ื‘ืžื•ื‘ืŸ ืฉืืคืจื™ืงื” ื”ื™ื ืขื ื™ื” ื•ื™ืฉ ืฉื ื”ืจื‘ื” ืื™ื™ื“ืก,
13:13
it's not necessarily the case that improving poverty -- at least in the short run,
264
793000
4000
ื–ื” ืœื ื‘ื”ื›ืจื— ืฉืื ืžืฆืžืฆืžื™ื ืขื•ื ื™ -- ืœืคื—ื•ืช ื‘ื˜ื•ื•ื— ื”ืงืจื•ื‘ --
13:17
that improving exports and improving development --
265
797000
2000
ืฉืฉื™ืคื•ืจ ื”ื™ืฆื•ื ื•ื”ื’ื‘ืจืช ื”ืคื™ืชื•ื—,
13:19
it's not necessarily the case that that's going to lead
266
799000
2000
ืœื ื™ื•ื‘ื™ืœื• ื‘ื”ื›ืจื—
13:21
to a decline in HIV prevalence.
267
801000
2000
ืœื™ืจื™ื“ื” ื‘ืฉื›ื™ื—ื•ืช ื”ืื™ื™ื“ืก.
13:24
So throughout this talk I've mentioned a few times
268
804000
2000
ื•ื‘ื›ืŸ, ืœืื•ืจืš ื”ื”ืจืฆืื” ื›ื•ืœื” ื”ื–ื›ืจืชื™ ืžืกืคืจ ืคืขืžื™ื
13:26
the special case of Uganda, and the fact that
269
806000
2000
ืืช ื”ืžืงืจื” ื”ืžื™ื•ื—ื“ ืฉืœ ืื•ื’ื ื“ื”, ื•ืืช ื”ืขื•ื‘ื“ื”
13:28
it's the only country in sub-Saharan Africa with successful prevention.
270
808000
4000
ืฉื–ื•ื”ื™ ื”ืžื“ื™ื ื” ื”ื™ื—ื™ื“ื” ื‘ืืคืจื™ืงื” ื”ื“ืจื•ืžื™ืช ืœืกื”ืจื” ืขื ืžื ื™ืขื” ืžื•ืฆืœื—ืช.
13:32
It's been widely heralded.
271
812000
2000
ื–ื” ืคื•ืจืกื ื‘ืื•ืคืŸ ื ืจื—ื‘.
13:34
It's been replicated in Kenya, and Tanzania, and South Africa and many other places.
272
814000
6000
ื”ื“ื‘ืจ ื—ื–ืจ ืขืœ ืขืฆืžื• ื‘ืงื ื™ื” ื•ื‘ื˜ื ื–ื ื™ื” ื•ื‘ื“ืจื•ื-ืืคืจื™ืงื” ื•ื‘ืžืงื•ืžื•ืช ืจื‘ื™ื ืื—ืจื™ื.
13:40
But now I want to actually also question that.
273
820000
4000
ืื‘ืœ ื›ืขืช ืื ื™ ืจื•ืฆื” ืœืคืงืคืง ื‘ื›ืš.
13:44
Because it is true that there was a decline in prevalence
274
824000
3000
ืžื›ื™ื•ื•ืŸ ืฉื–ื” ื ื›ื•ืŸ ืฉื”ื™ืชื” ื™ืจื™ื“ื” ื‘ืฉื›ื™ื—ื•ืช
13:47
in Uganda in the 1990s. It's true that they had an education campaign.
275
827000
4000
ื‘ืื•ื’ื ื“ื” ื‘ืฉื ื•ืช ื”-90. ื–ื” ื ื›ื•ืŸ ืฉื”ื™ื” ืฉื ืงืžืคื™ื™ืŸ ื—ื™ื ื•ื›ื™.
13:51
But there was actually something else that happened in Uganda in this period.
276
831000
6000
ืื‘ืœ ืœืžืขืฉื” ื”ื™ื” ืฉื ืžืฉื”ื• ืื—ืจ ืฉืงืจื” ื‘ืื•ื’ื ื“ื” ื‘ืชืงื•ืคื” ื–ื•.
13:57
There was a big decline in coffee prices.
277
837000
2000
ื”ื™ืชื” ื™ืจื™ื“ื” ื’ื“ื•ืœื” ื‘ืžื—ื™ืจื™ ืงืคื”.
13:59
Coffee is Uganda's major export.
278
839000
2000
ืงืคื” ื”ื•ื ื”ื™ืฆื•ื ื”ืขื™ืงืจื™ ืฉืœ ืื•ื’ื ื“ื”.
14:01
Their exports went down a lot in the early 1990s -- and actually that decline lines up
279
841000
5000
ื™ืฆื•ื ื–ื” ื™ืจื“ ืžืื•ื“ ื‘ืฉื ื•ืช ื”-90 ื”ืžื•ืงื“ืžื•ืช -- ื•ืœืžืขืฉื”, ื™ืจื™ื“ื” ื–ื• ื—ื•ืคืคืช
14:06
really, really closely with this decline in new HIV infections.
280
846000
4000
ืžืื•ื“ ืžืื•ื“ ื‘ืžื“ื•ื™ื™ืง ืืช ื”ื™ืจื™ื“ื” ื‘ื”ื“ื‘ืงื•ืช ืื™ื™ื“ืก.
14:10
So you can see that both of these series --
281
850000
3000
ืื– ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืืช ืฉื ื™ ื”ืงื•ื™ื ื”ืœืœื• --
14:13
the black line is export value, the red line is new HIV infections --
282
853000
3000
ื”ืงื• ื”ืฉื—ื•ืจ ืžื™ื™ืฆื’ ื™ืฆื•ื, ื”ืงื• ื”ืื“ื•ื ืืช ืžืกืคืจ ื”ื“ื‘ืงื•ืช ืื™ื™ื“ืก ื”ื—ื“ืฉื•ืช --
14:16
you can see they're both increasing.
283
856000
2000
ื ื™ืชืŸ ืœืจืื•ืช ืฉืฉื ื™ื”ื ืขื•ืœื™ื.
14:18
Starting about 1987 they're both going down a lot.
284
858000
2000
ื‘ืขืจืš ื‘-1987, ืฉื ื™ื”ื ื™ื•ืจื“ื™ื ืžืื•ื“.
14:20
And then actually they track each other
285
860000
2000
ื•ืœืื—ืจ-ืžื›ืŸ ื”ื ืขื•ืงื‘ื™ื ื–ื” ืื—ืจ ื–ื”
14:22
a little bit on the increase later in the decade.
286
862000
2000
ืงืฆืช ื‘ืขืœื™ื” ื™ื•ืชืจ ืžืื•ื—ืจ ื‘ืขืฉื•ืจ.
14:24
So if you combine the intuition in this figure
287
864000
2000
ืื– ืื ืžืฉืœื‘ื™ื ืื™ื ื˜ื•ืื™ืฆื™ื” ื•ืชืจืฉื™ื ื–ื”
14:26
with some of the data that I talked about before,
288
866000
3000
ื‘ื™ื—ื“ ืขื ื—ืœืง ืžื”ื ืชื•ื ื™ื ืฉื”ื–ื›ืจืชื™ ืžืงื•ื“ื,
14:29
it suggests that somewhere between 25 percent and 50 percent
289
869000
4000
ื›ืœ ื–ื” ืžืฆื‘ื™ืข ืขืœ ื›ืš ืฉื‘ื™ืŸ 25 ืœ-50 ืื—ื•ื–
14:33
of the decline in prevalence in Uganda
290
873000
2000
ืžื”ื™ืจื™ื“ื” ื‘ืฉื›ื™ื—ื•ืช ื‘ืื•ื’ื ื“ื”
14:35
actually would have happened even without any education campaign.
291
875000
4000
ื”ื™ืชื” ื‘ืขืฆื ืžืชืจื—ืฉืช ืœืœื ืฉื•ื ืงืžืคื™ื™ืŸ ื—ื™ื ื•ื›ื™.
14:39
But that's enormously important for policy.
292
879000
2000
ื•ื–ื” ื“ื‘ืจ ืžืื•ื“ ื—ืฉื•ื‘ ื‘ืฉื‘ื™ืœ ืงื‘ื™ืขืช ืžื“ื™ื ื™ื•ืช.
14:41
We're spending so much money to try to replicate this campaign.
293
881000
2000
ืื ื• ืžื•ืฆื™ืื™ื ื›ืœ-ื›ืš ื”ืจื‘ื” ื›ืกืฃ ื›ื“ื™ ืœื ืกื•ืช ืœืฉื›ืคืœ ืงืžืคื™ื™ืŸ ื–ื”,
14:43
And if it was only 50 percent as effective as we think that it was,
294
883000
3000
ื•ืื ื”ื•ื ื”ื™ื” ืจืง 50 ืื—ื•ื– ื™ืขื™ืœ ืžืžื” ืฉืื ื• ืกื‘ื•ืจื™ื ืฉื”ื•ื ื”ื™ื”,
14:46
then there are all sorts of other things
295
886000
2000
ืื– ื™ืฉ ื›ืœ ืžื™ื ื™ ื“ื‘ืจื™ื ืื—ืจื™ื
14:48
maybe we should be spending our money on instead.
296
888000
2000
ืฉืื•ืœื™ ืขืœื™ื”ื ืฆืจื™ืš ืœื”ื•ืฆื™ื ืืช ื”ื›ืกืฃ.
14:50
Trying to change transmission rates by treating other sexually transmitted diseases.
297
890000
4000
ืœื ืกื•ืช ื•ืœืฉื ื•ืช ืืช ื›ืžื•ื™ื•ืช ื”ื”ืขื‘ืจื” ืขืœ-ื™ื“ื™ ื˜ื™ืคื•ืœ ื‘ืžื—ืœื•ืช ืžื™ืŸ ืื—ืจื•ืช ืฉืžื•ืขื‘ืจื•ืช.
14:54
Trying to change them by engaging in male circumcision.
298
894000
2000
ืœื ืกื•ืช ืœืฉื ื•ืชืŸ ืขืœ-ื™ื“ื™ ืขื™ืงื•ืจ ืฉืœ ื’ื‘ืจื™ื.
14:56
There are tons of other things that we should think about doing.
299
896000
2000
ื™ืฉ ื”ืžื•ืŸ ื“ื‘ืจื™ื ืื—ืจื™ื ืฉืขืœื™ื ื• ืœื—ืฉื•ื‘ ืœืขืฉื•ืชื.
14:58
And maybe this tells us that we should be thinking more about those things.
300
898000
4000
ื•ืื•ืœื™ ื›ืœ ื–ื” ืื•ืžืจ ืœื ื• ืฉืขืœื™ื ื• ืœื—ืฉื•ื‘ ื™ื•ืชืจ ืขืœ ื“ื‘ืจื™ื ื”ื”ื.
15:02
I hope that in the last 16 minutes I've told you something that you didn't know about AIDS,
301
902000
5000
ืื ื™ ืžืงื•ื” ืฉื‘-16 ื”ื“ืงื•ืช ื”ืื—ืจื•ื ื•ืช ืกื™ืคืจืชื™ ืœื›ื ืžืฉื”ื• ืฉืœื ื™ื“ืขืชื ืขืœ ืื™ื™ื“ืก,
15:07
and I hope that I've gotten you questioning a little bit
302
907000
2000
ื•ืื ื™ ืžืงื•ื” ืฉื’ืจืžืชื™ ืœื›ื ืœื”ืจื”ืจ ืงืฆืช
15:09
some of the things that you did know.
303
909000
2000
ืขืœ ื”ื“ื‘ืจื™ื ืฉื›ืŸ ื™ื“ืขืชื.
15:11
And I hope that I've convinced you maybe
304
911000
2000
ื•ืื ื™ ืžืงื•ื” ืฉืฉื›ื ืขืชื™ ืืชื›ื ืฉืื•ืœื™
15:13
that it's important to understand things about the epidemic
305
913000
2000
ื–ื” ื—ืฉื•ื‘ ืœื”ื‘ื™ืŸ ื“ื‘ืจื™ื ืขืœ ื”ืžื’ื™ืคื”,
15:15
in order to think about policy.
306
915000
2000
ื›ื“ื™ ืœื—ืฉื•ื‘ ืขืœ ื”ืžื“ื™ื ื™ื•ืช ื”ื ื›ื•ื ื”.
15:18
But more than anything, you know, I'm an academic.
307
918000
2000
ืื‘ืœ ื™ื•ืชืจ ืžื›ืœ, ื›ืคื™ ืฉืืชื ื™ื•ื“ืขื™ื, ืื ื™ ืืฉืช ืืงื“ืžื™ื”.
15:20
And when I leave here, I'm going to go back
308
920000
2000
ื•ื›ืืฉืจ ืืขื–ื•ื‘ ื›ืืŸ, ืื—ื–ื•ืจ ืœืฉื‘ืช
15:22
and sit in my tiny office, and my computer, and my data.
309
922000
3000
ื‘ืžืฉืจื“ื™ ื”ืงื˜ืŸ, ื•ืขื ื”ืžื—ืฉื‘ ื•ื”ื ืชื•ื ื™ื ืฉืœื™ --
15:25
And the thing that's most exciting about that
310
925000
2000
ื•ื”ื“ื‘ืจ ื”ืžืจื’ืฉ ื‘ื™ื•ืชืจ ื‘ืงืฉืจ ืœื–ื”
15:27
is every time I think about research, there are more questions.
311
927000
3000
ื”ื•ื ืฉื‘ื›ืœ ืคืขื ืฉืื ื™ ื—ื•ืฉื‘ืช ืขืœ ื”ืžื—ืงืจ, ืžืชืขื•ืจืจื•ืช ืขื•ื“ ืฉืืœื•ืช.
15:30
There are more things that I think that I want to do.
312
930000
2000
ื™ืฉ ื™ื•ืชืจ ื“ื‘ืจื™ื ืฉืื ื™ ื—ื•ืฉื‘ืช ืฉืขืœื™ื™ ืœื‘ืฆืข.
15:32
And what's really, really great about being here
313
932000
2000
ื•ืžื” ืฉื‘ืืžืช ื ื”ื“ืจ ื‘ืœื”ื™ื•ืช ืคื”
15:34
is I'm sure that the questions that you guys have
314
934000
2000
ื”ื•ื ืฉืื ื™ ื‘ื˜ื•ื—ื” ืฉื”ืฉืืœื•ืช ืฉื™ืฉ ืœื›ื
15:36
are very, very different than the questions that I think up myself.
315
936000
3000
ื”ืŸ ืžืื•ื“ ืžืื•ื“ ืฉื•ื ื•ืช ืžื”ืฉืืœื•ืช ืฉืื ื™ ืžืขืœื”.
15:39
And I can't wait to hear about what they are.
316
939000
2000
ื•ืœื›ืŸ ืื™ื ื™ ื™ื›ื•ืœื” ื›ื‘ืจ ืœื—ื›ื•ืช ืœืฉืžื•ืข ืืช ื”ืฉืืœื•ืช ืฉืœื›ื.
15:41
So thank you very much.
317
941000
2000
ืชื•ื“ื” ืจื‘ื” ืœื›ื.
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7