Emily Oster: What do we really know about the spread of AIDS?

30,076 views ใƒป 2007-07-16

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

๋ฒˆ์—ญ: Joanne Jung Eun Choi ๊ฒ€ํ† : Seo Rim Kim
00:26
So I want to talk to you today about AIDS in sub-Saharan Africa.
0
26000
3000
๋„ค! ์˜ค๋Š˜ ์ œ๊ฐ€ ์–˜๊ธฐ ํ•˜๊ณ ์ž ํ•˜๋Š” ๊ฒƒ์€ ๋‚จ๋ถ€ ์•„ํ”„๋ฆฌ์นด์˜ ์—์ด์ฆˆ์— ๊ด€ํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
00:29
And this is a pretty well-educated audience,
1
29000
2000
์—ฌ๊ธฐ ๊ณ„์‹  ๋ถ„๋“ค์€ ์ข‹์€ ๊ต์œก์„ ๋ฐ›์€ ๋ถ„๋“ค์ด๋ผ ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
00:31
so I imagine you all know something about AIDS.
2
31000
3000
๊ทธ๋ž˜์„œ ์—์ด์ฆˆ์— ๊ด€ํ•ด ์–ด๋Š ์ •๋„ ์•„์‹ค ๊ฑฐ๋ผ๊ณ  ์ƒ๊ฐ๋ฉ๋‹ˆ๋‹ค.
00:34
You probably know that roughly 25 million people in Africa
3
34000
2000
์•„๋งˆ๋„ ์•„ํ”„๋ฆฌ์นด ์ธ๊ตฌ ์ค‘ 250๋งŒ๋ช… ์ •๋„๊ฐ€
00:36
are infected with the virus, that AIDS is a disease of poverty,
4
36000
4000
AIDS์— ๊ฐ์—ผ๋˜์–ด ์žˆ์–ด ํ”ํžˆ๋“ค AIDS๋ฅผ ๊ฐ€๋‚œํ•œ ๋‚˜๋ผ๋“ค์˜ ์งˆ๋ณ‘์ด๋ผ๊ณ ๋“ค ์•Œ๊ณ  ์žˆ์ฃ 
00:40
and that if we can bring Africa out of poverty, we would decrease AIDS as well.
5
40000
4000
๊ทธ๋ž˜์„œ ์•„ํ”„๋ฆฌ์นด๋ฅผ ๊ฐ€๋‚œ์—์„œ ๋ฒ—์–ด๋‚˜๊ฒŒ ํ•œ๋‹ค๋ฉด, AIDS ๊ฐ์—ผ๋ฅ  ์—ญ์‹œ ๋‚ฎ์•„์งˆ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
00:44
If you know something more, you probably know that Uganda, to date,
6
44000
3000
์ข€ ๋” ์•ˆ๋‹ค๋ฉด ์•„๋งˆ๋„ ์ตœ๊ทผ ์šฐ๊ฐ„๋‹ค์— ๊ด€๋ จ๋œ ์‚ฌ์‹ค์ธํ…๋ฐ์š”.
00:47
is the only country in sub-Saharan Africa
7
47000
2000
๋‚จ๋ถ€ ์•„ํ”„๋ฆฌ์นด์—์„œ ์œ ์ผํ•œ ๊ตญ๊ฐ€๋กœ
00:49
that has had success in combating the epidemic.
8
49000
3000
AIDS์™€์˜ ์ „์Ÿ์—์„œ ์ด๊ธฐ๊ณ  ์žˆ๋Š” ๊ตญ๊ฐ€์ธ๋ฐ
00:52
Using a campaign that encouraged people to abstain, be faithful, and use condoms --
9
52000
4000
๊ตญ๋ฏผ๋“ค์—๊ฒŒ ๊ธˆ์š•๊ณผ ์ ˆ์ œ ๊ทธ๋ฆฌ๊ณ  ์ฝ˜๋”์„ ์‚ฌ์šฉํ•˜๊ฒŒ ํ•˜๋Š” ABC ์บ ํŽ˜์ธ์„ ์žฅ๋ คํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
00:56
the ABC campaign -- they decreased their prevalence in the 1990s
10
56000
4000
์šฐ๊ฐ„๋‹ค๋Š” 1990๋…„๋Œ€์— AIDS ๊ฐ์—ผ๋ฅ ์„ ์ค„์˜€๋Š”๋ฐ
01:00
from about 15 percent to 6 percent over just a few years.
11
60000
4000
๋ช‡ ๋…„ ๋งŒ์— 15%์—์„œ 6%๊นŒ์ง€ ์ค„์˜€์Šต๋‹ˆ๋‹ค.
01:04
If you follow policy, you probably know that a few years ago
12
64000
3000
๊ด€์‹ฌ์ด ์žˆ๋‹ค๋ฉด ์•„๋งˆ๋„ ๋ช‡ ๋…„ ์ „
01:07
the president pledged 15 billion dollars to fight the epidemic over five years,
13
67000
4000
๋ถ€์‹œ ๋Œ€ํ†ต๋ น์ด 1์–ต5์ฒœ๋งŒ๋ถˆ์„ 5๋…„๋™์•ˆ AIDS์™€์˜ ์ „์Ÿ์— ์“ธ ๊ฒƒ์„ ์•ฝ์†ํ•˜๊ณ 
01:11
and a lot of that money is going to go to programs that try to replicate Uganda
14
71000
3000
์ƒ๋‹น์ˆ˜์˜ ๋ˆ์ด ์šฐ๊ฐ„๋‹ค์˜ AIDS ๋ฐฉ์ง€ ํ”„๋กœ๊ทธ๋žจ์—
01:14
and use behavior change to encourage people and decrease the epidemic.
15
74000
6000
๊ทธ๋ฆฌ๊ณ  ์šฐ๊ฐ„๋‹ค ์‚ฌ๋žŒ๋“ค์„ ๊ตํ™”์‹œํ‚ค๊ณ  ๊ฐ์—ผ๋ฅ ์„ ๋‚ฎ์ถ”๊ธฐ ์œ„ํ•ด ์“ฐ์—ฌ ์กŒ๋‹ค๋Š” ๊ฒƒ์„ ์•Œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
01:20
So today I'm going to talk about some things
16
80000
2000
๊ทธ๋ž˜์„œ ์˜ค๋Š˜ ์ €๋Š” ๋ช‡ ๊ฐ€์ง€ ๋ถ€๋ถ„์— ๋Œ€ํ•ด ์–˜๊ธฐํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค.
01:22
that you might not know about the epidemic,
17
82000
2000
๊ฐ์—ผ๋ฅ ์— ๋Œ€ํ•ด ์—ฌ๋Ÿฌ๋ถ„๋“ค์ด ์•Œ์ง€ ๋ชปํ•˜๋Š” ๊ฒƒ
01:24
and I'm actually also going to challenge
18
84000
2000
์‚ฌ์‹ค, ์—ฌ๋Ÿฌ๋ถ„๋“ค์ด ์•Œ๊ณ  ์žˆ๋‹ค๊ณ  ์ƒ๊ฐํ•˜๋Š”
01:26
some of these things that you think that you do know.
19
86000
2000
๋ช‡ ๊ฐ€์ง€ ๋ถ€๋ถ„์— ๋Œ€ํ•ด ๋‹ค๋ฅธ ์‹œ๊ฐ์„ ์ด์•ผ๊ธฐ ํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค.
01:28
To do that I'm going to talk about my research
20
88000
3000
๊ทธ๋ฆฌ๊ณ  ์ œ ์—ฐ๊ตฌ์— ๊ด€ํ•ด ์–˜๊ธฐํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค.
01:31
as an economist on the epidemic.
21
91000
2000
๊ฐ์—ผ๋ฅ ์— ๋Œ€ํ•œ ๊ฒฝ์ œํ•™์ž๋กœ์„œ์˜ ์‹œ๊ฐ์„ ๋ง์ด์ฃ .
01:33
And I'm not really going to talk much about the economy.
22
93000
2000
๊ทธ๋ฆฌ๊ณ  ๊ฒฝ์ œ์™€ ๊ด€๋ จ๋œ ์ด์•ผ๊ธฐ๋ฅผ ์–˜๊ธฐํ•˜์ง€๋Š” ์•Š์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
01:35
I'm not going to tell you about exports and prices.
23
95000
3000
์ˆ˜์ž…๊ณผ ๊ฐ€๊ฒฉ์— ๊ด€๋ จ๋œ ์ด์•ผ๊ธฐ๋ฅผ ํ•˜์ง€๋Š” ์•Š์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
01:38
But I'm going to use tools and ideas that are familiar to economists
24
98000
4000
๊ทธ๋Ÿฌ๋‚˜ ๊ฒฝ์ œํ•™์ž๋“ค์—๊ฒŒ ์ต์ˆ™ํ•œ ๋ฐฉ๋ฒ•๊ณผ ์ƒ๊ฐ๋“ค์„ ์ด์šฉํ•˜์—ฌ
01:42
to think about a problem that's more traditionally
25
102000
2000
๊ณ ์งˆ์ ์ธ ๋ฌธ์ œ๋“ค์— ๋Œ€ํ•ด ์ƒ๊ฐํ•ด๋ณด๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค.
01:44
part of public health and epidemiology.
26
104000
2000
๊ณต์ค‘ ๋ณด๊ฑด๊ณผ ์ „์—ผ๋ณ‘์— ๊ด€๋ จ๋œ.
01:46
And I think in that sense, this fits really nicely with this lateral thinking idea.
27
106000
4000
๊ทธ๋Ÿฐ ์˜๋ฏธ์—์„œ ์ƒˆ๋กœ์šด ์ธก๋ฉด์˜ ์‚ฌ๊ณ ์™€ ์ž˜ ๋งž๋Š” ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค.
01:50
Here I'm really using the tools of one academic discipline
28
110000
3000
์ž ์—ฌ๊ธฐ ํ•™์ˆ ์ ์ธ ๋ฐฉ์‹์„ ์‚ฌ์šฉํ•˜์—ฌ
01:53
to think about problems of another.
29
113000
2000
๋ฌธ์ œ๋ฅผ ์ƒ๊ฐํ•ด ๋ณด๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค.
01:55
So we think, first and foremost, AIDS is a policy issue.
30
115000
3000
์šฐ๋ฆฌ๊ฐ€ ์ƒ๊ฐํ•˜๋Š” ์ฒซ๋ฒˆ์งธ๋กœ ์ฃผ์š”ํ•œ ๊ฒƒ์€ AIDS๋Š” ์ •์ฑ…์ ์ธ ๋ฌธ์ œ๋ผ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
01:58
And probably for most people in this room, that's how you think about it.
31
118000
3000
์•„๋งˆ๋„ ์ด ๊ฐ•์—ฐ์žฅ์— ์žˆ๋Š” ๋Œ€๋ถ€๋ถ„์˜ ์‚ฌ๋žŒ๋“ค ์—ญ์‹œ ๊ทธ๋ ‡๊ฒŒ ์ƒ๊ฐํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
02:01
But this talk is going to be about understanding facts about the epidemic.
32
121000
4000
๊ทธ๋Ÿฌ๋‚˜ ์ด๋ฒˆ ์ฃผ์ œ๋Š” ์ „์—ผ๋ณ‘์— ๊ด€ํ•ด ์ดํ•ดํ•˜๊ณ  ์žˆ๋Š” ์‚ฌ์‹ค์— ๋Œ€ํ•œ ๊ฒƒ ์ž…๋‹ˆ๋‹ค.
02:05
It's going to be about thinking about how it evolves, and how people respond to it.
33
125000
3000
๊ทธ๊ฒƒ์€ ์–ด๋–ป๊ฒŒ ์ „์—ผ๋ณ‘์ด ๋ฐœ๋ณ‘ํ•˜๊ณ , ์–ด๋–ป๊ฒŒ ์‚ฌ๋žŒ๋“ค์ด ์ „์—ผ๋˜๋Š” ์ง€์— ๊ด€ํ•ด ์ƒ๊ฐํ•ด ๋ณด๊ณ ์žํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
02:08
I think it may seem like I'm ignoring the policy stuff,
34
128000
3000
์ €๋Š” ์ •์ฑ…์ ์ธ ๋ถ€๋ถ„๋“ค์„ ๋ฌด์‹œํ•˜๊ณ  ์ƒ๊ฐํ•ด ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.
02:11
which is really the most important,
35
131000
2000
๋ฌผ๋ก  ๊ทธ ๋ถ€๋ถ„์ด ๊ฐ€์žฅ ์ค‘์š”ํ•˜์ฃ ,
02:13
but I'm hoping that at the end of this talk you will conclude
36
133000
2000
๊ทธ๋Ÿฌ๋‚˜, ์ด ๊ฐ•์—ฐ์ด ๋๋‚  ๋•Œ์—” ์—ฌ๋Ÿฌ๋ถ„๋“ค์€ ์•Œ๊ฒŒ ๋  ๊ฒƒ ์ž…๋‹ˆ๋‹ค.
02:15
that we actually cannot develop effective policy
37
135000
2000
์šฐ๋ฆฌ๊ฐ€ ์‹ค์ œ ํšจ๊ณผ์ ์ธ ์ •์ฑ…๋“ค์„ ๋งŒ๋“ค ์ˆ˜ ์—†๋‹ค๋Š” ๊ฒƒ์„ ๋ง์ž…๋‹ˆ๋‹ค.
02:17
unless we really understand how the epidemic works.
38
137000
3000
๋งŒ์•ฝ ์ง„์ •์œผ๋กœ ์ „์—ผ๋ณ‘๋“ค์ด ์–ด๋–ป๊ฒŒ ๋ฐœ๋ณ‘ํ•˜๊ณ  ์žˆ๋Š”์ง€์— ๋Œ€ํ•ด ๋ชจ๋ฅธ๋‹ค๋ฉด ๋ง์ด์ฃ .
02:20
And the first thing that I want to talk about,
39
140000
2000
์ œ์ผ ๋จผ์ € ๋งํ•˜๊ณ  ์‹ถ์Šต๋‹ˆ๋‹ค.
02:22
the first thing I think we need to understand is:
40
142000
2000
์šฐ๋ฆฌ๊ฐ€ ๋จผ์ € ์•Œ์•„์•ผ ํ•  ๊ฒƒ์€
02:24
how do people respond to the epidemic?
41
144000
2000
์–ด๋–ป๊ฒŒ ์‚ฌ๋žŒ๋“ค์ด ์ „์—ผ๋ณ‘์— ๊ฐ์—ผ์ด ๋˜๋Š”๋ƒ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
02:26
So AIDS is a sexually transmitted infection, and it kills you.
42
146000
4000
๋จผ์ €, ์—์ด์ฆˆ๋Š” ์ฃฝ์Œ์— ์ด๋ฅด๊ฒŒ ๋งŒ๋“ค์ˆ˜ ์žˆ๋Š” ์„ฑ๋ณ‘์ž…๋‹ˆ๋‹ค.
02:30
So this means that in a place with a lot of AIDS,
43
150000
2000
์ด๊ฒƒ์ด ์˜๋ฏธํ•˜๋Š” ๊ฒƒ์€ AIDS ํ™˜์ž๋“ค์ด ๋งŽ์€ ์ง€์—ญ์—์„œ๋Š”
02:32
there's a really significant cost of sex.
44
152000
2000
์„ฑ์ ์ธ ํ–‰์œ„์˜ ์ดํ›„ ๋น„์šฉ์ด ๋งค์šฐ ๋†’๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
02:34
If you're an uninfected man living in Botswana, where the HIV rate is 30 percent,
45
154000
4000
๋งŒ์•ฝ ์—ฌ๋Ÿฌ๋ถ„๋“ค์ด HIV๊ฐ€ 30%์— ๋‹ฌํ•˜๋Š” ๋ณด์ธ ์™€๋‚˜์— ์‚ด๊ณ  ์žˆ๋Š” ๊ฐ์—ผ๋˜์ง€ ์•Š์€ ์‚ฌ๋žŒ์ด๋ผ๊ณ  ํ• ๋•Œ,
02:38
if you have one more partner this year -- a long-term partner, girlfriend, mistress --
46
158000
4000
๋งŒ์•ฝ ํ•œ ํ•ด์— ํ•œ ๋ช…์ด์ƒ์˜ ์ƒ๋Œ€์ž์™€ ์„ฑํ–‰์œ„๋ฅผ ํ•œ๋‹ค๋ฉด- ์žฅ๊ธฐ๊ฐ„ ํŒŒํŠธ๋„ˆ, ์—ฌ์ž์นœ๊ตฌ, ์•„๋‚ด
02:42
your chance of dying in 10 years increases by three percentage points.
47
162000
4000
๋‹น์‹ ์ด 10๋…„์•ˆ์— ์ฃฝ์„ ํ™•๋ฅ ์€ 3%๊นŒ์ง€ ์˜ฌ๋ผ๊ฐ€๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
02:46
That is a huge effect.
48
166000
2000
์ด๊ฒƒ์€ ๋Œ€๋‹จํ•œ ๊ฒฐ๊ณผ์ž…๋‹ˆ๋‹ค.
02:48
And so I think that we really feel like then people should have less sex.
49
168000
3000
๊ทธ๋ ‡๋‹ค๋ฉด, ์•„๋งˆ๋„ ์‚ฌ๋žŒ๋“ค์€ ์„ฑํ–‰์œ„๋ฅผ ๋œ ํ•ด์•ผ๋งŒ ํ•  ๊ฒƒ ๊ฐ™์ด ๋Š๋‚๋‹ˆ๋‹ค.
02:51
And in fact among gay men in the US
50
171000
2000
์‚ฌ์‹ค ๋ฏธ๊ตญ๋‚ด์˜ ๋™์„ฑ์•  ๋‚จ์ž๋“ค ์‚ฌ์ด์—
02:53
we did see that kind of change in the 1980s.
51
173000
2000
80๋…„๋Œ€์˜ ํ•œ ๋ณ€ํ™”๋ฅผ ์šฐ๋ฆฌ๋Š” ๋ณด์•˜์Šต๋‹ˆ๋‹ค.
02:55
So if we look in this particularly high-risk sample, they're being asked,
52
175000
4000
๋งŒ์•ฝ ํŠนํžˆ ์ด๋Ÿฌํ•œ ๊ณ ์œ„ํ—˜ ์‚ฌ๋ก€๋ฅผ ๋ณผ ๋•Œ, ๊ทธ๋“ค์€ ์งˆ๋ฌธ์„ ๋ฐ›๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
02:59
"Did you have more than one unprotected sexual partner in the last two months?"
53
179000
3000
ํ•œ ๋ช… ์ด์ƒ์˜ ํŒŒํŠธ๋„ˆ์™€ ์ง€๋‚œ 2๋‹ฌ ๋™์•ˆ์— ์ฝ˜๋”์—†์ด ์„ฑํ–‰์œ„๋ฅผ ํ•˜์˜€์Šต๋‹ˆ๊นŒ?
03:02
Over a period from '84 to '88, that share drops from about 85 percent to 55 percent.
54
182000
6000
84๋…„๋„ ๋ถ€ํ„ฐ 88๋…„๋„ ์‚ฌ์ด์—๋Š” ์ด ์ˆ˜์น˜๊ฐ€ 85 ํผ์„ผํŠธ์—์„œ 55 ํผ์„ผํŠธ๋กœ ๊ฐ์†Œํ•˜์˜€์Šต๋‹ˆ๋‹ค
03:08
It's a huge change in a very short period of time.
55
188000
2000
์ด๊ฒƒ์€ ์งง์€ ๊ธฐ๊ฐ„์— ๋น„ํ•˜๋ฉด ์—„์ฒญ๋‚œ ์ˆ˜์น˜์˜€์ฃ .
03:10
We didn't see anything like that in Africa.
56
190000
2000
ํ•˜์ง€๋งŒ ์ด๋Ÿฐ ์ˆ˜์น˜์˜ ๋ณ€ํ™”๋Š” ์•„ํ”„๋ฆฌ์นด์—์„œ๋Š” ๋ฐœ๊ฒฌํ• ์ˆ˜ ์—†์—ˆ์Šต๋‹ˆ๋‹ค.
03:12
So we don't have quite as good data, but you can see here
57
192000
3000
๋ฏธ๊ตญ์˜ ๊ฒฐ๊ณผ ์ˆ˜์น˜๋งŒํผ ๋ช…ํ™•ํ•˜์ง€๋Š” ์•Š์ง€๋งŒ,
03:15
the share of single men having pre-marital sex,
58
195000
2000
์‹ฑ๊ธ€ ๋‚จ์„ฑ๋“ค์˜ ํ˜ผ์ „ ์„น์Šค์˜ ์ˆ˜์น˜๋Š”
03:17
or married men having extra-marital sex,
59
197000
2000
ํ˜น์€ ๊ฒฐํ˜ผํ•œ ๋‚จ์ž๋“ค์˜ ํ˜ผ์™ธ ์„น์Šค์˜
03:19
and how that changes from the early '90s to late '90s,
60
199000
3000
๊ทธ ์ˆ˜์น˜๊ฐ€ 90๋…„๋Œ€ ์ดˆ๋ถ€ํ„ฐ ํ›„๋ฐ˜๊นŒ์ง€ ์–ด๋–ป๊ฒŒ ๋ณ€ํ™”ํ•˜๋Š”์ง€ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
03:22
and late '90s to early 2000s. The epidemic is getting worse.
61
202000
3000
๊ทธ๋ฆฌ๊ณ  ์ด ์ˆ˜์น˜๋Š” 90๋…„๋Œ€ ๊ทธ๋ฆฌ๊ณ  2000๋…„๋„์— ๋“ค์–ด์„œ๋ฉด์„œ ์ ์  ๋” ์‹ฌํ•ด์ง‘๋‹ˆ๋‹ค.
03:25
People are learning more things about it.
62
205000
2000
์‚ฌ๋žŒ๋“ค์ด ์ด ๋ถ„์•ผ์— ๋งŽ์€ ๊ฒƒ์„ ์•Œ์•„๊ฐ€๊ณ  ์žˆ์ง€๋งŒ
03:27
We see almost no change in sexual behavior.
63
207000
2000
์•„์ง๋„ ์šฐ๋ฆฌ๋“ค์€ ์„ฑ์ ์ธ ์„ฑํ–ฅ์— ๊ด€ํ•ด์„œ ์•„๋ฌด๋Ÿฐ ๋ณ€ํ™”๋ฅผ ๋ณด์ง€ ๋ชปํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
03:29
These are just tiny decreases -- two percentage points -- not significant.
64
209000
4000
์•„์ฃผ ์ž‘์€ ๊ฐ์†Œ- 2 ํผ์„ผํŠธ ์ •๋„๊ฐ€ ์žˆ๊ธด ํ–ˆ์ง€๋งŒ ๊ทธ๋ ‡๊ฒŒ ์ค‘์š”ํ•œ ์ˆ˜์น˜๋Š” ์•„๋‹ˆ์—ˆ์Šต๋‹ˆ๋‹ค.
03:33
This seems puzzling. But I'm going to argue that you shouldn't be surprised by this,
65
213000
4000
์ด๋Ÿฐ ์ˆ˜์น˜๋“ค์€ ์กฐ๊ธˆ ํ˜ผ๋ž€์Šค๋Ÿฝ๊ณ  ํ—ท๊ฐˆ๋ฆฌ์ง€๋งŒ, ์ง€๊ธˆ๋ถ€ํ„ฐ ์šฐ๋ฆฌ๊ฐ€ ์ด ๋ถ€๋ถ„์—์„œ ๋†€๋ผ์ง€ ๋ง์•„์•ผ ํ•œ๋‹ค๋Š” ๊ฒƒ์„ ์„ค๋ช…ํ•ด ๋ณด๋„๋ก ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.
03:37
and that to understand this you need to think about health
66
217000
3000
๊ทธ๋ฆฌ๊ณ  ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์šฐ๋ฆฌ๋Š” ๋จผ์ € ๊ฑด๊ฐ•์— ๊ด€ํ•ด์„œ ์ƒ๊ฐํ•ด ๋ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
03:40
the way than an economist does -- as an investment.
67
220000
3000
๊ฒฝ์ œํ•™์ž๋“ค์ด ์ƒ๊ฐํ•˜๋“ฏ์ด, 'ํˆฌ์ž' ์— ์ผ๋ถ€๋ถ„์œผ๋กœ ๋ง์ด์ฃ .
03:43
So if you're a software engineer and you're trying to think about
68
223000
3000
๋‹น์‹ ์ด ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ์ž๋ผ๊ณ  ์ƒ๊ฐํ•˜๊ณ ,
03:46
whether to add some new functionality to your program,
69
226000
3000
๋‹น์‹ ์ด ๊ฐœ๋ฐœํ•˜๊ณ  ์žˆ๋Š” ํ”„๋กœ๊ทธ๋žจ์— ์–ด๋–ค ๊ธฐ๋Šฅ์„ ์ถ”๊ฐ€ํ•˜๋ ค๊ณ  ํ•œ๋‹ค๋ฉด
03:49
it's important to think about how much it costs.
70
229000
2000
๋จผ์ € ๊ทธ ์ผ์„ ํ•˜๋Š”๋ฐ ์–ผ๋งˆ๊ฐ€ ๋“œ๋Š”์ง€๊ฐ€ ์ค‘์š”ํ•˜๊ฒ ์ง€์š”.
03:51
It's also important to think about what the benefit is.
71
231000
2000
๊ทธ๋ฆฌ๊ณ  ๋˜ ๊ทธ ์ผ์„ ํ•จ์œผ๋กœ์จ ์ƒ๊ธฐ๋Š” ์ด์ต์— ๊ด€ํ•ด์„œ ์ƒ๊ฐํ•ด ๋ณด๋Š” ๊ฒƒ๋„ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค.
03:53
And one part of that benefit is how much longer
72
233000
2000
๊ทธ๋ฆฌ๊ณ  ๊ทธ ์ด์ต ์ค‘์— ํ•˜๋‚˜๋Š”
03:55
you think this program is going to be active.
73
235000
2000
์ด ํ”„๋กœ๊ทธ๋žจ์ด ์–ผ๋งˆ๋‚˜ ๊ฐˆ ๊ฒƒ์ธ๊ฐ€ ํ•˜๋Š”๊ฒƒ์ด ๋˜๊ฒ ์ง€์š”.
03:57
If version 10 is coming out next week,
74
237000
2000
๋งŒ์•ฝ ๋ฒ„์ „ 10์ด ๋‹ค์Œ ์ฃผ์— ๋‚˜์˜จ๋‹ค๊ณ  ์น˜๋ฉด,
03:59
there's no point in adding more functionality into version nine.
75
239000
3000
๋ฒ„์ „ 9 ์— ์ƒˆ๋กœ์šด ๊ธฐ๋Šฅ์„ ์ถ”๊ฐ€ํ•˜๋Š” ๊ฒƒ์—๋Š” ์˜๋ฏธ๊ฐ€ ์—†์„ ๊ฒƒ ์ž…๋‹ˆ๋‹ค.
04:02
But your health decisions are the same.
76
242000
2000
๊ฑด๊ฐ•์— ๋ฌธ์ œ์— ๊ด€ํ•œ ๊ฒฐ์ •์„ ๋‚ด๋ฆฌ๋Š” ๊ฒƒ๋„ ๋™์ผํ•œ ๊ณผ์ •์ž…๋‹ˆ๋‹ค.
04:04
Every time you have a carrot instead of a cookie,
77
244000
2000
์ฟ ํ‚ค ํ•˜๋‚˜๋ฅผ ๋จน๋Š” ๋Œ€์‹ ์— ๋‹น๊ทผ์„ ๋จน๊ณ ์ž ๊ฒฐ์ •ํ•  ๋•Œ
04:06
every time you go to the gym instead of going to the movies,
78
246000
3000
์˜ํ™”๋ฅผ ๋ณด๋Š” ๋Œ€์‹ ์— ์šด๋™์„ ํ•˜๋ ค๊ณ  ํ•  ๋•Œ๋งˆ๋‹ค
04:09
that's a costly investment in your health.
79
249000
2000
๋‹น์‹ ์€ ๋‹น์‹ ์˜ ๊ฑด๊ฐ•์— ๊ฐ’๋น„์‹ผ ํˆฌ์ž๋ฅผ ํ•˜๊ณ  ์žˆ๋Š” ๊ฒƒ์ด์ง€์š”.
04:11
But how much you want to invest is going to depend
80
251000
2000
๊ทธ๋ฆฌ๊ณ  ํˆฌ์ž๋ฅผ ์–ผ๋งˆ๋‚˜ ํ•ด์•ผ ํ•˜๋Š” ๊ฒƒ์ธ๊ฐ€๋Š”
04:13
on how much longer you expect to live in the future,
81
253000
2000
์•ž์œผ๋กœ ์–ผ๋งˆ๋‚˜ ๋‹น์‹ ์ด ์‚ด ์ˆ˜ ์žˆ๋Š๋ƒ์™€ ๊ด€๋ จ์ด ์žˆ์„ ๊ฒ๋‹ˆ๋‹ค.
04:15
even if you don't make those investments.
82
255000
2000
๊ผญ ๊ทธ๋Ÿฐ ํˆฌ์ž๋ฅผ ํ•˜์ง€ ์•Š๋Š”๋‹ค๊ณ  ์ณ๋„ ๋ง์ด์ง€์š”.
04:17
AIDS is the same kind of thing. It's costly to avoid AIDS.
83
257000
3000
์—์ด์ฆˆ๋„ ๊ฐ™์€ ๊ฒƒ ์ž…๋‹ˆ๋‹ค. ์—์ด์ฆˆ๋ฅผ ์˜ˆ๋ฐฉํ•˜๋Š” ๊ฒƒ์€ ๊ฐ’๋น„์‹ผ ํˆฌ์ž์™€๋„ ๊ฐ™์Šต๋‹ˆ๋‹ค.
04:20
People really like to have sex.
84
260000
3000
์‚ฌ๋žŒ๋“ค์€ ์ •๋ง ์„น์Šค๋ฅผ ํ•˜๊ธฐ๋ฅผ ์ข‹์•„ํ•ฉ๋‹ˆ๋‹ค.
04:23
But, you know, it has a benefit in terms of future longevity.
85
263000
6000
๊ทธ๋ฆฌ๊ณ  ์ด๊ฒƒ ๋˜ํ•œ ์ˆ˜๋ช…์— ์ด์ต์ด ์žˆ๊ธฐ๋„ ํ•˜์ง€์š”.
04:29
But life expectancy in Africa, even without AIDS, is really, really low:
86
269000
4000
ํ•˜์ง€๋งŒ ์•„ํ”„๋ฆฌ์นด์—์„œ๋Š” ์—์ด์ฆˆ ๋•Œ๋ฌธ์ด ์•„๋‹ˆ๋”๋ผ๋„ ์‚ฌ๋žŒ๋“ค์˜ ์ˆ˜๋ช…์€ ์•„์ฃผ ์•„์ฃผ ์งง์Šต๋‹ˆ๋‹ค.
04:33
40 or 50 years in a lot of places.
87
273000
3000
40 ์—์„œ 50 ์ •๋„ ๋ฐ–์— ๋˜์ง€ ์•Š๋Š” ๊ณณ๋“ค์ด ๋งŽ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
04:36
I think it's possible, if we think about that intuition, and think about that fact,
88
276000
4000
์ด ์‚ฌ์‹ค๊ณผ ์•ž์—์„œ ์ด์•ผ๊ธฐํ•œ ์ด์•ผ๊ธฐ๋“ค์„ ์ข…ํ•ฉํ•ด ์ƒ๊ฐํ•ด๋ณด๋ฉด
04:40
that maybe that explains some of this low behavior change.
89
280000
3000
์™œ ๊ทธ๋ ‡๊ฒŒ ํ–‰๋™/์„ฑํ–ฅ์˜ ๋ณ€ํ™”๊ฐ€ ์ ์—ˆ์—ˆ๋Š”์ง€ ์„ค๋ช…์„ ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ ๊ฐ™๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค.
04:43
But we really need to test that.
90
283000
2000
ํ•˜์ง€๋งŒ ์šฐ๋ฆฌ๋Š” ์šฐ์„  ์‹คํ—˜์„ ํ†ตํ•ด์„œ ์•Œ์•„๋ณผ ํ•„์š”๊ฐ€ ์žˆ์ง€์š”.
04:45
And a great way to test that is to look across areas in Africa and see:
91
285000
3000
๊ทธ๋ฆฌ๊ณ  ์•„ํ”„๋ฆฌ์นด์—์„œ ์ด ์‹คํ—˜์„ ํ•ด๋ณด๋Š” ๋ฐฉ๋ฒ• ์ค‘ ์ข‹์€ ๋ฐฉ๋ฒ•์€
04:48
do people with more life expectancy change their sexual behavior more?
92
288000
4000
์—ฐ์žฅ๋œ ์ˆ˜๋ช… ํŒจํ„ด์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ์ง€์—ญ์˜ ์‚ฌ๋žŒ๋“ค์˜ ์„ฑ์  ์„ฑํ–ฅ์ด ๋‹ค๋ฅธ๊ฐ€, ๋ณ€ํ™”๋˜์—ˆ๋Š”๊ฐ€๋ฅผ ์•Œ์•„๋ณด๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
04:52
And the way that I'm going to do that is,
93
292000
2000
๊ทธ๋ฆฌ๊ณ  ๊ตฌ์ฒด์ ์œผ๋กœ ์–ด๋–ป๊ฒŒ ์ œ๊ฐ€ ์ด๊ฒƒ์„ ์•Œ์•„ ๋ณผ ๊ฒƒ์ธ๊ฐ€ ํ•˜๋ฉด,
04:54
I'm going to look across areas with different levels of malaria.
94
294000
3000
์ €๋Š” ๋จผ์ € ์•„ํ”„๋ฆฌ์นด์˜ ์—ฌ๋Ÿฌ ์ง€์—ญ์—์„œ ๋ง๋ผ๋ฆฌ์•„์˜ ์ˆ˜์น˜/๋ณ€ํ™”๊ฐ€ ๋‹ค๋ฅธ ๊ณณ๋“ค์„ ์•Œ์•„ ๋ณผ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
04:57
So malaria is a disease that kills you.
95
297000
3000
๋ง๋ผ๋ฆฌ์•„๋„ ์ฃฝ์Œ์— ์ด๋ฅด๊ฒŒ ํ•˜๋Š” ๋ณ‘์ด์ง€์š”.
05:00
It's a disease that kills a lot of adults in Africa, in addition to a lot of children.
96
300000
3000
์ด ๋ณ‘์€ ์•„ํ”„๋ฆฌ์นด์˜ ์–ด๋ฅธ, ๊ทธ๋ฆฌ๊ณ  ์•„์ด๋“ค๊นŒ์ง€ ์‚ฌ๋ง์‹ ํ‚ค๋Š” ๋ณ‘์ž…๋‹ˆ๋‹ค.
05:03
And so people who live in areas with a lot of malaria
97
303000
3000
๊ทธ๋Ÿฌ๋ฏ€๋กœ ๋ง๋ผ๋ฆฌ์•„๋ฅผ ๋งŽ์ด ์•“๊ณ  ์žˆ๋Š” ์ง€์—ญ์˜ ์‚ฌ๋žŒ๋“ค์€
05:06
are going to have lower life expectancy than people who live in areas with limited malaria.
98
306000
4000
๊ฒฐ๊ตญ ๊ทธ ๋ฐ˜๋Œ€์˜ ์ง€์—ญ๋ณด๋‹ค ์ˆ˜๋ช…์ด ์งง์•„์ง€๊ฒ ์ง€์š”.
05:10
So one way to test to see whether we can explain
99
310000
2000
๊ทธ๋ž˜์„œ ์ˆ˜๋ช…๊ณผ ์–ด๋– ํ•œ ์„ฑํ–ฅ์˜ ๋ณ€ํ™”๊ฐ€ ์žˆ๋Š” ์ง€๋ฅผ
05:12
some of this behavior change by differences in life expectancy
100
312000
3000
์•Œ์•„๋ณด๋Š” ๋ฐฉ๋ฒ•์€
05:15
is to look and see is there more behavior change
101
315000
3000
๋ง๋ผ๋ฆฌ์•„๊ฐ€ ๋œ ์ผ์–ด๋‚˜๋Š” ์ง€์—ญ์—์„œ๋Š”
05:18
in areas where there's less malaria.
102
318000
2000
์–ด๋–ค ๋‹ค๋ฅธ ์„ฑํ–ฅ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š๋ƒ๋ฅผ ์•Œ์•„ ๋ณด๋Š” ๊ฒƒ ์ž…๋‹ˆ๋‹ค.
05:20
So that's what this figure shows you.
103
320000
2000
์ด ๊ทธ๋ž˜ํ”„๊ฐ€ ๊ทธ๊ฒƒ์„ ์„ค๋ช…ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
05:22
This shows you -- in areas with low malaria, medium malaria, high malaria --
104
322000
4000
์ด ๊ทธ๋ž˜ํ”„๋ฅผ ๋ณด์ž๋ฉด, ๋ง๋ผ๋ฆฌ์•„๊ฐ€ ์ ์€-์ค‘๊ฐ„-๊ทธ๋ฆฌ๊ณ  ๋†’๊ฒŒ ์ผ์–ด๋‚˜๋Š” ์ง€์—ญ-์—์„œ
05:26
what happens to the number of sexual partners as you increase HIV prevalence.
105
326000
4000
HIV์˜ ์ „ํŒŒ๊ฐ€ ๋†’์•„์งˆ์ˆ˜๋ก ์„ฑ ํŒŒํŠธ๋„ˆ์˜ ์ˆซ์ž๊ฐ€ ์–ด๋–ป๊ฒŒ ๋ณ€ํ•˜๋Š”์ง€๋ฅผ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
05:30
If you look at the blue line,
106
330000
2000
ํŒŒ๋ž€์ƒ‰ ๋ผ์ธ์„ ๋ณด์‹œ๋ฉด
05:32
the areas with low levels of malaria, you can see in those areas,
107
332000
3000
๋ง๋ผ๋ฆฌ์•„๊ฐ€ ์ ๊ฒŒ ์ผ์–ด๋‚˜๋Š” ์ง€์—ญ์—์„œ๋Š”- ์ด๋ถ€๋ถ„์—์„œ ๋ณด์ด๋“ฏ์ด
05:35
actually, the number of sexual partners is decreasing a lot
108
335000
3000
HIV ์˜ ์œ ํ–‰์ด ์˜ฌ๋ผ๊ฐˆ์ˆ˜๋ก
05:38
as HIV prevalence goes up.
109
338000
2000
์„ฑ ๊ด€๊ณ„ ํŒŒํŠธ๋„ˆ์˜ ์ˆซ์ž๋Š” ์ ์–ด์ง€๊ณ  ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
05:40
Areas with medium levels of malaria it decreases some --
110
340000
2000
๋ง๋ผ๋ฆฌ์•„์˜ ์ „์—ผ์ด ์ค‘๊ฐ„ ์ •๋„์ธ ์ง€์—ญ์—์„œ๋Š” ์ค‘๊ฐ„ ์ •๋„๋กœ
05:42
it doesn't decrease as much. And areas with high levels of malaria --
111
342000
3000
๊ทธ๋ ‡๊ฒŒ ๋งŽ์ด ์ค„์ง€ ์•Š์•˜๋‹ค๋Š” ๊ฒƒ์„ ์•Œ์ˆ˜์žˆ๊ณ , ๋ง๋ผ๋ฆฌ์•„์˜ ์ „์—ผ์ด ๋†’์€ ์ง€์—ญ์—์„œ๋Š”
05:45
actually, it's increasing a little bit, although that's not significant.
112
345000
5000
์˜คํžˆ๋ ค ์กฐ๊ธˆ ๋†’์•„์ง€๊ณ  ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
05:50
This is not just through malaria.
113
350000
2000
์ด๊ฒƒ์€ ๋ง๋ผ๋ฆฌ์•„์— ๊ด€ํ•œ ๋ฌธ์ œ๊ฐ€ ์•„๋‹™๋‹ˆ๋‹ค.
05:52
Young women who live in areas with high maternal mortality
114
352000
3000
์œ ์‚ฐ์˜ ํ™•๋ฅ ์ด ๋†’์€ ์ง€์—ญ์— ์‚ฌ๋Š” ์ Š์€ ์—ฌ์„ฑ๋“ค์€
05:55
change their behavior less in response to HIV
115
355000
3000
์œ ์‚ฐ์˜ ํ™•๋ฅ ์ด ๋ณด๋‹ค ๋‚ฎ์€ ์ง€์—ญ์— ์‚ฌ๋Š” ์ Š์€ ์—ฌ์„ฑ๋“ค๋ณด๋‹ค
05:58
than young women who live in areas with low maternal mortality.
116
358000
3000
HIV์— ๋ณด๋‹ค ์†Œ๊ทน์ ์ธ ํ–‰๋™ ๋ณ€ํ™”๋ฅผ ๋ณด์˜€๋‹ค๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
06:01
There's another risk, and they respond less to this existing risk.
117
361000
4000
๋‹ค๋ฅธ ๋งŽ์€ ์œ„ํ—˜๋“ค์ด ์žˆ์—ˆ์ง€๋งŒ, ๊ทธ๋Ÿฐ ์œ„ํ—˜๋“ค์—๋„ ๊ทธ๋“ค์€ ์ ๊ฒŒ ๋ฐ˜์‘ํ•œ๋‹ค๋Š” ๊ฒƒ๋„ ๋ฐํ˜€์กŒ์Šต๋‹ˆ๋‹ค.
06:06
So by itself, I think this tells a lot about how people behave.
118
366000
3000
์ด๋Ÿฐ๊ฒƒ๋“ค๋งŒ ๋ณด์•„๋„, ์–ด๋–ป๊ฒŒ ์‚ฌ๋žŒ๋“ค์ด ํ–‰๋™์„ ๋ณ€ํ™”์‹œํ‚ค๋Š”๊ฐ€์— ๊ด€ํ•˜์—ฌ ์ถฉ๋ถ„ํžˆ ์•Œ ์ˆ˜ ์žˆ๋‹ค๊ณ  ์ „ ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
06:09
It tells us something about why we see limited behavior change in Africa.
119
369000
3000
๊ทธ๋ฆฌ๊ณ  ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋“ค์€ ์™œ ์šฐ๋ฆฌ๊ฐ€ ์•„ํ”„๋ฆฌ์นด์—์„œ ์—ฌ๋Ÿฌ๊ฐ€์ง€ ํ–‰๋™์˜ ๋ณ€ํ™”๋ฅผ ๋ณผ ์ˆ˜ ์—†๋Š”์ง€๋„ ์ด์•ผ๊ธฐ ํ•ด์ฃผ๋Š” ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค.
06:12
But it also tells us something about policy.
120
372000
2000
๋˜ ํ•œํŽธ์œผ๋กœ ์ด๊ฒƒ๋“ค์€ ์ •์ฑ…์— ๊ด€ํ•ด์„œ ์ด์•ผ๊ธฐ๋ฅผ ํ•ด์ฃผ๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค.
06:14
Even if you only cared about AIDS in Africa,
121
374000
3000
์•„ํ”„๋ฆฌ์นด์— ์—์ด์ฆˆ ๋ฌธ์ œ๋งŒ ๋ณด๋”๋ผ๋„,
06:17
it might still be a good idea to invest in malaria,
122
377000
3000
์‚ฌ์‹ค ๋ง๋ผ๋ฆฌ์•„ ๋ฌธ์ œ์— ๋” ํˆฌ์žํ•˜๋Š”๊ฒŒ ๋‚˜์„ ์ˆ˜ ์žˆ๋‹ค๊ณ  ๋งํ•  ์ˆ˜๋„ ์žˆ๊ฒ ์ง€์š”.
06:20
in combating poor indoor air quality,
123
380000
2000
์•„๋‹ˆ๋ฉด ๋‚ด๋ถ€ ๊ณต๊ธฐ์˜ ์งˆ์ ์ด ๋ฌธ์ œ
06:22
in improving maternal mortality rates.
124
382000
2000
๊ทธ๋ฆฌ๊ณ  ์œ ์‚ฌ์˜ ํ™•๋ฅ ์„ ์ค„์ด๋Š” ๋ฌธ์ œ ๋“ฑ์ผ ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
06:24
Because if you improve those things,
125
384000
2000
์™œ๋ƒํ•˜๋ฉด, ๊ทธ๊ฒƒ๋“ค์ด ๋‚˜์•„์ง€๋ฉด
06:26
then people are going to have an incentive to avoid AIDS on their own.
126
386000
4000
์‚ฌ๋žŒ๋“ค ์Šค์Šค๋กœ ์—์ด์ฆˆ๋ฅผ ์ค„์ด๋„๋ก ๋…ธ๋ ฅํ•˜๋Š” ๋™๊ธฐ๊ฐ€ ๋  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
06:30
But it also tells us something about one of these facts that we talked about before.
127
390000
4000
ํ•˜์ง€๋งŒ ๋˜ ์ด๊ฒƒ์€ ์šฐ๋ฆฌ๊ฐ€ ์•ž์—์„œ ๋งํ–ˆ๋˜ ๊ฒƒ๋“ค์— ๊ด€ํ•œ ๋˜ ๋‹ค๋ฅธ ์ ๋“ค์„ ์ด์•ผ๊ธฐ ํ•ด์ค๋‹ˆ๋‹ค.
06:34
Education campaigns, like the one that the president is focusing on in his funding,
128
394000
4000
๊ต์œก ์บ ํŽ˜์ธ๋“ค- ๋Œ€ํ†ต๋ น์ด ๊ธฐ๊ธˆ์„ ๋งˆ๋ จ ํ•˜๋ ค๊ณ  ์ง‘์ค‘ํ•˜๊ณ  ์žˆ๋Š”
06:38
may not be enough, at least not alone.
129
398000
2000
์ด๊ฒƒ๋“ค์€ ๊ทธ๊ฒƒ ๋งŒ์œผ๋กœ๋Š” ์ถฉ๋ถ„ํ•˜์ง€ ์•Š์„์ง€๋„ ๋ชจ๋ฆ…๋‹ˆ๋‹ค.
06:40
If people have no incentive to avoid AIDS on their own,
130
400000
2000
์‚ฌ๋žŒ๋“ค์ด ์Šค์Šค๋กœ ์—์ด์ฆˆ๋ฅผ ํ”ผํ•˜๋ ค๊ณ  ๋…ธ๋ ฅํ•  ๋™๊ธฐ๊ฐ€ ์—†๋‹ค๋ฉด
06:42
even if they know everything about the disease,
131
402000
2000
๊ทธ ์‚ฌ๋žŒ๋“ค์ด ๊ทธ ๋ณ‘์˜ ์‹ฌ๊ฐ์„ฑ๋“ฑ, ๋ชจ๋“  ๊ฒƒ์„ ์•Œ๊ณ  ์žˆ๋‹ค๊ณ  ํ•˜์—ฌ๋„
06:44
they still may not change their behavior.
132
404000
2000
๊ทธ๋“ค์€ ํ–‰๋™์˜ ๋ณ€ํ™”๋ฅผ ๋ณด์ด์ง€ ์•Š์„ ๊ฒƒ ์ž…๋‹ˆ๋‹ค.
06:46
So the other thing that I think we learn here is that AIDS is not going to fix itself.
133
406000
3000
๊ทธ๋Ÿฌ๋ฏ€๋กœ ์šฐ๋ฆฌ๋Š” '์—์ด์ฆˆ'๋Š” ๊ทธ ์ž์ฒด๋งŒ์œผ๋กœ๋Š” ๋ฌธ์ œ๊ฐ€ ํ•ด๊ฒฐ๋˜์ง€ ์•Š์„ ๊ฒƒ์ž„์„ ์šฐ๋ฆฌ๋Š” ์—ฌ๊ธฐ์„œ ์•Œ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
06:49
People aren't changing their behavior enough
134
409000
2000
์‚ฌ๋žŒ๋“ค์€ ์–ด๋–ค ์‚ฌํšŒ์˜ ์ „๋ฐ˜์ ์ธ ์ˆ˜์น˜๋ฅผ ์˜ฌ๋ฆฌ๊ณ ์ž
06:51
to decrease the growth in the epidemic.
135
411000
3000
์ž์‹ ์˜ ํ–‰๋™์„ ๋ณ€ํ™” ์‹œํ‚ค์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
06:54
So we're going to need to think about policy
136
414000
2000
๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๊ฐ€ '์ •์ฑ…'์— ๊ด€ํ•ด์„œ ์ƒ๊ฐ์„ ํ•ด๋ด์•ผ ํ•œ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
06:56
and what kind of policies might be effective.
137
416000
2000
๊ทธ๋ฆฌ๊ณ  ์–ด๋–ค ์ •์ฑ…๋“ค์ด ํšจ๊ณผ๊ฐ€ ์žˆ์„์ง€ ๋ง์ด์ง€์š”.
06:58
And a great way to learn about policy is to look at what worked in the past.
138
418000
3000
๊ทธ๋ฆฌ๊ณ  ์ข‹์€ ์ •์ฑ…๋“ค์„ ์•Œ์•„๋ณด๋Š” ๋ฐฉ๋ฒ•์€ ๊ณผ๊ฑฐ์— ์ž˜ ์ด๋ฃจ์–ด์กŒ๋˜ ์ •์ฑ…๋“ค์„ ์•Œ์•„๋ณด๋Š”๊ฒƒ ์ž…๋‹ˆ๋‹ค.
07:01
The reason that we know that the ABC campaign
139
421000
2000
ABC ํ”„๋กœ๊ทธ๋žจ์ด ์™œ ์šฐ๊ฐ„๋‹ค์—์„œ ํšจ๊ณผ์ ์œผ๋กœ
07:03
was effective in Uganda is we have good data on prevalence over time.
140
423000
3000
์ด๋ฃจ์–ด ์กŒ๋Š๋ƒ์— ๊ด€ํ•œ ๋งŽ์€ ์‹œ๊ฐ„์„ ํ†ตํ•ด ์–ป์–ด์ง„ ์ข‹์€ ์ž๋ฃŒ๋“ค์ด ์šฐ๋ฆฌ์—๊ฒŒ ์žˆ์Šต๋‹ˆ๋‹ค.
07:06
In Uganda we see the prevalence went down.
141
426000
2000
์šฐ๊ฐ„๋‹ค์˜ ๋ณด๊ธ‰ํ˜„์ƒ์ด ๋‚ด๋ ค๊ฐ”๋‹ค๋Š”๊ฒƒ,
07:08
We know they had this campaign. That's how we learn about what works.
142
428000
3000
๊ทธ๋Ÿฌ๊ธฐ ์œ„ํ•ด ์บ ํŒจ์ธ์ด ์žˆ์—ˆ๋‹ค๋Š” ๊ฒƒ์„ ํ†ตํ•ด ์šฐ๋ฆฌ๋Š” ์–ด๋–ค ์ •์ฑ…์ด ์ž˜ ํ†ตํ–ˆ๋Š”๊ฐ€๋ฅผ ๋ฐฐ์šธ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
07:11
It's not the only place we had any interventions.
143
431000
2000
์ข‹์€ ์ •์ฑ…์˜ ๋ฐœ๊ฒฌ์ด ์žˆ์—ˆ๋˜๊ฒƒ์€ ์šฐ๊ฐ„๋‹ค ๋ฟ์ด ์•„๋‹™๋‹ˆ๋‹ค.
07:13
Other places have tried things, so why don't we look at those places
144
433000
4000
๋‹ค๋ฅธ ๊ณณ๋“ค๋„ ์ด ์ •์ฑ…์„ ์‹คํ–‰ํ–ˆ์—ˆ์ง€์š”. ๊ทธ๋ ‡๋‹ค๋ฉด ๊ทธ
07:17
and see what happened to their prevalence?
145
437000
3000
๋‹ค๋ฅธ ๊ณณ๋“ค์˜ ๊ฒฐ๊ณผ๋“ค๋„ ๋ณด๋ฉด ์–ด๋– ํ• ๊นŒ์š”?
07:20
Unfortunately, there's almost no good data
146
440000
2000
ํ•˜์ง€๋งŒ ๋ถˆํ–‰ํ•˜๊ฒŒ๋„ ์•„ํ”„๋ฆฌ์นด์˜ ์ „๋ฐ˜์ ์ธ
07:22
on HIV prevalence in the general population in Africa until about 2003.
147
442000
5000
์ธ๊ตฌ์— HIV ๋ณด๊ธ‰ ํ˜„์ƒ์— ๊ด€ํ•œ 2003๋…„ ์ด์ „์˜ ์ž๋ฃŒ๋Š” ๊ฑฐ์˜ ์ฐพ์•„ ๋ณผ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.
07:27
So if I asked you, "Why don't you go and find me
148
447000
2000
๊ทธ๋ž˜์„œ ์ œ๊ฐ€ ๋ฒŒํ‚ค๋‚˜ ํŒŒ์†Œ์˜ 1991๋…„๋„ HIV ์œ ํ–‰ ํ˜„์ƒ
07:29
the prevalence in Burkina Faso in 1991?"
149
449000
3000
์— ๊ด€ํ•ด์„œ ์ข€ ์•Œ์•„ ๋ด ์ฃผ์‹ค๋ž˜์š”?' ๋ผ๊ณ  ๋ฌผ์–ด๋„
07:32
You get on Google, you Google, and you find,
150
452000
3000
๋‹น์‹ ์€ ๊ตฌ๊ธ€์—์„œ ๊ฒ€์ƒ‰์„ ํ•ด๋ณด์•˜์ž
07:35
actually the only people tested in Burkina Faso in 1991
151
455000
3000
์ฐพ์„์ˆ˜ ์žˆ๋Š”๊ฒƒ์ด๋ผ๊ณ ๋Š” 1991๋…„๋„์˜ ๋ฒŒํ‚ค๋‚˜ ํŒŒ์†Œ์—์„œ
07:38
are STD patients and pregnant women,
152
458000
2000
์‹คํ—˜ ๋Œ€์ƒ์ด์—ˆ๋˜ STD ํ™˜์ž๋“ค๊ณผ ์ž„์‚ฐ๋ถ€๋“ค์— ๊ด€ํ•œ ์ˆ˜์น˜ ๋ฐ–์— ์–ป์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.
07:40
which is not a terribly representative group of people.
153
460000
2000
๊ทธ๋“ค์ด ์‚ฌํšŒ๋ฅผ ๋Œ€ํ‘œํ•œ๋งŒํ•œ ์‹คํ—˜๋Œ€์ƒ์ด ๋˜๊ธฐ์— ๊ทธ๋ ‡๊ฒŒ ์ ๋‹นํ•˜์ง€ ์•Š๊ธฐ๋Š” ํ•˜์ง€๋งŒ์š”.
07:42
Then if you poked a little more, you looked a little more at what was going on,
154
462000
3000
๊ทธ๋ž˜์„œ ๋‹น์‹ ์ด ์กฐ๊ธˆ ๋” ์•Œ์•„๋ณด๋ ค๊ณ  ๋…ธ๋ ฅํ•˜์—ฌ ์กฐ๊ธˆ ๋” ๊ฒ€์ƒ‰์„ ํ•œ๋‹ค๋ฉด
07:45
you'd find that actually that was a pretty good year,
155
465000
3000
๋‹น์‹ ์€ 1991๋…„๋„๊ฐ€ ๊ฝค ๊ดœ์ฐฎ์•˜๋˜ ํ•ด์˜€์Œ์„ ์•Œ ์ˆ˜ ์žˆ์„ ๊ฒƒ ์ž…๋‹ˆ๋‹ค.
07:48
because in some years the only people tested are IV drug users.
156
468000
3000
์™œ๋ƒํ•˜๋ฉด ๋‹ค๋ฅธ ํ•ด์—๋Š” IV ์•ฝ๋ฌผ ๋ณต์šฉ์ž๋“ค๋งŒ์ด ์‹คํ—˜ ๋Œ€์ƒ์ด ๋˜์—ˆ๋˜ ์ ๋„ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด์ง€์š”.
07:51
But even worse -- some years it's only IV drug users,
157
471000
2000
๋”์šฑ ๋” ์‹ฌ๊ฐํ•œ๊ฒƒ์€, ์–ด๋–ค ํ•ด์—๋Š” ์ด๋Ÿฐ IV ์•ฝ๋ฌผ ๋ณต์šฉ์ž๋“ค๋งŒ ์ƒ๋Œ€ํ•˜๊ณ ,
07:53
some years it's only pregnant women.
158
473000
2000
๋˜ ๋‹ค๋ฅธ ์–ด๋–ค ํ•ด์—๋Š” ์ž„์‚ผ๋ถ€๋“ค๋งŒ ๋Œ€์ƒ์œผ๋กœ ์‹คํ—˜์„ ํ–ˆ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
07:55
We have no way to figure out what happened over time.
159
475000
2000
๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๋Š” ์‹œ๊ฐ„์ด ์ง€๋‚˜๋ฉด์„œ ์–ด๋–ค ์ผ์ด ์žˆ์—ˆ๋Š”์ง€ ์•Œ ๊ธธ์ด ์—†์–ด์ง€๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
07:57
We have no consistent testing.
160
477000
2000
์ง€์†์ ์ธ ๊ฒฐ๊ณผ๊ฐ€ ์—†๋‹ค๋Š” ๊ฒƒ์ด์ง€์š”.
07:59
Now in the last few years, we actually have done some good testing.
161
479000
5000
๊ทธ๋ž˜์„œ ์ง€๋‚œ ์ตœ๊ทผ ๋ช‡๋…„๊ฐ„, ์šฐ๋ฆฌ๋Š” ๊ฝค ๊ดœ์ฐฎ์€ ์‹คํ—˜๋“ค์„ ํ–ˆ์Šต๋‹ˆ๋‹ค.
08:04
In Kenya, in Zambia, and a bunch of countries,
162
484000
3000
์ผ€๋ƒ, ์ž ๋น„์•„ ๊ทธ๋ฆฌ๊ณ  ๋‹ค๋ฅธ ์—ฌ๋Ÿฌ ๋‚˜๋ผ์—์„œ
08:07
there's been testing in random samples of the population.
163
487000
3000
์ธ๊ตฌ ์ค‘ ๋ฌด์ž‘์œ„๋กœ ์ƒ˜ํ”Œ์„ ๋ฝ‘์•„ ์‹คํ—˜์„ ํ•˜๊ธฐ ์‹œ์ž‘ํ–ˆ์Šต๋‹ˆ๋‹ค.
08:10
But this leaves us with a big gap in our knowledge.
164
490000
3000
๊ทธ๋Ÿฌ๋‚˜ ์ด ์‚ฌ์‹ค์€ ์šฐ๋ฆฌ๊ฐ€ ์•Œ๊ณ  ์žˆ๋Š” ๋ฐ”์™€ ํฐ ์ฐจ์ด๋ฅผ ๋ณด์—ฌ ์ค๋‹ˆ๋‹ค.
08:13
So I can tell you what the prevalence was in Kenya in 2003,
165
493000
3000
์™œ๋ƒํ•˜๋ฉด ์ œ๊ฐ€ 2003๋…„ ์ผ€๋ƒ์—์„œ์˜ ์ˆ˜์น˜๋ฅผ ๋งํ•ด ์ค„ ์ˆ˜๋Š” ์žˆ๊ฒ ์ง€๋งŒ
08:16
but I can't tell you anything about 1993 or 1983.
166
496000
3000
1993๋…„, ๋˜๋Š” 83๋…„๋„์—๋Š” ์–ด๋– ํ–ˆ๋Š”์ง€ ๋งํ•ด ์ค„ ์ˆ˜ ์—†๋‹ค๋Š” ๊ฒƒ์ด์ง€์š”.
08:19
So this is a problem for policy. It was a problem for my research.
167
499000
4000
์ด๊ฒƒ์€ ์ •์ฑ…์˜ ๋ฌธ์ œ์ด๊ธฐ๋„ ํ•˜๊ณ , ๋˜ ์ €์˜ ๋ฆฌ์„œ์น˜์— ๋ฌธ์ œ๊ฐ€ ๋˜๊ธฐ๋„ ํ•˜์˜€์Šต๋‹ˆ๋‹ค.
08:23
And I started thinking about how else might we figure out
168
503000
4000
๊ทธ๋ž˜์„œ ์ €๋Š” ์–ด๋–ป๊ฒŒ ํ•˜๋ฉด ๊ณผ๊ฑฐ์˜ ์•„ํ”„๋ฆฌ์นด์˜
08:27
what the prevalence of HIV was in Africa in the past.
169
507000
2000
HIV ์œ ํ–‰ ์ˆ˜์น˜๋ฅผ ์•Œ ์ˆ˜ ์žˆ์„๊นŒ ์ƒ๊ฐํ•˜๊ธฐ ์‹œ์ž‘ํ–ˆ์Šต๋‹ˆ๋‹ค.
08:29
And I think that the answer is, we can look at mortality data,
170
509000
4000
๊ทธ๋ฆฌ๊ณ  ์ œ ์ƒ๊ฐ์—๋Š” ๋‹ต์€ ์‚ฌ๋ง ๊ธฐ๋ก์„ ๋ณด๊ณ 
08:33
and we can use mortality data to figure out what the prevalence was in the past.
171
513000
4000
๊ทธ ์œ ํ–‰์ˆ˜์น˜๋ฅผ ์ง์ž‘ํ•ด ๋ณด๋Š” ๊ฒƒ์ด์—ˆ์Šต๋‹ˆ๋‹ค.
08:37
To do this, we're going to have to rely on the fact
172
517000
2000
๊ทธ๋ ‡๊ฒŒ ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š”, ์šฐ๋ฆฌ๋Š”
08:39
that AIDS is a very specific kind of disease.
173
519000
2000
์—์ด์ฆˆ๋Š” ์•„์ฃผ ํŠน์ˆ˜ํ•œ ๋ณ‘์ด๋ฉฐ
08:41
It kills people in the prime of their lives.
174
521000
2000
์‚ฌ๋žŒ๋“ค์„ ์ฃฝ์Œ์— ์ด๋ฅด๊ฒŒ ํ•˜๋Š” ๋ณ‘์ด๋ผ๋Š” ์‚ฌ์‹ค์— ์˜์กดํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
08:43
Not a lot of other diseases have that profile. And you can see here --
175
523000
3000
์ด๋Ÿฌํ•œ ํ”„๋กœํ•„์„ ๊ฐ€์ง„ ๋ณ‘๋“ค์ด ๋งŽ์ง€ ์•Š์ง€์š”.
08:46
this is a graph of death rates by age in Botswana and Egypt.
176
526000
4000
์ด ๊ทธ๋ž˜ํ”„๋Š” ๋ณด์ธ ์™€๋‚˜์™€ ์ด์ง‘ํŠธ์˜ ๋‚˜์ด์— ๋”ฐ๋ฅธ ์‚ฌ๋ง ์ˆ˜์น˜๋ฅผ ๋ณด์—ฌ์ฃผ๋Š”๋ฐ
08:50
Botswana is a place with a lot of AIDS,
177
530000
2000
๋ณด์ธ ์™€๋‚˜๋Š” ์—์ด์ฆˆ๊ฐ€ ๋งŽ์ด ๋ฐœ์ƒํ•˜๋Š” ๊ณณ์ด๊ณ 
08:52
Egypt is a place without a lot of AIDS.
178
532000
2000
์ด์ง‘ํŠธ๋Š” ๊ทธ๋ ‡์ง€ ์•Š์€ ๊ณณ ์ž…๋‹ˆ๋‹ค.
08:54
And you see they have pretty similar death rates among young kids and old people.
179
534000
3000
๋ณด์‹œ๋ฉด ๊ทธ ๋‘ ๋‚˜๋ผ์˜ ์•„์ด๋“ค๊ณผ ๋…ธ์ธ์˜ ์‚ฌ๋ง ํ™•๋ฅ ์€ ๋น„์Šทํ•˜๋‹ค๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
08:57
That suggests it's pretty similar levels of development.
180
537000
3000
์ด๊ฒƒ์€ ๋น„์Šทํ•œ ๋ฐœ์ „์˜ ๋‹จ๊ณ„๋ฅผ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ์ง€์š”.
09:00
But in this middle region, between 20 and 45,
181
540000
3000
ํ•˜์ง€๋งŒ ์ด ์ค‘๊ฐ„ ์ธต- 20์„ธ์—์„œ 45์„ธ ์‚ฌ์ด๋ฅผ ๋ณด๋ฉด
09:03
the death rates in Botswana are much, much, much higher than in Egypt.
182
543000
4000
๋ณด์ธ ์™€๋‚˜์˜ ์‚ฌ๋ง ํ™•๋ฅ  ์ˆ˜์น˜๊ฐ€ ์ด์ง‘ํŠธ๋ณด๋‹ค ๋งค์šฐ ๋งค์šฐ ๋†’๋‹ค๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
09:07
But since there are very few other diseases that kill people,
183
547000
4000
ํ•˜์ง€๋งŒ ์ด๋ ‡๊ฒŒ ์‚ฌ๋žŒ๋“ค์„ ์ฃฝ์Œ์— ์ด๋ฅด๊ฒŒ ํ•˜๋Š” ๋ณ‘์€ ํ”์น˜ ์•Š๊ธฐ ๋•Œ๋ฌธ์—
09:11
we can really attribute that mortality to HIV.
184
551000
3000
์šฐ๋ฆฌ๋Š” ์‚ฌ๋งํ™•๋ฅ ๊ณผ HIV ๋ฅผ ์—ฐ๊ด€ ์ง€์–ด์„œ ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
09:14
But because people who died this year of AIDS got it a few years ago,
185
554000
4000
์˜ฌํ•ด ์—์ด์ฆˆ๋กœ ์ธํ•ด ์‚ฌ๋งํ•œ ํ™˜์ž๋“ค์€ ์ด๋ฏธ ์—์ด์ฆˆ์— ๋ช‡ ๋…„์ „๋ถ€ํ„ฐ ๊ฐ์—ผ ๋˜์–ด์žˆ์—ˆ๋‹ค๋Š” ๋œป์ด๊ธฐ ๋•Œ๋ฌธ์—
09:18
we can use this data on mortality to figure out what HIV prevalence was in the past.
186
558000
5000
์šฐ๋ฆฌ๋Š” ์ด ๊ธฐ๋ก์„ ๊ณผ๊ฑฐ์˜ HIV ๊ฐ์—ผ ์ˆ˜์น˜๋กœ ์ƒ๊ฐ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
09:23
So it turns out, if you use this technique,
187
563000
2000
๊ทธ๋ž˜์„œ, ์ด๋Ÿฌํ•œ ๋ฐฉ์‹์„ ์ด์šฉํ•˜๋‹ค๋ณด๋ฉด
09:25
actually your estimates of prevalence are very close
188
565000
2000
์šฐ๋ฆฌ์˜ ์ง์ž‘ํ•˜๋Š” ์ˆ˜์น˜๊ฐ€
09:27
to what we get from testing random samples in the population,
189
567000
3000
์ธ๊ตฌ ์ค‘ ๋ฌด์ž‘์œ„๋กœ ์–ป์€ ์ˆ˜์น˜ ๊ฒฐ๊ณผ์™€ ์•„์ฃผ ๊ฐ€๊น๋‹ค๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
09:30
but they're very, very different than what UNAIDS tells us the prevalences are.
190
570000
5000
ํ•˜์ง€๋งŒ ์ด๊ฒƒ์€ UNAIDS ์—์„œ ๋ณด์—ฌ์ฃผ๋Š” ์ˆ˜์น˜์™€ ๋˜ ๋งค์šฐ ๋‹ค๋ฅด๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค.
09:35
So this is a graph of prevalence estimated by UNAIDS,
191
575000
3000
์ด๊ฒƒ์€ UNAIDS ์˜ ์ˆ˜์น˜๋ฅผ ๊ทธ๋ž˜ํ”„๋กœ ๋‚˜ํƒ€๋‚ธ๊ฒƒ์ž…๋‹ˆ๋‹ค.
09:38
and prevalence based on the mortality data
192
578000
2000
์ด ์ˆ˜์น˜๋Š” 1990๋…„๋Œ€ ํ›„๋ฐ˜์— ์•„ํ”„๋ฆฌ์นด์˜ 9๊ฐœ๊ตญ์˜
09:40
for the years in the late 1990s in nine countries in Africa.
193
580000
4000
์‚ฌ๋ง๋ฅ ์—์„œ ์–ป์€ ๊ฒฐ๊ณผ์ž…๋‹ˆ๋‹ค.
09:44
You can see, almost without exception,
194
584000
2000
์—ฌ๊ธฐ์„œ ๋ณผ ์ˆ˜ ์žˆ๋“ฏ์ด
09:46
the UNAIDS estimates are much higher than the mortality-based estimates.
195
586000
4000
UNAIDS ์˜ ์ง์ž‘ ์ˆ˜์น˜๋Š” ์‚ฌ๋งํ™•๋ฅ ์˜ ์ˆ˜์น˜๋ณด๋‹ค ๋†’์Šต๋‹ˆ๋‹ค.
09:50
UNAIDS tell us that the HIV rate in Zambia is 20 percent,
196
590000
4000
UNAIDS ๋Š” ์ž ๋น„์•„์˜ HIV ์ˆ˜์น˜๋Š” 20 ํผ์„ผํŠธ
09:54
and mortality estimates suggest it's only about 5 percent.
197
594000
4000
๊ทธ๋ฆฌ๊ณ  ์‚ฌ๋ง๋ฅ  ์ˆ˜์น˜๋กœ ๋ณด๋ฉด 5 ํผ์„ผํŠธ ๋ฐ–์— ๋˜์ง€ ์•Š๋Š”๋‹ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค.
09:58
And these are not trivial differences in mortality rates.
198
598000
3000
์ด๊ฒƒ์€ ๊ทธ๋ ‡๊ฒŒ ์‹ฌ๊ฐํ•œ ์ˆ˜์น˜์ƒ์˜ ์ฐจ์ด๋Š” ์•„๋‹™๋‹ˆ๋‹ค.
10:01
So this is another way to see this.
199
601000
2000
๊ทธ๋Ÿฌ๋ฏ€๋กœ ๋‹ค๋ฅธ ๋ฐฉํ–ฅ์œผ๋กœ ๋˜ ์ƒ๊ฐ์„ ํ•ด๋ณผ ์ˆ˜๊ฐ€ ์žˆ์ง€์š”.
10:03
You can see that for the prevalence to be as high as UNAIDS says,
200
603000
2000
๋ณด์‹ค์ˆ˜ ์žˆ๋“ค์‹œ, UNAIDS๊ฐ€ ๊ฐ์—ผ์ˆ˜์น˜ ๋งŒํผ ๋†’์œผ๋ ค๋ฉด
10:05
we have to really see 60 deaths per 10,000
201
605000
2000
๋งŒ๋ช…์˜ 60๋ช…์˜ ์‚ฌ๋ง์ž๊ฐ€ ์žˆ์–ด์•ผ ํ•œ๋‹ค๋Š” ์ด์•ผ๊ธฐ๊ฐ€ ๋ฉ๋‹ˆ๋‹ค.
10:07
rather than 20 deaths per 10,000 in this age group.
202
607000
4000
์—ฐ๋ น๋Œ€ ๋ณ„๋กœ ๋งŒ๋ช…์˜ 20๋ช…์˜ ์‚ฌ๋ง์ž๊ฐ€ ์•„๋‹ˆ๊ณ ์š”.
10:11
I'm going to talk a little bit in a minute
203
611000
2000
์ด๊ฒƒ์— ๋Œ€ํ•ด์„œ๋Š” ์ž ์‹œ ํ›„์— ์„ค๋ช…ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.
10:13
about how we can use this kind of information to learn something
204
613000
3000
์ด๋Ÿฐ ์ž๋ฃŒ๋ฅผ ์–ด๋–ป๊ฒŒ ์ด์šฉํ•ด์„œ ์„ธ์ƒ์„ ๋„์šธ ์ˆ˜ ์žˆ๋Š”
10:16
that's going to help us think about the world.
205
616000
2000
๋ฐฉ๋ฒ•์„ ์ฐพ์•„ ๋‚ผ ์ˆ˜ ์žˆ๋Š” ๊ฐ€์— ๋Œ€ํ•ด์„œ์š”.
10:18
But this also tells us that one of these facts
206
618000
2000
ํ•˜์ง€๋งŒ ๋˜ ์ด๊ฒƒ์€ ์ œ๊ฐ€ ์•ž์„œ์„œ ๋งํ–ˆ๋˜
10:20
that I mentioned in the beginning may not be quite right.
207
620000
3000
์‚ฌ์‹ค๋“ค๊ณผ ๋‹ค๋ฅด๋‹ค๋Š” ๊ฒƒ์„ ๋˜ ๋งํ•ด ์ค๋‹ˆ๋‹ค.
10:23
If you think that 25 million people are infected,
208
623000
2000
๋งŒ์•ฝ 25๋งŒ๋ช…์˜ ์‚ฌ๋žŒ๋“ค์ด ๊ฐ์—ผ์ด ๋˜์—ˆ๋‹ค๊ณ  ์ƒ๊ฐํ–ˆ์„๋•Œ,
10:25
if you think that the UNAIDS numbers are much too high,
209
625000
3000
AIDS ์˜ ์ˆ˜์น˜๊ฐ€ ๋„ˆ๋ฌด ๋†’๋‹ค๊ณ  ์ƒ๊ฐ๋˜๋ฉด,
10:28
maybe that's more like 10 or 15 million.
210
628000
2000
์•„๋งˆ 10์—์„œ 15๋งŒ๋ช… ๋ณด๋‹ค ๋†’๋‹ค๋Š” ๊ฒƒ์ด ๋˜๊ฒ ์ง€์š”.
10:30
It doesn't mean that AIDS isn't a problem. It's a gigantic problem.
211
630000
4000
์ด๊ฒƒ์€ AIDS ๊ฐ€ ๊ทธ๋ƒฅ ๋ณดํ†ต์˜ ๋ฌธ์ œ๊ฐ€ ์•„๋‹Œ, ์—„์ฒญ๋‚œ ๋ฌธ์ œ๋ผ๋Š” ๊ฒƒ์„ ์•Œ๋ ค์ค๋‹ˆ๋‹ค.
10:34
But it does suggest that that number might be a little big.
212
634000
4000
ํ•˜์ง€๋งŒ ๊ทธ๋ž˜๋„ ์ˆ˜์น˜๊ฐ€ ๋„ˆ๋ฌด ๋†’๊ธฐ๋Š” ๋†’์ง€์š”.
10:38
What I really want to do, is I want to use this new data
213
638000
2000
๊ทธ๋ž˜์„œ ์ œ๊ฐ€ ํ•˜๊ณ  ์‹ถ์€๊ฒƒ์€, ์ด ์ƒˆ๋กœ์šด ๊ธฐ๋ก์„ ์ด์šฉํ•ด์„œ
10:40
to try to figure out what makes the HIV epidemic grow faster or slower.
214
640000
4000
HIV ๊ฐ์—ผ๊ตฐ์˜ ์ˆ˜์น˜๋ฅผ ๋น ๋ฅด๊ฒŒ, ํ˜น์€ ๋Š๋ฆฌ๊ฒŒ ๋งŒ๋“œ๋Š” ๊ฒƒ์ด ๋ฌด์—‡์ธ๊ฐ€๋ฅผ ์•Œ์•„๋‚ด๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
10:44
And I said in the beginning, I wasn't going to tell you about exports.
215
644000
3000
์•ž์„œ ๋ง์”€๋“œ๋ ธ๋“ฏ์ด, ์ˆ˜์ถœ์— ๊ด€ํ•œ ์ด์•ผ๊ธฐ๋Š” ํ•˜์ง€ ์•Š์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
10:47
When I started working on these projects,
216
647000
2000
์ œ๊ฐ€ ์ด๋Ÿฐ ํ”„๋กœ์ ํŠธ์— ์ฐฉ์ˆ˜ํ•˜๊ฒŒ ๋˜์—ˆ์„ ๋•Œ,
10:49
I was not thinking at all about economics,
217
649000
2000
์ฒ˜์Œ์—๋Š” ๊ฒฝ์ œํ•™์ ์œผ๋กœ ์ƒ๊ฐํ•˜์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค.
10:51
but eventually it kind of sucks you back in.
218
651000
3000
ํ•˜์ง€๋งŒ ๊ฒฐ๊ตญ์—๋Š” ๋‹ค์‹œ ์ด๋Ÿฐ ์‹์œผ๋กœ ์ƒ๊ฐ์„ ํ•  ์ˆ˜ ๋ฐ–์— ์—†๋”๊ตฐ์š”.
10:54
So I am going to talk about exports and prices.
219
654000
3000
๊ทธ๋ž˜์„œ ๊ฒฐ๊ตญ ์ˆ˜์ถœ๊ณผ ๊ฐ€๊ฒฉ์— ๋Œ€ํ•ด์„œ ์ด์•ผ๊ธฐ๋ฅผ ํ•ด์•ผ ํ•  ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค.
10:57
And I want to talk about the relationship between economic activity,
220
657000
3000
๊ทธ๋ฆฌ๊ณ  ์ €๋Š” ๊ฒฝ์ œ ํ™œ๋™๊ณผ ์ˆ˜์ถœ์˜ ์ƒํ™ฉ
11:00
in particular export volume, and HIV infections.
221
660000
4000
๊ทธ๋ฆฌ๊ณ  HIV ๊ฐ์—ผ ์ˆ˜์น˜ ๊ฐ„์— ๊ด€๊ณ„์— ๋Œ€ํ•ด์„œ ์ด์•ผ๊ธฐ๋ฅผ ํ•˜๊ณ  ์‹ถ์Šต๋‹ˆ๋‹ค.
11:04
So obviously, as an economist, I'm deeply familiar
222
664000
4000
๊ฒฝ์ œํ•™์ž๋กœ์„œ, ๋‹น์—ฐํžˆ ์ €๋Š” ๋ฐœ์ „, ์ˆ˜์ž…/์ˆ˜์ถœ์—
11:08
with the fact that development, that openness to trade,
223
668000
2000
์—ด๋ ค์žˆ๋Š” ๊ฒƒ์ด
11:10
is really good for developing countries.
224
670000
2000
๋‚˜๋ผ ๋ฐœ์ „์— ๋„์›€์ด ๋˜๋Š” ๊ฒƒ์„ ์ž˜ ์•Œ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
11:12
It's good for improving people's lives.
225
672000
3000
์ด๊ฒƒ์€ ์‚ฌ๋žŒ๋“ค์˜ ์ƒํ™œ ์ˆ˜์ค€์„ ๋†’์ด๋Š” ๋ฐ์—๋„ ์ข‹์Šต๋‹ˆ๋‹ค.
11:15
But openness and inter-connectedness, it comes with a cost
226
675000
2000
ํ•˜์ง€๋งŒ ๋‚˜๋ผ๊ฐ„์˜ ์—ด๊ฒฐ๋จ์— ๊ฐœ๋ฐฉ์ด ๋˜์–ด ์žˆ๋‹ค๋Š” ๊ฒƒ์€ ํ•ญ์ƒ ๋Œ“๊ฐ€๊ฐ€ ์žˆ๊ธฐ ๋งˆ๋ จ์ž…๋‹ˆ๋‹ค.
11:17
when we think about disease. I don't think this should be a surprise.
227
677000
3000
๊ทธ๋ฆฌ๊ณ  ์ด๊ฒƒ์„ ๋ณ‘๊ณผ ์—ฐ๊ด€์ง€์–ด ์ƒ๊ฐํ•ด๋ณด๋ฉด ๋†€๋ž์ง€ ์•Š๊ฒŒ๋„ ๋น„์Šทํ•˜๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
11:20
On Wednesday, I learned from Laurie Garrett
228
680000
2000
์ˆ˜์š”์ผ์—, ๋กœ๋ฆฌ ๊ฐ€๋ ›์œผ๋กœ๋ถ€ํ„ฐ
11:22
that I'm definitely going to get the bird flu,
229
682000
2000
์ €๋Š” ์กฐ๋ฅ˜๋…๊ฐ์— ์ ˆ๋Œ€๋กœ ๊ฑธ๋ฆฌ์ง€ ์•Š์„๊ฒƒ์ด๋ฉฐ
11:24
and I wouldn't be at all worried about that
230
684000
3000
์•„์‹œ์•„์— ๊ฐ€๋ณธ์ ์ด ์—†์—ˆ๋‹ค๋ฉด
11:27
if we never had any contact with Asia.
231
687000
3000
์ „ํ˜€ ๊ฑฑ์ •ํ•  ๊ฒƒ์ด ์—†๋‹ค๊ณ  ๋ฐฐ์› ์Šต๋‹ˆ๋‹ค.
11:30
And HIV is actually particularly closely linked to transit.
232
690000
4000
HIV ๋˜ํ•œ ๋‚˜๋ผ๊ฐ„์˜ ํ†ตํ–‰๊ณผ ์•„์ฃผ ๋ฐ€์ ‘ํ•œ ๊ด€๊ณ„๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
11:34
The epidemic was introduced to the US
233
694000
2000
๋ฏธ๊ตญ์— ์†Œ๊ฐœ๋œ ์ˆ˜์น˜๋ฅผ ๋ณด๋ฉด
11:36
by actually one male steward on an airline flight,
234
696000
4000
ํ•œ ํ•ญ๊ณต์‚ฌ์˜ ๋‚จ์ž ์ŠคํŠœ์–ด๋“œ๊ฐ€
11:40
who got the disease in Africa and brought it back.
235
700000
2000
์•„ํ”„๋ฆฌ์นด์—์„œ ๊ฑธ๋ฆฐ ๋ณ‘์„ ๋ฏธ๊ตญ์œผ๋กœ ์˜ฎ๊ฒจ ์™”๋‹ค๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
11:42
And that was the genesis of the entire epidemic in the US.
236
702000
3000
๊ทธ๋ฆฌ๊ณ  ๊ทธ๊ฒŒ ๋ฐ”๋กœ ๋ฏธ๊ตญ์—์„œ์˜ ๊ทธ ๋ณ‘์˜ ์‹œ์ดˆ ์˜€์ง€์š”.
11:45
In Africa, epidemiologists have noted for a long time
237
705000
4000
์•„ํ”„๋ฆฌ์นด์—์„œ๋Š” ์ „์—ผ๋ณ‘ ํ•™์ž๋“ค์€ ์˜ค๋ž˜์ „ ๋ถ€ํ„ฐ
11:49
that truck drivers and migrants are more likely to be infected than other people.
238
709000
4000
ํŠธ๋Ÿญ ์šด์ „์‚ฌ๋‚˜ ์ด๋ฏผ์ž๋“ค์ด ๋ณดํ†ต ์‚ฌ๋žŒ๋“ค ๋ณด๋‹ค ์–ด๋–ค ๋ณ‘์— ๋” ์‰ฝ๊ฒŒ ๊ฐ„์—ฝ ๋ ์ˆ˜ ์žˆ๋‹ค๋Š”๊ฒƒ์„ ์•Œ๊ณ  ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
11:53
Areas with a lot of economic activity --
239
713000
2000
๊ทธ๋ฆฌ๊ณ  ๊ฒฝ์ œ ํ™œ๋™์ด ํ™œ๋ฐœํ•œ๊ณณ
11:55
with a lot of roads, with a lot of urbanization --
240
715000
3000
๋„๋กœ๊ฐ€ ๋งŽ์ด ๋šค๋ ค ์žˆ๊ณ , ๋งŽ์€ ๊ทผ๋Œ€ํ™”๊ฐ€ ์ผ์–ด๋‚œ ๊ณณ์—์„œ
11:58
those areas have higher prevalence than others.
241
718000
2000
์ „์—ผ๋ฅ ์ด ๋‹ค๋ฅธ ๊ณณ๋ณด๋‹ค ๋†’๋‹ค๋Š” ๊ฒƒ๋„ ์•Œ์•˜์ง€์š”.
12:00
But that actually doesn't mean at all
242
720000
2000
ํ•˜์ง€๋งŒ ์ด๋Ÿฐ ๊ฒƒ์€ ์‚ฌ์‹ค ๊ทธ๋ ‡๊ฒŒ ๋งŽ์€ ๊ฒƒ์„ ์ด์•ผ๊ธฐ ํ•ด์ฃผ์ง€๋Š” ์•Š์Šต๋‹ˆ๋‹ค.
12:02
that if we gave people more exports, more trade, that that would increase prevalence.
243
722000
4000
๋” ๋งŽ์€ ์ˆ˜์ถœ๊ณผ ๊ตํ™˜ ๋“ฑ์ด ์ด๋ฃจ์–ด์กŒ์„ ๋•Œ ๋” ์ „์—ผ๋ฅ ์ด ๋†’์•„์ง€์ง€์š”.
12:06
By using this new data, using this information about prevalence over time,
244
726000
4000
ํ•˜์ง€๋งŒ ์ด ์ƒˆ๋กœ์šด ์ž๋ฃŒ๋ฅผ ์ด์šฉํ•ด๋ณด๋ฉด, ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ ์ „์—ผ์œจ์— ๊ด€ํ•œ ์ˆ˜์น˜๋ฅผ ๋ณด๋ฉด-
12:10
we can actually test that. And so it seems to be --
245
730000
4000
์šฐ๋ฆฌ๋Š” ์•Œ์•„ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
12:14
fortunately, I think -- it seems to be the case
246
734000
2000
๊ฒฐ๊ตญ์—๋Š”, ์šด์ด ์ข‹๊ฒŒ๋„, ์ œ ์ƒ๊ฐ์—๋Š”
12:16
that these things are positively related.
247
736000
2000
์ด ๋ชจ๋“ ๊ฒƒ๋“ค์ด ์—ฐ๊ด€์ด ๋˜์–ด ์žˆ๋‹ค๋Š”๊ฒƒ์„์š”.
12:18
More exports means more AIDS. And that effect is really big.
248
738000
4000
์ˆ˜์ถœ์ด ์ฆ๊ฐ€ํ•˜๋ฉด AIDS๋„ ์ฆ๊ฐ€ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ ์˜ํ–ฅ๋ ฅ์€ ์•„์ฃผ ํฌ๊ณ ์š”.
12:22
So the data that I have suggests that if you double export volume,
249
742000
4000
๊ทธ๋ž˜์„œ ์ œ๊ฐ€ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ์ด ๊ธฐ๋ก๋Š” ์ˆ˜์ถœ์ด ๋‘๋ฐฐ ์ฆ๊ฐ€๋ฅผ ํ•˜๋ฉด
12:26
it will lead to a quadrupling of new HIV infections.
250
746000
5000
HIV ๊ฐ์—ผ์ˆ˜์น˜๋Š” 4๋ฐฐ๊ฐ€ ์ฆ๊ฐ€ํ•œ๋‹ค๊ณ  ๋งํ•ด์ฃผ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
12:31
So this has important implications both for forecasting and for policy.
251
751000
3000
์ด๊ฒƒ์€ ๊ฒฐ๊ตญ ์ •์ฑ…์— ๊ด€ํ•ด์„œ ์•ž์„œ ์ƒ๊ฐํ•ด ๋ณผ ๋•Œ ์ข‹์€ ์•”์‹œ๋ฅผ ์ค๋‹ˆ๋‹ค.
12:34
From a forecasting perspective, if we know where trade is likely to change,
252
754000
4000
๋ฏธ๋ž˜๋ฅผ ๋‚ด๋‹ค ๋ณด๋Š” ์‹œ๊ฐ์—์„œ ๋ณด๋ฉด, ์šฐ๋ฆฌ๊ฐ€ ์–ด๋–ค ์ง€์—ญ์˜ ๋ฌด์—ญ ์ƒํ™ฉ์ด ๋ฐ”๋€๋‹ค๋Š” ๊ฒƒ์„ ์•Œ๋ฉด,
12:38
for example, because of the African Growth and Opportunities Act
253
758000
3000
์˜ˆ๋ฅผ๋“ค์–ด์„œ, ์•„ํ”„๋ฆฌ์นด ๊ธฐํšŒ ๋ฐœ์ „ ๋ฒ• ๋•Œ๋ฌธ์—
12:41
or other policies that encourage trade,
254
761000
2000
๋˜๋Š” ๋‹ค๋ฅธ ์–ด๋–ค ์ •์ฑ…๋“ค๋กœ ์ธํ•˜์—ฌ ๋ฌด์—ญ์ด ํ™œ์„ฑํ™”๊ฐ€ ์œ ๋„ ๋˜๋Š” ์ง€์—ญ์ด ์žˆ๊ฒŒ๋˜๋ฉด
12:43
we can actually think about which areas are likely to be heavily infected with HIV.
255
763000
5000
์šฐ๋ฆฌ๋Š” ๊ทธ ์ง€์—ญ์—์„œ HIV ๊ฐ์—ผ ์ˆ˜์น˜๊ฐ€ ๋†’์•„ ์งˆ ๊ฒƒ์ด๋ผ๊ณ  ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
12:48
And we can go and we can try to have pre-emptive preventive measures there.
256
768000
6000
๊ทธ๋ฆฌ๊ณ  ๊ทธ ๊ณณ์— ๊ฐ€์„œ ์‚ฌ์ „ ๊ฐ์—ผ ์ˆ˜์น˜ ๋“ฑ์„ ์กฐ์‚ฌํ•ด ๋ณผ ์ˆ˜๋„ ์žˆ๊ฒ ์ง€์š”.
12:54
Likewise, as we're developing policies to try to encourage exports,
257
774000
3000
๊ทธ์™€ ๊ฐ™์ด, ๋ฌด์—ญ์„ ์œ ๋„ํ•˜๋Š” ์ •์ฑ…์„ ์‹คํ–‰์‹œํ‚ค๋ ค๊ณ  ํ•˜๋ฉด,
12:57
if we know there's this externality --
258
777000
2000
์ด๋Ÿฌํ•œ ์–ด๋–ค ์™ธ๋ถ€ ์š”์ธ์ด ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ์•Œ๋ฉด
12:59
this extra thing that's going to happen as we increase exports --
259
779000
2000
์ด ์ˆ˜์ถœ์„ ์ฆ๊ฐ€์‹œํ‚ฌ ์–ด๋–ค ์š”์†Œ ๋•Œ๋ฌธ์— ์ƒ๊ธธ ์ผ๋“ค์„ ์•ˆ๋‹ค๋ฉด
13:01
we can think about what the right kinds of policies are.
260
781000
3000
์–ด๋–ค ์ •์ฑ…๋“ค์ด ๋งž๋Š” ๊ฒƒ์ธ์ง€์— ๋Œ€ํ•ด์„œ๋„ ์ƒ๊ฐํ•ด ๋ณผ ์ˆ˜ ์žˆ๊ฒ ์ง€์š”.
13:04
But it also tells us something about one of these things that we think that we know.
261
784000
3000
ํ•˜์ง€๋งŒ ์ด๊ฒƒ์€ ๋˜ ์šฐ๋ฆฌ๊ฐ€ ์•Œ๊ณ  ์žˆ๋‹ค๋Š” ์–ด๋–ค ๊ฒƒ๋“ค์— ๋Œ€ํ•ด์„œ ๋˜ ๋งํ•ด ์ค๋‹ˆ๋‹ค.
13:07
Even though it is the case that poverty is linked to AIDS,
262
787000
3000
AID๊ฐ€ ๊ฐ€๋‚œ์— ์—ฐ๊ด€์ด ๋˜์–ด์žˆ๋‹ค๊ณ  ํ•˜์—ฌ๋„
13:10
in the sense that Africa is poor and they have a lot of AIDS,
263
790000
3000
์•„ํ”„๋ฆฌ์นด๋Š” ๊ฐ€๋‚œํ•˜๊ณ  AIDS๊ฐ€ ๋งŽ๋‹ค๊ณ  ํ•˜์—ฌ๋„,
13:13
it's not necessarily the case that improving poverty -- at least in the short run,
264
793000
4000
์ ์–ด๋„ ์งง๊ฒŒ ๋ณด์•˜์„ ๋•Œ ๊ฐ€๋‚œ๋งŒ ์—†์• ๋Š” ๊ฒƒ์ด,
13:17
that improving exports and improving development --
265
797000
2000
์ˆ˜์ถœ๊ณผ ๋ฐœ์ „์„ ๋„๋ชจ ํ•˜๋Š” ๊ฒƒ๋“ค์„ ๋งํ•˜๋Š” ๊ฑฐ์ฃ ,
13:19
it's not necessarily the case that that's going to lead
266
799000
2000
์ด๊ฒƒ๋“ค์ด ๊ผญ HIV ๊ฐ์—ผ๋ฅ ์„
13:21
to a decline in HIV prevalence.
267
801000
2000
๋‚ฎ์ถ”๋Š” ๊ฒƒ๋“ค์ด๋ผ๊ณ  ํ•  ์ˆ˜๋Š” ์—†๊ฒ ์Šต๋‹ˆ๋‹ค.
13:24
So throughout this talk I've mentioned a few times
268
804000
2000
๊ทธ๋ž˜์„œ ์ €์˜ ์—ฐ์„ค ์ค‘์— ์ œ๊ฐ€ ๋ช‡ ๊ฐ€์ง€๋ฅผ ์–ธ๊ธ‰ํ•˜์˜€์Šต๋‹ˆ๋‹ค.
13:26
the special case of Uganda, and the fact that
269
806000
2000
์šฐ๊ฐ„๋‹ค์˜ ํŠน๋ณ„ํ•œ ์ผ€์ด์Šค,
13:28
it's the only country in sub-Saharan Africa with successful prevention.
270
808000
4000
์‚ฌํ•˜๋ฆฌ์•ˆ ์•„ํ”„๋ฆฌ์นด ์ค‘ ์œ ์ผํ•˜๊ฒŒ ๊ฐ์—ผ์œจ์„ ๋‚ฎ์ถ˜ ์ผ€์ด์Šค์˜€์ง€์š”.
13:32
It's been widely heralded.
271
812000
2000
์ด ์ „๋ก€๋งŒ ๋„๋ฆฌ ์•Œ๋ ค์กŒ์Šต๋‹ˆ๋‹ค.
13:34
It's been replicated in Kenya, and Tanzania, and South Africa and many other places.
272
814000
6000
๊ทธ๋ฆฌ๊ณ  ์ด ์˜ˆ๋Š” ์ผ€๋ƒ, ํƒ„์ž๋‹ˆ์•„ ๊ทธ๋ฆฌ๊ณ  ๋‚จ์•„ํ”„๋ฆฌ์นด ๋“ฑ ๋งŽ์€ ๊ณณ์—์„œ ๋ฐ˜๋ณต ์‹คํ–‰ ๋˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
13:40
But now I want to actually also question that.
273
820000
4000
ํ•˜์ง€๋งŒ ์ €๋Š” ๋‹ค์‹œ ๊ถ๊ธˆ์ฆ์„ ๊ฐ€์ง€๊ณ  ์‹ถ์Šต๋‹ˆ๋‹ค.
13:44
Because it is true that there was a decline in prevalence
274
824000
3000
์™œ๋ƒํ•˜๋ฉด 1990๋…„๋„์˜ ์šฐ๊ฐ„๋‹ค์˜ ๊ฐ์—ผ๋ฅ ์˜ ์ˆ˜์น˜๊ฐ€ ์ ์–ด์ง„ ๊ฒƒ์€ ์‚ฌ์‹ค์ด์ง€๋งŒ
13:47
in Uganda in the 1990s. It's true that they had an education campaign.
275
827000
4000
๊ทธ๋“ค์—๊ฒŒ ๊ต์œก ์บ ํŽ˜์ธ์ด ์žˆ์—ˆ๋‹ค๋Š” ๊ฒƒ๋„ ์‚ฌ์‹ค์ด์ง€๋งŒ
13:51
But there was actually something else that happened in Uganda in this period.
276
831000
6000
๊ทธ ์™ธ์—๋„ ์šฐ๊ฐ„๋‹ค์—์„œ๋Š” ๋งŽ์€ ์ผ๋“ค์ด ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
13:57
There was a big decline in coffee prices.
277
837000
2000
์ปคํ”ผ ๊ฐ’์˜ ์—„์ฒญ๋‚œ ํญ๋ฝ ์ด์—ˆ์ง€์š”.
13:59
Coffee is Uganda's major export.
278
839000
2000
์ปคํ”ผ๋Š” ์šฐ๊ฐ„๋‹ค์˜ ์ค‘์š” ์ˆ˜์ถœ์› ์ž…๋‹ˆ๋‹ค.
14:01
Their exports went down a lot in the early 1990s -- and actually that decline lines up
279
841000
5000
1990๋…„๋Œ€ ์ดˆ๋ฐ˜์˜ ์ˆ˜์ถœ๋Ÿ‰์ด ์ ์–ด์ง€๋ฉด์„œ
14:06
really, really closely with this decline in new HIV infections.
280
846000
4000
๊ทธ์™€ ํ•จ๊ป˜ HIV ๊ฐ์—ผ ์ˆ˜์น˜๋„ ์ค„์–ด๋“  ๊ฒƒ ์ž…๋‹ˆ๋‹ค.
14:10
So you can see that both of these series --
281
850000
3000
๊ทธ๋Ÿฌ๋ฏ€๋กœ ์ด๋Ÿฐ ์ผ€์ด์Šค๋“ค์„ ํ†ตํ•ด์„œ
14:13
the black line is export value, the red line is new HIV infections --
282
853000
3000
๊ฒ€์ •์ƒ‰ ๋ผ์ธ์€ ์ˆ˜์ถœ๋Ÿ‰์„ ๋‚˜ํƒ€๋‚ด๊ณ ์š”, ๋นจ๊ฐ„์ƒ‰ ๋ผ์ธ์€ ์ƒˆ๋กœ์šด HIV ๊ฐ์—ผ ์ˆ˜์น˜๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š”๋ฐ์š”,
14:16
you can see they're both increasing.
283
856000
2000
์—ฌ๊ธฐ์„œ ์ด ๋‘ ๊ฐœ ๋ชจ๋‘๊ฐ€ ์ฆ๊ฐ€ ํ•˜๊ณ  ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
14:18
Starting about 1987 they're both going down a lot.
284
858000
2000
1987๋…„์— ์‹œ์ž‘ํ•ด์„œ๋Š” ๋‘ ๊ฐ€์ง€ ๋ชจ๋‘ ๋งŽ์ด ์ค„์–ด ๋“ค๊ณ  ์žˆ์ง€์š”.
14:20
And then actually they track each other
285
860000
2000
๊ทธ๋ฆฌ๊ณ  ๋‚˜์„œ๋Š” ๋‘ ๊ฐ€์ง€๊ฐ€ ๊ฐ™์ด ๋˜ ๊ฐ‘๋‹ˆ๋‹ค.
14:22
a little bit on the increase later in the decade.
286
862000
2000
์ด ์‹œ๋Œ€ ํ›„๋ฐ˜์— ๊ฐ€์„œ๋Š” ์กฐ๊ธˆ ์ฆ๊ฐ€ํ•˜๊ธฐ๋„ ํ–ˆ๊ณ ์š”.
14:24
So if you combine the intuition in this figure
287
864000
2000
๊ทธ๋ž˜์„œ ์˜ˆ์ƒ๊ณผ ์ด ์ˆ˜์น˜๋“ค์„ ์ข…ํ•ฉํ•ด๋ณด๋ฉด
14:26
with some of the data that I talked about before,
288
866000
3000
์šฐ๋ฆฌ๊ฐ€ ์•ž์—์„œ ์ด์•ผ๊ธฐ ํ–ˆ๋˜ ์ˆ˜์น˜๋“ค๋„ ํ•จ๊ป˜์ฃ ,
14:29
it suggests that somewhere between 25 percent and 50 percent
289
869000
4000
25ํผ์„ผํŠธ์—์„œ 50ํผ์„ผํŠธ ์‚ฌ์ด์—๋Š”
14:33
of the decline in prevalence in Uganda
290
873000
2000
์šฐ๊ฐ„๋‹ค์˜ ๊ฐ์—ผ ์ˆ˜์น˜๊ฐ€ ์ค„์—ˆ๋‹ค๋Š” ๊ฒƒ์„ ๋งํ•ด ์ค๋‹ˆ๋‹ค.
14:35
actually would have happened even without any education campaign.
291
875000
4000
๊ทธ๋ฆฌ๊ณ  ๊ต์œก ํ”„๋กœ๊ทธ๋žจ์ด ์—†์—ˆ์–ด๋„ ๊ทธ๋Ÿฌํ•˜์˜€์„ ๊ฒƒ์€ ์•Œ ์ˆ˜๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
14:39
But that's enormously important for policy.
292
879000
2000
์ด๊ฒƒ์€ ์ •์ฑ…์— ์žˆ์–ด์„œ ์•„์ฃผ ํฐ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฒฐ๊ณผ์ž…๋‹ˆ๋‹ค.
14:41
We're spending so much money to try to replicate this campaign.
293
881000
2000
๊ทธ ์บ ํŽ˜์ธ์˜ ํ™œ์„ฑ์„ ์œ„ํ•ด์„œ ์šฐ๋ฆฌ๋Š” ์—„์ฒญ๋‚œ ๋ˆ์„ ๋“ค์˜€์Šต๋‹ˆ๋‹ค.
14:43
And if it was only 50 percent as effective as we think that it was,
294
883000
3000
๊ทธ๋ฆฌ๊ณ  ๊ฒฐ๊ตญ์—๋Š” 50ํผ์„ผํŠธ ์ •๋„์˜ ํšจ๊ณผ ๋ฐ–์— ๋‚ด์ง€ ๋ชปํ–ˆ๋‹ค๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
14:46
then there are all sorts of other things
295
886000
2000
๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๊ฐ€ ๋ˆ์„ ์จ์•ผ ํ•˜๋Š” ๋ถ„์•ผ๋“ค์€
14:48
maybe we should be spending our money on instead.
296
888000
2000
๋”ฐ๋กœ ๋งŽ์ด ์žˆ์„์ง€๋„ ๋ชจ๋ฆ…๋‹ˆ๋‹ค.
14:50
Trying to change transmission rates by treating other sexually transmitted diseases.
297
890000
4000
์„ฑ๋ณ‘์— ๊ฐ์—ผ๋˜๋Š” ์ˆ˜์น˜๋ฅผ ๋ฐ”๊พธ๊ธฐ ์œ„ํ•ด์„œ
14:54
Trying to change them by engaging in male circumcision.
298
894000
2000
๋‚จ์„ฑ ํ™˜๋ถ€ ์ ˆ์ œ์ˆ ์„ ํ†ตํ•ด์„œ ๋ฐ”๊พธ๋Š” ๋ฐฉ๋ฒ• ๋“ฑ
14:56
There are tons of other things that we should think about doing.
299
896000
2000
๋‹ค๋ฅธ ์—„์ฒญ๋‚œ ๋ถ„์•ผ์— ์šฐ๋ฆฌ๊ฐ€ ์ผํ•ด์•ผ ํ•  ๊ณณ์ด ๋งŽ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
14:58
And maybe this tells us that we should be thinking more about those things.
300
898000
4000
๊ทธ๋ฆฌ๊ณ  ์ด๋Ÿฐ ๋งŽ์€ ๊ฒƒ๋“ค์— ์‹ ๊ฒฝ์„ ์จ์•ผ ํ•œ๋‹ค๋Š” ๊ฒƒ์„ ๊ฐ€๋ฅด์ณ ์ค๋‹ˆ๋‹ค.
15:02
I hope that in the last 16 minutes I've told you something that you didn't know about AIDS,
301
902000
5000
์ด๋ฒˆ 16๋ถ„๋™์•ˆ ์ œ๊ฐ€ ์—ฌ๋Ÿฌ๋ถ„๋“ค์ด ์•Œ์ง€ ๋ชปํ–ˆ๋˜ AIDS ์— ์‚ฌ์‹ค์„ ๊ฐ€๋ฅด์ณ ๋“œ๋ ธ๊ธธ ๋ฐ”๋ž๋‹ˆ๋‹ค.
15:07
and I hope that I've gotten you questioning a little bit
302
907000
2000
๊ทธ๋ฆฌ๊ณ  ์ด๋ฏธ ์•Œ๊ณ  ๊ณ„์‹  ๊ฒƒ๋“ค ์— ๋Œ€ํ•ด์„œ๋„
15:09
some of the things that you did know.
303
909000
2000
๊ถ๊ธˆ์ฆ์„ ๊ฐ€์ง€๊ฒŒ ๋งŒ๋“ค์—ˆ๊ธฐ๋ฅผ ๋ฐ”๋ž๋‹ˆ๋‹ค.
15:11
And I hope that I've convinced you maybe
304
911000
2000
๊ทธ๋ฆฌ๊ณ  ๋˜ ์–ด๋– ํ•œ ์งˆ๋ณ‘ ์ˆ˜์น˜๋ฅผ ์ดํ•ดํ•œ๋‹ค๋Š” ๊ฒƒ์˜
15:13
that it's important to understand things about the epidemic
305
913000
2000
์ค‘์š”์„ฑ, ์ •์ฑ…์— ๊ด€ํ•ด์„œ ์ƒ๊ฐํ•˜๋Š” ๊ฒƒ
15:15
in order to think about policy.
306
915000
2000
์ดํ•ดํ•˜๋Š” ๊ฒƒ์— ๋Œ€ํ•ด ์—ฌ๋Ÿฌ๋ถ„์„ ์„ค๋“ํ–ˆ๊ธธ ๋ฐ”๋ž๋‹ˆ๋‹ค.
15:18
But more than anything, you know, I'm an academic.
307
918000
2000
ํ•˜์ง€๋งŒ ์ค‘์š”ํ•œ ๊ฒƒ์€, ์•„์‹œ๋‹ค์‹œํ”ผ ์ €๋Š” ํ•™์ž์ž…๋‹ˆ๋‹ค.
15:20
And when I leave here, I'm going to go back
308
920000
2000
๊ทธ๋ž˜์„œ ์ง€๊ธˆ ์ด ์ž๋ฆฌ๋ฅผ ๋– ๋‚˜๋ฉด ์ €๋Š” ๋˜
15:22
and sit in my tiny office, and my computer, and my data.
309
922000
3000
์ปดํ“จํ„ฐ์™€ ์ˆ˜์น˜๊ฐ€ ์žˆ๋Š” ์ €์˜ ์กฐ๊ทธ๋งŒํ•œ ์‚ฌ๋ฌด์‹ค๋กœ ๋Œ์•„๊ฐˆ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
15:25
And the thing that's most exciting about that
310
925000
2000
ํฅ๋ฏธ๋กœ์šด ๊ฒƒ์€
15:27
is every time I think about research, there are more questions.
311
927000
3000
์ œ๊ฐ€ ์ด ์—ฐ๊ตฌ์— ๊ด€ํ•œ ์ƒ๊ฐ์„ ํ•  ๋•Œ ๋งˆ๋‹ค ์งˆ๋ฌธ๋“ค์ด ์ƒ๊ธด๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
15:30
There are more things that I think that I want to do.
312
930000
2000
์ œ๊ฐ€ ํ•˜๊ณ  ์‹ถ์€ ์ผ๋“ค์ด ๋” ๋งŽ์ด ์ƒ๊น๋‹ˆ๋‹ค.
15:32
And what's really, really great about being here
313
932000
2000
๊ทธ๋ฆฌ๊ณ  ์ด ์ž๋ฆฌ์— ์žˆ๋Š” ๊ฒƒ์ด ์ •๋ง ๋„ˆ๋ฌด ์ข‹๊ณ  ๋Œ€๋‹จํ•œ ๊ฒƒ์€,
15:34
is I'm sure that the questions that you guys have
314
934000
2000
์—ฌ๋Ÿฌ๋ถ„์ด ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ์งˆ๋ฌธ๋“ค์ด
15:36
are very, very different than the questions that I think up myself.
315
936000
3000
์ œ๊ฐ€ ์ƒ๊ฐํ•ด ๋‚ผ์ˆ˜ ์žˆ๋Š” ์งˆ๋ฌธ๊ณผ ์•„์ฃผ ๋งŽ์ด ๋‹ค๋ฅผ ์ˆ˜๋„ ์žˆ๋‹ค๋Š” ๊ฒƒ์ด์ง€์š”.
15:39
And I can't wait to hear about what they are.
316
939000
2000
๊ทธ๋ฆฌ๊ณ  ๊ทธ ์งˆ๋ฌธ๋“ค์ด ์•„์ฃผ ๊ถ๊ธˆํ•ด์„œ ๋นจ๋ฆฌ ๋“ฃ๊ณ  ์‹ถ์Šต๋‹ˆ๋‹ค.
15:41
So thank you very much.
317
941000
2000
๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7