How you can help save the bees, one hive at a time | Noah Wilson-Rich

63,183 views ใƒป 2019-04-10

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืชืจื’ื•ื: Yael Ring ืขืจื™ื›ื”: Nurit Noy
00:12
Pollinator decline is a grand challenge in the modern world.
0
12793
4170
ื”ื™ืจื™ื“ื” ื‘ืžืกืคืจ ื”ืžืึทื‘ึผึฐืงึดื™ื ื”ื™ื ืืชื’ืจ ืขืฆื•ื ื‘ืขื•ืœื ื”ืžื•ื“ืจื ื™.
00:16
Of the 200,000 species of pollinators,
1
16987
2909
ืžืชื•ืš 200,000 ื–ื ื™ ื”ืžืึทื‘ึผึฐืงึดื™ื ื”ืฉื•ื ื™ื,
00:19
honeybees are the most well-understood,
2
19920
2836
ื”ื“ื‘ื•ืจื™ื ื”ืŸ ื”ื›ื™ ืžื•ื‘ื ื•ืช,
00:22
partly because of our long history with them dating back 8,000 years ago
3
22780
4193
ื’ื ื‘ื’ืœืœ ื”ื”ื™ืกื˜ื•ืจื™ื” ื”ืืจื•ื›ื” ืฉืœื ื• ืืชืŸ ืฉื›ื‘ืจ ื ืžืฉื›ืช 8,000 ืฉื ื”
00:26
to our cave drawings in what is now modern-day Spain.
4
26997
3168
ืžืฆื™ื•ืจื™ ื”ืžืขืจื•ืช ื‘ืกืคืจื“ ืฉืœ ื”ื™ื•ื.
00:30
And yet we know that this indicator species is dying off.
5
30189
4330
ื•ืขื“ื™ื™ืŸ ืื ื—ื ื• ื™ื•ื“ืขื™ื ืฉื–ืŸ ื–ื” ื’ื•ืกืก.
00:34
Last year alone, we lost 40 percent of all beehives in the United States.
6
34543
5275
ืจืง ื‘ืฉื ื” ืฉืขื‘ืจื”, ืื™ื‘ื“ื ื• 40% ืžื›ืœ ื”ื›ื•ื•ืจื•ืช ื‘ืืจืฆื•ืช ื”ื‘ืจื™ืช.
00:39
That number is even higher in areas with harsh winters,
7
39842
2699
ืžืกืคืจ ื–ื” ื’ื‘ื•ื” ืขื•ื“ ื™ื•ืชืจ ื‘ืื–ื•ืจื™ื ื”ืกื•ื‘ืœื™ื ืžื—ื•ืจืคื™ื ืงืฉื™ื,
00:42
like here in Massachusetts,
8
42565
1360
ื›ืžื• ื›ืืŸ ื‘ืžืกืฆ'ื•ืกื˜ืก,
00:43
where we lost 47 percent of beehives
9
43949
2868
ื›ืืŸ, ืื™ื‘ื“ื ื• 47% ืžื”ื›ื•ื•ืจื•ืช.
00:46
in one year alone.
10
46841
1595
ื‘ืฉื ื” ืื—ืช ื‘ืœื‘ื“.
00:48
Can you imagine if we lost half of our people last year?
11
48460
3365
ืืชื ื™ื›ื•ืœื™ื ืœื“ืžื™ื™ืŸ ืื ื”ื™ื™ื ื• ืžืื‘ื“ื™ื ื—ืฆื™ ืžื”ืื•ื›ืœื•ืกื™ื” ืฉืœื ื•?
00:52
And if those were the food-producing people?
12
52285
2653
ื•ืื ืืœื” ื”ื™ื• ื”ืื ืฉื™ื ื”ืžื™ื™ืฆืจื™ื ืžื–ื•ืŸ?
00:55
It's untenable.
13
55544
1150
ื–ื” ื‘ืœืชื™ ื ื™ืชืŸ ืœืชืคื™ืกื”.
00:57
And I predict that in 10 years,
14
57241
3448
ื•ืื ื™ ืฆื•ืคื”, ืฉืชื•ืš ืขืฉืจ ืฉื ื™ื,
01:00
we will lose our bees.
15
60713
2387
ื ืื‘ื“ ืืช ื”ื“ื‘ื•ืจื™ื ืฉืœื ื•.
01:04
If not for the work of beekeepers replacing these dead beehives,
16
64027
4313
ืœืœื ืขื‘ื•ื“ืชื ืฉืœ ื”ื“ื‘ื•ืจืื™ื ื”ืžื—ืœื™ืคื™ื ืืช ืื•ืชืŸ ื›ื•ื•ืจื•ืช ืžืชื•ืช,
01:08
we would be without foods that we rely upon:
17
68364
2915
ื ื™ืฉืืจ ื‘ืœื™ ื”ืžื–ื•ืŸ ืฉืื ื—ื ื• ืžืกืชืžื›ื™ื ืขืœื™ื•:
01:11
fruits, vegetables,
18
71303
1822
ืคื™ืจื•ืช, ื™ืจืงื•ืช,
01:13
crunchy almonds and nuts,
19
73149
2261
ืื’ื•ื–ื™ื ื•ืฉืงื“ื™ื ืคืจื™ื›ื™ื,
01:15
tart apples,
20
75434
1404
ืชืคื•ื—ื™ ืขืฅ ื—ืžืฆืžืฆื™ื,
01:16
sour lemons.
21
76862
1976
ืœื™ืžื•ื ื™ื ื—ืžื•ืฆื™ื.
01:18
Even the food that our cattle rely upon to eat, hay and alfalfa -- gone,
22
78862
5254
ืืคื™ืœื• ืžื” ืฉื”ื‘ื”ืžื•ืช ืฉืœื ื• ืžืกืชืžื›ื•ืช ืขืœื™ื• ืœืžื–ื•ืŸ, ื—ืฆื™ืจ ื•ืืกืคืกืช - ื™ืขืœืžื•,
01:24
causing global hunger,
23
84140
1965
ื•ื™ื’ืจื•ื ืœืจืขื‘ ืขื•ืœืžื™,
01:26
economic collapse,
24
86129
1802
ื”ืชืžื•ื˜ื˜ื•ืช ื›ืœื›ืœื™ืช,
01:27
a total moral crisis across earth.
25
87955
2442
ืžืฉื‘ืจ ืžื•ืกืจื™ ื›ื•ืœืœ ื‘ื›ืœ ื”ืขื•ืœื.
01:31
Now, I first started keeping bees here in Cape Cod
26
91417
2734
ืื ื™ ื”ืชื—ืœืชื™ ืœื˜ืคืœ ื‘ื“ื‘ื•ืจื™ื ื›ืืŸ ื‘ืงื™ื™ืค ืงื•ื“
01:34
right after I finished my doctorate in honeybee immunology.
27
94175
3385
ืžื™ื™ื“ ืื—ืจื™ ืฉืกื™ื™ืžืชื™ ืืช ื”ื“ื•ืงื˜ื•ืจื˜ ืฉืœื™ ื‘ืื™ืžื•ื ื•ืœื•ื’ื™ื” ืฉืœ ื”ื“ื‘ื•ืจื™ื.
01:37
(Laughter)
28
97584
2432
(ืฆื—ื•ืง)
01:40
(Applause)
29
100040
4507
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
01:45
Imagine getting such a degree in a good economy --
30
105560
3970
ื“ืžื™ื™ื ื• ืื ื”ื™ื™ืชื ืžืกื™ื™ืžื™ื ืชื•ืืจ ืฉื›ื–ื” ื‘ื›ืœื›ืœื” ื˜ื•ื‘ื” --
01:49
and it was 2009:
31
109554
1761
ื•ื–ื” ื”ื™ื” ื‘2009:
01:52
the Great Recession.
32
112242
1520
ื”ืžืฉื‘ืจ ื”ื›ืœื›ืœื™ ื”ื’ื“ื•ืœ.
01:54
And I was onto something.
33
114456
1561
ื•ืขืœื™ืชื™ ืขืœ ืžืฉื”ื•.
01:56
I knew that I could find out how to improve bee health.
34
116041
3673
ื™ื“ืขืชื™ ืฉืื•ื›ืœ ืœื’ืœื•ืช ืื™ืš ืœืฉืคืจ ืืช ื‘ืจื™ืื•ืชืŸ ืฉืœ ื”ื“ื‘ื•ืจื™ื.
01:59
And so the community on Cape Cod here in Provincetown
35
119738
3355
ื•ื›ืš ื”ืงื”ื™ืœื” ื›ืืŸ ื‘ืงื™ื™ืค ืงื•ื“ ื‘ืคืจื•ื‘ื™ื ืกื˜ืื•ืŸ
02:03
was ripe for citizen science,
36
123117
1666
ื”ื™ืชื” ืžื•ื›ื ื” ืœืžื—ืงืจ ืžื“ืขื™ ืื–ืจื—ื™,
02:04
people looking for ways to get involved and to help.
37
124807
2840
ืื ืฉื™ื ื—ื™ืคืฉื• ื“ืจื›ื™ื ืœื”ื™ื•ืช ืžืขื•ืจื‘ื™ื ื•ืœืกื™ื™ืข.
02:07
And so we met with people in coffee shops.
38
127671
2337
ื ืคื’ืฉื ื• ืขื ืื ืฉื™ื ื‘ื‘ืชื™ ืงืคื”.
02:10
A wonderful woman named Natalie got eight beehives at her home in Truro,
39
130032
3563
ืื™ืฉื” ื ืคืœืื” ื‘ืฉื ื ื˜ืœื™ ืงื™ื‘ืœื” ืฉืžื•ื ื” ื›ื•ื•ืจื•ืช ื‘ื‘ื™ืชื” ื‘ื˜ืจื•ืจื•,
02:13
and she introduced us to her friend Valerie,
40
133619
2086
ื•ื”ื™ื ื”ื›ื™ืจื” ืื•ืชื ื• ืœื—ื‘ืจื” ืฉืœื” ื•ืืœืจื™,
02:15
who let us set up 60 beehives at an abandoned tennis court on her property.
41
135729
5578
ืฉื ืชื ื” ืœื ื• ืœื”ืฆื™ื‘ 60 ื›ื•ื•ืจื•ืช ื‘ืžื’ืจืฉ ื˜ื ื™ืก ื ื˜ื•ืฉ ื‘ืฉื˜ื— ืฉืœื”.
02:21
And so we started testing vaccines for bees.
42
141902
3161
ื•ื›ืš ื”ืชื—ืœื ื• ืœื‘ื—ื•ืŸ ื—ื™ืกื•ื ื™ื ืขื‘ื•ืจ ื“ื‘ื•ืจื™ื.
02:25
We were starting to look at probiotics.
43
145087
2519
ื”ืชื—ืœื ื• ื‘ื‘ื—ื™ื ืช ื—ื™ืกื•ื ื™ื ืคืจื•ื‘ื™ื•ื˜ื™ื.
02:27
We called it "bee yogurt" --
44
147630
1616
ืงืจืื ื• ืœื–ื” "ื™ื•ื’ื•ืจื˜ ื“ื‘ื•ืจื™ื" --
02:29
ways to make bees healthier.
45
149270
2046
ื“ืจื›ื™ื ืœื’ืจื•ื ืœื“ื‘ื•ืจื™ื ืœื”ื™ื•ืช ื‘ืจื™ืื•ืช ื™ื•ืชืจ.
02:31
And our citizen science project started to take off.
46
151798
2910
ื•ื”ืžื—ืงืจ ื”ืื–ืจื—ื™ ืฉืœื ื• ื”ืชื—ื™ืœ ืœื”ืชืคืชื—.
02:35
Meanwhile, back in my apartment here,
47
155375
2682
ื‘ื ืชื™ื™ื, ื‘ื—ื–ืจื” ื‘ื“ื™ืจื” ืฉืœื™ ื›ืืŸ,
02:38
I was a bit nervous about my landlord.
48
158081
2436
ื”ื™ื™ืชื™ ืงืฆืช ืœื—ื•ืฅ ืœื’ื‘ื™ ื‘ืขืœ ื”ื‘ื™ืช ืฉืœื™.
02:40
I figured I should tell him what we were doing.
49
160968
2348
ื—ืฉื‘ืชื™ ืฉื›ื“ืื™ ืฉืืกืคืจ ืœื• ืžื” ืื ื—ื ื• ืขื•ืฉื™ื.
02:43
(Laughter)
50
163340
1029
(ืฆื—ื•ืง)
02:44
I was terrified; I really thought I was going to get an eviction notice,
51
164393
3462
ื”ื™ื™ืชื™ ืžืคื•ื—ื“; ืžืžืฉ ื—ืฉื‘ืชื™ ืฉืืงื‘ืœ ืฆื• ืคื™ื ื•ื™,
02:47
which really was the last thing we needed, right?
52
167879
2310
ืฉื‘ืืžืช ื”ื™ื” ื”ื“ื‘ืจ ื”ืื—ืจื•ืŸ ืฉื”ื™ื™ื ื• ืฆืจื™ื›ื™ื, ื ื›ื•ืŸ?
02:50
I must have caught him on a good day, though,
53
170213
2128
ื•ื‘ื›ืœ ื–ืืช, ื‘ื˜ื— ืชืคืกืชื™ ืื•ืชื• ื‘ื™ื•ื ื˜ื•ื‘,
02:52
because when I told him what we were doing
54
172365
2016
ื›ื™ ื›ืฉืกื™ืคืจืชื™ ืœื• ืžื” ืื ื—ื ื• ืขื•ืฉื™ื
ื•ืื™ืš ื”ืงืžื ื• ืืช ืžืขื‘ื“ืช ื”ืžื—ืงืจ ืœื“ื‘ื•ืจืื•ืช ืขื™ืจื•ื ื™ืช.
02:54
and how we started our nonprofit urban beekeeping laboratory,
55
174405
2884
02:57
he said, "That's great! Let's get a beehive in the back alley."
56
177313
3899
ื”ื•ื ืืžืจ, "ื–ื” ืžื“ื”ื™ื! ื‘ื ื ืฆื™ื‘ ื›ื•ื•ืจืช ื‘ื—ืฆืจ ื”ืื—ื•ืจื™ืช".
03:01
I was shocked.
57
181236
1385
ื”ื™ื™ืชื™ ื‘ื”ืœื.
03:02
I was completely surprised.
58
182645
1798
ื”ื™ื™ืชื™ ืžื•ืคืชืข ืœื—ืœื•ื˜ื™ืŸ.
03:04
I mean, instead of getting an eviction notice,
59
184467
2167
ื›ืœื•ืžืจ, ื‘ืžืงื•ื ืœืงื‘ืœ ืฆื• ืคื™ื ื•ื™,
03:06
we got another data point.
60
186658
1684
ืงื™ื‘ืœื ื• ืขื•ื“ ืžืงื•ืจ ืžื™ื“ืข.
03:08
And in the back alley of this image,
61
188366
2325
ื•ื‘ื—ืฆืจ ื”ืื—ื•ืจื™ืช ื‘ืชืžื•ื ื” ื”ื–ืืช,
03:10
what you see here, this hidden beehive --
62
190715
2605
ืžื” ืฉืืชื ืจื•ืื™ื ื›ืืŸ, ื”ื›ื•ื•ืจืช ื”ืžื•ืกืชืจืช ื”ื–ืืช --
03:13
that beehive produced more honey that first year
63
193344
2570
ื”ื›ื•ื•ืจืช ื”ื–ืืช ื”ืคื™ืงื” ื™ื•ืชืจ ื“ื‘ืฉ ื‘ืื•ืชื” ืฉื ื” ืจืืฉื•ื ื”
03:15
than we have ever experienced in any beehive we had managed.
64
195938
3158
ืžืืฉืจ ื›ืœ ืžื” ืฉืชื™ืขื“ื ื• ื‘ื›ืœ ื›ื•ื•ืจืช ืื—ืจืช ื‘ื ื™ื”ื•ืœื ื•.
03:19
It shifted our research perspective forever.
65
199120
2624
ื–ื” ืฉื™ื ื” ืืช ื ืงื•ื“ืช ื”ืžื‘ื˜ ื”ืžื—ืงืจื™ืช ืฉืœื ื• ืœืขื“.
03:21
It changed our research question away from "How do we save the dead and dying bees?"
66
201768
4867
ืฉื™ื ื” ืืช ืฉืืœืช ื”ืžื—ืงืจ ืฉืœื ื• ืž"ืื™ืš ื ื•ื›ืœ ืœื”ืฆื™ืœ ืืช ื”ื“ื‘ื•ืจื™ื?"
03:26
to "Where are bees doing best?"
67
206659
2319
ืœ"ื”ื™ื›ืŸ ื”ื“ื‘ื•ืจื™ื ืžืชืคืงื“ื•ืช ื”ื›ื™ ื˜ื•ื‘?"
03:29
And we started to be able to put maps together,
68
209002
2939
ื•ื”ืชื—ืœื ื• ืœื”ื™ื•ืช ืžืกื•ื’ืœื™ื ืœื™ืฆื•ืจ ืžืคื•ืช,
03:31
looking at all of these citizen science beehives
69
211965
2322
ืœื‘ื—ื•ืŸ ืืช ืžื™ืงื•ืžื™ ื›ืœ ื›ื•ื•ืจื•ืช ื”ืžื—ืงืจ ื”ืื–ืจื—ื™
03:34
from people who had beehives at home decks,
70
214311
2428
ืžืื ืฉื™ื ืฉื”ื™ื• ืœื”ื ื›ื•ื•ืจื•ืช ื‘ืžืจืคืกืช ื”ืงื“ืžื™ืช ืฉืœ ื‘ืชื™ื”ื,
03:36
gardens, business rooftops.
71
216763
2077
ื‘ื’ื™ื ื•ืช, ืขืœ ื’ื’ื•ืช ื‘ืชื™ ื”ืขืกืง.
03:38
We started to engage the public,
72
218864
1570
ื•ื”ืชื—ืœื ื• ืœืขืจื‘ ืืช ื”ืฆื™ื‘ื•ืจ,
03:40
and the more people who got these little data points,
73
220458
2587
ื•ื›ื›ืœ ืฉื™ื•ืชืจ ืื ืฉื™ื ืงื™ื‘ืœื• ืืช ืžืงื•ืจื•ืช ื”ืžื™ื“ืข ื”ืืœื”,
ื›ืš ื”ืžืคื•ืช ืฉืœื ื• ื”ืคื›ื• ื™ื•ืชืจ ืžื“ื•ื™ื™ืงื•ืช.
03:43
the more accurate our maps became.
74
223069
1653
03:44
And so when you're sitting here thinking, "How can I get involved?"
75
224746
3175
ื›ื›ื” ืฉื›ืฉืืชื ื™ื•ืฉื‘ื™ื ื›ืืŸ ื•ื—ื•ืฉื‘ื™ื "ืื™ืš ืื ื™ ื™ื›ื•ืœ ืœื”ื™ื•ืช ืžืขื•ืจื‘?"
03:47
you might think about a story of my friend Fred,
76
227945
2269
ืื•ืœื™ ืชื—ืฉื‘ื• ืขืœ ื”ืกื™ืคื•ืจ ืฉืœ ื”ื—ื‘ืจ ืฉืœื™ ืคืจื“,
03:50
who's a commercial real estate developer.
77
230238
1985
ืฉื”ื•ื ืงื‘ืœืŸ ื ื“ืœ"ืŸ ืžืกื—ืจื™,
03:52
He was thinking the same thing.
78
232247
2076
ื”ื•ื ื—ืฉื‘ ืื•ืชื• ื”ื“ื‘ืจ.
03:54
He was at a meeting,
79
234347
1389
ื”ื•ื ื ื›ื— ื‘ืคื’ื™ืฉื”,
03:55
thinking about what he could do for tenant relations
80
235760
2550
ื•ื—ืฉื‘ ืขืœ ืื™ืš ื”ื•ื ืœืชืจื•ื ืœื™ื—ืกื™ื ืขื ื”ืฉื•ื›ืจื™ื
03:58
and sustainability at scale.
81
238334
1809
ื•ืงื™ื™ืžื•ืช ื‘ื›ืœืœ.
04:00
And while he was having a tea break,
82
240167
1746
ื•ื‘ื–ืžืŸ ืฉื”ื•ื ื™ืฆื ืœื”ืคืกืงืช ืชื”,
04:01
he put honey into his tea and noticed on the honey jar
83
241937
3164
ื”ื•ื ืฉื ื“ื‘ืฉ ื‘ืชื” ืฉืœื• ื•ืฉื ืœื‘ ืฉืขืœ ืฆื ืฆื ืช ื”ื“ื‘ืฉ
04:05
a message about corporate sustainability from the host company of that meeting.
84
245125
3808
ื™ืฉ ืžืกืจ ืขืœ ืงื™ื™ืžื•ืช ืชืื’ื™ื“ื™ืช ืžื”ื—ื‘ืจื” ืฉืื™ืจื—ื” ืืช ื”ืคื’ื™ืฉื”.
04:08
And it sparked an idea.
85
248957
1970
ื•ื–ื” ื”ืฆื™ืช ืืฆืœื• ืจืขื™ื•ืŸ.
04:10
He came back to his office.
86
250951
1663
ื”ื•ื ื—ื–ืจ ืœืžืฉืจื“ ืฉืœื•.
04:12
An email, a phone call later, and -- boom! --
87
252638
3294
ืื™ืžื™ื™ืœ ืื—ื“ ื•ืฉื™ื—ืช ื˜ืœืคื•ืŸ ื•-ื‘ื•ื!!
04:15
we went national together.
88
255956
1957
ืขืœื™ื ื• ืœืจืžื” ืœืื•ืžื™ืช ื‘ื™ื—ื“.
04:18
We put dozens of beehives on the rooftops of their skyscrapers
89
258322
3270
ื”ื•ื ืฉื ืขืฉืจื•ืช ื›ื•ื•ืจื•ืช ืขืœ ื’ื’ื•ืช ื’ื•ืจื“ื™ ื”ืฉื—ืงื™ื ืฉืœื”ื
04:21
across nine cities nationwide.
90
261616
2989
ื‘ืชืฉืข ืขืจื™ื ื‘ืจื—ื‘ื™ ื”ืžื“ื™ื ื”.
04:24
Nine years later --
91
264629
1306
ืชืฉืข ืฉื ื™ื ืžืื•ื—ืจ ื™ื•ืชืจ,
04:25
(Applause)
92
265959
5757
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
04:31
Nine years later, we have raised over a million dollars for bee research.
93
271740
4814
ืชืฉืข ืฉื ื™ื ืžืื•ื—ืจ ื™ื•ืชืจ, ื’ื™ื™ืกื ื• ื™ื•ืชืจ 1,000,000$ ืœืžื—ืงืจ ืขืœ ื“ื‘ื•ืจื™ื.
04:36
We have a thousand beehives as little data points across the country,
94
276578
5161
ื™ืฉ ืœื ื• ืืœืฃ ื›ื•ื•ืจื•ืช ื”ืžืชืคืงื“ื•ืช ื›ืžืงื•ืจื•ืช ืžื™ื“ืข ื‘ืจื—ื‘ื™ ื”ืžื“ื™ื ื”,
04:41
18 states and counting,
95
281763
1389
ื‘ืฉืžื•ื ื” ืขืฉืจื” ืžื“ื™ื ื•ืช ื•ื™ื•ืชืจ,
04:43
where we have created paying jobs for local beekeepers, 65 of them,
96
283176
4282
ื‘ื”ืŸ ื™ืฆืจื ื• ืžืฉืจื•ืช ืขื‘ื•ืจ ื“ื‘ื•ืจืื™ื ืžืงื•ืžื™ื™ื, 65 ืžื”ื,
04:47
to manage beehives in their own communities,
97
287482
2730
ื›ื“ื™ ืœื ื”ืœ ื›ื•ื•ืจื•ืช ื‘ืงื”ื™ืœื•ืช ืฉืœื”ื,
04:50
to connect with people, everyday people,
98
290236
2817
ืœื—ื‘ืจ ื‘ื™ืŸ ืื ืฉื™ื, ืื ืฉื™ื ืจื’ื™ืœื™ื,
04:53
who are now data points together making a difference.
99
293077
4280
ืฉื”ื ืขื›ืฉื™ื• ืžืงื•ืจื•ืช ืžื™ื“ืข ืฉื™ื—ื“ ืขื•ืฉื™ื ืืช ื”ืฉื™ื ื•ื™.
04:57
So in order to explain what's actually been saving bees,
100
297866
2621
ืื– ื›ื“ื™ ืœื”ืกื‘ื™ืจ ืžื” ื‘ืขืฆื ืžืฆื™ืœ ืืช ื”ื“ื‘ื•ืจื™ื,
05:00
where they're thriving,
101
300511
1162
ื”ื™ื›ืŸ ื”ืŸ ืžืฉื’ืฉื’ื•ืช,
05:01
I need to first tell you what's been killing them.
102
301697
2427
ืื ื™ ืฆืจื™ืš ืงื•ื“ื ื›ืœ ืœืกืคืจ ืœื›ื ืžื” ื”ืจื’ ืื•ืชื.
05:04
The top three killers of bees
103
304148
1880
ืฉืœื•ืฉืช ื’ื•ืจืžื™ ื”ืžื•ื•ืช ื”ื›ื™ ื’ื“ื•ืœื™ื ืฉืœ ื“ื‘ื•ืจื™ื
05:06
are agricultural chemicals such as pesticides, herbicides, fungicides;
104
306052
3869
ื›ื™ืžื™ืงืœื™ื ื—ืงืœืื™ื™ื ื›ื’ื•ืŸ ืงื•ื˜ืœื™ ืžื–ื™ืงื™ื ืฉื•ื ื™ื,
05:09
diseases of bees, of which there are many;
105
309945
2373
ืžื—ืœื•ืช ื“ื‘ื•ืจื™ื, ืฉื™ืฉ ื”ืจื‘ื” ื›ืืœื”;
05:12
and habitat loss.
106
312342
1536
ื•ืื•ื‘ื“ืŸ ื‘ืชื™ ื’ื™ื“ื•ืœ.
05:13
So what we did is we looked on our maps
107
313902
2071
ืื– ืžื” ืฉืขืฉื™ื ื• ื–ื” ืฉื‘ื—ื ื• ืืช ื”ืžืคื•ืช ืฉืœื ื•
05:15
and we identified areas where bees were thriving.
108
315997
2362
ื•ื–ื™ื”ื™ื ื• ืื–ื•ืจื™ื ื‘ื”ื ื”ื“ื‘ื•ืจื™ื ืฉื’ืฉื’ื•.
05:18
This was mostly in cities, we found.
109
318383
2766
ื–ื” ื”ื™ื” ื‘ืขื™ืงืจ ื‘ืขืจื™ื, ื›ืš ื’ื™ืœื™ื ื•.
05:21
Data are now showing that urban beehives produce more honey
110
321173
2955
ื”ืžื™ื“ืข ื›ื™ื•ื ืžืจืื” ืฉื›ื•ื•ืจื•ืช ืขื™ืจื•ื ื™ื•ืช ืžืคื™ืงื•ืช ื™ื•ืชืจ ื“ื‘ืฉ
05:24
than rural beehives and suburban beehives.
111
324152
2661
ืžืืฉืจ ื›ื•ื•ืจื•ืช ื›ืคืจื™ื•ืช ื•ื›ื•ื•ืจื•ืช ืคืจื•ื•ืจื™ื•ืช.
05:26
Urban beehives have a longer life span than rural and suburban beehives,
112
326837
4921
ืœื›ื•ื•ืจื•ืช ืขื™ืจื•ื ื™ื•ืช ื™ืฉ ืื•ืจืš ื—ื™ื™ื ื™ื•ืชืจ ืืจื•ืš ืžืืฉืจ ื›ื•ื•ืจื•ืช ื›ืคืจื™ื•ืช ื•ืคืจื•ื•ืจื™ื•ืช,
05:31
and bees in the city are more biodiverse;
113
331782
2413
ื•ื”ื“ื‘ื•ืจื™ื ื‘ืขื™ืจ ื™ื•ืชืจ ืžื’ื•ื•ื ื•ืช ื‘ื™ื•ืœื•ื’ื™ืช;
05:34
there are more bee species in urban areas.
114
334219
2743
ื™ืฉื ื ื™ื•ืชืจ ื–ื ื™ ื“ื‘ื•ืจื™ื ื‘ืื–ื•ืจื™ื ืขื™ืจื•ื ื™ื™ื.
05:36
(Laughter)
115
336986
1451
(ืฆื—ื•ืง)
05:38
Right?
116
338461
1239
ื ื›ื•ืŸ?
05:39
Why is this?
117
339724
1324
ืœืžื” ื–ื” ืงื•ืจื”?
05:41
That was our question.
118
341711
1300
ื–ืืช ื”ื™ืชื” ื”ืฉืืœื” ืฉืœื ื•.
05:43
So we started with these three killers of bees,
119
343035
2208
ืื– ื”ืชื—ืœื ื• ืขื ืฉืœื•ืฉืช ื’ื•ืจืžื™ ื”ืžื•ื•ืช ื”ืืœื” ืฉืœ ื“ื‘ื•ืจื™ื,
05:45
and we flipped it:
120
345267
1155
ื•ื”ืคื›ื ื• ืืช ื”ืฉืืœื”:
05:46
Which of these is different in the cities?
121
346446
2135
ืื™ื–ื” ืžืชื•ืš ืืœื” ืฉื•ื ื” ื‘ืขืจื™ื?
05:48
So the first one, pesticides.
122
348605
1546
ืื– ื”ืจืืฉื•ืŸ, ืžื“ื‘ื™ืจื™ื.
05:50
We partnered up with the Harvard School of Public Health.
123
350175
2678
ื—ื‘ืจื ื• ืœื‘ื™ืช ื”ืกืคืจ ืœื‘ืจื™ืื•ืช ื”ืฆื™ื‘ื•ืจ ื‘ื”ืจื•ื•ืืจื“.
05:52
We shared our data with them.
124
352877
1493
ื—ืœืงื ื• ืืช ื”ืžื™ื“ืข ืฉืœื ื• ืื™ืชื.
05:54
We collected samples from our citizen science beehives
125
354394
2582
ืืกืคื ื• ื“ื•ื’ืžื™ื•ืช ืžื›ื•ื•ืจื•ืช ื”ืžื—ืงืจ ื”ืื–ืจื—ื™ ืฉืœื ื•
05:57
at people's homes and business rooftops.
126
357000
1946
ื‘ื‘ืชื™ื”ื ืฉืœ ืื ืฉื™ื ื•ืขืœ ื’ื’ื•ืช ื‘ืชื™ ื”ืขืกืง ืฉืœื”ื.
05:58
We looked at pesticide levels.
127
358970
1447
ื•ื‘ื“ืงื ื• ืืช ืจืžื•ืช ื”ื—ื•ืžืจื™ื ื”ืžื“ื‘ื™ืจื™ื.
06:00
We thought there would be less pesticides in areas where bees are doing better.
128
360441
3802
ื—ืฉื‘ื ื• ืฉื™ื”ื™ื• ืคื—ื•ืช ื—ื•ืžืจื™ื ืžื“ื‘ื™ืจื™ื ื‘ืื–ื•ืจื™ื ื‘ื”ื ื”ื“ื‘ื•ืจื™ื ืžืฉื’ืฉื’ื•ืช.
06:04
That's not the case.
129
364267
1163
ืื‘ืœ ื–ื” ืœื ื”ื™ื” ื”ืžืงืจื”.
06:05
So what we found here in our study is -- the orange bars are Boston,
130
365454
4050
ืื– ืžื” ืฉืžืฆืื ื• ื‘ืžื—ืงืจ ืฉืœื ื• ื”ื•ื - ื”ืคืกื™ื ื”ื›ืชื•ืžื™ื ื”ื ื‘ื•ืกื˜ื•ืŸ,
06:09
and we thought those bars would be the lowest,
131
369528
2255
ื•ื—ืฉื‘ื ื• ืฉื”ืคืกื™ื ื”ืืœื” ื™ื”ื™ื• ื”ื ืžื•ื›ื™ื ื‘ื™ื•ืชืจ,
06:11
there would be the lowest levels of pesticides.
132
371807
2234
ื”ื ื™ื”ื™ื• ื”ืจืžื•ืช ื”ื ืžื•ื›ื•ืช ื‘ื™ื•ืชืจ ืฉืœ ื—ื•ืžืจื™ื ืžื“ื‘ื™ืจื™ื.
06:14
And, in fact, there are the most pesticides in cities.
133
374065
4009
ื•ืœืžืขืฉื”, ื™ืฉ ื™ื•ืชืจ ื—ื•ืžืจื™ื ืžื“ื‘ื™ืจื™ื ื‘ืขืจื™ื.
06:18
So the pesticide hypothesis for what's saving bees --
134
378599
2762
ืื– ื”ืฉืขืจืช ื”ืžื“ื‘ื™ืจื™ื ืœืžื” ืฉืžืฆื™ืœ ื“ื‘ื•ืจื™ื -
06:21
less pesticides in cities --
135
381385
1399
ืคื—ื•ืช ื—ื•ืžืจื™ื ืžื“ื‘ื™ืจื™ื ื‘ืขืจื™ื -
06:22
is not it.
136
382808
1405
ื”ื™ื ืœื ื”ืชืฉื•ื‘ื”.
06:24
And this is very typical of my life as a scientist.
137
384237
3870
ื•ื–ื” ืžืื•ื“ ืื•ืคื™ื™ื ื™ ืœื—ื™ื™ ื›ื—ื•ืงืจ.
06:28
Anytime I've had a hypothesis,
138
388131
1890
ื‘ื›ืœ ืคืขื ืฉื ื™ืกื—ืชื™ ื”ืฉืขืจื”,
06:30
not only is it not supported, but the opposite is true.
139
390045
3320
ืœื ืจืง ืฉืœื ืžืฆืืชื™ ืœื” ืชื™ืžื•ื›ื™ืŸ ืืœื ืฉื”ื”ืคืš ื”ื•ื ื”ื ื›ื•ืŸ.
06:33
(Laughter)
140
393389
1021
(ืฆื—ื•ืง)
06:34
Which is still an interesting finding, right?
141
394434
2135
ื–ื” ืžืžืฆื ืžืขื ื™ื™ืŸ, ืœื?
06:36
We moved on.
142
396593
1160
ื”ืžืฉื›ื ื• ื”ืœืื”.
06:37
The disease hypothesis.
143
397777
1174
ื”ืฉืขืจืช ื”ืžื—ืœื•ืช.
06:38
We looked at diseases all over our beehives.
144
398975
2295
ื‘ื“ืงื ื• ืืช ืจืžืช ื”ืชื—ืœื•ืื” ื‘ื›ืœ ื”ื›ื•ื•ืจื•ืช ืฉืœื ื•.
06:41
And what we found in a similar study to this one with North Carolina State is:
145
401294
4113
ื•ืžื” ืฉื’ื™ืœื™ื ื• ื‘ืžื—ืงืจ ื“ื•ืžื” ืœื–ื” ืฉืœื ื• ื™ื—ื“ ืขื ืžื“ื™ื ืช ืฆืคื•ืŸ ืงืจื•ืœื™ื™ื ื” ื”ื•ื:
06:45
there's no difference between disease in bees
146
405431
2126
ืื™ืŸ ื›ืœ ื”ื‘ื“ืœ ื‘ื™ืŸ ืชื—ืœื•ืืช ื“ื‘ื•ืจื™ื
06:47
in urban, suburban and rural areas.
147
407581
1751
ื‘ืื–ื•ืจื™ื ืขื™ืจื•ื ื™ื™ื, ืคืจื•ื•ืจื™ื™ื ื•ื›ืคืจื™ื™ื.
06:49
Diseases are everywhere; bees are sick and dying.
148
409356
2602
ื”ืžื—ืœื•ืช ื”ืŸ ื‘ื›ืœ ืžืงื•ื; ื”ื“ื‘ื•ืจื™ื ื—ื•ืœื•ืช ื•ืžืชื•ืช.
06:51
In fact, there were more diseases of bees in cities.
149
411982
2466
ืœืžืขืฉื”, ื™ืฉื ืŸ ื™ื•ืชืจ ืžื—ืœื•ืช ื“ื‘ื•ืจื™ื ื‘ืขืจื™ื.
06:54
This was from Raleigh, North Carolina.
150
414472
2032
ื–ื” ืžื™ื“ืข ืžืจืืœื™ ื‘ืฆืคื•ืŸ ืงืจื•ืœื™ื™ื ื”.
06:56
So again, my hypothesis was not supported. The opposite was true.
151
416528
3987
ืื– ืฉื•ื‘, ืœื”ืฉืขืจื” ืฉืœื™ ืœื ื”ื™ื” ื‘ืกื™ืก ื”ื”ืคืš ื”ื•ื ื”ื ื›ื•ืŸ.
07:00
We're moving on.
152
420539
1449
ื”ืžืฉื›ื ื• ื”ืœืื”.
07:02
(Laughter)
153
422012
2258
(ืฆื—ื•ืง)
07:04
The habitat hypothesis.
154
424294
2094
ื”ืฉืขืจืช ื‘ื™ืช ื”ื’ื™ื“ื•ืœ.
07:06
This said that areas where bees are thriving have a better habitat --
155
426412
3651
ื”ืฉืขืจื”: ื‘ืื–ื•ืจื™ื ื‘ื”ื ื”ื“ื‘ื•ืจื™ื ืžืฉื’ืฉื’ื•ืช ื‘ืชื™ ื”ื’ื™ื“ื•ืœ ื˜ื•ื‘ื™ื ื™ื•ืชืจ.
07:10
more flowers, right?
156
430087
1615
ื™ื•ืชืจ ืคืจื—ื™ื, ื ื›ื•ืŸ?
07:11
But we didn't know how to test this.
157
431726
1798
ืื‘ืœ ืœื ื™ื“ืขื ื• ืื™ืš ืœื‘ื—ื•ืŸ ืืช ื–ื”.
07:13
So I had a really interesting meeting.
158
433548
2060
ืื– ื”ื™ื™ืชื” ืœื™ ืคื’ื™ืฉื” ืžืžืฉ ืžืขื ื™ื™ื ืช.
07:15
An idea sparked with my friend and colleague Anne Madden,
159
435632
3117
ืจืขื™ื•ืŸ ืฆืฅ ื‘ืžื•ื—ื™ ื™ื—ื“ ืขื ื”ื—ื‘ืจื” ื•ื”ืงื•ืœื’ื” ืฉืœื™ ืืŸ ืžืื“ืŸ,
07:18
fellow TED speaker.
160
438773
1183
ืขื•ื“ ื“ื•ื‘ืจืช ืฉืœ TED.
07:19
We thought about genomics, kind of like AncestryDNA or 23andMe.
161
439980
4652
ื—ืฉื‘ื ื• ืขืœ ื’ื ื•ืžื™ืงื”, ืกื•ื’ ืฉืœ ืžื™ืคื•ื™ ื“ื "ื ื›ืžื• 23andMe.
07:24
Have you done these?
162
444656
1335
ืขืฉื™ืชื ืืช ื–ื”?
07:26
You spit in a tube and you find out, "I'm German!"
163
446015
2636
ืืชื ื™ื•ืจืงื™ื ืœืชื•ืš ืžื‘ื—ื ื” ื•ืžื’ืœื™ื, "ืื ื™ ื’ืจืžื ื™!"
07:28
(Laughter)
164
448675
1103
(ืฆื—ื•ืง)
07:29
Well, we developed this for honey.
165
449802
1849
ื•ื‘ื›ืŸ, ืคื™ืชื—ื ื• ื“ื‘ืจ ื“ื•ืžื” ืขื‘ื•ืจ ื“ื‘ืฉ.
07:31
So we have a sample of honey and we look at all the plant DNA,
166
451675
3546
ืื– ื™ืฉ ืœื ื• ื“ื•ื’ืžื™ืช ืฉืœ ื“ื‘ืฉ ื•ืื ื—ื ื• ื‘ื•ื—ื ื™ื ืืช ื›ืœ ื”ื“ื "ื ื”ืฆืžื—ื™,
07:35
and we find out, "I'm sumac!"
167
455245
1845
ื•ืื ื—ื ื• ืžื’ืœื™ื, "ืื ื™ ืกื•ืžืืง!"
07:37
(Laughter)
168
457114
1270
(ืฆื—ื•ืง)
07:38
And that's what we found here in Provincetown.
169
458408
2384
ื•ื–ื” ืžื” ืฉื’ื™ืœื™ื ื• ื›ืืŸ ื‘ืคืจื•ื‘ื™ื ืกื˜ืื•ืŸ.
07:40
So for the first time ever, I'm able to report to you
170
460816
2539
ืื– ื‘ืคืขื ื”ืจืืฉื•ื ื” ืื™ ืคืขื ืื ื™ ื™ื›ื•ืœ ืœื“ื•ื•ื— ืœื›ื
07:43
what type of honey is from right here in our own community.
171
463379
2790
ืื™ื–ื” ืกื•ื’ ืฉืœ ื“ื‘ืฉ ื”ื•ื ืžื›ืืŸ, ืžื”ืงื”ื™ืœื” ืฉืœื ื•.
07:46
HoneyDNA, a genomics test.
172
466193
2433
ื“ื "ื ื“ื‘ืฉ, ืžื‘ื—ืŸ ื’ื ื•ืžื˜ื™ืงื”.
07:48
Spring honey in Provincetown is from privet.
173
468650
2636
ื”ื“ื‘ืฉ ื”ืื‘ื™ื‘ื™ ื‘ืคืจื•ื‘ื™ื ืกื˜ืื•ืŸ ืžื•ืคืง ืžืคืจื™ื•ื•ื˜.
07:51
What's privet? Hedges.
174
471310
2371
ืžื” ื–ื” ืคืจื™ื•ื•ื˜? ื’ื“ืจ ื—ื™ื”.
07:53
What's the message?
175
473705
1155
ืžื” ื”ืžืกืจ?
07:54
Don't trim your hedges to save the bees.
176
474884
2572
ืืœ ืชืงืฆืฆื• ืืช ื”ื’ื“ืจื•ืช ืฉืœื›ื, ื”ืฆื™ืœื• ืืช ื”ื“ื‘ื•ืจื™ื.
07:57
(Laughter)
177
477480
1110
(ืฆื—ื•ืง)
07:58
I know we're getting crunchy and it's controversial,
178
478614
2448
ืื ื™ ื™ื•ื“ืข ืฉืื ื—ื ื• ืžืชืงืจื‘ื™ื ื•ื–ื” ืงืฆืช ืฉื ื•ื™ ื‘ืžื—ืœื•ืงืช,
08:01
so before you throw your tomatoes,
179
481086
1626
ืื– ืœืคื ื™ ืฉืืชื ื–ื•ืจืงื™ื ืืช ื”ืขื’ื‘ื ื™ื•ืช ืฉืœื›ื,
08:02
we'll move to the summer honey, which is water lily honey.
180
482736
2736
ื ืขื‘ื•ืจ ืœื“ื‘ืฉ ื”ืงื™ืฆื™, ืฉื”ื•ื ืžื•ืคืง ืžืฉื•ืฉื ื•ืช ืžื™ื.
08:05
If you have honey from Provincetown right here in the summer,
181
485496
2880
ืื ื™ืฉ ืœื›ื ื“ื‘ืฉ ืžืคืจื•ื‘ื™ื ืกื˜ืื•ืŸ ืžืžืฉ ื›ืืŸ ื‘ืงื™ืฅ,
08:08
you're eating water lily juice;
182
488400
1769
ืืชื ืื•ื›ืœื™ื ืžื™ืฅ ืฉื•ืฉื ื•ืช ืžื™ื;
08:10
in the fall, sumac honey.
183
490193
2415
ื‘ืกืชื™ื•, ื“ื‘ืฉ ืกื•ืžืืง.
08:12
We're learning about our food for the first time ever.
184
492632
3149
ืื ื—ื ื• ืœื•ืžื“ื™ื ืขืœ ื”ืื•ื›ืœ ืฉืœื ื• ื‘ืคืขื ื”ืจืืฉื•ื ื” ืื™ ืคืขื.
08:15
And now we're able to report, if you need to do any city planning:
185
495805
3480
ื•ืขื›ืฉื™ื• ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื“ื•ื•ื—, ืื ืืชื ืฆืจื™ื›ื™ื ืœืขืฉื•ืช ืชื›ื ื•ืŸ ืขื™ืจื•ื ื™ ื›ืœืฉื”ื•:
08:19
What are good things to plant?
186
499309
1703
ืื™ื–ื” ืฆืžื—ื™ื ื›ื“ืื™ ืœืฉืชื•ืœ?
08:21
What do we know the bees are going to that's good for your garden?
187
501036
3883
ืžื” ืื ื—ื ื• ืžื›ื™ืจื™ื, ืฉืžื•ืฉืš ื”ื“ื‘ื•ืจื™ื, ืฉื˜ื•ื‘ ืœื’ื™ื ื” ืฉืœื›ื?
08:24
For the first time ever for any community, we now know this answer.
188
504943
3324
ืคืขื ื”ืจืืฉื•ื ื” ืื ื—ื ื• ื™ื•ื“ืขื™ื ืขื›ืฉื™ื• ืืช ื”ืชืฉื•ื‘ื” ื”ืกืคืฆื™ืคื™ืช ืœื›ืœ ืงื”ื™ืœื”,
08:28
What's more interesting for us is deeper in the data.
189
508291
3382
ืžื” ืฉื™ื•ืชืจ ืžืขื ื™ื™ืŸ ืขื‘ื•ืจื ื• ื ืžืฆื ืขืžื•ืง ื™ื•ืชืจ ื‘ื ืชื•ื ื™ื.
08:31
So, if you're from the Caribbean and you want to explore your heritage,
190
511697
3366
ืื–, ืื ืืชื ืžื”ืื™ื™ื ื”ืงืจื™ื‘ื™ื™ื ื•ืืชื ืจื•ืฆื™ื ืœื—ืงื•ืจ ืืช ื”ืžื•ืจืฉืช ืฉืœื›ื,
08:35
Bahamian honey is from the laurel family,
191
515087
2714
ื“ื‘ืฉ ืžืื™ื™ ื”ื‘ื”ืืžื” ืžื•ืคืง ืžืžืฉืคื—ืช ื”ื“ืคื ื™ื™ื,
08:37
cinnamon and avocado flavors.
192
517825
2635
ื‘ื˜ืขืžื™ ืงื™ื ืžื•ืŸ ื•ืื‘ื•ืงื“ื•.
08:40
But what's more interesting is 85 different plant species
193
520484
2948
ืื‘ืœ ืžื” ืฉื™ื•ืชืจ ืžืขื ื™ื™ืŸ ื”ื•ื ืฉื™ืฉื ื 85 ื–ื ื™ ืฆืžื—ื™ื ืฉื•ื ื™ื
08:43
in one teaspoon of honey.
194
523456
1666
ื‘ื›ืคื™ืช ืื—ืช ืฉืœ ื“ื‘ืฉ.
08:45
That's the measure we want, the big data.
195
525146
2511
ื–ื” ื”ืžื“ื“ ืฉืื ื—ื ื• ืจื•ืฆื™ื, ื”ืžื™ื“ืข ื”ืจื—ื‘.
08:47
Indian honey: that is oak.
196
527681
2975
ื“ื‘ืฉ ื”ื•ื“ื™ ืžื•ืคืง ืžืขืฅ ืืœื•ืŸ.
08:50
Every sample we've tested from India is oak,
197
530680
2454
ื›ืœ ื“ื•ื’ืžื™ืช ืฉื‘ื—ื ื• ืžื”ื•ื“ื• ืžื•ืคืงืช ืžืขืฅ ืืœื•ืŸ,
08:53
and that's 172 different flavors in one taste of Indian honey.
198
533158
4453
ื•ืืœื” 172 ื˜ืขืžื™ื ืฉื•ื ื™ื ื‘ื˜ืขื™ืžื” ืื—ืช ืฉืœ ื“ื‘ืฉ ื”ื•ื“ื™.
08:57
Provincetown honey goes from 116 plants in the spring
199
537635
3550
ื”ื“ื‘ืฉ ืฉืœ ืคืจื•ื‘ื™ื ืกื˜ืื•ืŸ ืžื•ืคืง ืž - 116 ืฆืžื—ื™ื ื‘ืื‘ื™ื‘,
09:01
to over 200 plants in the summer.
200
541209
2941
ื•ืขื“ 200 ืฆืžื—ื™ื ื‘ืงื™ืฅ.
09:04
These are the numbers that we need to test the habitat hypothesis.
201
544174
3448
ืืœื” ื”ื ื”ืžืกืคืจื™ื ืœื”ื ืื ื—ื ื• ื–ืงื•ืงื™ื ื›ื“ื™ ืœื‘ื—ื•ืŸ ืืช ื”ืฉืขืจืช ื‘ืชื™ ื”ื’ื™ื“ื•ืœ.
09:07
In another citizen science approach,
202
547646
1749
ื‘ื’ื™ืฉืช ืžื—ืงืจ ืื–ืจื—ื™ ืื—ืจืช,
09:09
you find out about your food and we get some interesting data.
203
549419
3268
ืืชื ื™ื›ื•ืœื™ื ืœื’ืœื•ืช ืขืœ ื”ืื•ื›ืœ ืฉืœื›ื ื•ืื ื—ื ื• ืžืงื‘ืœื™ื ื ืชื•ื ื™ื ืžืขื ื™ื™ื ื™ื.
09:12
We're finding out now that in rural areas,
204
552711
2234
ืื ื—ื ื• ืžื’ืœื™ื ื›ื™ื•ื ืฉื‘ืื–ื•ืจื™ื ื›ืคืจื™ื™ื,
09:14
there are 150 plants on average in a sample of honey.
205
554969
3511
ื™ืฉื ื 150 ืฆืžื—ื™ื ื‘ืžืžื•ืฆืข ื‘ื“ื•ื’ืžื™ืช ืฉืœ ื“ื‘ืฉ.
09:18
That's a measure for rural.
206
558504
1520
ื–ื” ื”ืžื“ื“ ืœื“ื‘ืฉ ื”ื›ืคืจื™.
09:20
Suburban areas, what might you think?
207
560048
2066
ื‘ืื–ื•ืจื™ื ืคืจื•ื•ืจื™ื™ื, ืžื” ื”ื™ื™ืชื ื—ื•ืฉื‘ื™ื?
09:22
Do they have less or more plants in suburban areas with lawns
208
562138
4130
ื”ืื ื™ืฉ ื™ื•ืชืจ ืื• ืคื—ื•ืช ืฆืžื—ื™ื ื‘ืื–ื•ืจื™ื ืคืจื•ื•ืจื™ื™ื ื‘ื”ื ื™ืฉ ืžื“ืฉืื•ืช
09:26
that look nice for people but they're terrible for pollinators?
209
566292
4010
ืฉื ืจืื•ืช ื™ืคื” ืขื‘ื•ืจ ื‘ื ื™ ื”ืื“ื ืื‘ืœ ื”ื ื ื•ืจืื™ื•ืช ืœืžึถืึธื‘ึผืงึดื™ื?
09:30
Suburbs have very low plant diversity,
210
570326
2590
ื”ืคืจื•ื•ืจื™ื ืžืฆื™ืขื™ื ืžื’ื•ื•ืŸ ืฆืžื—ื™ ื ืžื•ืš ืžืื•ื“,
09:32
so if you have a beautiful lawn,
211
572940
1879
ืื– ืื ื™ืฉ ืœื›ื ืžื“ืฉืื” ื™ืคื”,
09:34
good for you, but you can do more.
212
574843
2979
ื›ื™ืฃ ืœื›ื, ืื‘ืœ ืืชื ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ื™ื•ืชืจ.
09:37
You can have a patch of your lawn that's a wildflower meadow
213
577846
3112
ืืชื ื™ื›ื•ืœื™ื ืœื”ืงื“ื™ืฉ ื—ืœืง ืื—ื“ ืžื”ืžื“ืฉืื” ืฉืœื›ื ืœืคืจื—ื™ ื‘ืจ
09:40
to diversify your habitat,
214
580982
1432
ื›ื“ื™ ืœื”ื•ืกื™ืฃ ืžื’ื•ื•ืŸ ืœื‘ื™ืช ื”ื’ื™ื“ื•ืœ ืฉืœื›ื,
09:42
to improve pollinator health.
215
582438
2221
ื›ื“ื™ ืœืฉืคืจ ืืช ื‘ืจื™ืื•ืช ื”ืžืื‘ืงื™ื.
09:44
Anybody can do this.
216
584683
1914
ื›ืœ ืื—ื“ ื™ื›ื•ืœ ืœืขืฉื•ืช ืืช ื–ื”.
09:46
Urban areas have the most habitat, best habitat,
217
586621
4093
ื‘ืื–ื•ืจื™ื ืขื™ืจื•ื ื™ื™ื ื™ืฉ ืืช ื‘ืชื™ ื”ื’ื™ื“ื•ืœ ื”ื˜ื•ื‘ื™ื ื‘ื™ื•ืชืจ,
09:50
as you can see here: over 200 different plants.
218
590738
2558
ื›ืคื™ ืฉืชื•ื›ืœื• ืœืจืื•ืช ื›ืืŸ: ืžืขืœ ืœ200 ืฆืžื—ื™ื ืฉื•ื ื™ื.
09:53
We have, for the first time ever, support for the habitat hypothesis.
219
593320
3580
ื™ืฉ ืœื ื•, ื‘ืคืขื ื”ืจืืฉื•ื ื” ืื™ ืคืขื, ืชืžื™ื›ื” ืœื”ืฉืขืจืช ื”ืกื‘ื™ื‘ื” ื”ื™ื“ื™ื“ื•ืชื™ืช.
09:57
We also now know how we can work with cities.
220
597407
3223
ืื ื—ื ื• ื’ื ื™ื•ื“ืขื™ื ืขื›ืฉื™ื• ืื™ืš ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืขื‘ื•ื“ ื™ื—ื“ ืขื ืขืจื™ื.
10:00
The City of Boston has eight times better habitat
221
600654
2405
ื‘ืขื™ืจ ื‘ื•ืกื˜ื•ืŸ ื”ื™ื ืกื‘ื™ื‘ื” ืคื™ 8 ื™ื•ืชืจ ื™ื“ื™ื“ื•ืชื™ืช ืœื“ื‘ื•ืจื™ื
10:03
than its nearby suburbs.
222
603083
1310
ืžื‘ืคืจื•ื•ืจื™ื ืฉืžืกื‘ื™ื‘ื”.
10:04
And so when we work with governments, we can scale this.
223
604417
3754
ื•ื›ืš ื›ืฉืื ื—ื ื• ืขื•ื‘ื“ื™ื ื™ื—ื“ ืขื ืžืžืฉืœื•ืช, ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ื’ื“ื™ืœ ืืช ื”ื”ืงืฃ,
ื”ื™ื™ืชื ื—ื•ืฉื‘ื™ื ืฉืขืœ ื”ืžืฆื‘ื” ืฉืœื™ ื™ื”ื™ื” ื›ืชื•ื‘,
10:08
You might think on my tombstone, it'll say,
224
608195
2009
10:10
"Here lies Noah. Plant a flower." Right?
225
610228
2337
"ื›ืืŸ ืฉื•ื›ื‘ ื ื•ื—. ืฉืชืœื• ืคืจื—", ื ื›ื•ืŸ?
10:12
I mean -- it's exhausting after all of this.
226
612589
3126
ื›ืœื•ืžืจ -- ื–ื” ืžืขื™ื™ืฃ ืื—ืจื™ ื”ื›ืœ.
10:16
But when we scale together,
227
616255
1633
ืื‘ืœ ื›ืฉืื ื—ื ื• ืคื•ืขืœื™ื ื™ื—ื“,
10:17
when we go to governments and city planners --
228
617912
2195
ื›ืฉืื ื—ื ื• ืคื•ื ื™ื ืœืžืžืฉืœื•ืช, ื•ืžืชื›ื ื ื™ ืขืจื™ื,
ื›ืžื• ื‘ื‘ื•ืกื˜ื•ืŸ, ื”ื“ื‘ืฉ ื‘ืขื™ืงืจ ืžืขืฆื™ ืชึดืจึฐื–ึธื”,
10:20
like in Boston, the honey is mostly linden trees,
229
620131
2326
ื•ืื ื—ื ื• ืื•ืžืจื™ื, "ืื ืขืฅ ืžืช, ื•ืฆืจื™ืš ืœื”ื—ืœื™ืฃ, ืชื—ืฉื‘ื• - ืขืฅ ืชึดืจึฐื–ึธื”"
10:22
and we say, "If a dead tree needs to be replaced, consider linden."
230
622481
3426
10:25
When we take this information to governments, we can do amazing things.
231
625931
3421
ื›ืฉืื ื—ื ื• ืžื‘ื™ืื™ื ืืช ื”ื ืชื•ื ื™ื ื”ืืœื” ืœืžืžืฉืœ, ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ื“ื‘ืจื™ื ืžื“ื”ื™ืžื™ื.
10:29
This is a rooftop from Fred's company.
232
629376
1849
ื–ื” ื’ื’ ืžื”ื—ื‘ืจื” ืฉืœ ืคืจื“.
10:31
We can plant those things on top of rooftops worldwide
233
631249
3714
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืฉืชื•ืœ ืืช ื”ื“ื‘ืจื™ื ื”ืืœื” ืขืœ ื’ื’ื•ืช ื‘ื›ืœ ื”ืขื•ืœื
10:34
to start restoring habitat and securing food systems.
234
634987
3061
ื›ื“ื™ ืœื”ืชื—ื™ืœ ืœืฉืงื ืืช ื”ืกื‘ื™ื‘ื” ื•ืœื”ื‘ื˜ื™ื— ืžืขืจื›ื•ืช ืžื–ื•ืŸ.
10:38
We've worked with the World Bank
235
638072
1532
ืขื‘ื“ื ื• ืขื ื”ื‘ื ืง ื”ืขื•ืœืžื™
10:39
and the presidential delegation from the country of Haiti.
236
639628
2742
ื•ืžืฉืœื—ืช ื ืฉื™ืื•ืชื™ืช ืžื”ืื™ื˜ื™.
10:42
We've worked with wonderful graduate students at Yale University and Ethiopia.
237
642394
3754
ืขื‘ื“ื ื• ืขื ื‘ื•ื’ืจื™ ืื•ื ื™ื‘ืจืกื™ื˜ืื•ืช ืžืงืกื™ืžื™ื ืžืื•ื ื™ื‘ืจืกื™ื˜ืช ื™ึถืœ ื•ืžืืชื™ื•ืคื™ื”.
ื‘ืžื“ื™ื ื•ืช ื”ืืœื” ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ื•ืกื™ืฃ ืขืจืš ืœื“ื‘ืฉ ืฉืœื”ื
10:46
In these countries, we can add value to their honey
238
646172
2413
10:48
by identifying what it is,
239
648609
1272
ื‘ืืžืฆืขื•ืช ื–ื™ื”ื•ื™ ื”ืžืจื›ื™ื‘ื™ื ืฉืœื•,
10:49
but informing the people of what to plant
240
649905
1988
ื•ืœื™ื™ื“ืข ืืช ื”ืื ืฉื™ื ืžื” ืœืฉืชื•ืœ
10:51
to restore their habitat and secure their food systems.
241
651917
3182
ื›ื“ื™ ืœืฉืงื ืืช ื”ืกื‘ื™ื‘ื” ืฉืœื”ื ื•ืœื”ื‘ื˜ื™ื— ืืช ืžืขืจื›ื•ืช ื”ืžื–ื•ืŸ.
10:55
But what I think is even more important is when we think about natural disasters.
242
655123
3868
ืื‘ืœ ื ื“ืžื” ืœื™ ืฉืืคื™ืœื• ื™ื•ืชืจ ื—ืฉื•ื‘ ื”ื•ื, ื›ืฉืื ื—ื ื• ื—ื•ืฉื‘ื™ื ืขืœ ืืกื•ื ื•ืช ื˜ื‘ืข,
10:59
For the first time,
243
659015
1151
ื–ืืช ื”ืคืขื ื”ืจืืฉื•ื ื”,
11:00
we now know how we can have a baseline measure of any habitat
244
660190
3052
ื‘ื” ืื ื—ื ื• ื™ื•ื“ืขื™ื ืื™ืš ืœืงื˜ืœื’ ืžืจื›ื™ื‘ื™ื ืฉืœ ื›ืœ ืกื‘ื™ื‘ื”
11:03
before it might be destroyed.
245
663266
1992
ืœืคื ื™ ืฉื”ื™ื ืื•ืœื™ ืชื™ื”ืจืก.
11:05
Think about your hometown.
246
665282
1677
ืชื—ืฉื‘ื• ืขืœ ื”ืขื™ืจ ืฉืœื›ื.
11:06
What risks does the environment pose to it?
247
666983
3427
ืื™ืœื• ืกื›ื ื•ืช ื”ืกื‘ื™ื‘ื” ืžืฆื™ื‘ื” ื‘ืคื ื™ื”?
11:10
This is how we're going to save Puerto Rico after Hurricane Maria.
248
670434
3519
ื›ื›ื” ืื ื—ื ื• ื”ื•ืœื›ื™ื ืœื”ืฆื™ืœ ืืช ืคื•ืจื˜ื• ืจื™ืงื• ืื—ืจื™ ื”ื•ืจื™ืงืŸ ืžืจื™ื”.
11:14
We now have a baseline measure of honey,
249
674541
2849
ื™ืฉ ืœื ื• ืขื›ืฉื™ื• ืืช ื”ืžื“ื“ ื”ื‘ืกื™ืกื™ ืฉืœ ื”ื“ื‘ืฉ,
11:17
honey DNA from before and after the storm.
250
677414
2755
ื”ื“ื "ื ืฉืœ ื”ื“ื‘ืฉ ืžืœืคื ื™ ื•ืื—ืจื™ ื”ืกืขืจื”.
11:20
We started in Humacao.
251
680193
2010
ื”ืชื—ืœื ื• ื‘ื—ื•ืžืืงื•.
11:22
This is right where Hurricane Maria made landfall.
252
682227
2523
ื–ืืช ื”ื ืงื•ื“ื” ื‘ื” ื”ื•ืจื™ืงืŸ ืžืจื™ื” ื™ืฆืจ ืžืคื•ืœืช.
11:24
And we know what plants to replace and in what quantity and where
253
684774
3809
ื•ืื ื—ื ื• ื™ื•ื“ืขื™ื ืื™ืœื• ืฆืžื—ื™ื ืขืœื™ื ื• ืœืฉืชื•ืœ ื•ื‘ืื™ื–ื” ื›ืžื•ืช ื•ื”ื™ื›ืŸ
11:28
by triangulating honey DNA samples.
254
688607
2815
ื‘ืืžืฆืขื•ืช ื”ืฉื•ื•ืื” ื‘ื™ืŸ ื“ื•ื’ืžื™ื•ืช ื“ื "ื ื“ื‘ืฉ.
11:32
You might even think about right here,
255
692112
2000
ืืคื™ืœื• ืคื”,
11:34
the beautiful land that connected us, that primed us,
256
694136
2667
ื”ืืจืฅ ื”ื™ืคื” ืฉื—ื™ื‘ืจื” ืื•ืชื ื•, ืฉื”ื›ืชื™ื‘ื” ืืช ืคืขื•ืœืชื ื•,
11:36
all the citizen science to begin with,
257
696827
1867
ืฉืœ ื›ืœ ื”ื—ื•ืงืจื™ื ื”ืื–ืจื—ื™ื™ื.
11:38
the erosion, the winter storms
258
698718
2149
ื”ืกื—ืฃ, ืกืขืจื•ืช ื”ื—ื•ืจืฃ,
11:40
that are getting more violent every year.
259
700891
2254
ืฉื”ื•ืœื›ื•ืช ื•ืžื—ืžื™ืจื•ืช ื›ืœ ืฉื ื”.
11:43
What are we going to do about this,
260
703169
1875
ืžื” ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ื‘ืขื ื™ื™ืŸ,
11:45
our precious land?
261
705068
1779
ื”ืืจืฅ ื”ืžืงืกื™ืžื” ืฉืœื ื•?
11:46
Well, looking at honey DNA,
262
706871
1339
ื•ื‘ื›ืŸ, ื‘ื”ืชื‘ื•ื ื ื•ืช ื‘ื“ื "ื ื”ื“ื‘ืฉ,
11:48
we can see what plants are good for pollinators that have deep roots,
263
708234
3300
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืจืื•ืช ืฉืžึธืึทื‘ึผื™ืงึดื™ื ืžืขื“ื™ืคื™ื ืฆืžื—ื™ื ื‘ืขืœื™ ืฉื•ืจืฉื™ื ืขืžื•ืงื™ื,
11:51
that can secure the land,
264
711558
1811
ืฉื™ื›ื•ืœื™ื ืœื”ื—ื–ื™ืง ืืช ื”ืื“ืžื”,
11:53
and together, everybody can participate.
265
713393
2209
ื•ื™ื—ื“, ื›ื•ืœื ื™ื›ื•ืœื™ื ืœื”ืฉืชืชืฃ.
11:55
And the solution fits in a teaspoon.
266
715626
2366
ื•ื”ืคืชืจื•ืŸ ื”ื•ื ืคืฉื•ื˜.
11:58
If your hometown might get swept away or destroyed by a natural disaster,
267
718506
4794
ืื ื”ืขื™ืจ ืฉืœื›ื ืขืœื•ืœื” ืœื”ื™ืกื—ืฃ ืื• ืœื”ื™ื”ืจืก ื‘ืขืงื‘ื•ืช ืืกื•ืŸ ื˜ื‘ืข,
12:03
we now have a blueprint suspended in time
268
723324
3297
ืขื›ืฉื™ื• ื™ืฉ ืœื ื• ืฉื™ื˜ื” ื”ืžืชืื™ืžื” ืœื›ืœ ืขืช
12:06
for how to restore that on Earth,
269
726645
2528
ืœืื™ืš ืœืฉืงื ืื•ืชื” ืขืœ ืคื ื™ ื”ืืจืฅ,
12:09
or perhaps even in a greenhouse on Mars.
270
729197
4193
ืื• ืืคื™ืœื• ื‘ื—ืžืžื” ืขืœ ื”ืžืื“ื™ื.
12:14
I know it sounds crazy, but think about this:
271
734025
3495
ืื ื™ ื™ื•ื“ืข ืฉื–ื” ื ืฉืžืข ืžื˜ื•ืจืฃ, ืื‘ืœ ืชื—ืฉื‘ื• ืขืœ ื–ื”:
12:17
a new Provincetown,
272
737544
1833
ืคืจื•ื‘ื™ื ืกื˜ืื•ืŸ ื—ื“ืฉื”,
12:19
a new hometown,
273
739401
1642
ืขื™ืจ ื—ื“ืฉื”,
12:21
a place that might be familiar that's also good for pollinators
274
741067
3478
ืžืงื•ื ืฉื™ื•ื›ืœ ืœื”ื™ื•ืช ืžื•ื›ืจ, ืฉื”ื•ื ื’ื ื˜ื•ื‘ ืขื‘ื•ืจ ืžึธืึทื‘ึผื™ืงึดื™ื,
12:24
for a stable food system,
275
744569
1364
ืœื™ืฆื™ืจืช ืžืขืจื›ืช ืžื–ื•ืŸ ื™ืฆื™ื‘ื”,
12:25
when we're thinking about the future.
276
745957
2051
ื‘ืžื—ืฉื‘ื” ืœืขืชื™ื“.
12:29
Now, together, we know what's saving bees --
277
749230
3292
ืขื›ืฉื™ื•,ื™ื—ื“, ืื ื—ื ื• ื™ื•ื“ืขื™ื ืฉื”ืฆืœืช ื”ื“ื‘ื•ืจื™ื,
12:32
by planting diverse habitat.
278
752546
1738
ื‘ืืžืฆืขื•ืช ืฉืชื™ืœืช ืกื‘ื™ื‘ื” ืฆืžื—ื™ืช ืžื’ื•ื•ื ืช.
12:34
Now, together, we know how bees are going to save us --
279
754741
4115
ืขื›ืฉื™ื•, ื™ื—ื“, ืื ื—ื ื• ื™ื•ื“ืขื™ื ืื™ืš ื”ื“ื‘ื•ืจื™ื ื™ืฆื™ืœื• ืื•ืชื ื•,
12:38
by being barometers for environmental health,
280
758880
3181
ื‘ืืžืฆืขื•ืช ื”ื™ื•ืชืŸ ื‘ืจื•ืžื˜ืจื™ื ืœื‘ืจื™ืื•ืช ืกื‘ื™ื‘ืชื™ืช,
12:42
by being blueprints, sources of information,
281
762085
2675
ื‘ื”ื™ื•ืชืŸ ืชืจืฉื™ื, ืžืงื•ืจื•ืช ืžื™ื“ืข,
12:44
little data factories suspended in time.
282
764784
2829
ืžืคืขืœื™ ื ืชื•ื ื™ื ืงื˜ื ื™ื ืงืคื•ืื™ื ื‘ื–ืžืŸ.
12:48
Thank you.
283
768148
1165
ืชื•ื“ื” ืจื‘ื”,
12:49
(Applause)
284
769337
3713
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7