What If a Simple Blood Test Could Detect Cancer? | Hani Goodarzi | TED

53,915 views ใƒป 2024-01-30

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืชืจื’ื•ื: hila scherba ืขืจื™ื›ื”: zeeva livshitz
00:04
Catching cancer at its earliest stages,
0
4292
3337
ืœืชืคื•ืก ืกืจื˜ืŸ ื‘ืฉืœื‘ื™ื• ื”ืžื•ืงื“ืžื™ื ื‘ื™ื•ืชืจ,
00:07
when it's most treatable, can save countless lives.
1
7629
2586
ื›ืืฉืจ ื”ื•ื ื”ื›ื™ ื ื™ืชืŸ ืœื˜ื™ืคื•ืœ, ื™ื›ื•ืœ ืœื”ืฆื™ืœ ืื™ื ืกืคื•ืจ ื—ื™ื™ื.
00:11
But the million-dollar question is:
2
11007
1835
ืื‘ืœ ืฉืืœืช ืžื™ืœื™ื•ืŸ ื”ื“ื•ืœืจ ื”ื™ื:
00:12
in an otherwise healthy body made up of trillions of cells,
3
12884
3837
ื‘ื’ื•ืฃ ื‘ืจื™ื ื‘ื›ืœืœื•ืชื• ื”ืžื•ืจื›ื‘ ืžื˜ืจื™ืœื™ื•ื ื™ ืชืื™ื,
00:16
how can we zero in on a small group of rogue cancer cells?
4
16721
3629
ืื™ืš ื ื•ื›ืœ ืœื”ืชืžืงื“ ื‘ืงื‘ื•ืฆื” ืงื˜ื ื” ืฉืœ ืชืื™ื ืกืจื˜ื ื™ื™ื ืกื•ืจืจื™ื?
00:20
The answer, I think,
5
20767
1585
ื”ืชืฉื•ื‘ื”, ืื ื™ ื—ื•ืฉื‘,
00:22
may be rooted in something that, thanks to the pandemic,
6
22394
2669
ืขืฉื•ื™ื” ืœื”ื™ื•ืช ืžื•ืฉืจืฉืช ื‘ืžืฉื”ื• ืฉื‘ื–ื›ื•ืช ื”ืžื’ื™ืคื”,
00:25
we have all come to know quite well, and that is RNA.
7
25063
3128
ื›ื•ืœื ื• ื”ื›ืจื ื• ื“ื™ ื˜ื•ื‘, ื•ื–ื” RNA.
00:28
I think these days, everyone has a basic understanding of how RNA works.
8
28775
3712
ืื ื™ ื—ื•ืฉื‘ ืฉื‘ื™ืžื™ื ืืœื”, ืœื›ื•ืœื ื™ืฉ ื”ื‘ื ื” ื‘ืกื™ืกื™ืช ืฉืœ ืื™ืš RNA ืขื•ื‘ื“.
00:32
Again, thanks to the COVID vaccines.
9
32529
1793
ืฉื•ื‘, ื”ื•ื“ื•ืช ืœื—ื™ืกื•ื ื™ COVID.
00:34
But basically, RNA is transcribed from DNA in the cell,
10
34864
3671
ืื‘ืœ ื‘ืขื™ืงืจื•ืŸ, RNA ืžืฉื•ืขืชืง ืž-DNA ื‘ืชื,
00:38
and messenger RNA specifically serves as a template for protein synthesis.
11
38535
4796
ื• -RNA ืฉืœื™ื— ืกืคืฆื™ืคื™ืช ืžืฉืžืฉ ื›ืชื‘ื ื™ืช ืœืกื™ื ืชื–ืช ื—ืœื‘ื•ืŸ.
00:43
So usually the more mRNA you have in the cell,
12
43331
3671
ืื– ื‘ื“ืจืš ื›ืœืœ ื›ื›ืœ ืฉื™ืฉ ืœื›ื ื™ื•ืชืจ mRNA ื‘ืชื,
00:47
the more protein you get.
13
47002
1668
ื›ืš ืืชื ืžืงื‘ืœื™ื ื™ื•ืชืจ ื—ืœื‘ื•ืŸ.
00:49
But our discovery is a little bit different.
14
49170
2086
ืื‘ืœ ื”ืชื’ืœื™ืช ืฉืœื ื• ืงืฆืช ืฉื•ื ื”.
00:52
We have found a new class of RNAs
15
52299
2002
ืžืฆืื ื• ืžื—ืœืงื” ื—ื“ืฉื” ืฉืœ RNA
00:54
that have changed how we think about cancer detection.
16
54342
2878
ืฉืฉื™ื ืชื” ืืช ื”ืื•ืคืŸ ืฉื‘ื• ืื ื• ื—ื•ืฉื‘ื™ื ืขืœ ื’ื™ืœื•ื™ ืกืจื˜ืŸ.
00:57
These are relatively small RNAs,
17
57637
2211
ืืœื” ื”ื RNA ืงื˜ื ื™ื ื™ื—ืกื™ืช,
00:59
and they don't actually code for any protein.
18
59848
2544
ื•ื”ื ืœืžืขืฉื” ืœื ืžืงื•ื“ื“ื™ื ืœืืฃ ื—ืœื‘ื•ืŸ.
01:02
So they're non-coding.
19
62434
1459
ืื– ื”ื ืœื ืžืงื•ื“ื“ื™ื.
01:03
And since we found them, we got to name them.
20
63935
2586
ื•ืžื›ื™ื•ื•ืŸ ืฉืžืฆืื ื• ืื•ืชื, ืขืœื™ื ื• ืœืชืช ืœื”ื ืฉื.
01:06
And we have called them orphan non-coding RNAs
21
66521
2669
ื•ืงืจืื ื• ืœื”ื RNA ื™ืชื•ืžื™ื ืฉืื™ื ื ืžืงื•ื“ื“ื™ื
01:09
or oncRNAs for short.
22
69232
1668
ืื• ื‘ืงื™ืฆื•ืจ oncRNAs.
01:11
These oncRNAs have not only changed
23
71860
2335
ื”-oncRNA ื”ืœืœื• ืœื ืจืง ืฉื™ื ื•
01:14
and transformed our approach to cancer detection
24
74195
3045
ื•ื”ืคื›ืŸ ืืช ื”ื’ื™ืฉื” ืฉืœื ื• ืœื’ื™ืœื•ื™ ืกืจื˜ืŸ
01:17
from blood non-invasively,
25
77240
2002
ืžื“ื ื‘ืื•ืคืŸ ืœื ืคื•ืœืฉื ื™,
01:19
but they've also helped open a window into the tumor itself for us.
26
79284
5547
ืืœื ื”ื ื’ื ืขื–ืจื• ืœืคืชื•ื— ืขื‘ื•ืจื ื• ื—ืœื•ืŸ ืœื’ื™ื“ื•ืœ ืขืฆืžื•.
01:24
So leveraging these RNAs,
27
84831
2002
ืื– ื‘ืžื™ื ื•ืฃ ื”-RNA ื”ืืœื”,
01:26
we are not only detecting cancer earlier,
28
86833
2753
ืื ื—ื ื• ืœื ืจืง ืžื’ืœื™ื ืกืจื˜ืŸ ืžื•ืงื“ื ื™ื•ืชืจ,
01:29
we are actually peering into its biology.
29
89586
2836
ืื ื—ื ื• ืœืžืขืฉื” ืžืฆื™ืฆื™ื ืœืชื•ืš ื”ื‘ื™ื•ืœื•ื’ื™ื” ืฉืœื•.
01:32
So with that short introduction, let me break down the science for you.
30
92922
4130
ืื– ืขื ื”ื”ืงื“ืžื” ื”ืงืฆืจื” ื”ื–ื•, ื”ืจืฉื• ืœื™ ืœืคืจืง ืขื‘ื•ืจื›ื ืืช ื”ืžื“ืข.
01:38
As you may know, every cell in our body shares the same genetic code
31
98011
4296
ื›ืคื™ ืฉืืชื ืื•ืœื™ ื™ื•ื“ืขื™ื, ื›ืœ ืชื ื‘ื’ื•ืคื ื• ื—ื•ืœืง ืืช ืื•ืชื• ืงื•ื“ ื’ื ื˜ื™
01:42
as every other cell.
32
102349
1584
ื›ืžื• ื›ืœ ืชื ืื—ืจ.
01:43
It's as if our cells have access to the same pantry,
33
103975
3337
ื–ื” ื›ืื™ืœื• ืœืชืื™ื ืฉืœื ื• ื™ืฉ ื’ื™ืฉื” ืœืื•ืชื• ืžื–ื•ื•ื”,
01:47
but then they use different recipes
34
107354
2627
ืื‘ืœ ืื– ื”ื ืžืฉืชืžืฉื™ื ื‘ืžืชื›ื•ื ื™ื ืฉื•ื ื™ื
01:49
to mix the same ingredients into different dishes.
35
109981
2920
ื›ื“ื™ ืœืขืจื‘ื‘ ืืช ืื•ืชื ืžืจื›ื™ื‘ื™ื ืœืžื ื•ืช ืฉื•ื ื•ืช.
01:53
It's actually the diversity in genomic recipes
36
113610
2919
ื–ื” ืœืžืขืฉื” ื”ืžื’ื•ื•ืŸ ื‘ืžืชื›ื•ื ื™ื ื”ื’ื ื•ืžื™ื™ื
01:56
that gives us the more than 200 cell types we have in our bodies,
37
116571
3587
ืฉื ื•ืชืŸ ืœื ื• ืืช ื™ื•ืชืจ ืž-200 ืกื•ื’ื™ ื”ืชืื™ื ืฉื™ืฉ ื‘ื’ื•ืคื ื•,
02:00
each with their own distinct role and function,
38
120200
2252
ืœื›ืœ ืื—ื“ ืžื”ื ืชืคืงื™ื“ ื•ืชืคืงื•ื“ ืžื•ื‘ื—ื ื™ื ืžืฉืœื•,
02:02
like skin cells, for example, or neurons.
39
122452
2794
ื›ืžื• ืชืื™ ืขื•ืจ, ืœืžืฉืœ, ืื• ื ื•ื™ืจื•ื ื™ื.
02:05
And as you can imagine,
40
125997
1460
ื•ื›ืคื™ ืฉืืชื ื™ื›ื•ืœื™ื ืœื“ืžื™ื™ืŸ,
02:07
there is a complex machinery in place in the cell that governs this process
41
127499
5589
ื™ืฉ ืžื›ื•ื ื” ืžื•ืจื›ื‘ืช ื‘ืชื ื”ืฉื•ืœื˜ืช ื‘ืชื”ืœื™ืš ื”ื–ื”
02:13
and tells the cell for each of its 20,000 genes
42
133129
3671
ื•ืื•ืžืจืช ืœืชื ืขื‘ื•ืจ ื›ืœ ืื—ื“ ืž -20,000 ื”ื’ื ื™ื ืฉืœื•
02:16
how much of them it needs to express
43
136841
2127
ื›ืžื” ืžื”ื ื”ื•ื ืฆืจื™ืš ืœื‘ื˜ื
02:18
to be a healthy, well-functioning cell.
44
138968
2545
ื›ื“ื™ ืœื”ื™ื•ืช ืชื ื‘ืจื™ื ื•ืžืชืคืงื“ ื”ื™ื˜ื‘.
02:22
Now, cancer cells, being the resourceful survivalists that they are,
45
142305
6590
ืขื›ืฉื™ื•, ืชืื™ื ืกืจื˜ื ื™ื™ื, ื‘ื”ื™ื•ืชื ื”ืฉื•ืจื“ื™ื ื‘ืขืœื™ ื”ืชื•ืฉื™ื™ื” ืฉื”ื,
02:28
they actually hijack components of this machinery to their advantage.
46
148937
4713
ื”ื ืœืžืขืฉื” ื—ื•ื˜ืคื™ื ืจื›ื™ื‘ื™ื ืฉืœ ื”ืžื ื’ื ื•ืŸ ื”ื–ื” ืœื˜ื•ื‘ืชื.
02:34
And they do this to increase the expression of genes
47
154109
3295
ื•ื”ื ืขื•ืฉื™ื ื–ืืช ื›ื“ื™ ืœื”ื’ื‘ื™ืจ ืืช ื”ื‘ื™ื˜ื•ื™ ืฉืœ ื’ื ื™ื
02:37
that will help the tumor grow and spread throughout the body,
48
157445
3796
ืฉื™ืขื–ืจื• ืœื’ื™ื“ื•ืœ ืœื”ืชืคืฉื˜ ื‘ื›ืœ ื”ื’ื•ืฃ,
02:41
or silence or down-regulate genes whose job is to keep cancer in check.
49
161282
5297
ืื• ืœื”ืฉืชื™ืง ืื• ืœื”ื•ืจื™ื“ ืืช ื”ื’ื ื™ื ืฉืชืคืงื™ื“ื ืœืฉืžื•ืจ ืขืœ ื”ืกืจื˜ืŸ ื‘ืฉืœื™ื˜ื”.
02:47
Another way of putting this
50
167664
1334
ื“ืจืš ื ื•ืกืคืช ืœื ืกื— ื–ืืช
02:49
is that cancer cells are basically hacking that original genomic recipe
51
169040
4797
ื”ื™ื ืฉืชืื™ ืกืจื˜ืŸ ื‘ืขืฆื ืคื•ืจืฆื™ื ืืช ื”ืžืชื›ื•ืŸ ื”ื’ื ื•ืžื™ ื”ืžืงื•ืจื™
02:53
that I told you about.
52
173878
1585
ืฉืกื™ืคืจืชื™ ืœื›ื ืขืœื™ื•.
02:56
Now a few years ago, we made an interesting discovery
53
176131
2961
ืขื›ืฉื™ื• ืœืคื ื™ ื›ืžื” ืฉื ื™ื, ื’ื™ืœื™ื ื• ืชื’ืœื™ืช ืžืขื ื™ื™ื ืช
02:59
that is actually a consequence of this genomic reprogramming
54
179092
4129
ืฉื”ื™ื ืœืžืขืฉื” ืชื•ืฆืื” ืฉืœ ืชื›ื ื•ืช ื’ื ื•ืžื™ ืžื—ื“ืฉ
03:03
that happens in cancer cells, is actually a hallmark of cancer.
55
183263
4045
ืฉืงื•ืจื™ืช ื‘ืชืื™ื ืกืจื˜ื ื™ื™ื, ืฉื”ื™ื ืœืžืขืฉื” ืกื™ืžืŸ ื”ื”ื™ื›ืจ ืฉืœ ืกืจื˜ืŸ.
03:07
Basically, parts of the genome that is normally silent
56
187308
5756
ื‘ืขื™ืงืจื•ืŸ, ื—ืœืงื™ื ืžื”ื’ื ื•ื ืฉื‘ื“ืจืš ื›ืœืœ ืฉืงื˜ื™ื
03:13
and inactive in healthy cells
57
193106
2544
ื•ืœื ืคืขื™ืœื™ื ื‘ืชืื™ื ื‘ืจื™ืื™ื
03:15
becomes activated in cancer.
58
195650
1877
ืžื•ืคืขืœื™ื ื‘ืกืจื˜ืŸ.
03:18
And a direct consequence of this activation
59
198403
2878
ื•ืชื•ืฆืื” ื™ืฉื™ืจื” ืฉืœ ื”ืคืขืœื” ื–ื•
03:21
is the birth of a new kind of RNA.
60
201281
2419
ื”ื™ื ืœื™ื“ืชื• ืฉืœ ืกื•ื’ ื—ื“ืฉ ืฉืœ RNA.
03:24
That we only see these RNAs in cancer,
61
204617
2878
ืฉืื ื—ื ื• ืจื•ืื™ื ืจืง ืืช ื”- RNA ื”ืืœื” ื‘ืกืจื˜ืŸ,
03:27
but not really in healthy cells.
62
207495
2002
ืื‘ืœ ืœื ื‘ืืžืช ื‘ืชืื™ื ื‘ืจื™ืื™ื.
03:30
Now over the past few years,
63
210498
1585
ื›ืขืช, ื‘ืžื”ืœืš ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช,
03:32
we have spent a lot of time basically mapping these cancer-emergent RNAs
64
212083
6006
ื”ืฉืงืขื ื• ื–ืžืŸ ืจื‘ ื‘ืžื™ืคื•ื™ ื”- RNA ื”ืžืชืขื•ืจืจื™ื ื‘ืกืจื˜ืŸ
03:38
across human cancers.
65
218131
1752
ื‘ืกื•ื’ื™ ืกืจื˜ืŸ ืื ื•ืฉื™ื™ื.
03:39
And as I told you earlier,
66
219924
1460
ื•ื›ืคื™ ืฉืืžืจืชื™ ืœื›ื ืงื•ื“ื,
03:41
we have come to name them oncRNAs.
67
221426
2377
ื ืชื ื• ืœื”ื ืืช ื”ืฉื oncRNAs.
03:45
Now, what is even more interesting
68
225430
1793
ืขื›ืฉื™ื•, ืžื” ืฉืžืขื ื™ื™ืŸ ืขื•ื“ ื™ื•ืชืจ
03:47
is that which oncRNAs I see in a given sample is not random.
69
227265
5547
ื–ื” ืฉืกื•ื’ื™ ื”-oncRNAs ืฉืื ื™ ืจื•ืื” ื‘ืžื“ื’ื ื ืชื•ืŸ ืื™ื ื• ืืงืจืื™.
03:53
It's actually tied back to the type or subtype of cancer
70
233396
3962
ื–ื” ืœืžืขืฉื” ืงืฉื•ืจ ืœืกื•ื’ ืื• ืชืช-ืกื•ื’ ืฉืœ ืกืจื˜ืŸ
03:57
that I'm looking at.
71
237400
1627
ืฉืื ื™ ืžืกืชื›ืœ ืขืœื™ื•.
03:59
So collectively, oncRNAs actually provide a digital molecular barcode
72
239068
5798
ืื– ื‘ืื•ืคืŸ ืงื•ืœืงื˜ื™ื‘ื™, oncRNAs ืœืžืขืฉื” ืžืกืคืงื™ื ื‘ืจืงื•ื“ ืžื•ืœืงื•ืœืจื™ ื“ื™ื’ื™ื˜ืœื™
04:04
that captures cancer cell identity.
73
244866
3045
ื”ืœื•ื›ื“ ื–ื”ื•ืช ืชืื™ื ืกืจื˜ื ื™ื™ื.
04:07
And it's actually unique to the type or subtype of cancer.
74
247911
3253
ื•ื–ื” ืœืžืขืฉื” ื™ื™ื—ื•ื“ื™ ืœืกื•ื’ ืื• ืชืช-ืกื•ื’ ืฉืœ ืกืจื˜ืŸ.
04:12
But how are these molecular barcodes actually useful?
75
252624
3086
ืื‘ืœ ืื™ืš ื”ื‘ืจืงื•ื“ื™ื ื”ืžื•ืœืงื•ืœืจื™ื™ื ื”ืืœื” ื‘ืืžืช ืฉื™ืžื•ืฉื™ื™ื?
04:16
So it turns out oncRNAs are not actually confined to cancer cells.
76
256711
4838
ืื– ืžืกืชื‘ืจ ืฉ- oncRNAs ืื™ื ื ืžื•ื’ื‘ืœื™ื ืœืžืขืฉื” ืœืชืื™ื ืกืจื˜ื ื™ื™ื.
04:21
Some of them are nicely packaged and released into the blood.
77
261591
3462
ื—ืœืงื ืืจื•ื–ื™ื ื™ืคื” ื•ืžืฉื•ื—ืจืจื™ื ืœื“ื.
04:25
And this is something that healthy cells do as well with other small RNAs.
78
265553
4672
ื•ื–ื” ืžืฉื”ื• ืฉืชืื™ื ื‘ืจื™ืื™ื ืขื•ืฉื™ื ื’ื ืขื RNA ืงื˜ื ื™ื ืื—ืจื™ื.
04:30
And with all of this introduction, I hope you know where I'm going with this.
79
270266
3629
ื•ืขื ื›ืœ ื”ื”ืงื“ืžื” ื”ื–ื•, ืื ื™ ืžืงื•ื•ื” ืฉืืชื ื™ื•ื“ืขื™ื ืœืืŸ ืื ื™ ื”ื•ืœืš ืขื ื–ื”.
04:33
Basically, if oncRNAs are only expressed in cancer cells,
80
273895
4004
ื‘ืขื™ืงืจื•ืŸ, ืื oncRNA ืžืชื‘ื˜ืื™ื ืจืง ื‘ืชืื™ื ืกืจื˜ื ื™ื™ื,
04:37
and some of them do in fact find their way into the bloodstream,
81
277899
4004
ื•ื—ืœืงื ืื›ืŸ ืžื•ืฆืื™ื ืืช ื“ืจื›ื ืœื–ืจื ื”ื“ื,
04:41
doesn't it mean that we should be able to detect them
82
281903
2794
ื”ืื™ืŸ ื–ื” ืื•ืžืจ ืฉืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื”ื™ื•ืช ืžืกื•ื’ืœื™ื ืœื–ื”ื•ืช ืื•ืชื
04:44
in blood samples from cancer patients?
83
284697
2795
ื‘ื“ื’ื™ืžื•ืช ื“ื ืžื—ื•ืœื™ ืกืจื˜ืŸ?
04:48
The answer, turns out, is yes, but with an asterisk.
84
288159
3462
ื”ืชืฉื•ื‘ื”, ืžืชื‘ืจืจ, ื”ื™ื ื›ืŸ, ืื‘ืœ ืขื ื›ื•ื›ื‘ื™ืช.
04:52
So the oncRNAs that we detect in blood samples from patients
85
292455
4004
ืื– ื”-oncRNA ืฉืื ื• ืžื–ื”ื™ื ื‘ื“ื’ื™ืžื•ืช ื“ื ืฉืœ ืžื˜ื•ืคืœื™ื
04:56
actually form a partial barcode.
86
296501
2586
ืœืžืขืฉื” ื™ื•ืฆืจื™ื ื‘ืจืงื•ื“ ื—ืœืงื™.
04:59
And it's only a partial barcode
87
299128
1711
ื•ื–ื” ืจืง ื‘ืจืงื•ื“ ื—ืœืงื™
05:00
because only a subset of oncRNAs
88
300880
2628
ืžื›ื™ื•ื•ืŸ ืฉืจืง ืชืช-ืงื‘ื•ืฆื” ืฉืœ oncRNA
05:03
are actually secreted from cancer cells into the blood.
89
303550
3086
ืžื•ืคืจืฉืช ืœืžืขืฉื” ืžืชืื™ ืกืจื˜ืŸ ืœื“ื.
05:06
And even a smaller subset can be reliably detected
90
306678
3003
ื•ืืคื™ืœื• ืชืช-ืงื‘ื•ืฆื” ืงื˜ื ื” ื™ื•ืชืจ ื™ื›ื•ืœื” ืœื”ื™ื•ืช ืžื–ื•ื”ื” ื‘ืื•ืคืŸ ืืžื™ืŸ
05:09
in a small volume of blood.
91
309681
1793
ื‘ื›ืžื•ืช ืงื˜ื ื” ืฉืœ ื“ื.
05:11
However, thanks to the magic of machine learning and AI,
92
311516
3837
ืขื ื–ืืช, ื‘ื–ื›ื•ืช ื”ืงืกื ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ื•- AI,
05:15
we can actually use this partial information
93
315395
2794
ืื ื• ื™ื›ื•ืœื™ื ืœืžืขืฉื” ืœื”ืฉืชืžืฉ ื‘ืžื™ื“ืข ื—ืœืงื™ ื–ื”
05:18
to reconstruct the original barcode that resides in the tumor.
94
318189
4296
ื›ื“ื™ ืœืฉื—ื–ืจ ืืช ื”ื‘ืจืงื•ื“ ื”ืžืงื•ืจื™ ื”ืฉื•ื›ืŸ ื‘ื’ื™ื“ื•ืœ.
05:23
And we can match that deconstruction
95
323278
2335
ื•ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ืชืื™ื ืืช ื”ืคื™ืจื•ืง ื”ื–ื”
05:25
against our catalog of oncRNA barcodes across cancers
96
325613
3754
ืœืงื˜ืœื•ื’ ื”ื‘ืจืงื•ื“ื™ื ืฉืœ oncRNA ืขืœ ืคื ื™ ืกื•ื’ื™ ืกืจื˜ืŸ
05:29
to not only --
97
329367
1835
ืœื ืจืง -
05:31
to not only detect the presence of the disease,
98
331244
3128
ื›ื“ื™ ืœื ืจืง ืœื–ื”ื•ืช ืืช ื ื•ื›ื—ื•ืช ื”ืžื—ืœื”,
05:34
but also identify its type or subtype.
99
334372
2294
ืืœื ื’ื ืœื–ื”ื•ืช ืืช ืกื•ื’ื” ืื• ืชืช-ื”ืกื•ื’ ืฉืœื”.
05:37
And actually, as we grow,
100
337000
2419
ื•ืœืžืขืฉื”, ื›ื›ืœ ืฉืื ื• ื’ื“ืœื™ื,
05:39
fundamentally increase the number of these oncRNA catalogs that we have built,
101
339460
5464
ื•ืžื’ื“ื™ืœื™ื ื‘ืื•ืคืŸ ืžื”ื•ืชื™ ืืช ืžืกืคืจ ืงื˜ืœื•ื’ื™ ื”-oncRNA ืฉื‘ื ื™ื ื•,
05:44
we can go deeper and deeper into the biology of the disease as well.
102
344924
4213
ื ื•ื›ืœ ืœื”ืขืžื™ืง ื™ื•ืชืจ ื•ื™ื•ืชืจ ื’ื ื‘ื‘ื™ื•ืœื•ื’ื™ื” ืฉืœ ื”ืžื—ืœื”.
05:50
Now, with help from our clinical collaborators at UCSF,
103
350346
3712
ื›ืขืช, ื‘ืขื–ืจืช ื”ืฉื•ืชืคื™ื ื”ืงืœื™ื ื™ื™ื ืฉืœื ื• ื‘-UCSF,
05:54
we have come a step closer to actually bringing this platform to the clinic.
104
354058
5214
ื”ืชืงืจื‘ื ื• ืฆืขื“ ืื—ื“ ืงืจื•ื‘ ื™ื•ืชืจ ืœื”ื‘ื™ื ืืช ื”ืคืœื˜ืคื•ืจืžื” ื”ื–ื• ืœืžืจืคืื”.
05:59
In a preliminary study across 200 breast cancer patients,
105
359272
4087
ื‘ืžื—ืงืจ ืจืืฉื•ื ื™ ืฉื ืขืจืš ื‘ืงืจื‘ 200 ื—ื•ืœื™ ืกืจื˜ืŸ ืฉื“,
06:03
we have actually shown that we can use oncRNAs
106
363401
2586
ืœืžืขืฉื” ื”ืจืื™ื ื• ืฉืื ื• ื™ื›ื•ืœื™ื ืœื”ืฉืชืžืฉ ื‘- oncRNA
06:06
to detect residual disease in patients
107
366029
3086
ื›ื“ื™ ืœื–ื”ื•ืช ืžื—ืœื” ืฉื™ื•ืจื™ืช ื‘ื—ื•ืœื™ื
06:09
after they have received treatment,
108
369157
1793
ืœืื—ืจ ืฉืงื™ื‘ืœื• ื˜ื™ืคื•ืœ,
06:10
and knowing which patients have remaining disease,
109
370992
3629
ื•ืœื“ืขืช ืœืื™ืœื• ื—ื•ืœื™ื ื™ืฉ ืžื—ืœื” ืฉื ื•ืชืจื”,
06:14
tells clinicians who needs additional treatment or monitoring
110
374662
3921
ืื•ืžืจ ืœืจื•ืคืื™ื ืžื™ ื–ืงื•ืง ืœื˜ื™ืคื•ืœ ืื• ืžืขืงื‘ ื ื•ืกืฃ
06:18
after the surgery.
111
378625
1501
ืœืื—ืจ ื”ื ื™ืชื•ื—.
06:20
And this way, patients receive more treatment
112
380126
3295
ื•ื‘ื“ืจืš ื–ื•, ืžื˜ื•ืคืœื™ื ืžืงื‘ืœื™ื ื™ื•ืชืจ ื˜ื™ืคื•ืœ
06:23
only when it's needed.
113
383463
1668
ืจืง ื›ืืฉืจ ื”ื•ื ื ื—ื•ืฅ.
06:26
I truly believe that the next decade is the decade of cancer screening.
114
386716
3754
ืื ื™ ื‘ืืžืช ืžืืžื™ืŸ ืฉื”ืขืฉื•ืจ ื”ื‘ื ื”ื•ื ื”ืขืฉื•ืจ ืฉืœ ื‘ื“ื™ืงืช ืกืจื˜ืŸ.
06:30
And as you can imagine, blood detection of cancers
115
390887
3253
ื•ื›ืคื™ ืฉืืชื ื™ื›ื•ืœื™ื ืœื“ืžื™ื™ืŸ, ื’ื™ืœื•ื™ ื“ื ืฉืœ ืกืจื˜ืŸ
06:34
is a major frontier in that war.
116
394140
2127
ื”ื•ื ื’ื‘ื•ืœ ืžืจื›ื–ื™ ื‘ืžืœื—ืžื” ื”ื”ื™ื.
06:36
And I hope to have convinced you today that leveraging powerful AI
117
396851
4630
ื•ืื ื™ ืžืงื•ื•ื” ืฉืฉื›ื ืขืชื™ ืืชื›ื ื”ื™ื•ื ืฉื‘ืขื–ืจืช ืžื™ื ื•ืฃ ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช ื—ื–ืงื”
06:41
built on top of molecular barcodes of oncRNAs,
118
401522
3546
ื”ื‘ื ื•ื™ื” ืขืœ ื‘ืจืงื•ื“ื™ื ืžื•ืœืงื•ืœืจื™ื™ื ืฉืœ oncRNA,
06:45
we can envision a future thatโ€™s precise and sensitive,
119
405068
3587
ืื ื• ื™ื›ื•ืœื™ื ืœื“ืžื™ื™ืŸ ืขืชื™ื“ ืžื“ื•ื™ืง ื•ืจื’ื™ืฉ,
06:48
but more importantly,
120
408696
1669
ืืš ื—ืฉื•ื‘ ืžื›ืš,
06:50
very accessible.
121
410406
1627
ื ื’ื™ืฉ ืžืื•ื“.
06:52
Blood detection of cancers is not just the hope,
122
412075
3211
ื’ื™ืœื•ื™ ื“ื ืฉืœ ืกืจื˜ืŸ ื”ื•ื ืœื ืจืง ื”ืชืงื•ื•ื”,
06:55
but it's actually a reality.
123
415328
1627
ืืœื ืœืžืขืฉื” ืžืฆื™ืื•ืช.
06:57
Thank you.
124
417664
1126
ืชื•ื“ื” ืœื›ื.
06:58
(Applause)
125
418831
3379
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7