How statistics can be misleading - Mark Liddell

1,440,818 views ・ 2016-01-14

TED-Ed


請雙擊下方英文字幕播放視頻。

譯者: Crystal Yip 審譯者: Max Chern
00:06
Statistics are persuasive.
0
6636
2441
統計數據深具說服力
00:09
So much so that people, organizations, and whole countries
1
9077
3464
以致很多人、機構甚至整個國家
00:12
base some of their most important decisions on organized data.
2
12541
5206
將已整理的數據 作為他們一些最重要決定的依據
00:17
But there's a problem with that.
3
17747
1737
但這做法有一個問題
00:19
Any set of statistics might have something lurking inside it,
4
19484
3817
任何一組統計數據 都有可能潛伏一些因素
00:23
something that can turn the results completely upside down.
5
23301
3950
這些因素有時可能完全改變結論
00:27
For example, imagine you need to choose between two hospitals
6
27251
3669
例如,想像你需要 從兩間醫院中選擇一間
00:30
for an elderly relative's surgery.
7
30920
2817
適合年老的親人來做手術
00:33
Out of each hospital's last 1000 patient's,
8
33737
2697
在各自醫院最近收治的 1000 個病人中
00:36
900 survived at Hospital A,
9
36434
3178
醫院 A 有 900 人存活
00:39
while only 800 survived at Hospital B.
10
39612
3409
而醫院 B 只有 800 人存活
00:43
So it looks like Hospital A is the better choice.
11
43021
3149
所以看起來醫院 A 是比較好的選擇
00:46
But before you make your decision,
12
46170
1673
但在你作決定前
00:47
remember that not all patients arrive at the hospital
13
47843
3568
要記得並不是所有病人入院時
00:51
with the same level of health.
14
51411
2400
都有相同的健康情況
00:53
And if we divide each hospital's last 1000 patients
15
53811
2892
若我們把各間醫院最近收治的 1000 個病人
00:56
into those who arrived in good health and those who arrived in poor health,
16
56703
4429
分成入院時健康良好和欠佳這兩組
01:01
the picture starts to look very different.
17
61132
2640
情況變得截然不同
01:03
Hospital A had only 100 patients who arrived in poor health,
18
63772
4077
醫院 A 只有 100 人入院時健康欠佳, 而當中 30 人存活
01:07
of which 30 survived.
19
67849
2476
01:10
But Hospital B had 400, and they were able to save 210.
20
70325
4527
但醫院 B 則有 400 人, 而他們能保住 210 人的性命
01:14
So Hospital B is the better choice
21
74852
2317
所以對於入院時健康欠佳的病人, 醫院 B 是較好的選擇
01:17
for patients who arrive at hospital in poor health,
22
77169
3572
01:20
with a survival rate of 52.5%.
23
80741
3785
其存活率達 52.5 %
01:24
And what if your relative's health is good when she arrives at the hospital?
24
84526
3919
那麼如果你的親人入院時 健康良好呢?
01:28
Strangely enough, Hospital B is still the better choice,
25
88445
3826
非常奇怪的是, 醫院 B 仍是較好的選擇
01:32
with a survival rate of over 98%.
26
92271
3405
其存活率超過 98 %
01:35
So how can Hospital A have a better overall survival rate
27
95676
3057
所以若醫院 B 在這兩組都有較高存活率, 為何卻是醫院 A 有較高的整體存活率?
01:38
if Hospital B has better survival rates for patients in each of the two groups?
28
98733
6097
01:44
What we've stumbled upon is a case of Simpson's paradox,
29
104830
3759
這是我們碰巧遇到的 一個「辛普森悖論」的情況
01:48
where the same set of data can appear to show opposite trends
30
108589
3310
同一套數據依據其分組方法, 能呈現出相反的走向
01:51
depending on how it's grouped.
31
111899
2765
01:54
This often occurs when aggregated data hides a conditional variable,
32
114664
4080
這經常發生在當已收集的數據中 隱藏了一個「條件變項」
01:58
sometimes known as a lurking variable,
33
118744
2633
有時也稱為「潛在變項」
02:01
which is a hidden additional factor that significantly influences results.
34
121377
5207
它是另一個隱藏因素, 會顯著地影響結果
02:06
Here, the hidden factor is the relative proportion of patients
35
126584
3439
在此,隱藏因素是 兩組病人的相對比例
02:10
who arrive in good or poor health.
36
130023
3241
即入院時健康情況好或壞
02:13
Simpson's paradox isn't just a hypothetical scenario.
37
133264
3280
辛普森悖論並不限於假設的情境
02:16
It pops up from time to time in the real world,
38
136544
2380
它在真實世界時有出現
02:18
sometimes in important contexts.
39
138924
3208
有時甚至在重要的情況
02:22
One study in the UK appeared to show
40
142132
1998
一個英國的研究發現
02:24
that smokers had a higher survival rate than nonsmokers
41
144130
3470
吸煙者比非吸煙者有較高存活率
02:27
over a twenty-year time period.
42
147600
2246
這研究長達二十多年
02:29
That is, until dividing the participants by age group
43
149846
3461
然而,當把參與者按年齡分組
02:33
showed that the nonsmokers were significantly older on average,
44
153307
4516
便顯現非吸煙者的 平均年齡明顯地比較高
02:37
and thus, more likely to die during the trial period,
45
157823
3107
因此,較可能在研究期間死亡
02:40
precisely because they were living longer in general.
46
160930
3508
這正是因為非吸煙者 普遍較長壽的緣故
02:44
Here, the age groups are the lurking variable,
47
164438
2848
在此,年齡分組是潛在變項
02:47
and are vital to correctly interpret the data.
48
167286
2890
這對正確解讀數據非常重要
02:50
In another example,
49
170176
1383
另一例子是
02:51
an analysis of Florida's death penalty cases
50
171559
2722
佛羅里達州死刑案件的研究分析
02:54
seemed to reveal no racial disparity in sentencing
51
174281
3984
似乎顯示因謀殺罪的黑人或白人 被判死刑的情況,並無種族差異
02:58
between black and white defendants convicted of murder.
52
178265
3316
03:01
But dividing the cases by the race of the victim told a different story.
53
181581
4815
但當按受害人的種族來分組, 就截然不同了
03:06
In either situation,
54
186396
1573
無論受害人的種族如何, 黑人被告都較可能被判死刑
03:07
black defendants were more likely to be sentenced to death.
55
187969
3122
03:11
The slightly higher overall sentencing rate for white defendants
56
191091
3975
白人被告在整體上 被判死刑的機率稍微較高
03:15
was due to the fact that cases with white victims
57
195066
3626
是因為涉及白人受害者的案件
03:18
were more likely to elicit a death sentence
58
198692
2667
比涉及黑人受害者的 較有可能被判死刑
03:21
than cases where the victim was black,
59
201359
2732
03:24
and most murders occurred between people of the same race.
60
204091
4392
而謀殺案又多數發生在相同種族之間
03:28
So how do we avoid falling for the paradox?
61
208483
2836
那我們要如何避免掉入這種悖論呢?
03:31
Unfortunately, there's no one-size-fits-all answer.
62
211319
3367
不幸的是, 並沒有一個適合各種情況的答案
03:34
Data can be grouped and divided in any number of ways,
63
214686
3818
數據能夠以各種方法進行分組
03:38
and overall numbers may sometimes give a more accurate picture
64
218504
3602
而整體數據有時 能給我們一個更準確的描述
03:42
than data divided into misleading or arbitrary categories.
65
222106
4532
相較於誤導或任意分組的數據
03:46
All we can do is carefully study the actual situations the statistics describe
66
226638
5451
我們唯一能做的是仔細研究 統計數據所描述的真實情況
03:52
and consider whether lurking variables may be present.
67
232089
3888
並考慮當中是否存在「潛在變項」
03:55
Otherwise, we leave ourselves vulnerable to those who would use data
68
235977
3401
否則,我們便很容易受到 運用數據達到目的人的操弄了
03:59
to manipulate others and promote their own agendas.
69
239378
3271
翻譯:Crystal Yip
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7