Does math have a major flaw? - Jacqueline Doan and Alex Kazachek

342,511 views ・ 2024-04-23

TED-Ed


请双击下面的英文字幕来播放视频。

翻译人员: J Zhong 校对人员: Yanyan Hong
00:06
Consider this mathematician,
0
6961
1710
这是一位数学家。
00:08
with her standard-issue infinitely sharp knife and a perfect ball.
1
8671
4463
她有一把绝对锋利的标准刀 和一个完美球体。
00:13
She frantically slices and distributes the ball into an infinite number of boxes.
2
13259
5422
她手起刀落将球切分, 并把切片分别装入无数个盒子中,
00:18
She then recombines the parts into five precise sections.
3
18765
4004
然后将这些切片 分成完全平均的五份。
00:22
Gently moving and rotating these sections around,
4
22852
2961
通过仔细地移动和旋转这些切片,
00:25
seemingly impossibly, she recombines them to form two identical, flawless,
5
25855
5964
她竟然能将这些切片 重组为两个完整无缝的球体,
00:31
and complete copies of the original ball.
6
31819
3087
且与原本的球体完全一致。
00:35
This is a result known in mathematics as the Banach-Tarski paradox.
7
35031
4755
这个结果在数学中 被称为巴纳赫-塔尔斯基悖论。
00:39
The paradox here is not in the logic or the proof—
8
39911
3086
这里的悖论不是 因逻辑或证据产生的——
00:42
which are, like the balls, flawless—
9
42997
1877
毕竟它们就像 那些球一样完美无缺——
00:44
but instead in the tension between mathematics
10
44874
2961
而在于数学 与我们现实体验之间的矛盾。
00:47
and our own experience of reality.
11
47835
2711
00:50
And in this tension lives some beautiful and fundamental truths
12
50713
3712
于此矛盾之中,我们能够窥见 一些迷人的基本真理,
00:54
about what mathematics actually is.
13
54425
2670
从而理解数学的本质。
00:57
We’ll come back to that in a moment, but first,
14
57095
2335
这个问题先放在一边。 首先,
00:59
we need to examine the foundation of every mathematical system: axioms.
15
59430
4838
我们需要检视一下 所有数学系统的基础:公理。
01:05
Every mathematical system is built and advanced
16
65019
2711
每个数学系统都是通过
01:07
by using logic to reach new conclusions.
17
67730
3128
使用逻辑得出新结论来构建和推进的。
01:10
But logic can’t be applied to nothing;
18
70983
2962
但是逻辑也需要应用的对象;
01:14
we have to start with some basic statements, called axioms,
19
74028
3670
我们必须从一些 被称为“公理”的基本陈述开始。
01:17
that we declare to be true, and make deductions from there.
20
77698
3754
我们声明这些陈述是正确的, 然后基于其进行推理。
01:21
Often these match our intuition for how the world works—
21
81661
3670
公理一般与我们的直觉 对世界的认知是相符的——
01:25
for instance, that adding zero to a number has no effect is an axiom.
22
85331
4963
如 “ 0 与数字相加不改变结果” 是一个公理。
01:30
If the goal of mathematics is to build a house, axioms form its foundation—
23
90586
5047
如果数学的目标是盖房子, 公理就是地基——
01:35
the first thing that’s laid down, that supports everything else.
24
95758
3587
地基是最早打下的, 支撑其他所有结构。
01:39
Where things get interesting is that by laying a slightly different foundation,
25
99470
4171
有趣的是, 通过打一个略有不同的地基,
01:43
you can get a vastly different but equally sound structure.
26
103641
3837
能够得到一个截然不同 但同样坚实的结构。
01:47
For example, when Euclid laid his foundations for geometry,
27
107645
4046
例如,欧几里得 为几何学奠定基础时,
01:51
one of his axioms implied that given a line and a point off the line,
28
111691
4921
由他其中一条公理可推理出: 给定一条直线和一个离线点,
01:56
only one parallel line exists going through that point.
29
116612
4338
只有一条平行线穿过该点。
02:01
But later mathematicians,
30
121159
1710
但是后来的数学家想知道
02:02
wanting to see if geometry was still possible without this axiom,
31
122869
4421
几何学没有这条公理是否还能成立,
02:07
produced spherical and hyperbolic geometry.
32
127290
3169
于是有了球面几何和双曲几何。
02:10
Each valid, logically sound, and useful in different contexts.
33
130459
4422
它们都有效且符合逻辑, 在不同的情况下非常有用。
02:15
One axiom common in modern mathematics is the Axiom of Choice.
34
135131
4421
现代数学中常用的一个公理 是选择公理。
02:19
It typically comes into play in proofs that require choosing elements from sets—
35
139635
5047
需要从集合中选择元素的证明中 通常会用到它——
02:24
which we’ll grossly simplify to marbles in boxes.
36
144807
3754
这种证明简单来说, 就好比盒装弹珠。
02:28
For our choices to be valid, they need to be consistent,
37
148811
3253
为了使我们的选择有效, 它们必须保持一致,
02:32
meaning if we approach a box, choose a marble,
38
152064
2920
意味着若从其中一个盒子中 选择一颗弹珠,
02:34
and then go back in time and choose again, we'd know how to find the same marble.
39
154984
5005
然后回到过去、再次选择, 我们就会知道如何找到同一颗弹珠。
02:40
If we have a finite number of boxes, that’s easy.
40
160072
2878
如果我们的盒子数量有限, 这便容易做到。
02:43
It’s even straightforward when there are infinite boxes
41
163034
3128
就算有无限个盒子也是小菜一碟,
02:46
if each contains a marble that’s readily distinguishable from the others.
42
166162
4379
只要盒中含有一颗 与其他弹珠不同的弹珠。
02:50
It’s when there are infinite boxes with indistinguishable marbles
43
170708
4171
然而,当有无限个盒子, 且装的全是无法区分的弹珠时,
02:54
that we have trouble.
44
174879
1043
就会非常难办。
02:55
But in these scenarios,
45
175922
1334
但是,在这种情况下,
02:57
the Axiom of Choice lets us summon a mysterious omniscient chooser
46
177256
4630
选择公理就好比召唤了 一个无所不知的神秘选择者,
03:01
that will always select the same marbles—
47
181886
2461
总是能选出相同的弹珠,
03:04
without us having to know anything about how those choices are made.
48
184347
3503
而无需我们知道 这些选择是如何做出的。
03:07
Our stab-happy mathematician, following Banach and Tarski’s proof,
49
187934
4212
我们的疯狂数学家 效仿巴纳赫和塔尔斯基的证明,
03:12
reaches a step in constructing the five sections
50
192146
2920
走到了将五个部分重组的那一步,
03:15
where she has infinitely many boxes filled with indistinguishable parts.
51
195066
5005
她已在无限多的盒子中 装入了无法区分的小切片。
03:20
So she needs the Axiom of Choice to make their construction possible.
52
200196
4963
因此,她需要选择公理 才有可能将它们复原。
03:25
If the Axiom of Choice can lead to such a counterintuitive result,
53
205409
4505
如果选择公理带来的结果 如此地反直觉,
03:29
should we just reject it?
54
209914
1626
我们不应该否认它吗?
03:31
Mathematicians today say no,
55
211666
2043
今天的数学家不这么认为,
03:33
because it’s load-bearing for a lot of important results in mathematics.
56
213709
4463
因为它是数学中 许多重要成果的根基。
03:38
Fields like measure theory and functional analysis,
57
218422
3420
测度论和泛函分析等领域
03:41
which are crucial for statistics and physics,
58
221842
2878
对于统计学和物理学至关重要;
03:44
are built upon the Axiom of Choice.
59
224720
2253
而它们都是建立在选择公理上的。
03:46
While it leads to some impractical results,
60
226973
3003
虽然选择公理能推理出 不切实际的结果,
03:49
it also leads to extremely practical ones.
61
229976
3128
但也能得到极其实用的结果。
03:53
Fortunately, just as Euclidean geometry exists alongside hyperbolic geometry,
62
233646
5380
幸运的是,就像欧几里得几何 与双曲几何共存一样,
03:59
mathematics with the Axiom of Choice coexists with mathematics without it.
63
239026
5047
使用选择公理和不使用它的数学 也是共存的。
04:04
The question for many mathematicians isn’t whether the Axiom of Choice,
64
244490
4004
对于许多数学家来说, 他们关注的并非这些公理的对错,
04:08
or for that matter any given axiom, is right or not,
65
248494
3629
不论是选择公理还是其他公理,
04:12
but whether it’s right for what you’re trying to do.
66
252164
3337
重要的是它们是否能 为你的目标服务。
04:15
The fate of the Banach-Tarski paradox lies in this choice.
67
255668
4129
巴纳赫-塔斯基悖论的命运 正由这种选择决定。
04:20
This is the freedom mathematics gives us.
68
260172
2503
这便是数学赋予我们的自由。
04:22
Not only is it a way to model our physical universe
69
262675
3378
这不仅是使用我们在 日常经历中由直觉得到的公理
04:26
using the axioms we intuit from our daily experiences,
70
266053
3587
模拟我们的物理宇宙的一种方式,
04:29
but a way to venture into abstract mathematical universes
71
269640
4004
我们还能得以漫游抽象数学宇宙,
04:33
and explore arcane geometries and laws unlike anything we can ever experience.
72
273644
6340
探索神秘的几何和定律, 这样的体验是绝无仅有的。
04:40
If we ever meet aliens, axioms which seem absurd and incomprehensible to us
73
280484
5339
若能遇见外星人, 这些貌似荒谬和难以理解的公理
04:45
might be everyday common sense to them.
74
285823
2711
对他们而言可能是日常常识。
04:49
To investigate, we might start by handing them an infinitely sharp knife
75
289160
4337
若想知道,我们可以交 给他们一把无限锋利的刀
04:53
and a perfect ball,
76
293497
1544
和一个完美的球,
04:55
and see what they do.
77
295041
1293
然后拭目以待。
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7