Does math have a major flaw? - Jacqueline Doan and Alex Kazachek

342,511 views ・ 2024-04-23

TED-Ed


請雙擊下方英文字幕播放視頻。

譯者: Lilian Chiu 審譯者: SF Huang
00:06
Consider this mathematician,
0
6961
1710
想想這位數學家,
00:08
with her standard-issue infinitely sharp knife and a perfect ball.
1
8671
4463
她有一把無限鋒利的標配刀 和一顆完美的球。
00:13
She frantically slices and distributes the ball into an infinite number of boxes.
2
13259
5422
她瘋狂地切割這顆球,並將 切片分配到無限個盒子中。
00:18
She then recombines the parts into five precise sections.
3
18765
4004
然後,她將這些切片 重組成五個精確的部分。
00:22
Gently moving and rotating these sections around,
4
22852
2961
她輕輕地移動和旋轉這些部分,
00:25
seemingly impossibly, she recombines them to form two identical, flawless,
5
25855
5964
看似不可能的是,
她將它們重新組合, 形成了原始那顆球的
00:31
and complete copies of the original ball.
6
31819
3087
兩個副製品,完全相同且毫無瑕疵。
00:35
This is a result known in mathematics as the Banach-Tarski paradox.
7
35031
4755
在數學領域,這個結果 稱為巴拿赫—塔斯基悖論。
00:39
The paradox here is not in the logic or the proof—
8
39911
3086
矛盾之處並不在於邏輯或證明——
00:42
which are, like the balls, flawless—
9
42997
1877
這些都和球一樣無瑕——
00:44
but instead in the tension between mathematics
10
44874
2961
反而是在於數學和我們自己
00:47
and our own experience of reality.
11
47835
2711
對現實的體驗之間的緊張關係。
00:50
And in this tension lives some beautiful and fundamental truths
12
50713
3712
在這種緊張關係中, 有著一些美麗且基本的真理,
00:54
about what mathematics actually is.
13
54425
2670
說明數學到底是什麼。
00:57
We’ll come back to that in a moment, but first,
14
57095
2335
我們稍後再來談這一點,
但首先,我們要檢視 每個數學系統的基礎:
00:59
we need to examine the foundation of every mathematical system: axioms.
15
59430
4838
公理。
01:05
Every mathematical system is built and advanced
16
65019
2711
每個數學系統的建立和進展
01:07
by using logic to reach new conclusions.
17
67730
3128
都仰賴使用邏輯來得出新的結論。
01:10
But logic can’t be applied to nothing;
18
70983
2962
但什麼都沒有時就不能應用邏輯;
01:14
we have to start with some basic statements, called axioms,
19
74028
3670
我們必須從一些基本陳述 來著手,稱為公理,
01:17
that we declare to be true, and make deductions from there.
20
77698
3754
我們宣稱那些公理為真, 從那裡開始做推論。
01:21
Often these match our intuition for how the world works—
21
81661
3670
通常,這些公理會符合我們 直覺上世界運作的方式——
01:25
for instance, that adding zero to a number has no effect is an axiom.
22
85331
4963
例如把一個數字加上零不會 有任何效果,這就是公理。
01:30
If the goal of mathematics is to build a house, axioms form its foundation—
23
90586
5047
如果數學的目標是建造一間房子,
公理是用來形成它的地基——
01:35
the first thing that’s laid down, that supports everything else.
24
95758
3587
是最先建造的部分, 用以支撐所有其他部分。
01:39
Where things get interesting is that by laying a slightly different foundation,
25
99470
4171
有趣的是,若建立略有不同的基礎,
01:43
you can get a vastly different but equally sound structure.
26
103641
3837
可以建出非常不同 但同樣健全的建築。
01:47
For example, when Euclid laid his foundations for geometry,
27
107645
4046
例如,當歐幾里德 為幾何學建立基礎時,
01:51
one of his axioms implied that given a line and a point off the line,
28
111691
4921
他的其中一個公理就暗示:給定 一條直線和一個不在線上的點,
01:56
only one parallel line exists going through that point.
29
116612
4338
只會有一條平行線通過該點。
02:01
But later mathematicians,
30
121159
1710
但後來的數學家,
02:02
wanting to see if geometry was still possible without this axiom,
31
122869
4421
因為想看看沒有這個公理時 幾何學是否仍有可能,
02:07
produced spherical and hyperbolic geometry.
32
127290
3169
便創造了球面幾何學和雙曲幾何學。
02:10
Each valid, logically sound, and useful in different contexts.
33
130459
4422
兩者都有根據,在邏輯上很合理,
且能用在不同情境中。
02:15
One axiom common in modern mathematics is the Axiom of Choice.
34
135131
4421
現代數學中常見的公理 之一就是選擇公理。
02:19
It typically comes into play in proofs that require choosing elements from sets—
35
139635
5047
會用到它的情況通常是
在做證明時需要從集合中 選擇元素的情況,
02:24
which we’ll grossly simplify to marbles in boxes.
36
144807
3754
我們可以把這種情況大略 簡化為盒子中的大理石。
02:28
For our choices to be valid, they need to be consistent,
37
148811
3253
要讓我們的選擇是有效的, 這些大理石必須要一致,
02:32
meaning if we approach a box, choose a marble,
38
152064
2920
意即,當我們從一個盒子裡 選擇了一顆大理石,
02:34
and then go back in time and choose again, we'd know how to find the same marble.
39
154984
5005
接著我們回去再選擇一次,
我們還是會知道要如何 找到同樣的大理石。
02:40
If we have a finite number of boxes, that’s easy.
40
160072
2878
如果盒子的數量有限,那就很容易。
02:43
It’s even straightforward when there are infinite boxes
41
163034
3128
這種情況也很直觀: 盒子的數量無限,
02:46
if each contains a marble that’s readily distinguishable from the others.
42
166162
4379
每個盒子內有一個可明顯 和其他大理石區別出來的大理石。
02:50
It’s when there are infinite boxes with indistinguishable marbles
43
170708
4171
但當盒子的數量無限, 大理石又無法區別時,
02:54
that we have trouble.
44
174879
1043
就麻煩了。
02:55
But in these scenarios,
45
175922
1334
但在這些情境中,選擇公理
02:57
the Axiom of Choice lets us summon a mysterious omniscient chooser
46
177256
4630
讓我們召喚一名神秘的全知選擇者,
03:01
that will always select the same marbles—
47
181886
2461
他永遠會選到同樣的大理石——
03:04
without us having to know anything about how those choices are made.
48
184347
3503
且不需要我們知道 這些選擇是如何做出來的。
03:07
Our stab-happy mathematician, following Banach and Tarski’s proof,
49
187934
4212
我們這位用刀的快樂數學家
遵循巴拿赫—塔斯基的證明,
03:12
reaches a step in constructing the five sections
50
192146
2920
來到了這個步驟: 要建造出五個部分,
03:15
where she has infinitely many boxes filled with indistinguishable parts.
51
195066
5005
此時她有無限個盒子, 內有無法區別的切片。
03:20
So she needs the Axiom of Choice to make their construction possible.
52
200196
4963
因此,她需要選擇公理, 才有可能建造出這五個部分。
03:25
If the Axiom of Choice can lead to such a counterintuitive result,
53
205409
4505
如果選擇公理可以帶出 如此反直覺的結果,
03:29
should we just reject it?
54
209914
1626
我們該捨棄它嗎?
03:31
Mathematicians today say no,
55
211666
2043
今天的數學家說不行,
03:33
because it’s load-bearing for a lot of important results in mathematics.
56
213709
4463
因為許多重要的數學結果 都立基在這個公理上。
03:38
Fields like measure theory and functional analysis,
57
218422
3420
測度論和泛函分析等領域
03:41
which are crucial for statistics and physics,
58
221842
2878
對於統計學和物理學都至關重要,
03:44
are built upon the Axiom of Choice.
59
224720
2253
它們都立基在選擇公理上。
03:46
While it leads to some impractical results,
60
226973
3003
雖然此公理會導出 一些不實際的結果,
03:49
it also leads to extremely practical ones.
61
229976
3128
但也會導出非常實用的結果。
03:53
Fortunately, just as Euclidean geometry exists alongside hyperbolic geometry,
62
233646
5380
幸運的是,正如歐幾里德 幾何學與雙曲幾何學並存一樣,
03:59
mathematics with the Axiom of Choice coexists with mathematics without it.
63
239026
5047
有選擇公理的數學
也與沒有選擇公理的數學並存。
04:04
The question for many mathematicians isn’t whether the Axiom of Choice,
64
244490
4004
對於許多數學家來說,
問題並不在於選擇公理
04:08
or for that matter any given axiom, is right or not,
65
248494
3629
或任何給定的公理是否正確,
04:12
but whether it’s right for what you’re trying to do.
66
252164
3337
而是針對你想達到的 目的,它是否正確。
04:15
The fate of the Banach-Tarski paradox lies in this choice.
67
255668
4129
巴拿赫—塔斯基悖論的命運 取決於這個選擇。
04:20
This is the freedom mathematics gives us.
68
260172
2503
這是數學給我們的自由。
04:22
Not only is it a way to model our physical universe
69
262675
3378
它不僅是一種利用我們 從日常經驗中直覺知道的公理
04:26
using the axioms we intuit from our daily experiences,
70
266053
3587
來形塑實體宇宙的方法,
04:29
but a way to venture into abstract mathematical universes
71
269640
4004
還是一種探索抽象數學領域的方法,
04:33
and explore arcane geometries and laws unlike anything we can ever experience.
72
273644
6340
探究我們不曾經歷過的 神秘幾何學和定律。
04:40
If we ever meet aliens, axioms which seem absurd and incomprehensible to us
73
280484
5339
如果我們遇見外星人,
在我們眼中很荒唐且難以理解的公理
04:45
might be everyday common sense to them.
74
285823
2711
對他們來說可能是日常的常識。
04:49
To investigate, we might start by handing them an infinitely sharp knife
75
289160
4337
如果想探究,我們首先可以 交給他們一把無限鋒利的刀
04:53
and a perfect ball,
76
293497
1544
和一顆完美的球,
04:55
and see what they do.
77
295041
1293
看看他們會怎麼做。
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7