Does math have a major flaw? - Jacqueline Doan and Alex Kazachek

338,591 views ใƒป 2024-04-23

TED-Ed


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืชืจื’ื•ื: hila scherba ืขืจื™ื›ื”: zeeva livshitz
00:06
Consider this mathematician,
0
6961
1710
ื”ืกืชื›ืœื• ืขืœ ื”ืžืชืžื˜ื™ืงืื™ืช ื”ื–ื•,
00:08
with her standard-issue infinitely sharp knife and a perfect ball.
1
8671
4463
ืขื ื”ืกื›ื™ืŸ ื”ืกื˜ื ื“ืจื˜ื™ืช ื”ื—ื“ื” ืœืื™ืŸ ืฉื™ืขื•ืจ ืฉืœื” ื•ื›ื“ื•ืจ ืžื•ืฉืœื.
00:13
She frantically slices and distributes the ball into an infinite number of boxes.
2
13259
5422
ื”ื™ื ื—ื•ืชื›ืช ื‘ืชื–ื–ื™ืชื™ื•ืช ื•ืžื—ืœืงืช ืืช ื”ื›ื“ื•ืจ ืœืžืกืคืจ ืื™ื ืกื•ืคื™ ืฉืœ ืงื•ืคืกืื•ืช.
00:18
She then recombines the parts into five precise sections.
3
18765
4004
ืœืื—ืจ ืžื›ืŸ ื”ื™ื ืžื—ื‘ืจืช ืžื—ื“ืฉ ืืช ื”ื—ืœืงื™ื ืœื—ืžื™ืฉื” ื—ืœืงื™ื ืžื“ื•ื™ืงื™ื.
00:22
Gently moving and rotating these sections around,
4
22852
2961
ื”ื™ื ืžื–ื™ื–ื” ื•ืžืกื•ื‘ื‘ืช ื‘ืขื“ื™ื ื•ืช ืืช ื”ื—ืœืงื™ื ื”ืืœื” ืžืกื‘ื™ื‘,
00:25
seemingly impossibly, she recombines them to form two identical, flawless,
5
25855
5964
ืœื›ืื•ืจื” ื‘ืœืชื™ ืืคืฉืจื™, ื”ื™ื ืžื—ื‘ืจืช ืื•ืชื ืžื—ื“ืฉ ืœื™ืฆื™ืจืช ืฉื ื™ ืขื•ืชืงื™ื ื–ื”ื™ื, ืœืœื ืจื‘ื‘,
00:31
and complete copies of the original ball.
6
31819
3087
ื•ืžื•ืฉืœืžื™ื ืฉืœ ื”ื›ื“ื•ืจ ื”ืžืงื•ืจื™.
00:35
This is a result known in mathematics as the Banach-Tarski paradox.
7
35031
4755
ื–ื•ื”ื™ ืชื•ืฆืื” ื”ืžื›ื•ื ื” ื‘ืžืชืžื˜ื™ืงื” ืคืจื“ื•ืงืก ื‘ื ืืš-ื˜ืจืกืงื™.
00:39
The paradox here is not in the logic or the proofโ€”
8
39911
3086
ื”ืคืจื“ื•ืงืก ื›ืืŸ ืื™ื ื• ื‘ื”ื™ื’ื™ื•ืŸ ืื• ื‘ื”ื•ื›ื—ื” -
00:42
which are, like the balls, flawlessโ€”
9
42997
1877
ืฉื”ื, ื›ืžื• ื”ื›ื“ื•ืจื™ื, ืœืœื ืจื‘ื‘ -
00:44
but instead in the tension between mathematics
10
44874
2961
ืืœื ื‘ืžืชื— ืฉื‘ื™ืŸ ื”ืžืชืžื˜ื™ืงื”
00:47
and our own experience of reality.
11
47835
2711
ืœื—ื•ื•ื™ื™ืช ื”ืžืฆื™ืื•ืช ืฉืœื ื•.
00:50
And in this tension lives some beautiful and fundamental truths
12
50713
3712
ื•ื‘ืžืชื— ื”ื–ื” ื ืžืฆืื•ืช ื›ืžื” ืืžื™ืชื•ืช ื™ืคื•ืช ื•ื™ืกื•ื“ื™ื•ืช
00:54
about what mathematics actually is.
13
54425
2670
ืœื’ื‘ื™ ืžื”ื™ ื‘ืขืฆื ืžืชืžื˜ื™ืงื”.
00:57
Weโ€™ll come back to that in a moment, but first,
14
57095
2335
ื ื—ื–ื•ืจ ืœื–ื” ื‘ืขื•ื“ ืจื’ืข, ืื‘ืœ ืจืืฉื™ืช,
00:59
we need to examine the foundation of every mathematical system: axioms.
15
59430
4838
ืขืœื™ื ื• ืœื‘ื—ื•ืŸ ืืช ื”ื™ืกื•ื“ ืฉืœ ื›ืœ ืžืขืจื›ืช ืžืชืžื˜ื™ืช: ืืงืกื™ื•ืžื•ืช.
01:05
Every mathematical system is built and advanced
16
65019
2711
ื›ืœ ืžืขืจื›ืช ืžืชืžื˜ื™ืช ื‘ื ื•ื™ื” ื•ืžืชืงื“ืžืช
01:07
by using logic to reach new conclusions.
17
67730
3128
ืขืœ ื™ื“ื™ ืฉื™ืžื•ืฉ ื‘ื”ื™ื’ื™ื•ืŸ ื›ื“ื™ ืœื”ื’ื™ืข ืœืžืกืงื ื•ืช ื—ื“ืฉื•ืช.
01:10
But logic canโ€™t be applied to nothing;
18
70983
2962
ืื‘ืœ ื”ื”ื™ื’ื™ื•ืŸ ืื™ื ื• ื™ื›ื•ืœ ืœื”ื™ื•ืช ืžื™ื•ืฉื ืขืœ ืฉื•ื ื“ื‘ืจ;
01:14
we have to start with some basic statements, called axioms,
19
74028
3670
ืขืœื™ื ื• ืœื”ืชื—ื™ืœ ืขื ื›ืžื” ื”ืฆื”ืจื•ืช ื‘ืกื™ืกื™ื•ืช, ื”ื ืงืจืื•ืช ืืงืกื™ื•ืžื•ืช,
01:17
that we declare to be true, and make deductions from there.
20
77698
3754
ืฉืื ื• ืžื›ืจื™ื–ื™ื ืฉื”ืŸ ื ื›ื•ื ื•ืช, ื•ืœื‘ืฆืข ืžืกืงื ื•ืช ืžืฉื.
01:21
Often these match our intuition for how the world worksโ€”
21
81661
3670
ืœืขืชื™ื ืงืจื•ื‘ื•ืช ืืœื” ืชื•ืืžื™ื ืืช ื”ืื™ื ื˜ื•ืื™ืฆื™ื” ืฉืœื ื•
ืœื’ื‘ื™ ืื•ืคืŸ ื”ืคืขื•ืœื” ืฉืœ ื”ืขื•ืœื -
01:25
for instance, that adding zero to a number has no effect is an axiom.
22
85331
4963
ืœืžืฉืœ, ืœื”ื•ืกื™ืฃ ืืคืก ืœืžืกืคืจ ื–ื” ื—ืกืจ ื”ืฉืคืขื” ื–ื” ืืงืกื™ื•ืžื”.
01:30
If the goal of mathematics is to build a house, axioms form its foundationโ€”
23
90586
5047
ืื ืžื˜ืจืช ื”ืžืชืžื˜ื™ืงื” ื”ื™ื ืœื‘ื ื•ืช ื‘ื™ืช, ืืงืกื™ื•ืžื•ืช ืžื”ื•ื•ืช ืืช ื”ื™ืกื•ื“ ืฉืœื• -
01:35
the first thing thatโ€™s laid down, that supports everything else.
24
95758
3587
ื”ื“ื‘ืจ ื”ืจืืฉื•ืŸ ืฉื”ื•ื ื—, ื”ืชื•ืžืš ื‘ื›ืœ ื”ืฉืืจ.
01:39
Where things get interesting is that by laying a slightly different foundation,
25
99470
4171
ื”ื“ื‘ืจื™ื ื ืขืฉื™ื ืžืขื ื™ื™ื ื™ื ื›ืืฉืจ ืขืœ ื™ื“ื™ ื”ื ื—ืช ื‘ืกื™ืก ืฉื•ื ื” ื‘ืžืงืฆืช,
01:43
you can get a vastly different but equally sound structure.
26
103641
3837
ืืคืฉืจ ืœืงื‘ืœ ืžื‘ื ื” ืฉื•ื ื” ื‘ืชื›ืœื™ืช ืืš ืœื ืคื—ื•ืช ื™ืฆื™ื‘.
01:47
For example, when Euclid laid his foundations for geometry,
27
107645
4046
ืœื“ื•ื’ืžื”, ื›ืืฉืจ ืื•ืงืœื™ื“ืก ื”ื ื™ื— ืืช ื™ืกื•ื“ื•ืชื™ื• ืœื’ื™ืื•ืžื˜ืจื™ื”,
01:51
one of his axioms implied that given a line and a point off the line,
28
111691
4921
ืื—ืช ื”ืืงืกื™ื•ืžื•ืช ืฉืœื• ืžืจืžื–ืช ื›ื™ ื‘ื”ื™ื ืชืŸ ืงื• ื•ื ืงื•ื“ื” ืžื—ื•ืฅ ืœืงื•,
01:56
only one parallel line exists going through that point.
29
116612
4338
ืงื™ื™ื ืจืง ืงื• ืžืงื‘ื™ืœ ืื—ื“ ื”ืขื•ื‘ืจ ื‘ื ืงื•ื“ื” ื–ื•.
02:01
But later mathematicians,
30
121159
1710
ืืš ืžืชืžื˜ื™ืงืื™ื ืžืื•ื—ืจื™ื ื™ื•ืชืจ,
02:02
wanting to see if geometry was still possible without this axiom,
31
122869
4421
ืฉืจืฆื• ืœืจืื•ืช ืื ื”ื’ื™ืื•ืžื˜ืจื™ื” ืขื“ื™ื™ืŸ ืืคืฉืจื™ืช ืœืœื ืืงืกื™ื•ืžื” ื–ื•,
02:07
produced spherical and hyperbolic geometry.
32
127290
3169
ื™ืฆืจื• ื’ื™ืื•ืžื˜ืจื™ื” ื›ื“ื•ืจื™ืช ื•ื”ื™ืคืจื‘ื•ืœื™ืช.
02:10
Each valid, logically sound, and useful in different contexts.
33
130459
4422
ื›ืœ ืื—ืช ืžื”ืŸ ืชืงืคื”, ื™ืฆื™ื‘ื” ื”ื’ื™ื•ื ื™ืช ื•ืฉื™ืžื•ืฉื™ืช ื‘ื”ืงืฉืจื™ื ืฉื•ื ื™ื.
02:15
One axiom common in modern mathematics is the Axiom of Choice.
34
135131
4421
ืืงืกื™ื•ืžื” ืื—ืช ื”ื ืคื•ืฆื” ื‘ืžืชืžื˜ื™ืงื” ื”ืžื•ื“ืจื ื™ืช ื”ื™ื ืืงืกื™ื•ืžื” ืฉืœ ื‘ื—ื™ืจื”.
02:19
It typically comes into play in proofs that require choosing elements from setsโ€”
35
139635
5047
ื–ื” ื‘ื“ืจืš ื›ืœืœ ื ื›ื ืก ืœืชืžื•ื ื” ื‘ื”ื•ื›ื—ื•ืช ื”ื“ื•ืจืฉื•ืช ื‘ื—ื™ืจืช ืืœืžื ื˜ื™ื ืžืกื˜ื™ื -
02:24
which weโ€™ll grossly simplify to marbles in boxes.
36
144807
3754
ืื•ืชื ื ืคืฉื˜ ื‘ืฆื•ืจื” ื’ืกื” ืœื’ื•ืœื•ืช ื‘ืงื•ืคืกืื•ืช.
02:28
For our choices to be valid, they need to be consistent,
37
148811
3253
ื›ื“ื™ ืฉื”ื‘ื—ื™ืจื•ืช ืฉืœื ื• ื™ื”ื™ื• ืชืงืคื•ืช, ื”ืŸ ืฆืจื™ื›ื•ืช ืœื”ื™ื•ืช ืขืงื‘ื™ื•ืช,
02:32
meaning if we approach a box, choose a marble,
38
152064
2920
ื›ืœื•ืžืจ ืื ื ื™ื’ืฉ ืœืงื•ืคืกื”, ื ื‘ื—ืจ ื’ื•ืœื”,
02:34
and then go back in time and choose again, we'd know how to find the same marble.
39
154984
5005
ื•ืื– ื ื—ื–ื•ืจ ืื—ื•ืจื” ื‘ื–ืžืŸ ื•ื ื‘ื—ืจ ืฉื•ื‘, ื ื“ืข ืœืžืฆื•ื ืืช ืื•ืชื” ื”ื’ื•ืœื”.
02:40
If we have a finite number of boxes, thatโ€™s easy.
40
160072
2878
ืื ื™ืฉ ืœื ื• ืžืกืคืจ ืกื•ืคื™ ืฉืœ ืงื•ืคืกืื•ืช, ื–ื” ืงืœ.
02:43
Itโ€™s even straightforward when there are infinite boxes
41
163034
3128
ื–ื” ืืคื™ืœื• ืคืฉื•ื˜ ื›ืฉื™ืฉ ืงื•ืคืกืื•ืช ืื™ื ืกื•ืคื™ื•ืช
02:46
if each contains a marble thatโ€™s readily distinguishable from the others.
42
166162
4379
ืื ื›ืœ ืื—ืช ืžื›ื™ืœื” ื’ื•ืœื” ืฉื ื™ืชืŸ ืœื”ื‘ื—ื™ืŸ ื‘ืงืœื•ืช ืžื”ืื—ืจื•ืช.
02:50
Itโ€™s when there are infinite boxes with indistinguishable marbles
43
170708
4171
ื›ืฉื™ืฉ ืงื•ืคืกืื•ืช ืื™ื ืกื•ืคื™ื•ืช ืขื ื’ื•ืœื•ืช ื‘ืœืชื™ ื ื™ืชื ื•ืช ืœื”ื‘ื—ื ื”
02:54
that we have trouble.
44
174879
1043
ืื– ื™ืฉ ืœื ื• ื‘ืขื™ื”.
02:55
But in these scenarios,
45
175922
1334
ืื‘ืœ ื‘ืชืจื—ื™ืฉื™ื ืืœื”,
02:57
the Axiom of Choice lets us summon a mysterious omniscient chooser
46
177256
4630
ืืงืกื™ื•ืžืช ื”ื‘ื—ื™ืจื” ืžืืคืฉืจืช ืœื ื• ืœื–ืžืŸ ื‘ื•ื—ืจ ื›ืœ ื™ื•ื“ืข ืžืกืชื•ืจื™
03:01
that will always select the same marblesโ€”
47
181886
2461
ืฉืชืžื™ื“ ื™ื‘ื—ืจ ืืช ืื•ืชืŸ ื’ื•ืœื•ืช -
03:04
without us having to know anything about how those choices are made.
48
184347
3503
ืžื‘ืœื™ ืฉื ืฆื˜ืจืš ืœื“ืขืช ืฉื•ื ื“ื‘ืจ ืขืœ ืื•ืคืŸ ื‘ื™ืฆื•ืข ื”ื‘ื—ื™ืจื•ืช ื”ืœืœื•.
03:07
Our stab-happy mathematician, following Banach and Tarskiโ€™s proof,
49
187934
4212
ื”ืžืชืžื˜ื™ืงืื™ืช ื”ื“ื•ืงืจืช-ื”ืžืื•ืฉืจืช ืฉืœื ื•, ื‘ืขืงื‘ื•ืช ื”ื”ื•ื›ื—ื” ืฉืœ ื‘ื ืืš ื•ื˜ืจืกืงื™,
03:12
reaches a step in constructing the five sections
50
192146
2920
ืžื’ื™ืขื” ืœืฉืœื‘ ื‘ื‘ื ื™ื™ืช ื—ืžืฉืช ื”ื—ืœืงื™ื
03:15
where she has infinitely many boxes filled with indistinguishable parts.
51
195066
5005
ืฉื‘ื• ื™ืฉ ืœื” ืื™ื ืกื•ืฃ ืงื•ืคืกืื•ืช ืžืœืื•ืช ื‘ื—ืœืงื™ื ื‘ืœืชื™ ื ื™ืชื ื™ื ืœื”ื‘ื—ื ื”.
03:20
So she needs the Axiom of Choice to make their construction possible.
52
200196
4963
ืื– ื”ื™ื ื–ืงื•ืงื” ืœืืงืกื™ื•ืžื” ืฉืœ ื‘ื—ื™ืจื” ื›ื“ื™ ืœืืคืฉืจ ืืช ื‘ื ื™ื™ืชื.
03:25
If the Axiom of Choice can lead to such a counterintuitive result,
53
205409
4505
ืื ืืงืกื™ื•ืžืช ื”ื‘ื—ื™ืจื” ื™ื›ื•ืœื” ืœื”ื•ื‘ื™ืœ ืœืชื•ืฆืื” ื›ื” ืžื ื•ื’ื“ืช ืœืื™ื ื˜ื•ืื™ืฆื™ื”,
03:29
should we just reject it?
54
209914
1626
ื”ืื ืขืœื™ื ื• ืคืฉื•ื˜ ืœื“ื—ื•ืช ืื•ืชื”?
03:31
Mathematicians today say no,
55
211666
2043
ืžืชืžื˜ื™ืงืื™ื ื”ื™ื•ื ืื•ืžืจื™ื ืœื,
03:33
because itโ€™s load-bearing for a lot of important results in mathematics.
56
213709
4463
ื›ื™ ื–ื” ื‘ืกื™ืก ืœื”ืจื‘ื” ืชื•ืฆืื•ืช ื—ืฉื•ื‘ื•ืช ื‘ืžืชืžื˜ื™ืงื”.
03:38
Fields like measure theory and functional analysis,
57
218422
3420
ืชื—ื•ืžื™ื ื›ืžื• ืชื•ืจืช ื”ืžื“ื™ื“ื” ื•ื ื™ืชื•ื— ืคื•ื ืงืฆื™ื•ื ืœื™,
03:41
which are crucial for statistics and physics,
58
221842
2878
ืฉื”ื ื—ื™ื•ื ื™ื™ื ืœืกื˜ื˜ื™ืกื˜ื™ืงื” ื•ืคื™ื–ื™ืงื”,
03:44
are built upon the Axiom of Choice.
59
224720
2253
ื‘ื ื•ื™ื™ื ืขืœ ืืงืกื™ื•ืžืช ื”ื‘ื—ื™ืจื”.
03:46
While it leads to some impractical results,
60
226973
3003
ืืžื ื ื–ื” ืžื•ื‘ื™ืœ ืœืชื•ืฆืื•ืช ืœื ืžืขืฉื™ื•ืช,
03:49
it also leads to extremely practical ones.
61
229976
3128
ืืš ื”ื•ื ืžื•ื‘ื™ืœ ื’ื ืœืชื•ืฆืื•ืช ืžืขืฉื™ื•ืช ื‘ื™ื•ืชืจ.
03:53
Fortunately, just as Euclidean geometry exists alongside hyperbolic geometry,
62
233646
5380
ืœืžืจื‘ื” ื”ืžื–ืœ, ื›ืฉื ืฉื”ื’ื™ืื•ืžื˜ืจื™ื” ื”ืื•ืงืœื™ื“ื™ืช ืงื™ื™ืžืช ืœืฆื“ ื’ื™ืื•ืžื˜ืจื™ื” ื”ื™ืคืจื‘ื•ืœื™ืช,
03:59
mathematics with the Axiom of Choice coexists with mathematics without it.
63
239026
5047
ืžืชืžื˜ื™ืงื” ืขื ืืงืกื™ื•ืžืช ื”ื‘ื—ื™ืจื” ืžืชืงื™ื™ืžืช ื™ื—ื“ ืขื ืžืชืžื˜ื™ืงื” ื‘ืœืขื“ื™ื”.
04:04
The question for many mathematicians isnโ€™t whether the Axiom of Choice,
64
244490
4004
ื”ืฉืืœื” ืขื‘ื•ืจ ืžืชืžื˜ื™ืงืื™ื ืจื‘ื™ื ืื™ื ื” ื”ืื ืืงืกื™ื•ืžืช ื”ื‘ื—ื™ืจื”,
04:08
or for that matter any given axiom, is right or not,
65
248494
3629
ืื• ืœืฆื•ืจืš ื”ืขื ื™ื™ืŸ ื›ืœ ืืงืกื™ื•ืžื” ื ืชื•ื ื”, ื ื›ื•ื ื” ืื• ืœื,
04:12
but whether itโ€™s right for what youโ€™re trying to do.
66
252164
3337
ืืœื ื”ืื ื”ื™ื ื ื›ื•ื ื” ืœืžื” ืฉืืชื” ืžื ืกื” ืœืขืฉื•ืช.
04:15
The fate of the Banach-Tarski paradox lies in this choice.
67
255668
4129
ื’ื•ืจืœื• ืฉืœ ืคืจื“ื•ืงืก ื‘ื ืืš-ื˜ืจืกืงื™ ื˜ืžื•ืŸ ื‘ื‘ื—ื™ืจื” ื–ื•.
04:20
This is the freedom mathematics gives us.
68
260172
2503
ื–ื” ื”ื—ื•ืคืฉ ืฉื”ืžืชืžื˜ื™ืงื” ื ื•ืชื ืช ืœื ื•.
04:22
Not only is it a way to model our physical universe
69
262675
3378
ืœื ืจืง ืฉื–ื• ื“ืจืš ืœื”ื›ื ื™ืก ืœืชื‘ื ื™ืช ืืช ื”ื™ืงื•ื ื”ืคื™ื–ื™ ืฉืœื ื•
04:26
using the axioms we intuit from our daily experiences,
70
266053
3587
ื‘ืืžืฆืขื•ืช ื”ืืงืกื™ื•ืžื•ืช ืฉืื ื• ื—ืฉื™ื ื‘ื—ื•ื•ื™ื•ืช ื”ื™ื•ืžื™ื•ืžื™ื•ืช ืฉืœื ื•,
04:29
but a way to venture into abstract mathematical universes
71
269640
4004
ืืœื ื“ืจืš ืœืฆืืช ืœื”ืจืคืชืงืื•ืช ื‘ื™ืงื•ืžื™ื ืžืชืžื˜ื™ื™ื ืžื•ืคืฉื˜ื™ื
04:33
and explore arcane geometries and laws unlike anything we can ever experience.
72
273644
6340
ื•ืœื—ืงื•ืจ ื’ื™ืื•ืžื˜ืจื™ื•ืช ืžื™ืกืชื•ืจื™ื•ืช ื•ื—ื•ืงื™ื ืฉืœื ื“ื•ืžื™ื ืœืฉื•ื ื“ื‘ืจ ืฉื ื•ื›ืœ ืœื—ื•ื•ืช ืื™ ืคืขื.
04:40
If we ever meet aliens, axioms which seem absurd and incomprehensible to us
73
280484
5339
ืื ืื™ ืคืขื ื ืคื’ื•ืฉ ื—ื™ื™ื–ืจื™ื, ืืงืกื™ื•ืžื•ืช ืฉื ืจืื•ืช ืœื ื• ืื‘ืกื•ืจื“ื™ื•ืช ื•ื‘ืœืชื™ ืžื•ื‘ื ื•ืช
04:45
might be everyday common sense to them.
74
285823
2711
ืขืฉื•ื™ื•ืช ืœื”ื™ื•ืช ื”ืฉื›ืœ ื”ื™ืฉืจ ื”ื™ื•ืžื™ื•ืžื™ ืขื‘ื•ืจื.
04:49
To investigate, we might start by handing them an infinitely sharp knife
75
289160
4337
ื›ื“ื™ ืœื—ืงื•ืจ, ื ื•ื›ืœ ืœื”ืชื—ื™ืœ ื‘ื›ืš ืฉื ืžืกื•ืจ ืœื”ื ืกื›ื™ืŸ ื—ื“ื” ืขื“ ืื™ืŸ ืงืฅ
04:53
and a perfect ball,
76
293497
1544
ื•ื›ื“ื•ืจ ืžื•ืฉืœื,
04:55
and see what they do.
77
295041
1293
ื•ืœืจืื•ืช ืžื” ื”ื ืขื•ืฉื™ื.
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7