Einstein's brilliant mistake: Entangled states - Chad Orzel

爱因斯坦的伟大错误:量子纠缠态 -查德·欧泽

1,276,850 views

2014-10-16 ・ TED-Ed


New videos

Einstein's brilliant mistake: Entangled states - Chad Orzel

爱因斯坦的伟大错误:量子纠缠态 -查德·欧泽

1,276,850 views ・ 2014-10-16

TED-Ed


请双击下面的英文字幕来播放视频。

翻译人员: Jinyuan Liu 校对人员: Qingqing Mao
00:06
Albert Einstein played a key role in launching quantum mechanics
0
6457
3729
凭借着光电效应理论,
阿尔伯特·爱因斯坦在量子力学领域奠定了重要的地位。
00:10
through his theory of the photoelectric effect
1
10186
2399
00:12
but remained deeply bothered by its philosophical implications.
2
12585
4402
但他对这一理论的哲学蕴意始终深感困扰。
00:16
And though most of us still remember him for deriving E=MC^2,
3
16987
4338
虽然爱因斯坦以推导出质能方程E=mc^2而闻名于世,
00:21
his last great contribution to physics was actually a 1935 paper,
4
21325
5356
但实际上,他对物理学的最后巨献 是一篇发表于1935年的论文。
00:26
coauthored with his young colleagues Boris Podolsky and Nathan Rosen.
5
26681
4954
论文合著者是他年轻的同事们: 鲍里斯·波多尔斯基和纳森·罗森。
00:31
Regarded as an odd philosophical footnote well into the 1980s,
6
31635
4290
即使直到20上世纪80年代, 它都被当作一个奇怪的哲学脚注,
00:35
this EPR paper has recently become central to a new understanding of quantum physics,
7
35925
5946
这篇阐述爱因斯坦-波多尔斯基-罗森悖论(简称EPR) 的论文现在成为了重新理解量子物理学的中心,
00:41
with its description of a strange phenomenon
8
41871
2289
因为文中描述了一个奇怪的现象,
00:44
now known as entangled states.
9
44160
3682
现在人们称这种现象为纠缠态。
00:47
The paper begins by considering a source that spits out pairs of particles,
10
47842
4181
这篇论文先考虑一个可以产生成对的粒子的源,
00:52
each with two measurable properties.
11
52023
2899
每个粒子有两个可测量的属性,
00:54
Each of these measurements has two possible results
12
54922
2615
每个属性的测量都有两种可能的结果,
00:57
of equal probability.
13
57537
1571
两种结果出现的概率是相等的。
00:59
Let's say zero or one for the first property,
14
59108
2640
假设第一个属性的测量结果是:状态0或者状态1,
01:01
and A or B for the second.
15
61748
2202
第二个属性的测量结果是:状态A或者状态B。
01:03
Once a measurement is performed,
16
63950
1542
一旦一个粒子的一个属性被测量了一次,
01:05
subsequent measurements of the same property in the same particle
17
65492
3548
无论再测量多少次这一个粒子中的这一个属性,
01:09
will yield the same result.
18
69040
2517
都会得到同样的结果。
01:11
The strange implication of this scenario
19
71557
1955
这种现象的奇怪之处在于,
01:13
is not only that the state of a single particle
20
73512
2253
它不仅表明了一个单粒子的状态
01:15
is indeterminate until it's measured,
21
75765
2616
在被测量之前是不确定的,
01:18
but that the measurement then determines the state.
22
78381
2813
它也表明了,测量这个行为本身 决定了粒子的状态。
01:21
What's more, the measurements affect each other.
23
81194
2920
而且,测量之间也是互相影响的。
01:24
If you measure a particle as being in state 1,
24
84114
2510
如果你测量一个粒子的第一个属性, 它的测量结果是状态1,
01:26
and follow it up with the second type of measurement,
25
86624
2494
你接着测量这个粒子的第二个属性,
01:29
you'll have a 50% chance of getting either A or B,
26
89118
3354
你有50%的几率得到状态A或者状态B。
01:32
but if you then repeat the first measurement,
27
92472
2196
但是,如果你再回头去测量第一个属性,
01:34
you'll have a a 50% chance of getting zero
28
94668
3005
即使它已经被测量过一次并得到了结果1,
01:37
even though the particle had already been measured at one.
29
97673
3534
你也将有50%的几率得到状态0。
01:41
So switching the property being measured scrambles the original result,
30
101207
3680
所以,轮流测量一个粒子的不同属性会重置原始的结果,
01:44
allowing for a new, random value.
31
104887
2539
让一个全新的、随机的结果变成可能。
01:47
Things get even stranger when you look at both particles.
32
107426
3651
如果你同时观察一对粒子,结果会变得更奇怪。
01:51
Each of the particles will produce random results,
33
111077
2857
两个粒子都会得到随机的测量结果,
01:53
but if you compare the two,
34
113934
1332
但是,如果你把它们放在一起比较,
01:55
you will find that they are always perfectly correlated.
35
115266
4120
你会发现,它们总是完美地彼此相关。
01:59
For example, if both particles are measured at zero,
36
119386
2907
比如,如果两个粒子的测量结果都是状态0,
02:02
the relationship will always hold.
37
122293
2135
它们的关联现象就会一直这样保持着。
02:04
The states of the two are entangled.
38
124428
2518
这两个粒子的状态会互相纠缠。
02:06
Measuring one will tell you the other with absolute certainty.
39
126946
4197
测试其中的一个粒子, 就能准确无误地预测另一个粒子的状态。
02:11
But this entanglement seems to defy Einstein's famous theory of relativity
40
131143
4841
但是量子纠缠似乎违背了爱因斯坦提出的著名的相对论,
02:15
because there is nothing to limit the distance between particles.
41
135984
3043
因为两个粒子之间的距离是没有限制的。
02:19
If you measure one in New York at noon,
42
139027
2192
如果中午时,你在纽约测量一个粒子,
02:21
and the other in San Francisco a nanosecond later,
43
141219
3229
一纳秒后,你在旧金山测试另一个粒子,
02:24
they still give exactly the same result.
44
144448
3145
它们还是会得出同样的测量结果。
02:27
But if the measurement does determine the value,
45
147593
2339
但是,如果测量这一行为决定了所得的结果,
02:29
then this would require one particle sending some sort of signal to the other
46
149932
4612
那么第一个粒子,就需要以光速的一千三百万倍的速度
02:34
at 13,000,000 times the speed of light,
47
154544
2846
向第二个粒子传递某些信息,
02:37
which according to relativity, is impossible.
48
157390
3351
而相对论认为,这是不可能实现的事情。
02:40
For this reason, Einstein dismissed entanglement as "spuckafte ferwirklung,"
49
160741
5071
基于这个理由, 爱因斯坦驳斥这一现象为"spuckafte ferwirklung",
02:45
or spooky action at a distance.
50
165812
2696
或者说“远距离幽灵行为”。
02:48
He decided that quantum mechanics must be incomplete,
51
168508
2668
他认为,这一定是因为量子力学本身并不完善,
02:51
a mere approximation of a deeper reality in which both particles
52
171176
4527
两个粒子一定有一个我们所不知道的先决状态,
02:55
have predetermined states that are hidden from us.
53
175703
3824
而量子力学太过肤浅,不足以揭露与解释这一事实。
02:59
Supporters of orthodox quantum theory lead by Niels Bohr
54
179527
3582
而在尼尔斯·玻尔的带领下, 正统的量子理论支持者们坚称
03:03
maintained that quantum states really are fundamentally indeterminate,
55
183109
4250
量子状态是真的不可确定,
03:07
and entanglement allows the state of one particle
56
187359
2601
量子纠缠让一个粒子的状态 受另一个粒子的状态的影响,
03:09
to depend on that of its distant partner.
57
189960
2867
即使它们相隔甚远。
03:12
For 30 years, physics remained at an impasse,
58
192827
2821
物理学因此陷入僵局,
03:15
until John Bell figured out that the key to testing the EPR argument
59
195648
4546
直至30年后,约翰·贝尔发现要解决EPR争论,
03:20
was to look at cases involving different measurements on the two particles.
60
200194
4174
我们应当观测对两个粒子的不同属性的测量。
03:24
The local hidden variable theories favored by Einstein, Podolsky and Rosen,
61
204368
4682
爱因斯坦、波尔多斯基、和罗森的“局域隐变量理论”
03:29
strictly limited how often you could get results like 1A or B0
62
209050
4389
严格地限定了得到1A或者B0这样的结果的几率,
03:33
because the outcomes would have to be defined in advanced.
63
213439
3806
因为结果是可以被提前定义的。
03:37
Bell showed that the purely quantum approach,
64
217245
2368
贝尔展示了纯粹的量子方法
03:39
where the state is truly indeterminate until measured,
65
219613
3152
——粒子的状态在测量前是完全不可确定时——
03:42
has different limits and predicts mixed measurement results
66
222765
3088
有着不同的限制,并以此预测了混合的测量结果,
03:45
that are impossible in the predetermined scenario.
67
225853
3187
这些结果在粒子状态可预定的情况下不可能存在。
03:49
Once Bell had worked out how to test the EPR argument,
68
229040
3669
贝尔得出检验EPR的理论的方法后,
03:52
physicists went out and did it.
69
232709
2550
物理学家们照此展开了实验。
03:55
Beginning with John Clauster in the 70s and Alain Aspect in the early 80s,
70
235259
4224
从70年代的约翰·克劳泽 和80年代早期的阿兰·阿斯佩开始,
03:59
dozens of experiments have tested the EPR prediction,
71
239483
3623
大量实验检验了EPR预测,
04:03
and all have found the same thing:
72
243106
2108
并得出了同样的结论:
04:05
quantum mechanics is correct.
73
245214
2389
量子力学是正确的。
04:07
The correlations between the indeterminate states of entangled particles are real
74
247603
4617
两个互相纠缠的粒子之间的 不确定状态的相关性是真实存在的,
04:12
and cannot be explained by any deeper variable.
75
252220
3145
而且无法被任何更深层次的变量所解释。
04:15
The EPR paper turned out to be wrong but brilliantly so.
76
255365
4626
那篇EPR论文被证明是错的,但它是个伟大的错误。
04:19
By leading physicists to think deeply about the foundations of quantum physics,
77
259991
3985
通过引导物理学家们更深入地思考量子物理的基础,
04:23
it led to further elaboration of the theory
78
263976
2726
这篇论文使得量子理论得到了进一步的阐述和完善,
04:26
and helped launch research into subjects like quantum information,
79
266702
4096
也推动了对相关课题的研究,比如说量子信息学。
04:30
now a thriving field with the potential to develop computers of unparalleled power.
80
270798
5976
这是一个新兴的领域,具有创造出超级电脑的潜力。
04:36
Unfortunately, the randomness of the measured results
81
276774
2828
不幸的是,测量结果的随机性
04:39
prevents science fiction scenarios,
82
279602
2114
让科幻小说里的场景无法成为现实,
04:41
like using entangled particles to send messages faster than light.
83
281716
4411
比如利用纠缠粒子超光速地传递信息。
04:46
So relativity is safe, for now.
84
286127
2898
所以就现在而言,相对论是安全的,
04:49
But the quantum universe is far stranger than Einstein wanted to believe.
85
289025
4509
但是量子宇宙的奇特之处远远超出爱因斯坦的想像。
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog