Einstein's brilliant mistake: Entangled states - Chad Orzel
爱因斯坦的伟大错误:量子纠缠态 -查德·欧泽
1,267,774 views ・ 2014-10-16
请双击下面的英文字幕来播放视频。
翻译人员: Jinyuan Liu
校对人员: Qingqing Mao
00:06
Albert Einstein played a key role
in launching quantum mechanics
0
6457
3729
凭借着光电效应理论,
阿尔伯特·爱因斯坦在量子力学领域奠定了重要的地位。
00:10
through his theory of the
photoelectric effect
1
10186
2399
00:12
but remained deeply bothered by its
philosophical implications.
2
12585
4402
但他对这一理论的哲学蕴意始终深感困扰。
00:16
And though most of us still remember
him for deriving E=MC^2,
3
16987
4338
虽然爱因斯坦以推导出质能方程E=mc^2而闻名于世,
00:21
his last great contribution to physics
was actually a 1935 paper,
4
21325
5356
但实际上,他对物理学的最后巨献
是一篇发表于1935年的论文。
00:26
coauthored with his young colleagues
Boris Podolsky and Nathan Rosen.
5
26681
4954
论文合著者是他年轻的同事们:
鲍里斯·波多尔斯基和纳森·罗森。
00:31
Regarded as an odd philosophical
footnote well into the 1980s,
6
31635
4290
即使直到20上世纪80年代,
它都被当作一个奇怪的哲学脚注,
00:35
this EPR paper has recently become central
to a new understanding of quantum physics,
7
35925
5946
这篇阐述爱因斯坦-波多尔斯基-罗森悖论(简称EPR)
的论文现在成为了重新理解量子物理学的中心,
00:41
with its description
of a strange phenomenon
8
41871
2289
因为文中描述了一个奇怪的现象,
00:44
now known as entangled states.
9
44160
3682
现在人们称这种现象为纠缠态。
00:47
The paper begins by considering a
source that spits out pairs of particles,
10
47842
4181
这篇论文先考虑一个可以产生成对的粒子的源,
00:52
each with two measurable properties.
11
52023
2899
每个粒子有两个可测量的属性,
00:54
Each of these measurements has
two possible results
12
54922
2615
每个属性的测量都有两种可能的结果,
00:57
of equal probability.
13
57537
1571
两种结果出现的概率是相等的。
00:59
Let's say zero or one
for the first property,
14
59108
2640
假设第一个属性的测量结果是:状态0或者状态1,
01:01
and A or B for the second.
15
61748
2202
第二个属性的测量结果是:状态A或者状态B。
01:03
Once a measurement is performed,
16
63950
1542
一旦一个粒子的一个属性被测量了一次,
01:05
subsequent measurements of the same
property in the same particle
17
65492
3548
无论再测量多少次这一个粒子中的这一个属性,
01:09
will yield the same result.
18
69040
2517
都会得到同样的结果。
01:11
The strange implication of this scenario
19
71557
1955
这种现象的奇怪之处在于,
01:13
is not only that the state
of a single particle
20
73512
2253
它不仅表明了一个单粒子的状态
01:15
is indeterminate until it's measured,
21
75765
2616
在被测量之前是不确定的,
01:18
but that the measurement then
determines the state.
22
78381
2813
它也表明了,测量这个行为本身
决定了粒子的状态。
01:21
What's more, the measurements
affect each other.
23
81194
2920
而且,测量之间也是互相影响的。
01:24
If you measure a particle
as being in state 1,
24
84114
2510
如果你测量一个粒子的第一个属性,
它的测量结果是状态1,
01:26
and follow it up with the second
type of measurement,
25
86624
2494
你接着测量这个粒子的第二个属性,
01:29
you'll have a 50% chance of
getting either A or B,
26
89118
3354
你有50%的几率得到状态A或者状态B。
01:32
but if you then repeat
the first measurement,
27
92472
2196
但是,如果你再回头去测量第一个属性,
01:34
you'll have a a 50% chance of getting zero
28
94668
3005
即使它已经被测量过一次并得到了结果1,
01:37
even though the particle had already
been measured at one.
29
97673
3534
你也将有50%的几率得到状态0。
01:41
So switching the property being measured
scrambles the original result,
30
101207
3680
所以,轮流测量一个粒子的不同属性会重置原始的结果,
01:44
allowing for a new, random value.
31
104887
2539
让一个全新的、随机的结果变成可能。
01:47
Things get even stranger when you
look at both particles.
32
107426
3651
如果你同时观察一对粒子,结果会变得更奇怪。
01:51
Each of the particles will produce
random results,
33
111077
2857
两个粒子都会得到随机的测量结果,
01:53
but if you compare the two,
34
113934
1332
但是,如果你把它们放在一起比较,
01:55
you will find that they are
always perfectly correlated.
35
115266
4120
你会发现,它们总是完美地彼此相关。
01:59
For example, if both particles
are measured at zero,
36
119386
2907
比如,如果两个粒子的测量结果都是状态0,
02:02
the relationship will always hold.
37
122293
2135
它们的关联现象就会一直这样保持着。
02:04
The states of the two are entangled.
38
124428
2518
这两个粒子的状态会互相纠缠。
02:06
Measuring one will tell you the other
with absolute certainty.
39
126946
4197
测试其中的一个粒子,
就能准确无误地预测另一个粒子的状态。
02:11
But this entanglement seems to defy
Einstein's famous theory of relativity
40
131143
4841
但是量子纠缠似乎违背了爱因斯坦提出的著名的相对论,
02:15
because there is nothing to limit the
distance between particles.
41
135984
3043
因为两个粒子之间的距离是没有限制的。
02:19
If you measure one in New York at noon,
42
139027
2192
如果中午时,你在纽约测量一个粒子,
02:21
and the other in San Francisco
a nanosecond later,
43
141219
3229
一纳秒后,你在旧金山测试另一个粒子,
02:24
they still give exactly the same result.
44
144448
3145
它们还是会得出同样的测量结果。
02:27
But if the measurement
does determine the value,
45
147593
2339
但是,如果测量这一行为决定了所得的结果,
02:29
then this would require one particle
sending some sort of signal to the other
46
149932
4612
那么第一个粒子,就需要以光速的一千三百万倍的速度
02:34
at 13,000,000 times the speed of light,
47
154544
2846
向第二个粒子传递某些信息,
02:37
which according to relativity,
is impossible.
48
157390
3351
而相对论认为,这是不可能实现的事情。
02:40
For this reason, Einstein dismissed
entanglement as "spuckafte ferwirklung,"
49
160741
5071
基于这个理由,
爱因斯坦驳斥这一现象为"spuckafte ferwirklung",
02:45
or spooky action at a distance.
50
165812
2696
或者说“远距离幽灵行为”。
02:48
He decided that quantum mechanics
must be incomplete,
51
168508
2668
他认为,这一定是因为量子力学本身并不完善,
02:51
a mere approximation of a deeper reality
in which both particles
52
171176
4527
两个粒子一定有一个我们所不知道的先决状态,
02:55
have predetermined states that
are hidden from us.
53
175703
3824
而量子力学太过肤浅,不足以揭露与解释这一事实。
02:59
Supporters of orthodox quantum theory
lead by Niels Bohr
54
179527
3582
而在尼尔斯·玻尔的带领下, 正统的量子理论支持者们坚称
03:03
maintained that quantum states
really are fundamentally indeterminate,
55
183109
4250
量子状态是真的不可确定,
03:07
and entanglement allows
the state of one particle
56
187359
2601
量子纠缠让一个粒子的状态
受另一个粒子的状态的影响,
03:09
to depend on that of its distant partner.
57
189960
2867
即使它们相隔甚远。
03:12
For 30 years, physics remained
at an impasse,
58
192827
2821
物理学因此陷入僵局,
03:15
until John Bell figured out that the key
to testing the EPR argument
59
195648
4546
直至30年后,约翰·贝尔发现要解决EPR争论,
03:20
was to look at cases involving different
measurements on the two particles.
60
200194
4174
我们应当观测对两个粒子的不同属性的测量。
03:24
The local hidden variable theories
favored by Einstein, Podolsky and Rosen,
61
204368
4682
爱因斯坦、波尔多斯基、和罗森的“局域隐变量理论”
03:29
strictly limited how often you could
get results like 1A or B0
62
209050
4389
严格地限定了得到1A或者B0这样的结果的几率,
03:33
because the outcomes would have to be
defined in advanced.
63
213439
3806
因为结果是可以被提前定义的。
03:37
Bell showed that the purely
quantum approach,
64
217245
2368
贝尔展示了纯粹的量子方法
03:39
where the state is truly
indeterminate until measured,
65
219613
3152
——粒子的状态在测量前是完全不可确定时——
03:42
has different limits
and predicts mixed measurement results
66
222765
3088
有着不同的限制,并以此预测了混合的测量结果,
03:45
that are impossible in the
predetermined scenario.
67
225853
3187
这些结果在粒子状态可预定的情况下不可能存在。
03:49
Once Bell had worked out how to test
the EPR argument,
68
229040
3669
贝尔得出检验EPR的理论的方法后,
03:52
physicists went out and did it.
69
232709
2550
物理学家们照此展开了实验。
03:55
Beginning with John Clauster in the 70s
and Alain Aspect in the early 80s,
70
235259
4224
从70年代的约翰·克劳泽
和80年代早期的阿兰·阿斯佩开始,
03:59
dozens of experiments have tested
the EPR prediction,
71
239483
3623
大量实验检验了EPR预测,
04:03
and all have found the same thing:
72
243106
2108
并得出了同样的结论:
04:05
quantum mechanics is correct.
73
245214
2389
量子力学是正确的。
04:07
The correlations between the indeterminate
states of entangled particles are real
74
247603
4617
两个互相纠缠的粒子之间的
不确定状态的相关性是真实存在的,
04:12
and cannot be explained by any
deeper variable.
75
252220
3145
而且无法被任何更深层次的变量所解释。
04:15
The EPR paper turned out to be wrong
but brilliantly so.
76
255365
4626
那篇EPR论文被证明是错的,但它是个伟大的错误。
04:19
By leading physicists to think deeply
about the foundations of quantum physics,
77
259991
3985
通过引导物理学家们更深入地思考量子物理的基础,
04:23
it led to further elaboration
of the theory
78
263976
2726
这篇论文使得量子理论得到了进一步的阐述和完善,
04:26
and helped launch research into
subjects like quantum information,
79
266702
4096
也推动了对相关课题的研究,比如说量子信息学。
04:30
now a thriving field with the potential to
develop computers of unparalleled power.
80
270798
5976
这是一个新兴的领域,具有创造出超级电脑的潜力。
04:36
Unfortunately, the randomness of
the measured results
81
276774
2828
不幸的是,测量结果的随机性
04:39
prevents science fiction scenarios,
82
279602
2114
让科幻小说里的场景无法成为现实,
04:41
like using entangled particles
to send messages faster than light.
83
281716
4411
比如利用纠缠粒子超光速地传递信息。
04:46
So relativity is safe, for now.
84
286127
2898
所以就现在而言,相对论是安全的,
04:49
But the quantum universe is far stranger
than Einstein wanted to believe.
85
289025
4509
但是量子宇宙的奇特之处远远超出爱因斯坦的想像。
New videos
关于本网站
这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。