Working backward to solve problems - Maurice Ashley

2,218,967 views ใƒป 2013-03-11

TED-Ed


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

00:00
Transcriber: Andrea McDonough Reviewer: Bedirhan Cinar
0
0
7000
ืชืจื’ื•ื: Sigal Tifferet ืขืจื™ื›ื”: Shlomo Adam
00:14
There's a myth that grandmasters can see ten,
1
14600
4176
ืงื™ื™ื ืžื™ืชื•ืก ืฉืจื‘ื™-ืืžื ื™ื ื™ื›ื•ืœื™ื ืœืจืื•ืช 10
00:18
fifteen, twenty moves ahead.
2
18800
1880
15
20 ืฆืขื“ื™ื ืงื“ื™ืžื”.
00:21
And it's a great myth because I'm a grandmaster
3
21360
2496
ื•ื–ื” ืžื™ืชื•ืก ื’ื“ื•ืœ
ื›ื™ ืื ื™ ืจื‘-ืืžืŸ
00:23
and it makes me look like a super freaking genius.
4
23880
2680
ื•ื–ื” ื’ื•ืจื ืœื™ ืœื”ื™ืจืื•ืช ื›ืžื• ืกื•ืคืจ-ื’ืื•ืŸ.
00:27
But the truth is,
5
27880
1336
ืื‘ืœ ื”ืืžืช ื”ื™ื
00:29
in just the first four moves,
6
29240
1596
ืฉื‘-4 ื”ืžื”ืœื›ื™ื ื”ืจืืฉื•ื ื™ื ื‘ืœื‘ื“
00:30
there are 318 billion ways you could play.
7
30860
4364
ืงื™ื™ืžื•ืช 318 ืžื™ืœื™ืืจื“ ื“ืจื›ื™ื ื‘ื”ืŸ ืืคืฉืจ ืœืฉื—ืง.
00:36
Now, that would be cool if I could pull that off,
8
36480
2376
ื–ื” ื”ื™ื” ืžื“ื”ื™ื ืื ื”ื™ื™ืชื™ ื™ื›ื•ืœ ืœืขืฉื•ืช ืืช ื–ื”,
00:38
but grandmasters just can't, it's too much.
9
38880
2800
ืื‘ืœ ืจื‘ื™-ืืžื ื™ื ืœื ืžืกื•ื’ืœื™ื, ื–ื” ื™ื•ืชืจ ืžื“ื™.
00:42
So we use different techniques to be able to look ahead.
10
42160
3176
ืื– ืื ื—ื ื• ืžืฉืชืžืฉื™ื ื‘ืฉื™ื˜ื•ืช ืฉื•ื ื•ืช ื›ื“ื™ ืœื”ืกืชื›ืœ ืงื“ื™ืžื”.
00:45
And some of these techniques include chunking,
11
45360
2776
ื•ื—ืœืง ืžื”ืฉื™ื˜ื•ืช ื”ืืœื” ื›ื•ืœืœื•ืช
ื”ืงื‘ืฆื”,
00:48
which means taking a group, a chess position,
12
48160
2456
ื›ืœื•ืžืจ, ืœืงื—ืช ืงื‘ื•ืฆื”, ืขืžื“ืช ืฉื—,
00:50
and seeing what possibilities can come from just that group;
13
50640
2856
ื•ืœืจืื•ืช ืžื” ื”ืืคืฉืจื•ื™ื•ืช ืฉื™ืฉ ืจืง ื‘ืื•ืชื” ืงื‘ื•ืฆื”,
00:53
or pattern recognition,
14
53520
1336
ืื• ื–ื™ื”ื•ื™ ื“ืคื•ืกื™ื,
00:54
which is just going over a lot of positions that look very similarly
15
54880
3256
ืฉื–ื” ืคืฉื•ื˜ ืœืขื‘ื•ืจ ืขืœ ื”ืจื‘ื” ืขืžื“ื•ืช
ืฉื ืจืื•ืช ืžืื•ื“ ื“ื•ืžื•ืช
ื•ืœื”ืคื™ืง ืžื–ื” ืืช ื”ืืžืช,
00:58
and extrapolating truths from that;
16
58160
1696
00:59
the stepping-stone method,
17
59880
1296
ืฉื™ื˜ืช ืื‘ื ื™ ื”ื“ืจืš,
ืฉื”ื™ื ืœืงื—ืช ืขืžื“ื”,
01:01
which is to take a position, freeze it in your mind,
18
61200
2736
ืœื”ืงืคื™ื ืื•ืชื” ื‘ืžื•ื—,
01:03
and go from there to guess the next position.
19
63960
2656
ื•ืœื ื—ืฉ ืืช ื”ืขืžื“ื” ื”ื‘ืื”.
01:06
But one of my favorites
20
66640
2176
ืื‘ืœ ืื—ืช ื”ืื”ื•ื‘ื•ืช ืขืœื™
01:08
that I love to solve these kind of chess puzzles,
21
68840
3016
ื‘ื” ืื ื™ ืื•ื”ื‘ ืœืคืชื•ืจ ื—ื™ื“ื•ืช ืฉื— ื›ืืœื”,
01:11
is called retrograde analysis.
22
71880
2776
ื ืงืจืืช ื ื™ืชื•ื— ืœืื—ื•ืจ.
01:14
And what you do with retrograde analysis
23
74680
1905
ื•ืžื” ืฉืขื•ืฉื™ื ื‘ื ื™ืชื•ื— ืœืื—ื•ืจ
01:16
is that in order to look ahead, it pays to look backwards.
24
76609
3920
ื”ื•ื ืฉืขืœ ืžื ืช ืœื”ืกืชื›ืœ ืงื“ื™ืžื”,
ืฉื•ื•ื” ืœื”ืกืชื›ืœ ืื—ื•ืจื”.
ืขื›ืฉื™ื•, ืœืžื” ื–ื” ื›"ื› ืžื•ืขื™ืœ?
01:21
Now, why is this so useful?
25
81080
2816
01:23
Well, in chess, it's a very complicated case.
26
83920
3256
ื•ื‘ื›ืŸ, ื‘ืฉื—ืžื˜ ื–ื” ืžืฆื‘ ืžืื•ื“ ืžื•ืจื›ื‘.
01:27
You got all these chess pieces, it's 32 pieces,
27
87200
2256
ื™ืฉ ืœื›ื ืืช ื›ืœ ื›ืœื™ ื”ืฉื— ื”ืืœื”,
32 ื›ืœื™ื,
01:29
but after five moves, the position starts to evolve a little bit.
28
89480
3056
ืื‘ืœ ืื—ืจื™ 5 ืžื”ืœื›ื™ื, ื”ืขืžื“ื” ืžืชื—ื™ืœื” ืœื”ืชืคืชื— ืงืฆืช.
01:32
And the game starts to go on
29
92560
1536
ื•ื”ืžืฉื—ืง ืžืชื—ื™ืœ ืœื”ืชืงื“ื
01:34
and you see the chess position get a little simpler,
30
94120
2776
ื•ืืชื ืจื•ืื™ื ืฉื”ืขืžื“ื” ื ื”ื™ื™ืช ืงืฆืช ืคืฉื•ื˜ื” ื™ื•ืชืจ,
01:36
and a little bit simpler, and less pieces on the board,
31
96920
3016
ื•ืขื•ื“ ืงืฆืช ืคืฉื•ื˜ื” ื™ื•ืชืจ,
ื•ื™ืฉ ืคื—ื•ืช ื›ืœื™ื ืขืœ ื”ืœื•ื—,
01:39
until finally --
32
99960
1216
ืขื“ ืฉืœื‘ืกื•ืฃ,
01:41
in this case, a game that I played in a tournament in Foxwoods,
33
101200
4016
ื‘ืžืงืจื” ื”ื–ื”, ืžืฉื—ืง ืฉืฉื™ื—ืงืชื™ ื‘ืชื—ืจื•ืช ื‘ืคื•ืงืกื•ื•ื“ืก,
01:45
it gets to something like this.
34
105240
2096
ื–ื” ืžื’ื™ืข ืœืžืฉื”ื• ื›ื–ื”.
01:47
When great players play, it often gets to something like this.
35
107360
3016
ื›ืฉืฉื—ืงื ื™ื ื’ื“ื•ืœื™ื ืžืฉื—ืงื™ื,
ืœืขื™ืชื™ื ืงืจื•ื‘ื•ืช ื–ื” ืžื’ื™ืข ืœืžืฉื”ื• ื›ื–ื”.
01:50
You don't see some easy, early checkmate.
36
110400
2336
ืœื ืจื•ืื™ื ืื™ื–ื” ืฉื—ืžื˜ ืงืœ ื•ืžื•ืงื“ื.
01:52
Grandmasters see through all that stuff.
37
112760
1936
ืจื‘ื™-ืืžื ื™ื ืจื•ืื™ื ื“ืจืš ื›ืœ ื–ื”.
01:54
What you see is some end game, something really, really simple.
38
114720
3656
ืžื” ืฉืจื•ืื™ื ื–ื” ืื™ื–ืฉื”ื• ืกื™ื•ื-ืžืฉื—ืง,
ืžืฉื”ื• ื‘ืืžืช ืคืฉื•ื˜.
01:58
And we like to study things like this,
39
118400
2176
ื•ืื ื—ื ื• ืื•ื”ื‘ื™ื ืœื‘ื—ื•ืŸ ื“ื‘ืจื™ื ื›ืืœื”,
02:00
grandmasters do,
40
120600
1216
ืจื‘ื™-ืืžื ื™ื ืื•ื”ื‘ื™ื,
02:01
so that if we get to them, we know how to play them cold,
41
121840
3176
ื›ืš ืฉืื ื ื’ื™ืข ืืœื™ื”ื,
ื ื“ืข ืื™ืš ืœืฉื—ืง ืื•ืชื ื‘ืงื•ืจ ืจื•ื—,
ืื‘ืœ ื’ื ื›ื“ื™ ืฉื ื“ืข ืœื ื•ื•ื˜
02:05
but also so that we can steer the position that's in front of us,
42
125040
3536
ื‘ืขืžื“ื” ืฉืœืคื ื™ื ื•,
02:08
the more complex ones you saw earlier,
43
128600
1855
ื”ืขืžื“ื•ืช ื”ืžื•ืจื›ื‘ื•ืช ื™ื•ืชืจ ืฉืจืื™ืชื ืงื•ื“ื,
02:10
to something this easy,
44
130479
1697
ื›ื“ื™ ืœื”ื’ื™ืข ืœืžืฉื”ื• ืงืœ ื›ื–ื”,
02:12
something this simple.
45
132200
1456
ืคืฉื•ื˜ ื›ื–ื”.
02:13
So in this way, when you're dead,
46
133680
1896
ืื– ื‘ื“ืจืš ื”ื–ื•, ื›ืฉืืชื” ืžืช,
02:15
I already knew like ten moves ago,
47
135600
1776
ืื ื™ ื›ื‘ืจ ื™ื“ืขืชื™ ืœืคื ื™ 10 ืžื”ืœื›ื™ื
02:17
because I knew where we were going.
48
137400
2016
ื›ื™ ื™ื“ืขืชื™ ืœืืŸ ืื ื—ื ื• ื”ื•ืœื›ื™ื.
02:19
Now, why is this so effective?
49
139440
2496
ืขื›ืฉื™ื•, ืœืžื” ื–ื” ื›"ื› ื™ืขื™ืœ?
02:21
Well, it's something about the human mind, the problem with the human mind.
50
141960
3536
ื•ื‘ื›ืŸ, ื–ื” ืงืฉื•ืจ ืœืžื•ื— ื”ืื ื•ืฉื™,
ื”ื‘ืขื™ื” ืขื ื”ืžื•ื— ื”ืื ื•ืฉื™.
02:25
We're very logical creatures.
51
145520
1416
ืื ื—ื ื• ื™ืฆื•ืจื™ื ืžืื•ื“ ื”ื’ื™ื•ื ื™ื™ื.
02:26
So I want you to play along with me a few games.
52
146960
2536
ืื– ืื ื™ ืจื•ืฆื” ืฉืชืฉื—ืงื• ืื™ืชื™ ื›ืžื” ืžืฉื—ืงื™ื.
02:29
Take a look at this sentence.
53
149520
1797
ืชืกืชื›ืœื• ืขืœ ื”ืžืฉืคื˜ ื”ื–ื”.
02:31
[After reading this sentence,
54
151341
1460
02:32
you will realize that the brain doesn't recognize a second "the."]
55
152825
3471
02:36
Now, most of you reading the sentence the second time around
56
156320
3256
ืจื•ื‘ื›ื, ื‘ื–ืžืŸ ื”ืงืจื™ืื”
ื‘ืคืขื ื”ืฉื ื™ื™ื”
02:39
will realize that you missed the word "the"
57
159600
2496
ืชื‘ื—ื™ื ื• ืฉืคืกืคืกืชื ืืช ื”ืžื™ืœื” "the"
ื‘ืคืขื ื”ืจืืฉื•ื ื”.
02:42
the first time around.
58
162120
1616
02:43
Your mind is very logical, it proceeds forward,
59
163760
2616
ื”ืžื•ื— ื”ื•ื ืžืื•ื“ ื”ื’ื™ื•ื ื™,
ื”ื•ื ืžืชืงื“ื,
02:46
it just ignores anything that breaks with its logical stream,
60
166400
3816
ื”ื•ื ืžืชืขืœื ืžื›ืœ ืžื” ืฉืคื•ื’ืข ื‘ืจืฆืฃ ื”ืœื•ื’ื™,
02:50
and so you don't see the word "the" the first time,
61
170240
2381
ื›ืš ืฉืืชื ืœื ืจื•ืื™ื ืืช ื”ืžื™ืœื” "the" ื‘ืคืขื ื”ืจืืฉื•ื ื”,
02:52
the second "the," the first time you read it.
62
172645
2291
ื›ืฉื”ื•ื ื›ืชื•ื‘ ื‘ืฉื ื™ืช.
02:54
But if you read this sentence backwards, you would automatically catch it.
63
174960
4256
ืื‘ืœ ืื ืชืงืจืื• ืืช ื”ืžืฉืคื˜ ื”ื–ื” ืœืื—ื•ืจ,
ืชืชืคืกื• ืืช ื–ื” ืžื™ื“.
02:59
You'd go backwards, and you get to "brain," you get to "the,"
64
179240
2896
ืื ืชืœื›ื• ืœืื—ื•ืจ,
ื•ืชื’ื™ืขื• ืœืžื™ืœื” "brain",
ื•ืชื’ื™ืขื• ืœืžื™ืœื” "the",
ื•ืื– ืชื’ื™ื“ื•: "ื•ื•ืื•, ื™ืฉ ืฉื ื™ the ื‘ืžืฉืคื˜."
03:02
and then you say, "Whoa, there are two 'the's' in the sentence."
65
182160
3016
ื–ื” ื‘ืืžืช ื˜ืจื™ืง ื™ืคื” ืœื”ื’ื”ืช ืžืกืžื›ื™ื.
03:05
This is a really cool trick for proofreading papers.
66
185200
2456
03:07
You're writing your paper and there are these silly mistakes.
67
187680
2896
ืืชื ื™ื•ื“ืขื™ื, ืืชื ื›ื•ืชื‘ื™ื ืžืกืžืš
ื•ื™ืฉ ื›ืœ ืžื™ื ื™ ื˜ืขื•ื™ื•ืช ืงื˜ื ื•ืช.
ืœืžื” ื™ืฉ ื˜ืขื•ื™ื•ืช ื‘ืžืกืžืš ืฉืœื™?
03:10
Why are these mistakes in my paper?
68
190600
1696
ืื ืชืงืจืื• ืื•ืชื• ืœืื—ื•ืจ, ืชืชืคืกื• ืืช ื›ื•ืœืŸ.
03:12
You read it backwards, you'll catch all of them.
69
192320
2256
03:14
Alright, let's go on to this problem, an interesting problem.
70
194600
3016
ืื•ืงื™ื™, ื‘ื•ื ื ืžืฉื™ืš ืœื‘ืขื™ื” ื”ืžืขื ื™ื™ื ืช ื”ื–ื•.
03:17
"Bacteria that double every 24 hours
71
197640
2776
"ื—ื™ื™ื“ืง ืฉืžืฉืชื›ืคืœ ื›ืœ 24 ืฉืขื•ืช
03:20
fill a lake it has infested after precisely 60 days.
72
200440
4160
ื™ืžืœื ืื’ื ืœืื—ืจ ื‘ื“ื™ื•ืง 60 ื™ื•ื.
03:25
On what day was the lake half-full?"
73
205320
3080
ื‘ืื™ื–ื” ื™ื•ื ื”ืื’ื ื™ื”ื™ื” ื—ืฆื™ ืžืœื?"
03:30
Now, a lot of people see this problem
74
210200
1816
ืขื›ืฉื™ื•, ื”ืจื‘ื” ืื ืฉื™ื ืจืื• ืืช ื”ื‘ืขื™ื” ื”ื–ื•
ื•ื—ืฉื‘ื•, "30, ืžื—ืœืงื™ื ืœื—ืฆื™."
03:32
and they'd think, "30, like, you know, you split it in half."
75
212040
3176
03:35
Well, that's not the right answer.
76
215240
1736
ืื‘ืœ ื–ื• ืœื ื”ืชืฉื•ื‘ื” ื”ื ื›ื•ื ื”.
ื•ื’ื, ืื ืฉื™ื ื™ื›ื•ืœื™ื ืœื‘ืงืฉ ืžื—ืฉื‘ื•ืŸ.
03:37
And also people might want a calculator.
77
217000
2976
ื–ื” ื’ื“ื•ืœ ืžื“ื™, ืžืชืžื˜ื™ืงื”, ืžืฉืขืžื,
03:40
It's too big, it's math, it's boring, I don't want to do that either.
78
220000
3256
ืื ื™ ืœื ืจื•ืฆื” ืœืขืฉื•ืช ืืช ื–ื”.
03:43
But if you do this problem backwards, you get the answer right away.
79
223280
3216
ืื‘ืœ, ืื ืชืคืชืจื• ืืช ื”ื‘ืขื™ื” ืœืื—ื•ืจ,
ืชืงื‘ืœื• ืืช ื”ืชืฉื•ื‘ื” ืžื™ื“.
ืžื” ื”ืชืฉื•ื‘ื”?
03:46
What's the answer? 59, obviously.
80
226520
2096
59, ื›ืžื•ื‘ืŸ.
03:48
You start at the end, you go backwards,
81
228640
1896
ืžืชื—ื™ืœื™ื ืžื”ืกื•ืฃ, ืฆื•ืขื“ื™ื ืื—ื•ืจื”,
03:50
it's like, "Oh yeah, it's half-full, the answer is 59."
82
230560
3376
ื›ืื™ืœื•, "ื ื›ื•ืŸ, ื–ื” ื—ืฆื™-ืžืœื, 59."
03:53
Here's another puzzle, a little bit more complicated.
83
233960
2496
ื”ื ื” ืขื•ื“ ื—ื™ื“ื”, ืงืฆืช ื™ื•ืชืจ ืžื•ืจื›ื‘ืช.
ื™ืฉ ืœื›ื 6 ืžืกืคืจื™ื, 1 ืขื“ 6.
03:56
You have six numbers, 1 through 6.
84
236480
2136
03:58
The cards are face down.
85
238640
1376
ื”ืงืœืคื™ื ืคื•ื ื™ื ืžื˜ื”.
04:00
You and I are going to pick a card.
86
240040
1696
ืืชื ื•ืื ื™ ื‘ื•ื—ืจื™ื ืงืœืฃ.
04:01
You pick a card and you look at it and it says the number 2.
87
241760
2986
ืืชื ื‘ื•ื—ืจื™ื ืงืœืฃ ื•ืžื‘ื™ื˜ื™ื ื‘ื•
ื™ืฆื ืœื›ื 2.
04:05
I look at my card, I think about it for a minute
88
245280
2256
ืื ื™ ืžื‘ื™ื˜ ื‘ืงืœืฃ ืฉืœื™,
ื—ื•ืฉื‘ ืขืœื™ื• ืœืจื’ืข
04:07
and I say, "I want to trade."
89
247560
2136
ื•ืื•ืžืจ, "ืื ื™ ืจื•ืฆื” ืœื”ื—ืœื™ืฃ."
04:09
The reason I want to trade,
90
249720
1336
ื”ืกื™ื‘ื” ืฉืื ื™ ืจื•ืฆื” ืœื”ื—ืœื™ืฃ,
ื ื—ืœื™ืฃ ื›ื“ื™ ืœืจืื•ืช
04:11
we're going to trade to see who has the highest number at the end.
91
251080
3136
ืœืžื™ ื™ื”ื™ื” ื”ืžืกืคืจ ื”ื›ื™ ื’ื‘ื•ื”.
ืชื—ืœื™ืคื• ืื™ืชื™?
04:14
Do you trade with me?
92
254240
1240
04:17
Most people say, "Of course, I got a 2, 2 sucks!
93
257600
3416
ืจื•ื‘ ื”ืื ืฉื™ื ืื•ืžืจื™ื, "ื‘ื˜ื—, ืงื™ื‘ืœืชื™ 2. 2 ื–ื” ื’ืจื•ืข!"
04:21
There are four numbers higher, probability says I'm going to do better."
94
261040
4136
ื™ืฉ 4 ืžืกืคืจื™ื ื’ื‘ื•ื”ื™ื ื™ื•ืชืจ,
ื”ื”ืกืชื‘ืจื•ืช ืื•ืžืจืช ืฉืžืฆื‘ื™ ื™ืฉืชืคืจ."
04:25
Wrong answer, you're playing a grandmaster.
95
265200
2816
ืชืฉื•ื‘ื” ืฉื’ื•ื™ื”, ืืชื ืžืฉื—ืงื™ื ืžื•ืœ ืจื‘-ืืžืŸ.
04:28
You start from the back and you work it out.
96
268040
2096
ืžืชื—ื™ืœื™ื ืžื”ืกื•ืฃ ื•ืคื•ืชืจื™ื ืœืื—ื•ืจ.
ืื ื”ื™ื” ืœื™ 6, ื”ื™ื™ืชื™ ืžืฆื™ืข ื”ื—ืœืคื”?
04:30
If I had the number 6, would I offer to trade?
97
270160
2176
04:32
Of course not, I'm not dumb.
98
272360
1496
ื›ืžื•ื‘ืŸ ืฉืœื, ืื ื™ ืœื ื˜ื™ืคืฉ.
04:33
What about the number 5?
99
273880
1256
ืžื” ืœื’ื‘ื™ 5?
04:35
Probably not either, because you're not going to say yes if you have a 6.
100
275160
3456
ื›ื ืจืื” ืฉืœื,
ื›ื™ ืืชื ืœื ืชืกื›ื™ืžื• ืื ื™ืฉ ืœื›ื 6.
04:38
If 5 is not going to trade and 6 is not going to trade,
101
278640
2616
ืื– 5 ืื• 6 ืœื ื™ื—ืœื™ืคื•,
4 ื™ื”ื™ื”:
04:41
4 is going to be like,
102
281280
1216
"ืื ื™ ืœื ืื—ืœื™ืฃ, ื›ื™ 5 ื•-6 ืœื ืžื—ืœื™ืคื™ื."
04:42
"I'm not trading either, because 5's and 6's don't trade."
103
282520
2715
ืื– ืจืื• ืžื” ืงื•ืจื” ื›ืฉืขื•ื‘ื“ื™ื ืœืื—ื•ืจ.
04:45
So you see what happens as we work backwards.
104
285259
2117
3 ื™ื‘ื™ืŸ ืฉ-4, 5, 6 ืœื ื™ื—ืœื™ืคื•,
04:47
3 is going to realize: 4, 5, and 6 -- they don't trade,
105
287400
2616
ืื– ื”ื”ืฆืขื” ื”ื™ื ื‘ื˜ื— ืž-1
04:50
so the offer is definitely a 1
106
290040
1456
04:51
and all of you who said yes, thanks for your money.
107
291520
2397
ื•ื›ืœ ืžื™ ืฉืืžืจ ื›ืŸ,
ืชื•ื“ื” ืขืœ ื”ื›ืกืฃ ืฉืœื›ื.
04:53
(Laughter)
108
293941
1515
04:55
So, this retrograde analysis is used in different places.
109
295920
4136
ืื– ืžืฉืชืžืฉื™ื ื‘ื ื™ืชื•ื— ืœืื—ื•ืจ ื‘ืžืฆื‘ื™ื ืฉื•ื ื™ื.
ืœืžืฉืœ ื›ื“ื™ ืœื”ื•ื›ื™ื— ื”ืฉืชื›ืจื•ืช ืฉืขื•ืช ืื—ืจื™ ื ื”ื™ื’ื” ืชื—ืช ืืœื›ื•ื”ื•ืœ ืœื›ืื•ืจื”
05:00
It's used to prove intoxications hours after an alleged DUI
110
300080
4576
05:04
by Pennsylvania police officers,
111
304680
2216
ืข"ื™ ืฉื•ื˜ืจื™ื ื‘ืคื ืกื™ืœื‘ื ื™ื”,
05:06
which is kind of cool.
112
306920
1216
ืฉื–ื” ื“ื™ ืžื’ื ื™ื‘.
05:08
Well, it means don't drink and drive.
113
308160
2216
ื–ื” ืื•ืžืจ ืฉืื ืฉื•ืชื™ื ืœื ื ื•ื”ื’ื™ื.
05:10
The use of retro-analysis is used in law, science, medicine, insurance,
114
310400
3336
ื”ืฉื™ืžื•ืฉ ื‘ื ื™ืชื•ื— ืœืื—ื•ืจ ื ืขืฉื”
ื‘ื—ื•ืง,
ืžื“ืข,
ืจืคื•ืื”,
ื‘ื™ื˜ื•ื—,
05:13
stock market, politics, career planning.
115
313760
2656
ืฉื•ืง ื”ืžื ื™ื•ืช,
ืคื•ืœื™ื˜ื™ืงื”,
ืชื›ื ื•ืŸ ืงืจื™ื™ืจื”.
05:16
But I find its use to be in a more interesting place,
116
316440
2776
ืื‘ืœ ืœื“ืขืชื™ ื”ืฉื™ืžื•ืฉ
05:19
maybe one of the most interesting uses is in this movie,
117
319240
3656
ืื•ืœื™ ื”ื›ื™ ืžืขื ื™ื™ืŸ ืฉืœื•
05:22
which I know a lot of you know,
118
322920
1496
ื”ื•ื ื‘ืกืจื˜ ื”ื–ื”, ืฉืจื•ื‘ื›ื ืžื›ื™ืจื™ื,
"ื”ืกื™ืคื•ืจ ื”ืžื•ืคืœื ืฉืœ ื‘ื ื’'ืžื™ืŸ ื‘ืื˜ืŸ"
05:24
"The Curious Case of Benjamin Button,"
119
324440
2016
05:26
where Brad Pitt plays a guy who's living his life backwards.
120
326480
4536
ื‘ื• ื‘ืจืื“ ืคื™ื˜ ืžื’ืœื ื‘ื—ื•ืจ
ืฉื—ื™ ืืช ื—ื™ื™ื• ืœืื—ื•ืจ.
ื•ื”ืกืจื˜ ื”ื–ื” ื’ืจื ืœื™ ืœื—ืฉื•ื‘
05:31
And what this movie makes me think of is that great quote,
121
331040
4096
ืขืœ ืฆื™ื˜ื˜ื” ื’ื“ื•ืœื”,
ืฉืฉื•ืžืขื™ื ื”ืจื‘ื” ืžืื ืฉื™ื ืžื‘ื•ื’ืจื™ื ื™ื•ืชืจ,
05:35
that quote you often hear from people who are older,
122
335160
2736
05:37
that youth is wasted on the young.
123
337920
3200
ืฉื”ื ืขื•ืจื™ื ืžื‘ื•ื–ื‘ื–ื™ื ืขืœ ื”ืฆืขื™ืจื™ื.
05:41
Well, if you can see the end game,
124
341720
3496
ืื–, ืื ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืืช ืกื™ื•ื ื”ืžืฉื—ืง,
05:45
your youth will not be wasted on you.
125
345240
1920
ื”ืขืœื•ืžื™ื ืฉืœื›ื ืœื ื™ื‘ื•ื–ื‘ื–ื• ืขืœื™ื›ื.
05:47
Thank you very much.
126
347720
1216
ืชื•ื“ื” ืจื‘ื”.
05:48
(Applause)
127
348960
2866
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7