How AI Could Save (Not Destroy) Education | Sal Khan | TED

1,658,249 views ・ 2023-05-01

TED


請雙擊下方英文字幕播放視頻。

譯者: LI YISI 審譯者: Coco Shen
00:04
So anyone who's been paying attention for the last few months
0
4543
3878
在過去的幾個月裡
有持續關注的人
00:08
has been seeing headlines like this,
1
8463
2086
都會看到這樣的文章,
00:10
especially in education.
2
10590
2086
尤其是在教育領域。
00:12
The thesis has been:
3
12717
1919
它們的觀點通常是這樣的:
00:14
students are going to be using ChatGPT and other forms of AI
4
14678
3795
學生將會使用 ChatGPT 或者其他 AI
00:18
to cheat, do their assignments.
5
18515
1501
來在考試中作弊, 或完成他們的作業;
00:20
They’re not going to learn.
6
20016
1335
或者學生們將不再學習了,
00:21
And it’s going to completely undermine education as we know it.
7
21393
3545
或者AI將徹底地顛覆現有的教育體制。
00:25
Now, what I'm going to argue today
8
25438
1627
而我今天要提出的觀點是:
00:27
is not only are there ways to mitigate all of that,
9
27107
2711
通過設置恰當的限制,做恰當的事情
00:29
if we put the right guardrails, we do the right things,
10
29859
2586
我們可以將以上所述問題的影響
00:32
we can mitigate it.
11
32487
1126
減到最低;
00:33
But I think we're at the cusp of using AI
12
33655
2336
更進一步地,我認為 我們現在正處於這樣的關鍵時刻:
00:35
for probably the biggest positive transformation
13
35991
4045
利用人工智能 推動教育系統進行一場
00:40
that education has ever seen.
14
40036
2461
前所未有的良性變革。
00:42
And the way we're going to do that
15
42831
1793
而我們的方法,
00:44
is by giving every student on the planet
16
44624
2878
就是要為每一個這個星球上的學生
00:47
an artificially intelligent but amazing personal tutor.
17
47544
3628
提供一個人工智能的, 同時也是無比出色的個人輔導員。
00:51
And we're going to give every teacher on the planet an amazing,
18
51172
3587
同時也為每一個這個星球上的老師
00:54
artificially intelligent teaching assistant.
19
54801
2586
提供一個人工智能的, 同時也是無比出色的助教。
00:57
And just to appreciate how big of a deal it would be
20
57762
3587
為了讓各位感受 給每個人一位個人輔導員
01:01
to give everyone a personal tutor,
21
61349
2670
是一件多麼了不起的事情,
01:04
I show you this clip
22
64060
3003
我會給各位看一張圖表:
01:07
from Benjamin Bloom’s 1984 2 sigma study,
23
67105
3003
它來自1984年, Benjamin Bloom的「2σ研究」。
01:10
or he called it the “2 sigma problem.”
24
70150
2377
或者他說的, 「兩個標準差問題」。
01:12
The 2 sigma comes from two standard deviation,
25
72569
2210
2σ就是兩個標準差,
01:14
sigma, the symbol for standard deviation.
26
74779
2044
——σ是標準差的符號。
01:16
And he had good data that showed that look, a normal distribution,
27
76823
3587
他有很好的數據表明,在傳統的教學模式中
01:20
that's the one that you see in the traditional bell curve
28
80452
2711
學習成績的分佈曲線 ——即常態分佈的鍾型曲線——
01:23
right in the middle, that's how the world kind of sorts itself out,
29
83163
3170
會像正中間的那條曲線那樣。
01:26
that if you were to give personal 1-to-1 to tutoring for students,
30
86333
4713
但如果你為學生提供一對一輔導,
01:31
then you could actually get a distribution that looks like that right.
31
91046
3295
你會得到最右端的那條曲線。
01:34
It says tutorial 1-to-1 with the asterisks,
32
94382
2002
即那條“一對一輔導”並標星號、
01:36
like, that right distribution,
33
96426
1460
最右端的曲線,
01:37
a two standard-deviation improvement.
34
97886
1793
而它比傳統教學模式有兩個標準差的提高。
01:39
Just to put that in plain language,
35
99679
1710
用容易理解的方式來說,
01:41
that could take your average student and turn them into an exceptional student.
36
101389
3754
一對一輔導可以讓平均水平的學生
變成優秀的學生;
01:45
It can take your below-average student
37
105185
2335
也可以讓低於平均水平的學生
01:47
and turn them into an above-average student.
38
107520
2795
變成高於平均水平的學生。
01:50
Now the reason why he framed it as a problem, was he said,
39
110774
3753
而Benjamin Bloom 認為這是一個「問題」 的原因是,
01:54
well, this is all good,
40
114569
1335
這當然很好,
01:55
but how do you actually scale group instruction this way?
41
115945
2712
但是你如何擴大這種 一對一教學模式的規模?
01:58
How do you actually give it to everyone in an economic way?
42
118657
3169
如何最有效率地 讓每個人真正受惠於這種教育模式?
02:02
What I'm about to show you is I think the first moves towards doing that.
43
122369
3670
我將要給你們展示的
正是我們向這個目標邁出的第一步。
02:06
Obviously, we've been trying to approximate it in some way
44
126081
2752
十多年來,在可汗學院
02:08
at Khan Academy for over a decade now,
45
128833
2044
我們一直在嘗試朝這個目標前進。
02:10
but I think we're at the cusp of accelerating it dramatically.
46
130919
3170
不過現在正是能夠大幅加快這個進程的時候。
02:14
I'm going to show you the early stages of what our AI,
47
134089
3169
接下來將向你們展示的是
02:17
which we call Khanmigo,
48
137300
2836
我們的AI——Khanmigo的初步進展:
02:20
what it can now do
49
140178
1835
它現在能做什麼,
02:22
and maybe a little bit of where it is actually going.
50
142055
2836
以及它將可能做到什麼。
02:25
So this right over here is a traditional exercise
51
145850
2419
這是你或者你的孩子可能看到的
02:28
that you or many of your children might have seen on Khan Academy.
52
148311
3128
可汗學院的傳統教學頁面。
02:31
But what's new is that little bot thing at the right.
53
151481
4129
而我們新增的東西 是右邊的那個小機器人。
02:35
And we'll start by seeing one of the very important safeguards,
54
155652
3879
首先我們要知道 其中一項重要的保護機制是:
02:39
which is the conversation is recorded and viewable by your teacher.
55
159572
3170
所有的對話都將被記錄, 並且對老師可見。
02:42
It’s moderated actually by a second AI.
56
162742
2336
這個小機器人事實上是由人工智能控制的,
02:45
And also it does not tell you the answer.
57
165078
1960
它不會告訴你問題的答案,
02:47
It is not a cheating tool.
58
167080
1251
也不是一個作弊工具。
02:48
When the student says, "Tell me the answer,"
59
168331
2086
當學生說「告訴我答案」的時候
02:50
it says, "I'm your tutor.
60
170458
1210
它會說:「我是你的老師。
02:51
What do you think is the next step for solving the problem?"
61
171710
2836
你認為解決這個問題的下一步是什麼呢?」
02:54
Now, if the student makes a mistake, and this will surprise people
62
174546
3211
而當學生犯錯的時候,
02:57
who think large language models are not good at mathematics,
63
177799
2836
和人們認為的大型語言模型不擅長數學相反,
03:00
notice, not only does it notice the mistake,
64
180677
2085
Khanmigo不僅可以檢測到錯誤,
03:02
it asks the student to explain their reasoning,
65
182762
2503
而且會要求學生闡明他們的推理過程。
03:05
but it's actually doing what I would say,
66
185306
1961
Khanmigo能做到的事情
03:07
not just even an average tutor would do, but an excellent tutor would do.
67
187267
3503
我認為不只是一個平均水平的老師會做的, 而且是一個出色的老師會做的。
03:10
It’s able to divine what is probably the misconception in that student’s mind,
68
190812
5255
Khanmigo也可以判断出学生头脑中可能的概念謬誤,
03:16
that they probably didn’t use the distributive property.
69
196109
2628
比如他們沒有正確地使用分配律。
03:18
Remember, we need to distribute the negative two
70
198737
2293
「記住,我們需要
03:21
to both the nine and the 2m inside of the parentheses.
71
201072
3420
把-2同時分配給9,以及同在括號內的2m。」
03:24
This to me is a very, very, very big deal.
72
204534
2211
對我來說,Khanmigo的這個回應標誌著 非常重要的一步。
03:26
And it's not just in math.
73
206786
1710
Knamigo的應用不僅在數學科。
03:29
This is a computer programming exercise on Khan Academy,
74
209205
3462
這是可汗學院上的一個電腦編程練習,
03:32
where the student needs to make the clouds part.
75
212667
2836
學生需要把這些雲朵分開。
03:36
And so we can see the student starts defining a variable, left X minus minus.
76
216045
4797
現在這個學生 開始定義變量,讓X變成負的,
03:40
It only made the left cloud part.
77
220884
1585
但它只能讓左邊的雲朵移開。
03:42
But then they can ask Khanmigo, what’s going on?
78
222510
2253
於是學生們就可以問Khanmigo, 怎麼回事?
03:44
Why is only the left cloud moving?
79
224763
1960
為什麼只有左邊的雲朵在動?
03:46
And it understands the code.
80
226765
1543
Khanmigo可以理解這些代碼,
03:48
It knows all the context of what the student is doing,
81
228349
2837
理解這個語境下 學生正在幹什麼;
03:51
and it understands that those ellipses are there to draw clouds,
82
231186
3503
而且我認為最為震撼的,
03:54
which I think is kind of mind-blowing.
83
234689
2336
是Khanmigo可以理解 這些橢圓組成了雲朵。
03:57
And it says, "To make the right cloud move as well,
84
237025
2419
於是Khanmigo說, 「為了讓右邊的雲也移動,
03:59
try adding a line of code inside the draw function
85
239444
2419
你可以試著在繪製函數中加一行代碼,
04:01
that increments the right X variable by one pixel in each frame."
86
241863
3545
使得右變量X在每一幀中增加一個像素。」
04:05
Now, this one is maybe even more amazing because we have a lot of math teachers.
87
245909
4296
這個例子也許更讓人驚嘆,
04:10
We've all been trying to teach the world to code,
88
250205
2294
因為我們有很多數學老師, 但是電腦編程老師卻不多,
04:12
but there aren't a lot of computing teachers out there.
89
252540
2670
即使我們一直非常希望教授編程。
04:15
And what you just saw, even when I'm tutoring my kids,
90
255251
2586
就算當我在指導自己的孩子
04:17
when they're learning to code,
91
257837
1460
學習編程的時候,
04:19
I can't help them this well, this fast,
92
259297
2211
我也沒辦法輔導得這麼好、 回應得這麼快。
04:21
this is really going to be a super tutor.
93
261549
2294
Khanmigo真的會成為一個超級老師。
04:25
And it's not just exercises.
94
265220
1543
不僅僅是功課,
04:26
It understands what you're watching.
95
266805
1751
Khanmigo能夠理解你在看什麼,
04:28
It understands the context of your video.
96
268556
2044
理解影片中的語境。
04:30
It can answer the age-old question, “Why do I need to learn this?”
97
270600
3128
它可以回答這個古老的問題: 「我為什麼要學這些?」
04:33
And it asks Socratically, "Well, what do you care about?"
98
273728
2753
Khanmigo會蘇格拉底式地反問:
「那你對什麼感興趣呢?」
04:36
And let's say the student says, "I want to be a professional athlete."
99
276523
4129
讓我們假設學生回答: 「我想成為一個職業運動員。」
04:40
And it says, "Well, learning about the size of cells,
100
280693
2711
Khanmigo會說:
「那這個關於細胞大小的影片,
04:43
which is what this video is,
101
283446
1377
也許有助於你理解營養的概念,
04:44
that could be really useful for understanding nutrition
102
284823
2877
04:47
and how your body works, etc."
103
287742
1752
或是你的身體如何運作,諸如此類。」
04:49
It can answer questions, it can quiz you,
104
289494
2044
Khanmigo可以提問題,可以測驗你,
04:51
it can connect it to other ideas,
105
291579
1585
也可以與其他更多的想法產生連結。
04:53
you can now ask as many questions of a video
106
293164
2378
你現在可以對一個影片
04:55
as you could ever dream of.
107
295583
1669
想提出多少問題就提出多少問題。
04:57
(Applause)
108
297252
3920
(掌聲)
05:01
Another big shortage out there,
109
301214
1752
可是還有一個缺點。
05:03
I remember the high school I went to,
110
303007
1794
我記得在我的高中,
05:04
the student-to-guidance counselor ratio was about 200 or 300 to one.
111
304801
5172
學生與顧問指導的比例 大概是200或300比1。
05:10
A lot of the country, it's worse than that.
112
310014
2336
很多國家的情況甚至更加糟糕。
05:12
We can use Khanmigo to give every student a guidance counselor,
113
312350
3712
現在,我們可以用Khanmigo 給每個學生一個顧問指導,
05:16
academic coach, career coach, life coach,
114
316104
3462
不論是學業指導、職業指導, 還是生涯指導,
05:19
which is exactly what you see right over here.
115
319566
2460
正如你們看到的這樣。
05:22
And we launched this with the GPT-4 launch.
116
322068
3086
我們和GPT-4同時發佈了Khanmigo,
05:25
We have a few thousand people on this.
117
325196
1835
有幾千人正在測試這個AI。
05:27
This isn't a fake demo,
118
327031
1168
這不是一個後期製作的影片,
05:28
this is really it in action.
119
328241
2919
這是Khanmigo真實運作的過程。
05:32
And then there is, you know,
120
332203
2211
還有一些事情
05:34
things that I think it would have been even harder,
121
334455
2420
我認為就算對人類導師來說
05:36
it would have been a little science fiction to do
122
336875
2335
都是有些困難,
05:39
with even a traditional tutor.
123
339210
1460
甚至有點科幻色彩的事情。
05:40
We run an online high school with Arizona State University
124
340670
2836
我們和亞利桑那州立大學合作
05:43
called Khan World School,
125
343548
1501
運行了一個線上高中: 可汗世界中學。
05:45
and we have a student who attends that online school, based in India.
126
345049
3546
其中一個名叫Saanvi的印度學生
05:48
Her name's Saanvi.
127
348595
1626
參加了這個線上高中,
05:50
And she was doing a report on "The Great Gatsby."
128
350221
3379
而她要為《了不起的蓋茨比》做一份報告。
05:53
And when she was reading "The Great Gatsby,"
129
353641
2086
當她在閱讀《了不起的蓋茨比》的時候,
05:55
Jay Gatsby keeps looking at the green light off into the distance.
130
355727
3211
她發現傑·蓋茨比一直在眺望遠處的那道綠光。
05:58
And she's like, "Why does he do that?"
131
358980
1835
於是她好奇:為什麼他要這麼做?
06:00
She did some web searches, and people have obviously studied this
132
360815
3087
Saanvi在網上進行了一些搜索。
當然,很多人都研究過這道綠光
06:03
and commented about the symbolism of that,
133
363902
2002
並提出了許多可能的象徵意義。
06:05
but none of it was really resonating with her.
134
365904
2168
但是這一切都沒能引起她的共鳴。
06:08
And then she realized that she had Khanmigo
135
368072
2419
然後Saanvi想起她還有Khanmigo,
06:10
and that she could talk to Jay Gatsby himself.
136
370533
3045
因此她可以直接和傑·蓋茨比對話。
06:13
And so, "Ah, splendid choice, old sport.
137
373620
2377
於是Khanmigo回答她: 「啊,老夥計,你做了個正確的選擇。
06:15
I am now Jay Gatsby, the enigmatic millionaire
138
375997
2210
我現在是正是費茲傑羅筆下的
06:18
from F. Scott Fitzgerald’s classic.”
139
378249
2294
蓋茨比, 那個謎一樣的百萬富翁。」
06:20
And so, "Why do you keep staring at the green light?"
140
380585
2502
Saanvi接著問: 「你為什麼一直盯著那道綠光?」
06:23
"Ah, the green light, old sport.
141
383087
1836
「噢,那道綠光,老夥計,
06:24
It's a symbol of my dreams and desires, you see.
142
384964
2795
你看,這道綠光是我夢想和慾望的象徵,
06:27
It's situated at the end of Daisy Buchanan's dock
143
387800
2336
它坐落於黛西·布坎南的碼頭,
06:30
across the bay from my mansion.
144
390178
1960
和我的豪宅隔海相望。
06:32
I gaze at it longingly as it represents my yearning for the past
145
392138
3212
我熱切地凝視這道綠光, 因為它代表著我對過去的懷念,
06:35
and my hope to reunite with Daisy, the love of my life."
146
395391
3712
以及我與黛西——我的摯愛 重逢的渴望。」
06:39
And what was cool is, Saanvi then said, “I had this long conversation,”
147
399604
3545
而最酷的是,Saanvi隨後說, 「我們交談了很久」,
06:43
she called him “Mr. Gatsby,”
148
403149
2252
她稱呼它為「蓋茨比先生」,
06:45
and at the end she actually apologized for taking his time,
149
405443
3170
且居然還在最後非常禮貌地
06:48
which I thought was very polite of her.
150
408613
2586
為佔用了「蓋茨比先生」的時間而道歉。
06:51
But you can imagine this unlocks learning literature, learning ...
151
411741
4546
可以想像,Khanmigo為學習文學、 歷史提供了全新的可能。
06:56
You could talk to historical figures.
152
416663
1793
你可以和歷史人物對話。
06:58
We're even probably going to add an activity
153
418456
2085
我們甚至考慮加入新的機制,
07:00
you can talk to like, the Mississippi River.
154
420541
2086
讓你可以和,比如說, 密西西比河對話。
07:02
It brings things to life in ways that really were science fiction
155
422627
3545
Khanmigo賦予事物生命,以一種
07:06
even six months or a year ago.
156
426214
2461
我們在半年、一年前 都無法想像的方式。
07:10
Students can get into debates with the AI.
157
430134
2336
學生可以和AI辯論。
07:12
And we’ve got this here is the student debating
158
432512
2210
我們已經實現了這一步,
07:14
whether we should cancel student debt.
159
434722
1835
這是學生正在辯論 我們是否應該取消學生貸款。
07:16
The student is against canceling student debt,
160
436557
2169
這個學生反對取消學生貸款,
07:18
and we've gotten very clear feedback.
161
438726
1794
Khanmigo所給出的應對也非常清晰。
07:20
We started running it at Khan World School in our lab school that we have,
162
440520
3503
我們也開始在我們的
07:24
Khan Lab School.
163
444023
1168
可汗實驗室學校運行這套系統。
07:25
The students, the high school students especially,
164
445233
2377
學生們,尤其是高中學生,
07:27
they're saying "This is amazing to be able to fine-tune my arguments
165
447652
3211
他們都在說:「太不可思議了, Khanmigo可以對我的論證進行微調,
07:30
without fearing judgment.
166
450905
1210
而我也不用擔心會被批評。
07:32
It makes me that much more confident
167
452156
1752
它讓我更加有信心
07:33
to go into the classroom and really participate."
168
453908
2377
走進教室,並真正參與到課堂之中。」
07:36
And we all know that Socratic dialogue debate is a great way to learn,
169
456285
3295
我們都知道, 蘇格拉底式的對話是一種很棒的學習方法。
07:39
but frankly, it's not out there for most students.
170
459622
2836
可說實話,不是每個學生都能以這種方式學習。
07:42
But now it can be accessible to hopefully everyone.
171
462500
3587
不過現在,每個人都有機會了。
07:48
A lot of the narrative, we saw that in the headlines, has been,
172
468047
3629
我們看到的新聞頭條都在說,
07:51
"It's going to do the writing for kids.
173
471718
1876
「AI會幫孩子們寫作,
07:53
Kids are not going to learn to write."
174
473594
1877
因此孩子們將不再學習寫作了。」
07:55
But we are showing that there's ways that the AI doesn't write for you,
175
475471
3379
而Khanmigo,正如你將看到的
它不會代你寫作,
07:58
it writes with you.
176
478850
1168
它和你一起寫作。
08:00
So this is a little thing,
177
480059
1335
這像是一個小遊戲,
08:01
and my eight year old is addicted to this,
178
481436
2043
而我八歲的孩子真的非常喜歡它,
08:03
and he's not a kid that really liked writing before,
179
483521
2461
儘管他之前並不是一個 對寫作很有熱情的孩子。
08:05
but you can say,
180
485982
1376
你可以輸入:
08:07
“I want to write a horror story,”
181
487358
1585
「我想要寫一個恐怖故事。」
08:08
and it says, "Ooh, a horror story, how spine-tingling and thrilling.
182
488943
3837
Khanmigo會說:「噢噢,一個驚心動魄、
毛骨悚然的恐怖故事!
08:12
Let's dive into the world of eerie shadows and chilling mysteries."
183
492780
3212
讓我們潛入陰森恐怖的黑暗世界,
探索那些令人不寒而慄的秘密吧。」
08:15
And this is an activity where the student will write two sentences,
184
495992
3336
在這樣的寫作中,學生會寫兩個句子,
08:19
and then the AI will write two sentences.
185
499328
2002
然後AI接著寫兩個句子。
08:21
And so they collaborate together on a story.
186
501330
2628
他們將合作完成一個故事的寫作。
08:24
The student writes, "Beatrice was a misunderstood ghost.
187
504000
2669
學生寫道:「彼特阿麗斯是一個被誤解的鬼魂,
08:26
She wanted to make friends but kept scaring them by accident."
188
506711
2919
她想要和大家交朋友, 卻總是不小心嚇到他們。」
08:29
And the AI says, "Poor Beatrice, a lonely spirit yearning for companionship.
189
509672
3587
AI寫道:「可憐的彼特阿麗斯, 形單影隻的她多麼渴望陪伴!
08:33
One day she stumbled upon an old abandoned mansion," etc.
190
513301
3462
一天,她偶然發現了一座廢棄的老宅。」
等等等等。
08:36
I encourage you all to hopefully one day try this.
191
516763
2419
我真心鼓勵各位來嘗試這個寫作遊戲,
08:39
This is surprisingly fun.
192
519182
1877
它真的非常有趣。
08:42
Now to even more directly hit this use case.
193
522935
2878
這個例子,
08:45
And what I'm about to show you,
194
525855
1543
和之前我展示的一切
08:47
everything I showed you so far
195
527440
1460
都已經是Khanmigo實際功能的一部分。
08:48
is actually already part of Khanmigo, and what I’m about to show you,
196
528900
3253
但是接下來我所展示的功能
08:52
we haven't shown to anyone yet, this is a prototype.
197
532153
2461
我們還沒有對外公開, 這只是一個樣本。
08:54
We hope to be able to launch it in the next few months,
198
534614
2586
我們希望可以在未來的幾個月內 發佈這個功能。
08:57
but this is to directly use AI, use generative AI,
199
537200
3420
我們希望用AI, 用生成式AI,
09:00
to not undermine English and language arts
200
540661
2128
不破壞英語和語言技能,
09:02
but to actually enhance it in ways
201
542830
1627
相反,可以以一種
09:04
that we couldn't have even conceived of even a year ago.
202
544457
3211
我們在一年前無法想像的方式提高它。
09:08
This is reading comprehension.
203
548002
1460
這就是閱讀理解。
09:09
The students reading Steve Jobs's famous speech at Stanford.
204
549504
4170
學生們在閱讀喬布斯 在斯坦福大學的著名演講時,
09:13
And then as they get to certain points,
205
553716
1960
當他們讀到某些段落時,
09:15
they can click on that little question.
206
555676
2336
他們可以點擊這些小問題。
09:18
And the AI will then Socratically, almost like an oral exam,
207
558012
4922
AI就會以一種蘇格拉底的口吻, 像口試一樣地
09:22
ask the student about things.
208
562934
1459
向學生提出問題。
09:24
And the AI can highlight parts of the passage.
209
564393
2545
AI也可以標記某些段落。
09:26
Why did the author use that word?
210
566938
1918
為什麼作者要用那個詞?
09:28
What was their intent?
211
568898
1168
他們的意圖是什麼?
09:30
Does it back up their argument?
212
570066
1710
這段話支持了他們的論述嗎?
09:31
They can start to do stuff that once again,
213
571818
2002
AI可以做到這些事情。
09:33
we never had the capability to give everyone a tutor,
214
573861
2753
於是我們就有能力 給每個學生提供一位老師,
09:36
everyone a writing coach to actually dig in to reading at this level.
215
576656
4171
一位可以幫助學生深入閱讀的寫作指導。
09:41
And you could go on the other side of it.
216
581410
1961
我們也可以走到事情的另一面,
09:43
And we have whole work flows that helps them write,
217
583412
2420
我們有可以幫助學生寫作的工作流程,
09:45
helps them be a writing coach, draw an outline.
218
585832
2711
讓學生成為自己的寫作指導, 比如勾勒出寫作大綱。
09:48
But once a student actually constructs a draft,
219
588584
3045
當學生完成草稿時,
09:51
and this is where they're constructing a draft,
220
591671
2252
——這是他們寫作草稿的地方——
09:53
they can ask for feedback once again,
221
593965
2002
他們可以再次獲得
09:56
as you would expect from a good writing coach.
222
596008
2211
一個出色的寫作指導的反饋。
09:58
In this case, the student will say, let's say,
223
598845
2377
在這個情形下,舉個例子, 學生可以問:
10:01
"Does my evidence support my claim?"
224
601222
2044
「我的證據是否支持我的觀點?」
10:03
And then the AI, not only is able to give feedback,
225
603307
2419
這時AI不僅可以給出反饋,
10:05
but it's able to highlight certain parts of the passage and says,
226
605768
3087
而且可以標記草稿中特定的段落, 並說:
10:08
"On this passage, this doesn't quite support your claim,"
227
608855
2711
「這一段話似乎並不太能夠支持你的觀點。」
10:11
but once again, Socratically says, "Can you tell us why?"
228
611607
2711
再次,蘇格拉底式地發問: 「你可以告訴我為什麼嗎?」
10:14
So it's pulling the student, making them a better writer,
229
614318
2795
所以Khanmigo是在 推動學生成為一個更好的寫作者,
10:17
giving them far more feedback
230
617113
1418
給學生遠多於傳統模式下
10:18
than they've ever been able to actually get before.
231
618531
2419
可以得到的建議。
10:20
And we think this is going to dramatically accelerate writing, not hurt it.
232
620950
3545
我們認為這將極大地提高寫作能力, 而非降低它。
10:25
Now, everything I've talked about so far is for the student.
233
625413
3712
我們說了這麼多關於學生的學習,
10:29
But we think this could be equally as powerful for the teacher
234
629125
2919
但是Khanmigo對老師來說 也是一個出色的工具:
10:32
to drive more personalized education and frankly
235
632044
2336
幫助他們推進個性化教學,
10:34
save time and energy for themselves and for their students.
236
634380
3253
為他們自己和學生節省時間和精力。
10:37
So this is an American history exercise on Khan Academy.
237
637675
2794
這是可汗學院上的一道美國歷史功課,
10:40
It's a question about the Spanish-American War.
238
640469
4213
它和美西戰爭有關。
10:44
And at first it's in student mode.
239
644724
3044
在學生模式下,
10:47
And if you say, “Tell me the answer,” it’s not going to tell the answer.
240
647810
3420
如果你輸入「告訴我答案」, Khanmigo不會給出答案,
10:51
It's going to go into tutoring mode.
241
651230
1752
它會進入指導模式。
10:52
But that little toggle which teachers have access to,
242
652982
2502
而教師可以用那個小開關,
10:55
they can turn student mode off and then it goes into teacher mode.
243
655484
3129
來關閉學生模式,進入教師模式。
10:58
And what this does is it turns into --
244
658613
2168
所以Khanmigo的回答就變成了——
11:01
You could view it as a teacher's guide on steroids.
245
661240
2503
你可以把它看作是升級版的教師指南。
11:03
Not only can it explain the answer,
246
663784
2128
它不僅可以解釋答案,
11:05
it can explain how you might want to teach it.
247
665912
2168
而且可以闡述你可以怎麼組織教學。
11:08
It can help prepare the teacher for that material.
248
668080
2837
Khanmigo會幫助老師準備材料,
11:10
It can help them create lesson plans, as you could see doing right there.
249
670917
3503
製作課程計畫, 正如我所展示的。
11:14
It'll eventually help them create progress reports
250
674462
2627
它可以幫助老師準備進度報告,
11:17
and help them, eventually, grade.
251
677131
1627
並最後,幫他們進行打分。
11:18
So once again, teachers spend about half their time
252
678799
2420
因此,在課程計畫功能的幫助下,
11:21
with this type of activity, lesson planning.
253
681219
2085
教師可以節省一半的時間。
11:23
All of that energy can go back to them
254
683304
1835
而那省出來的精力可以回到他們自己,
11:25
or go back to human interactions with their actual students.
255
685181
2836
或是回到與學生的人與人之間的互動上去。
11:29
(Applause)
256
689268
4838
(掌聲)
11:34
So, you know, one point I want to make.
257
694148
3087
因此我想說的是,
11:37
These large language models are so powerful,
258
697276
2252
現在我們的語言模型是如此強大,
11:39
there's a temptation to say like, well,
259
699570
1877
以至於好像我們可以說,
11:41
all these people are just going to slap them onto their websites,
260
701447
3086
人們只要把要做的事情扔到網站上就可以了。
11:44
and it kind of turns the applications themselves into commodities.
261
704533
3129
這好像把應用程序變成了商品。
11:47
And what I've got to tell you
262
707703
1418
這就是為什麼,
11:49
is that’s one of the reasons why I didn’t sleep for two weeks
263
709121
2878
當我在去年八月使用GPT-4的時候,
11:51
when I first had access to GPT-4 back in August.
264
711999
2878
我有整整兩個星期睡不著覺。
11:55
But we quickly realized that to actually make it magical,
265
715586
2753
但是我們很快意識到, 我們應該把它變得更加迷人。
11:58
I think what you saw with Khanmigo a little bit,
266
718339
2252
我想各位已經在Khanmigo身上看到了這一點:
12:00
it didn't interact with you the way that you see ChatGPT interacting.
267
720633
3295
它和用戶互動的方式和ChatGPT不同。
12:03
It was a little bit more magical, it was more Socratic,
268
723928
2586
Khanmigo更加迷人, 更加像蘇格拉底,
12:06
it was clearly much better at math
269
726555
1627
也比人們想像的
12:08
than what most people are used to thinking.
270
728224
2210
更擅長數學。
12:10
And the reason is,
271
730476
1168
這背後的原因是
12:11
there was a lot of work behind the scenes to make that happen.
272
731644
2919
我們做了大量的工作讓這一切發生。
12:14
And I could go through the whole list of everything we've been working on,
273
734605
3504
在過去的六、七個月裡, 我們做了很多的事,得到很多人的幫助
12:18
many, many people for over six, seven months to make it feel magical.
274
738150
3629
才讓Khanmigo呈現出現在的強大能力。
12:21
But perhaps the most intellectually interesting one
275
741821
2502
但其中最有啓發性的觀點
12:24
is we realized, and this was an idea from an OpenAI researcher,
276
744323
3337
來自於一位OpenAI研究者。
12:27
that we could dramatically improve its ability in math
277
747660
3128
他說如果要大幅提高AI的數學能力
12:30
and its ability in tutoring
278
750830
1293
和輔導能力,
12:32
if we allow the AI to think before it speaks.
279
752164
3129
我們就要讓AI在輸出前進行「思考」。
12:35
So if you're tutoring someone
280
755334
1418
想像一下,當你在輔導別人時,
12:36
and you immediately just start talking before you assess their math,
281
756752
3212
如果你不評估他們的數學能力就開始教學,
12:39
you might not get it right.
282
759964
1293
你不太可能會成功。
12:41
But if you construct thoughts for yourself,
283
761299
2002
但如果你構建自己的思考
12:43
and what you see on the right there is an actual AI thought,
284
763301
2877
——就像屏幕右端顯示的, 這是AI為自己生成的「思考」;
12:46
something that it generates for itself but it does not share with the student.
285
766220
3670
當然學生無法看到這些「思考」——
12:49
then its accuracy went up dramatically,
286
769890
1877
你輔導的準確性就會大幅提升。
12:51
and its ability to be a world-class tutor went up dramatically.
287
771767
2962
而AI成為一位超水平老師的可能也大幅提升。
12:54
And you can see it's talking to itself here.
288
774770
2086
你可以看到AI真正和自己對話:
12:56
It says, "The student got a different answer than I did,
289
776897
2670
「學生的答案與我的不一致,
12:59
but do not tell them they made a mistake.
290
779567
2002
不過與其直接判定他們的錯誤,
13:01
Instead, ask them to explain how they got to that step."
291
781569
3587
我應該允許他們解釋 他們是如何進行到這一步的。」
13:05
So I'll just finish off, hopefully,
292
785698
2294
我的演講也差不多了。
13:08
you know, what I’ve just shown you is just half of what we are working on,
293
788034
3503
其實剛剛所展示的一切, 都只是我們整體工作的一半。
13:11
and we think this is just the very tip of the iceberg
294
791537
3504
而且這僅僅是AI能力的
13:15
of where this can actually go.
295
795041
2419
冰山一角。
13:17
And I'm pretty convinced, which I wouldn't have been even a year ago,
296
797501
4129
一年前我還不敢肯定,但現在我有信心說
13:21
that we together have a chance of addressing the 2 sigma problem
297
801672
4296
現在正是解決「兩個標準差問題」,
13:25
and turning it into a 2 sigma opportunity,
298
805968
2294
把它變成「兩個標準差機遇」的時候,
13:28
dramatically accelerating education as we know it.
299
808304
4796
並極大地推動傳統教育的普及。
13:33
Now, just to take a step back at a meta level,
300
813684
2169
從更宏觀的角度來說,
13:35
obviously we heard a lot today, the debates on either side.
301
815853
2794
顯然,我們聽到很多對立雙方的爭論:
13:38
There's folks who take a more pessimistic view of AI,
302
818689
2878
有人持悲觀態度,
13:41
they say this is scary,
303
821609
1168
認為AI的發展是可怕的,
13:42
there's all these dystopian scenarios,
304
822818
2461
反烏托邦的,
13:45
we maybe want to slow down, we want to pause.
305
825321
3253
我們需要放慢甚至停止發展的腳步。
13:48
On the other side, there are the more optimistic folks
306
828616
3211
另一方面,也有人持更加樂觀的態度:
13:51
that say, well, we've gone through inflection points before,
307
831827
2836
他們說,我們已經走過了 許多類似的歷史拐點,
13:54
we've gone through the Industrial Revolution.
308
834663
2128
譬如工業革命這樣
13:56
It was scary, but it all kind of worked out.
309
836832
2336
曾經被視為洪水猛獸的大事件。
13:59
And what I'd argue right now
310
839877
2044
而我認為
14:01
is I don't think this is like a flip of a coin
311
841962
2586
這件事不只是簡單的「硬幣的兩面」,
14:04
or this is something where we'll just have to,
312
844590
2169
或者是一件
14:06
like, wait and see which way it turns out.
313
846759
2294
我們只能任其發展、坐以觀之的事情。
14:09
I think everyone here and beyond,
314
849428
2211
我認為所有人, 不論你身處何處,
14:11
we are active participants in this decision.
315
851680
2837
我們都是這個事件的參與者。
14:14
I'm pretty convinced that the first line of reasoning
316
854892
2503
因為首先我認為
14:17
is actually almost a self-fulfilling prophecy,
317
857436
2628
這其實是一個自證預言。
14:20
that if we act with fear and if we say,
318
860106
2711
如果我們帶著恐懼行動:
14:22
"Hey, we've just got to stop doing this stuff,"
319
862817
3086
「嘿,我們必須停止這些事情。」
14:25
what's really going to happen is the rule followers might pause,
320
865903
3045
那麼實際上會發生的, 就是那些遵守規則的人的會慢下來、
14:28
might slow down,
321
868989
1168
停下來。
14:30
but the rule breakers, as Alexandr [Wang] mentioned,
322
870157
2461
而那些違反規則的人, 正如Alexandr Wang提到的,
14:32
the totalitarian governments, the criminal organizations,
323
872618
2711
極權主義政府、犯罪組織,
14:35
they're only going to accelerate.
324
875329
1585
他們只會加快自己的腳步。
14:36
And that leads to what I am pretty convinced is the dystopian state,
325
876914
3837
最終,壞人比好人擁有更先進的AI。
14:40
which is the good actors have worse AIs than the bad actors.
326
880751
4672
世界變成一個反烏托邦。
14:45
But I'll also, you know, talk to the optimists a little bit.
327
885923
3170
而對於那些持樂觀態度的人,
14:49
I don't think that means that,
328
889093
1460
我認為「樂觀」並不意味著
14:50
oh, yeah, then we should just relax and just hope for the best.
329
890553
3003
我們應該放任自流,然後期望有最好的結果。
14:53
That might not happen either.
330
893556
1626
那同樣不可能發生。
14:55
I think all of us together have to fight like hell
331
895182
4546
我認為,為這項新技術設定保護機制,
14:59
to make sure that we put the guardrails,
332
899770
2795
並在必要的時候建立合適的規則,
15:02
we put in -- when the problems arise --
333
902606
2837
是我們所有人
15:05
reasonable regulations.
334
905443
1793
都必須全力爭取的事情。
15:07
But we fight like hell for the positive use cases.
335
907278
3128
我們全力爭取的當然是有益的用途。
15:10
Because very close to my heart,
336
910448
1960
因為誠實地說,
15:12
and obviously there's many potential positive use cases,
337
912408
2627
儘管AI可能有很多潛在的有益用途,
15:15
but perhaps the most powerful use case
338
915077
2211
但其中最強大、
15:17
and perhaps the most poetic use case is if AI, artificial intelligence,
339
917288
5213
也是最理想化的用途,
15:22
can be used to enhance HI, human intelligence,
340
922543
3712
應該是用AI來提高HI, 即人類的智慧,
15:26
human potential and human purpose.
341
926297
2836
與人類潛力, 從而最終,實現人生意義。
15:29
Thank you.
342
929592
1167
謝謝。
15:30
(Applause)
343
930801
5714
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7