How we're building the world's largest family tree | Yaniv Erlich

42,042 views ・ 2019-10-18

TED


請雙擊下方英文字幕播放視頻。

譯者: Lilian Chiu 審譯者: 易帆 余
00:12
People use the internet for various reasons.
0
12817
3452
人們因各種原因使用網際網路。
00:17
It turns out that one of the most popular categories of website
1
17765
3804
結果發現,最熱門的網站類型之一
00:21
is something that people typically consume in private.
2
21593
2872
是人們私下瀏覽的東西。
00:25
It involves curiosity,
3
25639
2510
它和好奇心有關,
00:28
non-insignificant levels of self-indulgence
4
28173
3796
和看不太出來但又明顯的 放蕩不羈程度有關,
00:31
and is centered around recording the reproductive activities
5
31993
3260
整天沉浸在記錄別人 繁殖活動的圈圈裡。
00:35
of other people.
6
35277
1309
00:36
(Laughter)
7
36610
1032
(笑聲)
00:37
Of course, I'm talking about genealogy --
8
37666
2250
當然,我在說的是家譜學——
00:39
(Laughter)
9
39940
1214
(笑聲)
00:41
the study of family history.
10
41178
1702
家族史的研究。
00:43
When it comes to detailing family history,
11
43353
2037
說到詳細的家族歷史,
00:45
in every family, we have this person that is obsessed with genealogy.
12
45414
3943
在每個家庭中,都會 有一個人特別迷戀家譜。
00:49
Let's call him Uncle Bernie.
13
49381
1713
咱們就稱他為柏尼叔叔吧。
00:51
Uncle Bernie is exactly the last person you want to sit next to
14
51118
3782
感恩節晚餐時,你最不希望
坐到的位子 就是柏尼叔叔的旁邊,
00:54
in Thanksgiving dinner,
15
54924
1599
00:56
because he will bore you to death with peculiar details
16
56547
2814
因為他會一直講某個 古老親戚的獨特細節,
00:59
about some ancient relatives.
17
59385
1966
講到讓你無聊死。
01:02
But as you know,
18
62462
1262
但,各位都知道,
01:03
there is a scientific side for everything,
19
63748
2872
凡事都有科學的一面,
01:06
and we found that Uncle Bernie's stories
20
66644
2978
而我們發現,柏尼叔叔的故事
01:09
have immense potential for biomedical research.
21
69646
3168
非常有潛力可以用在 生物醫學研究上。
01:13
We let Uncle Bernie and his fellow genealogists
22
73306
2714
我們讓柏尼叔叔 和他的家譜學者夥伴們
01:16
document their family trees through a genealogy website called geni.com.
23
76044
4668
透過家譜網站 geni.com 來記錄他們的家譜。
01:21
When users upload their trees to the website,
24
81198
2128
當使用者將他們的家譜 上傳到該網站,
01:23
it scans their relatives,
25
83350
1690
網站會掃描他們的親戚,
01:25
and if it finds matches to existing trees,
26
85064
2075
如果發現和既有的家譜樹有吻合,
01:27
it merges the existing and the new tree together.
27
87163
3610
就會把既有的家譜 和那新的家譜合併起來。
01:31
The result is that large family trees are created,
28
91768
2950
結果就是建造出了很大的家譜,
01:34
beyond the individual level of each genealogist.
29
94742
3479
超越了家譜學者 個人能做到的程度。
01:38
Now, by repeating this process with millions of people
30
98808
4129
如今,針對全世界數百萬人
01:42
all over the world,
31
102961
1817
重覆這個流程,
01:44
we can crowdsource the construction of a family tree of all humankind.
32
104802
5532
我們就能將全人類的家譜 外包給群眾來做。
01:51
Using this website,
33
111292
1584
我們用這個網站,
01:52
we were able to connect 125 million people
34
112900
4813
將一億兩千五百萬人連結起來,
01:57
into a single family tree.
35
117737
2521
成為單一家譜樹。
02:00
I cannot draw the tree on the screens over here
36
120967
2788
我無法在這裡的螢幕上 畫出這個家譜樹,
02:03
because they have less pixels
37
123779
2165
因為這個家譜樹中的人數
02:05
than the number of people in this tree.
38
125968
2513
比螢幕的畫素還要多。
02:08
But here is an example of a subset of 6,000 individuals.
39
128505
5010
但,可以取其中一部分 六千人的家譜給各位看。
02:14
Each green node is a person.
40
134159
2362
每個綠色節點代表一個人。
02:17
The red nodes represent marriages,
41
137060
2849
紅色節點代表婚姻關係,
02:19
and the connections represent parenthood.
42
139933
2258
連線則代表親子關係。
02:22
In the middle of this tree, you see the ancestors.
43
142557
2372
在家譜的中間可以看到祖先。
02:24
And as we go to the periphery, you see the descendants.
44
144953
2604
在外圍則是後代。
02:27
This tree has seven generations, approximately.
45
147581
3102
這個家譜樹大約涵蓋了七個世代。
02:31
Now, this is what happens when we increase the number of individuals
46
151692
3234
當我們把人數增加到七萬人時,
02:34
to 70,000 people --
47
154950
1828
就會變成這樣——
02:36
still a tiny subset of all the data that we have.
48
156802
4330
相對我們所有的資料, 這仍然只是冰山一角。
02:41
Despite that, you can already see the formation of gigantic family trees
49
161629
4813
儘管如此,各位已經可以 看出有巨大的家譜樹形成了,
02:46
with many very distant relatives.
50
166466
2655
當中有許多遠親。
02:49
Thanks to the hard work of our genealogists,
51
169610
3134
仰賴家譜學者的努力,
02:52
we can go back in time hundreds of years ago.
52
172768
3103
我們可以回到數百年前。
02:56
For example, here is Alexander Hamilton,
53
176418
3441
比如,這是亞歷山大 · 漢密爾頓,
02:59
who was born in 1755.
54
179883
2475
生於 1755 年。
03:02
Alexander was the first US Secretary of the Treasury,
55
182872
3764
亞歷山大是美國第一位財政部長,
03:06
but mostly known today due to a popular Broadway musical.
56
186660
3831
但主要由於一部流行的 百老匯音樂劇而廣為人知。
03:11
We found that Alexander has deeper connections in the showbiz industry.
57
191137
4922
我們發現亞歷山大 在娛樂圈有更深厚的人脈。
03:16
In fact, he's a blood relative of ...
58
196083
2111
事實上,他是……
03:18
Kevin Bacon!
59
198781
1220
凱文貝肯的血親!
03:20
(Laughter)
60
200025
2032
(笑聲)
03:22
Both of them are descendants of a lady from Scotland
61
202081
2606
他們兩人都是十三世紀
03:24
who lived in the 13th century.
62
204711
2314
一位蘇格蘭女子的後裔。
03:27
So you can say that Alexander Hamilton
63
207049
3102
所以,可以說亞歷山大漢密爾頓
03:30
is 35 degrees of Kevin Bacon genealogy.
64
210175
3188
是凱文貝肯的三十五度宗譜。 (改自「六度分離」)
03:33
(Laughter)
65
213387
1441
(笑聲)
03:34
And our tree has millions of stories like that.
66
214852
3230
我們的家譜樹有數百萬個 像這樣的故事。
03:40
We invested significant efforts to validate the quality of our data.
67
220113
4890
我們投入許多心力 去驗證我們資料的品質。
03:45
Using DNA, we found that .3 percent of the mother-child connections in our data
68
225027
5391
利用 DNA,我們發現,
我們的資料中有 0.3% 的 母子關係是錯的,
03:50
are wrong,
69
230442
1250
03:51
which could match the adoption rate in the US pre-Second World War.
70
231716
3591
這很符合在二次大戰之前 美國的領養率。
03:56
For the father's side,
71
236847
1785
就父系的這一面來說,
03:58
the news is not as good:
72
238656
1961
狀況就沒這麼好了:
04:02
1.9 percent of the father-child connections in our data are wrong.
73
242149
5600
我們的資料中,1.9% 的 父子關係是錯的。
04:07
And I see some people smirk over here.
74
247773
2363
我看到這邊有些人在笑。
04:10
It is what you think --
75
250160
1717
就如各位所想的——
04:11
there are many milkmen out there.
76
251901
1789
世界上有很多師奶殺手級的男人。
04:13
(Laughter)
77
253714
1064
(笑聲)
04:14
However, this 1.9 percent error rate in patrilineal connections
78
254802
3989
然而,這 1.9% 的父子關係錯誤率
不是我們數據獨有的 。
04:18
is not unique to our data.
79
258815
1769
04:20
Previous studies found a similar error rate
80
260608
3069
過去用臨床等級家譜所做的研究,
04:23
using clinical-grade pedigrees.
81
263701
2021
也有發現近似的錯誤率。
04:26
So the quality of our data is good,
82
266254
2525
所以我們的資料品質算不錯,
04:28
and that should not be a surprise.
83
268803
2133
那並不讓人意外。
04:30
Our genealogists have a profound, vested interest
84
270960
3776
我們的系譜學家對正確記錄
04:34
in correctly documenting their family history.
85
274760
3668
他們的家族史有著濃厚的興趣。
04:40
We can leverage this data to learn quantitative information about humanity,
86
280594
4591
我們可以善用這些資料, 來了解人類的量化資訊,
04:45
for example, questions about demography.
87
285209
2596
比如,人口統計相關的問題。
04:47
Here is a look at all our profiles on the map of the world.
88
287829
3857
這是我們的資料在世界地圖上的樣子。
04:52
Each pixel is a person that lived at some point.
89
292250
4481
每一個畫素就是 活在某個時點的一個人。
04:56
And since we have so much data,
90
296755
1680
因為我們有非常多資料,
04:58
you can see the contours of many countries,
91
298459
2781
各位可以看見許多國家的輪廓,
05:01
especially in the Western world.
92
301264
2099
特別是西方世界的國家。
05:03
In this clip, we stratified the map that I've showed you
93
303387
3548
在這段影片中,我們根據 1400~1900 年間出生的人,
05:06
based on the year of births of individuals from 1400 to 1900,
94
306959
5072
將剛才那張地圖做分層,
05:12
and we compared it to known migration events.
95
312055
2766
再將結果和已知的 移民事件做比對。
05:15
The clip is going to show you that the deepest lineages in our data
96
315482
3165
這支影片會讓各位看到, 我們資料中最深遠的連結,
05:18
go all the way back to the UK,
97
318671
1627
會一路連到記錄 保存得比較好的英國,
05:20
where they had better record keeping,
98
320322
1808
05:22
and then they spread along the routes of Western colonialism.
99
322154
3282
接著再隨西方殖民路線散播出去。
05:25
Let's watch this.
100
325460
1322
咱們來看看影片。
05:27
(Music)
101
327143
1609
(音樂)
05:28
[Year of birth: ]
102
328776
2341
〔出生年:〕
05:31
[1492 - Columbus sails the ocean blue]
103
331705
1836
〔1492 年:哥倫布藍色海洋航行時期〕
05:35
[1620 - Mayflower lands in Massachusetts]
104
335661
2000
〔1620 年:五月花號在麻州靠岸〕
05:38
[1652 - Dutch settle in South Africa]
105
338726
1775
〔1652 年:荷蘭人在南非定居〕
05:44
[1788 - Great Britain penal transportation to Australia starts]
106
344321
3186
〔1788 年:英國開始將受刑者運往澳洲〕
05:47
[1836 - First migrants use Oregon Trail]
107
347531
1927
〔1836 年:奧勒岡小徑 初次被移民使用〕
05:50
[all activity]
108
350149
3183
〔所有活動〕
05:55
I love this movie.
109
355851
1543
我很愛這支影片。
05:57
Now, since these migration events are giving the context of families,
110
357418
5093
既然有這些移民事件 作為家族的脈絡,
06:02
we can ask questions such as:
111
362535
2183
我們就能問像這樣的問題:
06:04
What is the typical distance between the birth locations
112
364742
3470
先生和太太的出生地,
06:08
of husbands and wives?
113
368236
2812
通常距離多遠?
06:11
This distance plays a pivotal role in demography,
114
371072
3677
在人口統計學上, 這距離扮演很關鍵的角色,
06:14
because the patterns in which people migrate to form families
115
374773
3681
因為人們遷移建構家庭的模式
06:18
determine how genes spread in geographical areas.
116
378478
3713
會決定基因在地理 區域上如何散播。
06:22
We analyzed this distance using our data,
117
382706
2328
我們用我們的資料 來分析這個距離,
06:25
and we found that in the old days,
118
385058
2290
我們發現,在過去 用的方式並不困難。
06:27
people had it easy.
119
387372
1230
06:28
They just married someone in the village nearby.
120
388626
2594
他們只會和鄰近村落的人結婚。
06:31
But the Industrial Revolution really complicated our love life.
121
391958
3705
但,工業革命讓我們的 愛情生活變複雜了。
06:35
And today, with affordable flights and online social media,
122
395687
4560
現今,機票大家可以付擔得起, 再加上線上社群媒體,
06:40
people typically migrate more than 100 kilometers from their place of birth
123
400271
4828
人們通常從出生地遷移一百多公里,
06:45
to find their soul mate.
124
405123
1504
去尋找靈魂伴侶。
06:48
So now you might ask:
125
408524
1187
現在各位可能會問: 好吧,從一個地方遷移到另一個地方
06:49
OK, but who does the hard work of migrating from places to places
126
409735
4496
去建構家庭的苦差事是誰在做呢?
06:54
to form families?
127
414255
1269
06:55
Are these the males or the females?
128
415548
3727
是男方或女方?
06:59
We used our data to address this question,
129
419752
2155
我們用我們的資料來解這個問題,
07:01
and at least in the last 300 years,
130
421931
2594
至少,在過去三百年間,
07:04
we found that the ladies do the hard work
131
424549
3883
我們發現從一地移民到另一地
去組成家庭的苦差事是女方在做。
07:08
of migrating from places to places to form families.
132
428456
2996
07:11
Now, these results are statistically significant,
133
431476
3101
這些結果在統計上是顯著的,
07:14
so you can take it as scientific fact that males are lazy.
134
434601
3471
所以男人比較懶是有科學根據的。
07:18
(Laughter)
135
438096
3156
(笑聲)
07:21
We can move from questions about demography
136
441276
2536
我們可以從人口統計相關的問題
07:23
and ask questions about human health.
137
443836
2913
換到詢問人類健康相關的問題。
07:26
For example, we can ask
138
446773
1487
比如,我們可以問
07:28
to what extent genetic variations account for differences in life span
139
448284
4963
人與人之間的壽命差異,
受到遺傳變異的影響有多大?
07:33
between individuals.
140
453271
1194
07:34
Previous studies analyzed the correlation of longevity between twins
141
454988
4530
過去有研究分析 雙胞胎壽命的相關性
07:39
to address this question.
142
459542
1442
來解答這個問題。
07:41
They estimated that the genetic variations account for
143
461411
2667
他們估計,人與人 之間的壽命差異,
07:44
about a quarter of the differences in life span between individuals.
144
464102
4040
有四分之一是來自遺傳變異。
07:48
But twins can be correlated due to so many reasons,
145
468688
2598
但,雙胞胎之間的關聯性 有許多可能成因,
07:51
including various environmental effects
146
471310
2304
包括各種環境的影響,
07:53
or a shared household.
147
473638
1622
或共同的家庭。
07:56
Large family trees give us the opportunity to analyze both close relatives,
148
476411
3753
大型家譜樹讓我們有機會 分析這些近親,
08:00
such as twins,
149
480188
1207
比如雙胞胎,
08:01
all the way to distant relatives, even fourth cousins.
150
481419
2917
到遠房親戚,甚至第四代表親。
08:04
This way we can build robust models
151
484749
2689
這樣我們就能建立穩健的模型,
08:07
that can tease apart the contribution of genetic variations
152
487462
3708
從環境因素中
分離出遺傳變異的貢獻來。
08:11
from environmental factors.
153
491194
1717
08:13
We conducted this analysis using our data,
154
493379
2899
我們用我們的資料進行這項分析,
08:16
and we found that genetic variations explain only 15 percent
155
496302
5791
我們發現,遺傳變異只解釋了
15% 的個體壽命差異 。
08:22
of the differences in life span between individuals.
156
502117
2806
08:26
That is five years, on average.
157
506760
2756
平均而言,就是五年之差。
08:30
So genes matter less than what we thought before to life span.
158
510316
4708
所以,基因對壽命的影響 沒有我們以前想的那麼大。
08:35
And I find it great news,
159
515675
2136
我認為這是大好消息,
08:38
because it means that our actions can matter more.
160
518438
3293
因為那就表示我們的行為 與壽命有較大的關係。
08:42
Smoking, for example, determines 10 years of our life expectancy --
161
522533
4274
比如,抽菸就能影響 十年的壽命——
08:46
twice as much as what genetics determines.
162
526831
2646
是基因影響的兩倍。
08:50
We can even have more surprising findings
163
530236
2289
我們還有更驚人的發現,
08:52
as we move from family trees
164
532549
1492
就在我們從做家譜樹到
08:54
and we let our genealogists document and crowdsource DNA information.
165
534065
4732
請家譜學家幫我們整理 DNA 資訊 並做眾包後發現的。
08:58
And the results can be amazing.
166
538821
2024
結果很驚人。
09:01
It might be hard to imagine, but Uncle Bernie and his friends
167
541255
3915
可能很難想像, 但柏尼叔叔和他的朋友
09:05
can create DNA forensic capabilities
168
545194
2646
所創造出來的 DNA 法醫鑑定能力
09:07
that even exceed what the FBI currently has.
169
547864
3559
甚至比目前的聯邦調查局還要強。
09:12
When you place the DNA on a large family tree,
170
552862
2404
當你把 DNA 放入大型的家譜樹中,
09:15
you effectively create a beacon
171
555290
2117
就能有效地創造出 如燈塔般的光束,
09:17
that illuminates the hundreds of distant relatives
172
557431
2634
從 DNA 的源頭者放射出與
09:20
that are all connected to the person that originated the DNA.
173
560089
3490
數百名遠親的連結光束。
09:24
By placing multiple beacons on a large family tree,
174
564505
2913
在家譜中放入數個燈塔,
09:27
you can now triangulate the DNA of an unknown person,
175
567442
3720
就能針對一個未知的人 做 DNA 三角定位,
09:31
the same way that the GPS system uses multiple satellites
176
571186
3938
原理和 GPS 使用多個衛星
來定位一個地點的方法相同。
09:35
to find a location.
177
575148
1324
09:37
The prime example of the power of this technique
178
577226
3624
有個主要的例子可以說明 這項技術有多強大,
09:40
is capturing the Golden State Killer,
179
580874
2675
那就是追捕金州(加州)殺手,
09:44
one of the most notorious criminals in the history of the US.
180
584612
4528
他是美國史上 最惡名昭彰的罪犯之一。
09:49
The FBI had been searching for this person for over 40 years.
181
589164
5892
聯邦調查局尋找這個人
已經超過四十年。
09:55
They had his DNA,
182
595588
1835
他們有他的 DNA,
09:57
but he never showed up in any police database.
183
597447
3350
但他從來沒有出現在 任何警方資料庫中。
10:01
About a year ago, the FBI consulted a genetic genealogist,
184
601447
4712
大約一年前,聯邦調查局 去諮詢了一位基因系譜學家,
10:06
and she suggested that they submit his DNA to a genealogy service
185
606183
3950
她建議他們將他的 DNA 上傳到一項家譜服務中,
10:10
that can locate distant relatives.
186
610157
2398
這項服務能找出遠親。
10:13
They did that,
187
613117
1156
他們照做了,
10:14
and they found a third cousin of the Golden State Killer.
188
614297
3692
找到了金州殺手的第三代表親。
10:18
They built a large family tree,
189
618013
2344
他們建立了一個很大的家譜樹,
10:20
scanned the different branches of that tree,
190
620381
2102
掃描樹狀圖上的不同分支,
10:22
until they found a profile that exactly matched
191
622507
2565
直到他們找到完美匹配
金州殺手資訊的檔案。
10:25
what they knew about the Golden State Killer.
192
625096
2581
10:27
They obtained DNA from this person and found a perfect match
193
627701
3592
他們從這個人身上取得 DNA
並發現跟他們手上的 DNA 相匹配。
10:31
to the DNA they had in hand.
194
631317
2025
10:33
They arrested him and brought him to justice
195
633366
2350
他們逮捕了這個人, 這麼多年後終於將他繩之以法。
10:35
after all these years.
196
635740
1424
10:38
Since then, genetic genealogists have started working with
197
638172
3241
從那之後,基因系譜學家就開始
和美國執法單位合作,
10:41
local US law enforcement agencies
198
641437
2668
10:44
to use this technique in order to capture criminals.
199
644129
3362
使用這項技術來抓罪犯。
10:47
And only in the past six months,
200
647521
2681
光是在過去六個月,
10:50
they were able to solve over 20 cold cases with this technique.
201
650226
4296
他們就用這項技術破了 超過二十件長年未破的案件。
10:56
Luckily, we have people like Uncle Bernie and his fellow genealogists
202
656203
4636
很幸運,我們有柏尼叔叔 和他的家譜學家夥伴們。
11:01
These are not amateurs with a self-serving hobby.
203
661045
2994
這些人不只是業餘愛好者。
11:04
These are citizen scientists with a deep passion to tell us who we are.
204
664602
6419
他們還是滿懷熱情
能說「我們是誰」的公民科學家,
11:11
And they know that the past can hold a key to the future.
205
671065
4458
他們知道過去是通向未來的鑰匙。
11:16
Thank you very much.
206
676067
1183
感謝各位。
11:17
(Applause)
207
677314
3469
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog