Torsten Reil: Using biology to make better animation

33,133 views ・ 2008-07-08

TED


请双击下面的英文字幕来播放视频。

翻译人员: Xiaoqiao Xie 校对人员: Felix Chen
00:15
I'm going to talk about a technology that we're developing at Oxford now,
0
15160
4000
我想谈谈一个我们正在牛津开发的技术,
00:19
that we think is going to change the way that
1
19160
3000
我们认为这个技术可以改变
00:22
computer games and Hollywood movies are being made.
2
22160
3000
电脑游戏和好莱坞电影的制作方法
00:26
That technology is simulating humans.
3
26160
3000
这个技术就是模拟人类。
00:29
It's simulated humans with a simulated body
4
29160
3000
这个模拟人类有电脑模拟的身体,
00:32
and a simulated nervous system to control that body.
5
32160
3000
和电脑模拟的神经系统来控制身体。
00:36
Now, before I talk more about that technology,
6
36160
3000
现在,在我开始讲解这个技术之前,
00:39
let's have a quick look at what human characters look like
7
39160
3000
让我们先快速浏览一下在现今的电脑游戏中
00:42
at the moment in computer games.
8
42160
3000
游戏人物角色是什么样子的。
00:45
This is a clip from a game called "Grand Theft Auto 3."
9
45160
3000
这是从一个名为“侠盗飞车3”的游戏中摘出的片断。
00:48
We already saw that briefly yesterday.
10
48160
2000
我们昨天已经见过了。
00:50
And what you can see is -- it is actually a very good game.
11
50160
3000
可以看出,这是个非常精美的游戏。
00:53
It's one of the most successful games of all time.
12
53160
3000
这是有史以来最成功的电脑游戏之一。
00:56
But what you'll see is that all the animations in this game are very repetitive.
13
56160
4000
但是你也可以发现这个游戏中所有的模拟动作都有很大的重复性。
01:00
They pretty much look the same.
14
60160
2000
所有的动作看起来都一样。
01:02
I've made him run into a wall here, over and over again.
15
62160
3000
我让这个人物一次又一次地撞到墙上,
01:05
And you can see he looks always the same.
16
65160
2000
你可以发现每次它(的反应)看起来都一样。
01:07
The reason for that is that these characters
17
67160
3000
这是因为这些动画人物
01:10
are actually not real characters.
18
70160
2000
并不是真正的“人”,
01:12
They are a graphical visualization of a character.
19
72160
4000
它们是“人”的虚拟图像。
01:16
To produce these animations, an animator at a studio has to anticipate
20
76160
5000
设计师做出这些动画人物的时候
01:21
what's going to happen in the actual game,
21
81160
3000
得要猜想游戏中将会发生什么情境,
01:24
and then has to animate that particular sequence.
22
84160
3000
然后还得根据这些特定的情境画出(动画人物的反应)。
01:27
So, he or she sits down, animates it, and tries to anticipate what's going to happen,
23
87160
4000
所以设计师得坐下来,画出动画,还要猜想将会发生什么,
01:31
and then these particular animations are just played back
24
91160
3000
所以这些人物的反应都是重复播放的设定动作,
01:34
at appropriate times in the computer game.
25
94160
3000
只是根据电脑游戏中特定的情境播放罢了。
01:37
Now, the result of that is that you can't have real interactivity.
26
97160
5000
结果游戏中并没有真的互动。
01:42
All you have is animations that are played back
27
102160
3000
有的仅仅是重复播放的动画,
01:45
at more or less the appropriate times.
28
105160
2000
关键只是选择合适的时机罢了。
01:47
It also means that games aren't really going to be as surprising as they could be,
29
107160
5000
这也说明现在的电脑游戏并不具备它们应有的新鲜度,
01:52
because you only get out of it, at least in terms of the character,
30
112160
3000
因为所有你能得到的动画效果,至少在人物动作方面,
01:55
what you actually put into it.
31
115160
2000
仅仅是设计者储存在游戏中的那些。
01:57
There's no real emergence there.
32
117160
2000
并不会有真正的效果。
01:59
And thirdly, as I said, most of the animations are very repetitive because of that.
33
119160
4000
第三点,如我所说,绝大部分的动画重复性都很大,也是因为都是预存的。
02:03
Now, the only way to get around that
34
123160
2000
唯一的解决办法
02:05
is to actually simulate the human body
35
125160
2000
就是实实在在地模拟人体的反应,
02:07
and to simulate that bit of the nervous system of the brain that controls that body.
36
127160
5000
模拟人的神经系统是怎样控制身体的运动的。
02:12
And maybe, if I could have you for a quick demonstration
37
132160
3000
这样吧,如果我能借你做个演示
02:15
to show what the difference is --
38
135160
2000
来展示(真人的反应)的不同 —
02:17
because, I mean, it's very, very trivial.
39
137160
4000
因为,要知道,有的差异是很微妙的。
02:21
If I push Chris a bit, like this, for example, he'll react to it.
40
141160
3000
好比我轻轻推克里斯一下,就像这样,他就会给出反应。
02:24
If I push him from a different angle, he'll react to it differently,
41
144160
3000
如果我从不同的角度推他,他的身体反应会不同。
02:27
and that's because he has a physical body,
42
147160
2000
那是因为他有一个真正的身体,
02:29
and because he has the motor skills to control that body.
43
149160
3000
他有那些运动技能,能够控制他的身体。
02:32
It's a very trivial thing.
44
152160
2000
这是非常微妙的。
02:34
It's not something you get in computer games at the moment, at all.
45
154160
2000
这不是你能从现今的电脑游戏中得到的反应。
02:36
Thank you very much. Chris Anderson: That's it?
46
156160
2000
谢了克里斯。(克里斯·安德森 问:“这样就行了?”)
02:38
Torsten Reil: That's it, yes.
47
158160
2000
是的,就这样。
02:40
So, that's what we're trying to simulate --
48
160160
1000
这就是我们试图模拟的 —
02:41
not Chris specifically, I should say, but humans in general.
49
161160
4000
不是单单模拟 Chris 这个人,而是,所有的真人身体的反应。
02:46
Now, we started working on this a while ago at Oxford University,
50
166160
5000
在牛津大学我们已经开始一段时间的研究了,
02:51
and we tried to start very simply.
51
171160
2000
我们一开始做得很简单,
02:53
What we tried to do was teach a stick figure how to walk.
52
173160
3000
仅仅是训练这个火柴人走路。
02:56
That stick figure is physically stimulated. You can see it here on the screen.
53
176160
3000
这个火柴人的身体是能接受信号刺激的。你在屏幕上能看见。
02:59
So, it's subject to gravity, has joints, etc.
54
179160
3000
所以它能对重力有反应,它也有关节,等等。
03:02
If you just run the simulation, it will just collapse, like this.
55
182160
3000
如果你开始模拟程序,它会跌倒,就像这样。
03:05
The tricky bit is now to put an AI controller in it
56
185160
4000
现在难就难在怎样把人工智能控制器放进去,
03:09
that actually makes it work.
57
189160
2000
让它顺利工作。
03:11
And for that, we use the neural network, which we based on
58
191160
3000
我们用的是模拟的神经系统,
03:14
that part of the nervous system that we have in our spine
59
194160
2000
它是根据真的人体的脊髓中
03:16
that controls walking in humans.
60
196160
2000
控制走路的那部分神经系统设计的。
03:18
It's called the central pattern generator.
61
198160
2000
名字叫中枢模式发生器。
03:20
So, we simulated that as well, and then the really tricky bit
62
200160
3000
我们模拟了这个神经系统之后,真正的难点
03:23
is to teach that network how to walk.
63
203160
2000
就是教会这个神经系统如何控制身体来走路。
03:25
For that we used artificial evolution -- genetic algorithms.
64
205160
4000
为了解决这个问题我们使用的是人工进化系统 — 基因模拟算法。
03:29
We heard about those already yesterday,
65
209160
2000
我们昨天也听说过了。
03:31
and I suppose that most of you are familiar with that already.
66
211160
3000
这里我就当你们大部分人都知道那是怎么回事。
03:34
But, just briefly, the concept is that
67
214160
2000
但是,简短地说,这个概念是
03:36
you create a large number of different individuals --
68
216160
3000
你首先制造出一大批个体来,各个不同,
03:39
neural networks, in this case --
69
219160
2000
这里我们做的是一大批神经系统。
03:41
all of which are random at the beginning.
70
221160
2000
开始时,每个的工作模式都是随机的。
03:43
You hook these up -- in this case, to the virtual muscles
71
223160
2000
你把这些接到这个火柴人上 —这里我们把这些神经系统
03:45
of that two-legged creature here --
72
225160
3000
接到这些两腿人的模拟肌肉系统上 —
03:48
and hope that it does something interesting.
73
228160
3000
然后就等着它们随机工作。
03:51
At the beginning, they're all going to be very boring.
74
231160
2000
一开始火柴人的反应都挺没劲的。
03:53
Most of them won't move at all,
75
233160
2000
绝大部分都不动,
03:55
but some of them might make a tiny step.
76
235160
2000
有些动起来了,也仅仅是迈一小步。
03:57
Those are then selected by the algorithm,
77
237160
2000
这些让火柴人动起来的神经系统会被挑出来,
03:59
reproduced with mutation and recombinations to introduce sex as well.
78
239160
4000
用来生产下一代,其中加入了基因变异和基因重组,也加入了性别。
04:03
And you repeat that process over and over again,
79
243160
2000
然后你不断重复这些步骤,
04:05
until you have something that walks --
80
245160
2000
直到你得到真的能够让火柴人走路的神经系统 —
04:07
in this case, in a straight line, like this.
81
247160
2000
就像这里这个能走一条直线的。
04:09
So that was the idea behind this.
82
249160
2000
这就是这个实验想做的。
04:11
When we started this, I set up the simulation one evening.
83
251160
3000
当我们开始做时,我在一天晚上启动了一个实验,
04:14
It took about three to four hours to run the simulation.
84
254160
3000
整个模拟试验一般要三四个小时。
04:17
I got up the next morning, went to the computer and looked at the results,
85
257160
4000
第二天早上起来我跑去看结果,
04:21
and was hoping for something that walked in a straight line,
86
261160
3000
满怀希望能得到一个走直线的动画人,
04:24
like I've just demonstrated,
87
264160
2000
就像我给你们看的那个,
04:26
and this is what I got instead.
88
266160
2000
结果我看到的是这个。
04:28
(Laughter)
89
268160
10000
(笑声)
04:38
So, it was back to the drawing board for us.
90
278160
3000
我们又得从头来过。
04:42
We did get it to work eventually,
91
282160
3000
最后我们当然做成了,
04:45
after tweaking a bit here and there.
92
285160
2000
改改这里改改那里。
04:47
And this is an example of a successful evolutionary run.
93
287160
3000
这里是个进化成功的例子。
04:50
So, what you'll see in a moment is a very simple biped
94
290160
3000
你马上将要看到的是一个非常简单的两足动物
04:53
that's learning how to walk using artificial evolution.
95
293160
3000
用人工进化的方法学习如何走路。
04:56
At the beginning, it can't walk at all,
96
296160
2000
一开始它一点也走不了,
04:58
but it will get better and better over time.
97
298160
2000
但是走的越来越好。
05:02
So, this is the one that can't walk at all.
98
302160
3000
这里是那个一点也不会走路的。
05:05
(Laughter)
99
305160
6000
(笑声)
05:11
Now, after five generations of applying evolutionary process,
100
311160
3000
现在,当运用了人工进化,五代之后
05:14
the genetic algorithm is getting a tiny bit better.
101
314160
3000
基因算法变得好些了。
05:17
(Laughter)
102
317160
8000
(笑声)
05:25
Generation 10 and it'll take a few steps more --
103
325160
2000
第十代,这个两足动物能多走几步了。
05:31
still not quite there.
104
331160
2000
但是还是不太行。
05:34
But now, after generation 20, it actually walks in a straight line without falling over.
105
334160
5000
现在,二十代后,它能真的走出一条直线来,也不会跌到。
05:40
That was the real breakthrough for us.
106
340160
3000
这对我们来说是个真正的突破。
05:43
It was, academically, quite a challenging project,
107
343160
3000
这是个学术上非常有挑战性的项目,
05:46
and once we had reached that stage, we were quite confident
108
346160
3000
而且当我们能做到这一步的时候,我们就有信心
05:49
that we could try and do other things as well with this approach --
109
349160
3000
能够挑战其他的目标,比如用这个方法 —
05:52
actually simulating the body
110
352160
2000
真的来模拟人体,
05:54
and simulating that part of the nervous system that controls it.
111
354160
3000
模拟用来控制身体运动的那部分神经。
05:57
Now, at this stage, it also became clear that this could be very exciting
112
357160
3000
并且那个阶段我们确信这个技术将会
06:00
for things like computer games or online worlds.
113
360160
3000
对电脑游戏或者网络世界有很大意义。
06:03
What you see here is the character standing there,
114
363160
2000
现在你看到的是一个模拟人物,站在那里,
06:05
and there's an obstacle that we put in its way.
115
365160
2000
前面我们放了一个障碍物。
06:07
And what you see is, it's going to fall over the obstacle.
116
367160
5000
你将会看到,它会被障碍物绊倒。
06:12
Now, the interesting bit is, if I move the obstacle a tiny bit to the right,
117
372160
3000
现在,有趣的是,如果我把障碍物向右边挪一点,
06:15
which is what I'm doing now, here,
118
375160
2000
就像这样,
06:17
it will fall over it in a completely different way.
119
377160
4000
它会以一种非常不同的方式跌倒。
06:24
And again, if you move the obstacle a tiny bit, it'll again fall differently.
120
384160
5000
再来一次,如果你把障碍物再挪一点,它跌到的方式又会不同。
06:29
(Laughter)
121
389160
2000
(笑声)
06:31
Now, what you see, by the way, at the top there,
122
391160
2000
现在,你看到的是,喔,顺便一提,在屏幕的上面,
06:33
are some of the neural activations being fed into the virtual muscles.
123
393160
3000
是我们传入肌肉的一些神经的活动,
06:36
Okay. That's the video. Thanks.
124
396160
2000
好的,这里就是这个片段。谢谢。
06:38
Now, this might look kind of trivial, but it's actually very important
125
398160
3000
好的,这看起来微不足道但是其是非常重要,
06:41
because this is not something you get at the moment
126
401160
2000
因为这是现今你在任何的
06:43
in any interactive or any virtual worlds.
127
403160
2000
虚拟世界或者互动游戏中能够看到的。
06:48
Now, at this stage, we decided to start a company and move this further,
128
408160
3000
现在,从这个阶段,我们决定成立一个公司,开始进一步的研究,
06:51
because obviously this was just a very simple, blocky biped.
129
411160
3000
因为很明显这只是个非常简单的块状两足动物,
06:54
What we really wanted was a full human body.
130
414160
2000
我们真的想做的是一个完整的模拟人体。
06:56
So we started the company.
131
416160
1000
这样我们成立了公司。
06:57
We hired a team of physicists, software engineers and biologists
132
417160
5000
我们吸收了一些物理学家,软件工程师和生物学家
07:02
to work on this, and the first thing we had to work on
133
422160
3000
一起工作,我们做的第一件事是
07:05
was to create the human body, basically.
134
425160
4000
做出一个模拟人体。
07:09
It's got to be relatively fast, so you can run it on a normal machine,
135
429160
3000
这个模拟人需要很轻巧,这样你才能在一般的电脑上运作。
07:12
but it's got to be accurate enough, so it looks good enough, basically.
136
432160
3000
但是也需要非常地准确,才会好看。
07:15
So we put quite a bit of biomechanical knowledge into this thing,
137
435160
3000
所以我们夹了不少生化科技进去,
07:18
and tried to make it as realistic as possible.
138
438160
4000
使它看起来像是真的。
07:22
What you see here on the screen right now
139
442160
2000
这里你在屏幕上看到的,
07:24
is a very simple visualization of that body.
140
444160
2000
是这个模拟人体的一个简单版,
07:26
I should add that it's very simple to add things like hair, clothes, etc.,
141
446160
4000
值得一提的是给它加上头发,衣服之类的是非常简单的。
07:30
but what we've done here is use a very simple visualization,
142
450160
3000
但是我们决定做得很简洁
07:33
so you can concentrate on the movement.
143
453160
2000
这样大家的注意力才会集中在它的动作上。
07:35
Now, what I'm going to do right now, in a moment,
144
455160
3000
现在,我想做的是,
07:38
is just push this character a tiny bit and we'll see what happens.
145
458160
3000
推这个模拟人一下下,看看会发生什么。
07:46
Nothing really interesting, basically.
146
466160
2000
没什么有趣的。
07:48
It falls over, but it falls over like a rag doll, basically.
147
468160
3000
它跌到了,像个假娃娃。
07:51
The reason for that is that there's no intelligence in it.
148
471160
3000
这是因为我们没有放人工智能进去。
07:54
It becomes interesting when you put artificial intelligence into it.
149
474160
4000
当我们放人工智能进去就有趣多了。
07:58
So, this character now has motor skills in the upper body --
150
478160
4000
现在这个模拟人的上半身有运动技能。
08:02
nothing in the legs yet, in this particular one.
151
482160
2000
下半身没有,在这个人体里。
08:04
But what it will do -- I'm going to push it again.
152
484160
3000
但是马上你会看到 — 我现在在推它一下,
08:07
It will realize autonomously that it's being pushed.
153
487160
2000
它有自主意识被推了,
08:09
It's going to stick out its hands.
154
489160
2000
它会张开双臂,
08:11
It's going to turn around into the fall, and try and catch the fall.
155
491160
3000
向跌倒的方向转身,试图撑住。
08:20
So that's what you see here.
156
500160
2000
这就是你在这里看到的。
08:22
Now, it gets really interesting
157
502160
2000
如果下半身也加上人工智能,
08:24
if you then add the AI for the lower part of the body as well.
158
504160
4000
就更有趣了。
08:28
So here, we've got the same character.
159
508160
2000
这里看到的是同一个模拟人,
08:30
I'm going to push it a bit harder now,
160
510160
2000
我现在推得更狠一些,
08:32
harder than I just pushed Chris.
161
512160
2000
比刚才我推克里斯更用力些。
08:34
But what you'll see is -- it's going to receive a push now from the left.
162
514160
4000
你将看到我从左边推它。
08:41
What you see is it takes steps backwards,
163
521160
2000
你将会看到它向后退 —
08:43
it tries to counter-balance,
164
523160
2000
试图平衡自己,
08:45
it tries to look at the place where it thinks it's going to land.
165
525160
4000
试图向下看。
08:49
I'll show you this again.
166
529160
2000
我马上播放给你看。
08:51
And then, finally hits the floor.
167
531160
3000
最后它倒到地上。
08:55
Now, this becomes really exciting
168
535160
3000
现在当你从不同角度推它的时候,
08:58
when you push that character in different directions, again, just as I've done.
169
538160
5000
它的反应就有趣多了,就像我刚做的。
09:03
That's something that you cannot do right now.
170
543160
4000
这是你现在得不到的。
09:07
At the moment, you only have empty computer graphics in games.
171
547160
3000
现在你从游戏里只能看到空洞的动画图像。
09:10
What this is now is a real simulation. That's what I want to show you now.
172
550160
3000
这里我给你看的是真的模拟人生。
09:13
So, here's the same character with the same behavior I've just shown you,
173
553160
3000
这里是同一个模拟人,能作相同的反应。
09:16
but now I'm just going to push it from different directions.
174
556160
2000
现在我从不同角度推它,
09:18
First, starting with a push from the right.
175
558160
2000
先从右边退,
09:23
This is all slow motion, by the way, so we can see what's going on.
176
563160
3000
这是慢动作这样我们能看得更清楚。
09:26
Now, the angle will have changed a tiny bit,
177
566160
3000
现在我换个角度,
09:29
so you can see that the reaction is different.
178
569160
4000
你看一看到它的反应是不同的。
09:33
Again, a push, now this time from the front.
179
573160
3000
再来一次,推一下,从前面
09:37
And you see it falls differently.
180
577160
2000
你看它跌到的方式又变了。
09:39
And now from the left --
181
579160
2000
现在从左边。
09:43
and it falls differently.
182
583160
2000
又不一样。
09:45
That was really exciting for us to see that.
183
585160
2000
我们看到这个结果很激动,
09:47
That was the first time we've seen that.
184
587160
2000
这是第一次我们看到成果。
09:49
This is the first time the public sees this as well,
185
589160
2000
今天是第一次向公众发表。
09:51
because we have been in stealth mode.
186
591160
2000
因为我们还在保密阶段的左,
09:53
I haven't shown this to anybody yet.
187
593160
2000
我还没给人看过。
09:55
Now, just a fun thing:
188
595160
2000
现在,只是好玩,
09:57
what happens if you put that character --
189
597160
2000
看看如果我们把它放在不同情境会发生什么 —
09:59
this is now a wooden version of it, but it's got the same AI in it --
190
599160
2000
这是个木头人的版本,放了人工智能进去 —
10:01
but if you put that character on a slippery surface, like ice.
191
601160
2000
我们把它放在光滑的表面上,比如冰面。
10:03
We just did that for a laugh, just to see what happens.
192
603160
3000
我们这么做只是为了看看会发生什么滑稽的事。
10:06
(Laughter)
193
606160
1000
(笑声)
10:07
And this is what happens.
194
607160
2000
结果是这样。
10:09
(Laughter)
195
609160
3000
(笑声)
10:12
(Applause)
196
612160
3000
(鼓掌)
10:15
It's nothing we had to do about this.
197
615160
2000
我们没有人为的加东西进去。
10:17
We just took this character that I just talked about,
198
617160
2000
我们只是用了类似的模拟人,
10:19
put it on a slippery surface, and this is what you get out of it.
199
619160
3000
把它放在光滑的表面上,结果就是这样。
10:22
And that's a really fascinating thing about this approach.
200
622160
3000
这正是这个研究的过人之处,
10:26
Now, when we went to film studios and games developers
201
626160
3000
当我们把这个结果给电影工作者和游戏的设计者看的时候,
10:29
and showed them that technology, we got a very good response.
202
629160
3000
向他们展示这项技术,我们得到了很好的反响。
10:32
And what they said was, the first thing they need immediately is virtual stuntmen.
203
632160
4000
他们最需要的是虚拟替身。
10:36
Because stunts are obviously very dangerous, they're very expensive,
204
636160
4000
因为替身工作非常危险,雇替身的花费也很大。
10:40
and there are a lot of stunt scenes that you cannot do, obviously,
205
640160
2000
很多使用替身的片断还不能用真人,
10:42
because you can't really allow the stuntman to be seriously hurt.
206
642160
3000
因为这些特技太危险了,真人会受伤。
10:45
So, they wanted to have a digital version of a stuntman
207
645160
3000
所以他们很需要一个数码版的替身,
10:48
and that's what we've been working on for the past few months.
208
648160
2000
这就是我们过去几个月里做的项目。
10:50
And that's our first product that we're going to release in a couple of weeks.
209
650160
5000
这是我们的第一个产品,几周后会上市。
10:55
So, here are just a few very simple scenes of the guy just being kicked.
210
655160
5000
这里是一些非常简单的情境,比如这个人刚被踢了一脚。
11:00
That's what people want. That's what we're giving them.
211
660160
2000
这是电影公司需要的,我们只是按他们的需要做。
11:02
(Laughter)
212
662160
7000
(笑声)
11:09
You can see, it's always reacting.
213
669160
2000
你可以看到,模拟人总会反应,
11:11
This is not a dead body. This is a body who basically, in this particular case,
214
671160
4000
这不像是没有生命的个体。这是一个能够感觉到施力的身体,
11:15
feels the force and tries to protect its head.
215
675160
2000
在这个特定情境下,能够自我保护。
11:17
Only, I think it's quite a big blow again.
216
677160
2000
我认为这个看起来很真实,
11:19
You feel kind of sorry for that thing,
217
679160
2000
所以人们开始觉得不忍。
11:21
and we've seen it so many times now that
218
681160
2000
我们这些人看得次数太多了,
11:23
we don't really care any more.
219
683160
2000
已经漠不关心了。
11:25
(Laughter)
220
685160
1000
(笑声)
11:26
There are much worse videos than this, by the way, which I have taken out, but ...
221
686160
4000
很多片断更糟糕,我都不能给你们看。
11:31
Now, here's another one.
222
691160
2000
这里是另一个片断,
11:33
What people wanted as a behavior was to have an explosion,
223
693160
4000
他们要求的是一个对爆炸情境的反应,
11:37
a strong force applied to the character,
224
697160
2000
好像有一个强大的力量施加到这个人物身上,
11:39
and have the character react to it in midair.
225
699160
2000
这个人物需要在空中作反应。
11:41
So that you don't have a character that looks limp,
226
701160
2000
你不会想要一个软绵绵无生气的模拟人,
11:43
but actually a character that you can use in an action film straight away,
227
703160
3000
你要的是一个能够在动作电影中用的,
11:46
that looks kind of alive in midair as well.
228
706160
2000
在空中的反应看起来是活的模拟人。
11:48
So this character is going to be hit by a force,
229
708160
2000
现在这个模拟人会被重重一击,
11:50
it's going to realize it's in the air,
230
710160
2000
它会意识到自己飞到空中,
11:52
and it's going to try and, well,
231
712160
3000
它会试图,
11:55
stick out its arm in the direction where it's landing.
232
715160
2000
向它跌落的方向伸出手臂。
11:59
That's one angle; here's another angle.
233
719160
3000
这里是从一个角度看,这里是从另一个角度看。
12:02
We now think that the realism we're achieving with this
234
722160
2000
我们现在认为我们可以成功地
12:04
is good enough to be used in films.
235
724160
2000
使用这些电脑替身。
12:06
And let's just have a look at a slightly different visualization.
236
726160
3000
然我们看看一些不同的情境,
12:09
This is something I just got last night
237
729160
2000
这里是我昨晚上拿到的结果,
12:11
from an animation studio in London, who are using our software
238
731160
3000
伦敦的一个动画公司用我们的软件做的,
12:14
and experimenting with it right now.
239
734160
2000
他们正在实验把这个做到游戏中去。
12:16
So this is exactly the same behavior that you saw,
240
736160
3000
这是同一个模拟人,
12:19
but in a slightly better rendered version.
241
739160
4000
但是稍微精美一些的版本。
12:23
So if you look at the character carefully,
242
743160
3000
如果你仔细地看,
12:26
you see there are lots of body movements going on,
243
746160
2000
你可以看到很多的肢体动作,
12:28
none of which you have to animate like in the old days.
244
748160
2000
这些动作不需要你画出来,
12:30
Animators had to actually animate them.
245
750160
2000
用老方法动画人需要真的把它们画出来,
12:32
This is all happening automatically in the simulation.
246
752160
2000
这里都是自然而然在模拟人身上发生的。
12:34
This is a slightly different angle,
247
754160
2000
这是另一个角度,
12:39
and again a slow motion version of this.
248
759160
2000
还是慢动作。
12:41
This is incredibly quick. This is happening in real time.
249
761160
4000
这一切都发生得很快,实时发生的。
12:45
You can run this simulation in real time, in front of your eyes,
250
765160
2000
你可以实时跑这个程序,这些动作就会发生在你眼前。
12:47
change it, if you want to, and you get the animation straight out of it.
251
767160
3000
你可以改变这个程序,然后得到不同的动作。
12:50
At the moment, doing something like this by hand
252
770160
2000
目前,手工绘制出这些动作,
12:52
would take you probably a couple of days.
253
772160
2000
恐怕要花好几天。
12:55
This is another behavior they requested.
254
775160
3000
这是另一个他们需要的动作。
12:58
I'm not quite sure why, but we've done it anyway.
255
778160
2000
我不知道为什么,但是我们按需作活。
13:00
It's a very simple behavior that shows you the power of this approach.
256
780160
2000
这是个非常简单的特技但是你可以看到这个技术的潜力。
13:02
In this case, the character's hands
257
782160
2000
这里模拟人的手
13:04
are fixed to a particular point in space,
258
784160
2000
被固定在空中一个特定的点上,
13:06
and all we've told the character to do is to struggle.
259
786160
3000
然后我们让这个模拟人挣扎。
13:09
And it looks organic. It looks realistic.
260
789160
3000
它的动作看起来很自然,很真实。
13:12
You feel kind of sorry for the guy.
261
792160
2000
你甚至会为“他”难过。
13:14
It's even worse -- and that is another video I just got last night --
262
794160
3000
这个更残忍 — 这是另一个昨晚我才拿到的片断 —
13:17
if you render that a bit more realistically.
263
797160
2000
如果你把人物作得更真实一点。
13:23
Now, I'm showing this to you just to show you
264
803160
2000
现在我给你们看这个片断,
13:25
how organic it actually can feel, how realistic it can look.
265
805160
2000
你可以感受到这些动作有多自然,看起来多真实。
13:27
And this is all a physical simulation of the body,
266
807160
3000
而这全是因为我们有这个模拟的身体,
13:30
using AI to drive virtual muscles in that body.
267
810160
3000
我们用了人工智能来驾驭这些肌肉。
13:35
Now, one thing which we did for a laugh was
268
815160
3000
现在,我想给你们看一个只是做了好玩的片断
13:38
to create a slightly more complex stunt scene,
269
818160
2000
我们只是想做一个更复杂的特技,
13:40
and one of the most famous stunts is the one where James Bond
270
820160
3000
而一个非常著名的特技动作是当零零七
13:43
jumps off a dam in Switzerland and then is caught by a bungee.
271
823160
4000
在瑞士跳入一个大水库,然后被蹦极绳子救了。
13:48
Got a very short clip here.
272
828160
2000
这里是这个真的电影片断。
13:54
Yes, you can just about see it here.
273
834160
2000
你可以看到。
13:56
In this case, they were using a real stunt man. It was a very dangerous stunt.
274
836160
3000
这里他们请了一个真的特技演员,但是这是个非常危险的特技。
13:59
It was just voted, I think in the Sunday Times, as one of the most impressive stunts.
275
839160
3000
我想在“周日报导”上这个特技刚被评为最惊人的特技之一。
14:02
Now, we've just tried and -- looked at our character and asked ourselves,
276
842160
3000
这里,我们试着用我们的模拟人,然后问自己
14:05
"Can we do that ourselves as well?"
277
845160
2000
“我们的模拟特技人能做到么?”
14:07
Can we use the physical simulation of the character,
278
847160
2000
我们能不能用这个模拟的人物,
14:09
use artificial intelligence,
279
849160
2000
用我们的人工智能方法,
14:11
put that artificial intelligence into the character,
280
851160
2000
把人工智能放在模拟人身体里,
14:13
drive virtual muscles, simulate the way he jumps off the dam,
281
853160
4000
让控制肌肉,模拟真人跳入水库,
14:17
and then skydive afterwards,
282
857160
2000
跳进去,
14:19
and have him caught by a bungee afterwards?
283
859160
2000
然后被蹦极绳拉回来?
14:21
We did that. It took about altogether just two hours,
284
861160
3000
我们真的做到了。仅仅两个小时,
14:24
pretty much, to create the simulation.
285
864160
2000
就作出了这个模拟情境。
14:26
And that's what it looks like, here.
286
866160
2000
这里是它看起来的样子。
14:37
Now, this could do with a bit more work. It's still very early stages,
287
877160
3000
我们可以做得更好一点,这个研究还在初级阶段,
14:40
and we pretty much just did this for a laugh,
288
880160
2000
我们仅仅是作了好玩的。
14:42
just to see what we'd get out of it.
289
882160
2000
只是看看我们能做出什么来。
14:44
But what we found over the past few months
290
884160
2000
我们过去几个月的工作证明了
14:46
is that this approach -- that we're pretty much standard upon --
291
886160
3000
我们的技术是非常非常
14:49
is incredibly powerful.
292
889160
2000
有潜力的。
14:51
We are ourselves surprised what you actually get out of the simulations.
293
891160
4000
对于我们能够从这些模拟人身上得到的结果,我们自己也惊讶了。
14:55
There's very often very surprising behavior that you didn't predict before.
294
895160
4000
我们常常得到非常出乎意料的结果。
14:59
There's so many things we can do with this right now.
295
899160
2000
我们的技术有很多应用。
15:01
The first thing, as I said, is going to be virtual stuntmen.
296
901160
3000
第一个,像我说的,是数码特技替身,
15:04
Several studios are using this software now to produce virtual stuntmen,
297
904160
4000
一些电影工作室已经在用这个软件做数码替身了。
15:08
and they're going to hit the screen quite soon, actually,
298
908160
2000
这些特技镜头会在很短的时间内上映,
15:10
for some major productions.
299
910160
2000
很多大的制作都用它们。
15:12
The second thing is video games.
300
912160
3000
第二个应用就是电脑游戏。
15:15
With this technology, video games will look different and they will feel very different.
301
915160
4000
用这个技术电脑游戏看起来会很不同,感觉上也会很不同。
15:19
For the first time, you'll have actors that really feel very interactive,
302
919160
3000
历史上第一次你会看到演员的非常真实的互动,
15:22
that have real bodies that really react.
303
922160
2000
真的身体,真的反应。
15:24
I think that's going to be incredibly exciting.
304
924160
3000
我认为这非常令人激动。
15:27
Probably starting with sports games,
305
927160
2000
最先我们会用在运动性的游戏上,
15:29
which are going to become much more interactive.
306
929160
2000
比起平常的游戏它们更需要互动性。
15:31
But I particularly am really excited
307
931160
1000
但是我本人最感到激动的应用
15:32
about using this technology in online worlds,
308
932160
3000
是将这个技术用在网络世界里
15:35
like there, for example, that Tom Melcher has shown us.
309
935160
3000
比如像汤姆·梅尔彻给我们展示的那样。
15:38
The degree of interactivity you're going to get
310
938160
2000
我们能够得到的互动性
15:40
is totally different, I think, from what you're getting right now.
311
940160
3000
是非常不同的,我认为,和你能从老方法中得到的相比。
15:44
A third thing we are looking at and very interested in is simulation.
312
944160
4000
这是第三个我们非常感兴趣的应用。
15:49
We've been approached by several simulation companies,
313
949160
2000
已经有一些公司联系我们了,
15:51
but one project we're particularly excited about, which we're starting next month,
314
951160
3000
但是有一个特别的项目我们感到特别的激动,我们下个月会开始做,
15:54
is to use our technology -- and in particular, the walking technology --
315
954160
4000
是将我们的技术,特别是模拟走路这方面,
15:58
to help aid surgeons who work on children with cerebral palsy,
316
958160
4000
用在帮助那些治疗儿童脑瘫的医生
16:02
to predict the outcome of operations on these children.
317
962160
3000
来预计手术的愈后效果。
16:05
As you probably know,
318
965160
2000
如你们所知,
16:07
it's very difficult to predict what the outcome of an operation is
319
967160
3000
通常脑瘫病人手术后的行走能力的结果
16:10
if you try and correct the gait.
320
970160
2000
是非常难以预料的,
16:12
The classic quote is, I think, it's unpredictable at best,
321
972160
3000
经典说法是,我认为,人们目前认为
16:15
is what people think right now, is the outcome.
322
975160
3000
最难预料的,就是愈后结果。
16:18
Now, what we want to do with our software is allow our surgeons to have a tool.
323
978160
4000
现在,我们想做的是用我们的软件,帮助医生预测。
16:22
We're going to simulate the gait of a particular child
324
982160
3000
我们想模拟每个孩子的步态,
16:25
and the surgeon can then work on that simulation
325
985160
3000
医生能够用这个模拟人物,
16:28
and try out different ways to improve that gait,
326
988160
2000
试不同的手术方案,来帮助调整步态,
16:30
before he actually commits to an actual surgery.
327
990160
3000
在他们真正做手术之前。
16:33
That's one project we're particularly excited about,
328
993160
2000
这个项目我们感到特别激动,
16:35
and that's going to start next month.
329
995160
2000
下个月会启动。
16:39
Just finally, this is only just the beginning.
330
999160
3000
最后,我想说这只是个起步,
16:42
We can only do several behaviors right now.
331
1002160
2000
我们现在只能做一些特定的动作,
16:44
The AI isn't good enough to simulate a full human body.
332
1004160
3000
我们用的人工智能还不能模拟整个人体的神经系统。
16:47
The body yes, but not all the motor skills that we have.
333
1007160
3000
我们能模拟整个身体,但是不能模拟所有的动作功能。
16:50
And, I think, we're only there if we can have something like ballet dancing.
334
1010160
3000
我希望能做出像芭蕾舞这类的动作来,
16:53
Right now, we don't have that
335
1013160
2000
现在还做不到。
16:55
but I'm very sure that we will be able to do that at some stage.
336
1015160
2000
但是我确信我们将来可以。
16:57
We do have one unintentional dancer actually,
337
1017160
3000
我们碰巧做出了一个舞者,
17:00
the last thing I'm going to show you.
338
1020160
2000
这是我想给你们看的最后一个人物。
17:02
This was an AI contour that was produced and evolved --
339
1022160
3000
这个人工智能我们做出来 —
17:05
half-evolved, I should say -- to produce balance, basically.
340
1025160
3000
部分上是 — 保持平衡的。
17:08
So, you kick the guy and the guy's supposed to counter-balance.
341
1028160
3000
你踢这个人一脚,他应该会平衡自己。
17:11
That's what we thought was going to come out of this.
342
1031160
3000
这也是我们原本预计的结果。
17:14
But this is what emerged out of it, in the end.
343
1034160
2000
结果这是我们最后看到的东西。
17:17
(Music)
344
1037160
10000
(音乐起)
17:27
Bizarrely, this thing doesn't have a head. I'm not quite sure why.
345
1047160
3000
看起来怪怪的,这个舞者没有头,我不知道为什么,
17:31
So, this was not something we actually put in there.
346
1051160
2000
但是我们通常不用头。
17:33
He just started to create that dance himself.
347
1053160
4000
他自顾自地开始跳舞了。
17:37
He's actually a better dancer than I am, I have to say.
348
1057160
3000
我得说,他比我还强些。
17:41
And what you see after a while --
349
1061160
2000
你将会看到的 —
17:43
I think he even goes into a climax right at the end.
350
1063160
2000
这个舞最后还来了一个高潮呢。
17:49
And I think -- there you go.
351
1069160
3000
我想,就是这里。
17:52
(Laughter)
352
1072160
2000
(笑声)
17:54
So, that all happened automatically. We didn't put that in there.
353
1074160
2000
这都是自动产生的,我们没有加这个舞进去。
17:56
That's just the simulation creating this itself, basically.
354
1076160
3000
这都是这个模拟人自己产生的。
17:59
So it's just --
355
1079160
2000
这样 —
18:01
(Applause)
356
1081160
1000
(掌声)
18:02
Thanks.
357
1082160
2000
谢谢。
18:05
Not quite John Travolta yet, but we're working on that as well,
358
1085160
3000
他不像约翰·特拉沃尔塔那样帅,但我们在向这个方向努力。
18:08
so thanks very much for your time.
359
1088160
2000
谢谢你们给我时间。
18:10
Thanks.
360
1090160
1000
谢谢
18:11
(Applause)
361
1091160
1000
(掌声)
18:12
CA: Incredible. That was really incredible.
362
1092160
2000
克里斯·安德森 :“令人惊叹,这真是太令人惊叹了。”
18:14
TR: Thanks.
363
1094160
1000
托斯腾·雷尔:“谢谢。”
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7