Shyam Sankar: The rise of human-computer cooperation

62,717 views ・ 2012-09-06

TED


请双击下面的英文字幕来播放视频。

00:00
Translator: Joseph Geni Reviewer: Morton Bast
0
0
7000
翻译人员: Yi Zong 校对人员: Chunting Guo
00:15
I'd like to tell you about two games of chess.
1
15772
2556
我想告诉你们两场象棋比赛。
00:18
The first happened in 1997, in which Garry Kasparov,
2
18328
3864
一场发生在1997年,卡斯帕罗夫,
00:22
a human, lost to Deep Blue, a machine.
3
22192
3716
一个人类, 输给了‘深蓝’,一部机器。
00:25
To many, this was the dawn of a new era,
4
25908
2240
对许多人来说,这是一个新时代的黎明,
00:28
one where man would be dominated by machine.
5
28148
2779
一个人被机器统治的时代。
00:30
But here we are, 20 years on, and the greatest change
6
30927
3334
但现在的我们,20年已经过去了,而最能改变
00:34
in how we relate to computers is the iPad,
7
34261
2690
我们与电脑之间关系的是IPAD,
00:36
not HAL.
8
36951
2045
不是 HAL。
00:38
The second game was a freestyle chess tournament
9
38996
2648
第二场是自由式国际象棋锦标赛
00:41
in 2005, in which man and machine could enter together
10
41644
2969
在2005年,人类与机器可以一起进入比赛
00:44
as partners, rather than adversaries, if they so chose.
11
44613
4666
以合作伙伴的身份,而不是敌人,如果他们这样选择。
00:49
At first, the results were predictable.
12
49279
1851
起初,结果是可以预测的。
00:51
Even a supercomputer was beaten by a grandmaster
13
51130
2497
即使是一台超级计算机也会输给特级大师
00:53
with a relatively weak laptop.
14
53627
2312
和一台相对较弱的便携式计算机。
00:55
The surprise came at the end. Who won?
15
55939
2985
可结局令人惊讶。谁赢了?
00:58
Not a grandmaster with a supercomputer,
16
58924
2776
不是使用超级计算机的大师,
01:01
but actually two American amateurs
17
61700
1493
而实际上是两个美国业余选手
01:03
using three relatively weak laptops.
18
63193
3822
和他们使用的三台相对较弱的笔记本电脑。
01:07
Their ability to coach and manipulate their computers
19
67015
2596
他们有能力知道和操纵他们的计算机
01:09
to deeply explore specific positions
20
69611
2435
从而深入探索具体的位置
01:12
effectively counteracted the superior chess knowledge
21
72046
2390
以有效的方法抵消
01:14
of the grandmasters and the superior computational power
22
74436
2609
大师和卓越计算的优越的国际象棋知识
01:17
of other adversaries.
23
77045
1909
和其他对手。
01:18
This is an astonishing result: average men,
24
78954
2905
这是一个令人吃惊的结果: 普通男性,
01:21
average machines beating the best man, the best machine.
25
81859
4081
一般的计算机击败最好的人和最好的机器。
01:25
And anyways, isn't it supposed to be man versus machine?
26
85940
3199
不管怎么说,不应该是机器于人对战吗?
01:29
Instead, it's about cooperation, and the right type of cooperation.
27
89139
4152
相反,它是关于合作和正确的合作方式。
01:33
We've been paying a lot of attention to Marvin Minsky's
28
93291
2857
近 50 年,我们一直集中大量的精力到 Marvin Minsky
01:36
vision for artificial intelligence over the last 50 years.
29
96148
3242
的人工智能的愿景。
01:39
It's a sexy vision, for sure. Many have embraced it.
30
99390
2262
它是一个性感的远景,这是肯定的。很多人已经接受它了。
01:41
It's become the dominant school of thought in computer science.
31
101652
2753
它已成为计算机科学的主流学派。
01:44
But as we enter the era of big data, of network systems,
32
104405
3072
但是,当我们进入了大数据的时代、 网络系统、
01:47
of open platforms, and embedded technology,
33
107477
2698
开放平台和嵌入式技术,
01:50
I'd like to suggest it's time to reevaluate an alternative vision
34
110175
3392
我想建议是重新评估另一个的远景的时候了
01:53
that was actually developed around the same time.
35
113567
3070
这实际上是大约在同一时间进行开发的。
01:56
I'm talking about J.C.R. Licklider's human-computer symbiosis,
36
116637
3332
我讨论的是 J.C.R.Licklider 的人机共生,
01:59
perhaps better termed "intelligence augmentation," I.A.
37
119969
3808
或许更好地被称为"智能强化"一I.A.
02:03
Licklider was a computer science titan who had a profound
38
123777
2640
Licklider 是一位计算机科学巨人
02:06
effect on the development of technology and the Internet.
39
126417
3006
他对技术和互联网发展有非常深刻的影响。
02:09
His vision was to enable man and machine to cooperate
40
129423
2868
他的设想是,使人与机器进行合作
02:12
in making decisions, controlling complex situations
41
132291
3590
从而作出决定,控制复杂的情况
02:15
without the inflexible dependence
42
135881
1770
而不是死板的依赖
02:17
on predetermined programs.
43
137651
2533
于预先设定的程序。
02:20
Note that word "cooperate."
44
140184
2498
请注意,这个词语"合作"。
02:22
Licklider encourages us not to take a toaster
45
142682
2747
Licklider 鼓励我们不是用一个烤面包机
02:25
and make it Data from "Star Trek,"
46
145429
2284
并使其变成《 星际迷航 》中的科技,
02:27
but to take a human and make her more capable.
47
147713
3535
而要采取一个人,并使她更有能力。
02:31
Humans are so amazing -- how we think,
48
151248
1911
人类如此惊人 — 我们的思维
02:33
our non-linear approaches, our creativity,
49
153159
2618
我们的非线形方法,我们的创造力,
02:35
iterative hypotheses, all very difficult if possible at all
50
155777
2131
迭代的假设,都很难
02:37
for computers to do.
51
157908
1345
让计算机做到类似的事。
02:39
Licklider intuitively realized this, contemplating humans
52
159253
2452
Licklider 直观地认识了这一点,考虑人类
02:41
setting the goals, formulating the hypotheses,
53
161705
2327
设定目标,提出假说,
02:44
determining the criteria, and performing the evaluation.
54
164032
3376
确定的标准,并进行评价。
02:47
Of course, in other ways, humans are so limited.
55
167408
1775
当然,在其他方面,人类是如此有限。
02:49
We're terrible at scale, computation and volume.
56
169183
3235
我们在大规模、 计算和容量方面做得很遭。
02:52
We require high-end talent management
57
172418
1836
我们需要高端的人才管理
02:54
to keep the rock band together and playing.
58
174254
2064
以保持摇滚乐队一起演奏。
02:56
Licklider foresaw computers doing all the routinizable work
59
176318
2204
Licklider 预见到所有的程序化的工作可以由计算机完成
02:58
that was required to prepare the way for insights and decision making.
60
178522
3276
这需要预先准备目标和决策的方法。
03:01
Silently, without much fanfare,
61
181798
2224
安静得,没有大张旗鼓,
03:04
this approach has been compiling victories beyond chess.
62
184022
3354
这种做法已经超越了象棋的胜利。
03:07
Protein folding, a topic that shares the incredible expansiveness of chess —
63
187376
3356
蛋白质排列,一个同样令人难以置信的广阔的国际象棋的话题 — —
03:10
there are more ways of folding a protein than there are atoms in the universe.
64
190732
3042
蛋白质排列方式要比在宇宙中的原子更多。
03:13
This is a world-changing problem with huge implications
65
193774
2353
这对改变世界问题启示了
03:16
for our ability to understand and treat disease.
66
196127
2308
我们有能力了解和治疗疾病。
03:18
And for this task, supercomputer field brute force simply isn't enough.
67
198435
4248
而对于这个任务,只有超级计算机的蛮力还不够。
03:22
Foldit, a game created by computer scientists,
68
202683
2384
Foldit,计算机科学家创建的一个游戏,
03:25
illustrates the value of the approach.
69
205067
2502
说明了这个方法的价值。
03:27
Non-technical, non-biologist amateurs play a video game
70
207569
3041
非技术性、 非生物学家业余玩的视频游戏
03:30
in which they visually rearrange the structure of the protein,
71
210610
3073
在其中他们直观地重新排列蛋白质的结构,
03:33
allowing the computer to manage the atomic forces
72
213683
1499
允许此计算机管理原子的力量
03:35
and interactions and identify structural issues.
73
215182
2957
和互动,并识别结构问题。
03:38
This approach beat supercomputers 50 percent of the time
74
218139
3023
这种方法以50%的几率击败了超级计算机
03:41
and tied 30 percent of the time.
75
221162
2584
以30%的几率战平。
03:43
Foldit recently made a notable and major scientific discovery
76
223746
3137
Foldit最近取得一个显著并重大的科学发现
03:46
by deciphering the structure of the Mason-Pfizer monkey virus.
77
226883
3160
它破译梅森辉瑞猴病毒的结构。
03:50
A protease that had eluded determination for over 10 years
78
230043
3015
一种躲避测定十多年的蛋白酶
03:53
was solved was by three players in a matter of days,
79
233058
2626
被三名球员在仅仅几天时间就解决了,
03:55
perhaps the first major scientific advance
80
235684
2025
也许这是第一次重大科学进展
03:57
to come from playing a video game.
81
237709
2323
源于玩视频游戏。
04:00
Last year, on the site of the Twin Towers,
82
240032
2181
去年,该站点的双子塔,
04:02
the 9/11 memorial opened.
83
242213
1473
9/11 纪念馆开幕。
04:03
It displays the names of the thousands of victims
84
243686
2721
它显示了数千名受害者的名称
04:06
using a beautiful concept called "meaningful adjacency."
85
246407
3063
通过一个美丽的概念称为"有意义的邻接"。
04:09
It places the names next to each other based on their
86
249470
2166
它把他们的名字彼此相邻的安排在一起,根据
04:11
relationships to one another: friends, families, coworkers.
87
251636
2213
从一个到另一个人的关系: 朋友、 家人、 同事。
04:13
When you put it all together, it's quite a computational
88
253849
3028
当你把它放在一起时,这是相当大的计算
04:16
challenge: 3,500 victims, 1,800 adjacency requests,
89
256877
4223
挑战:3,500名 受害者、 1,800名邻接请求,
04:21
the importance of the overall physical specifications
90
261100
3092
整体物理属性的重要性
04:24
and the final aesthetics.
91
264192
2137
和最后的审美。
04:26
When first reported by the media, full credit for such a feat
92
266329
2615
当第一次被媒体报道时,这件壮举完全归功
04:28
was given to an algorithm from the New York City
93
268944
1892
给了纽约
04:30
design firm Local Projects. The truth is a bit more nuanced.
94
270836
4001
本地的设计公司设计的运算法则。事实真相更为微妙。
04:34
While an algorithm was used to develop the underlying framework,
95
274837
2871
虽然一种运算法则被用来开发基本框架,
04:37
humans used that framework to design the final result.
96
277708
3008
人类利用这一框架来设计最终的结果。
04:40
So in this case, a computer had evaluated millions
97
280716
2225
所以在这种情况下,计算机已评估了数百万种
04:42
of possible layouts, managed a complex relational system,
98
282941
3335
可能的布局, 管理一个复杂的关系系统,
04:46
and kept track of a very large set of measurements
99
286276
2414
和跟踪大量测量数据
04:48
and variables, allowing the humans to focus
100
288690
2410
和变量,使人类能够专注于
04:51
on design and compositional choices.
101
291100
2802
设计和组合的选择。
04:53
So the more you look around you,
102
293902
1036
所以你越常环顾你的周围,
04:54
the more you see Licklider's vision everywhere.
103
294938
1962
在各个地方,您越常看到 Licklider 的愿景。
04:56
Whether it's augmented reality in your iPhone or GPS in your car,
104
296900
3304
无论是已经现实在你的iPhone的技术或在你车上的GPS的技术,
05:00
human-computer symbiosis is making us more capable.
105
300204
2970
人机共生使我们更有能力。
05:03
So if you want to improve human-computer symbiosis,
106
303174
1655
因此,如果您想要改善人机共生
05:04
what can you do?
107
304829
1429
你可以做什么?
05:06
You can start by designing the human into the process.
108
306258
2452
您可以从将人设计到过程中开始。
05:08
Instead of thinking about what a computer will do to solve the problem,
109
308710
2204
而不是思考如何让计算机解决问题,
05:10
design the solution around what the human will do as well.
110
310914
3869
围绕着人去设计结局方案。
05:14
When you do this, you'll quickly realize that you spent
111
314783
1937
当您执行此操作时,您很快就会发现你花了
05:16
all of your time on the interface between man and machine,
112
316720
2879
你所有的时间上在人和机器之间的接口上,
05:19
specifically on designing away the friction in the interaction.
113
319599
3099
特别是关于设计互动中的摩擦。
05:22
In fact, this friction is more important than the power
114
322698
2766
事实上,这种冲突比
05:25
of the man or the power of the machine
115
325464
2052
人或机器的力量更重要,
05:27
in determining overall capability.
116
327516
1931
从整体能力上讲。
05:29
That's why two amateurs with a few laptops
117
329447
1977
这就是为什么几个笔记本电脑和两个业余选手
05:31
handily beat a supercomputer and a grandmaster.
118
331424
2456
轻松击败了一台超级计算机和特级大师。
05:33
What Kasparov calls process is a byproduct of friction.
119
333880
3005
卡斯帕罗夫称这个过程是摩擦的副产品。
05:36
The better the process, the less the friction.
120
336885
2401
越好的过程,摩擦越少。
05:39
And minimizing friction turns out to be the decisive variable.
121
339286
4256
尽量减少摩擦原来是决定性变量。
05:43
Or take another example: big data.
122
343542
2243
或再举一个例子: 海量数据。
05:45
Every interaction we have in the world is recorded
123
345785
1906
我们在世界上每个互动都被记录着
05:47
by an ever growing array of sensors: your phone,
124
347691
3059
由与日俱增的传感器:您的电话,
05:50
your credit card, your computer. The result is big data,
125
350750
2373
您的信用卡,您的计算机。其结果是大量的数据,
05:53
and it actually presents us with an opportunity
126
353123
1742
同时它实际上提供了我们一个机会
05:54
to more deeply understand the human condition.
127
354865
2662
去更深入地理解人类的特点。
05:57
The major emphasis of most approaches to big data
128
357527
2305
处理海量数据的主要方法
05:59
focus on, "How do I store this data? How do I search
129
359832
2215
是集中在,"如何存储这些数据?如何搜索
06:02
this data? How do I process this data?"
130
362047
2276
这些数据?如何处理这些数据?"
06:04
These are necessary but insufficient questions.
131
364323
2204
这些都是必要但不完全的问题。
06:06
The imperative is not to figure out how to compute,
132
366527
2471
当务之急是不弄清楚如何计算,
06:08
but what to compute. How do you impose human intuition
133
368998
2184
但用什么来计算。如何加入的人类直觉
06:11
on data at this scale?
134
371182
1791
在这种规模的数据上?
06:12
Again, we start by designing the human into the process.
135
372973
3499
又一次,我们开始设计把人类引入这一进程。
06:16
When PayPal was first starting as a business, their biggest
136
376472
2812
PayPal 作为一家企业,当他们第一次启动时,他们最大的
06:19
challenge was not, "How do I send money back and forth online?"
137
379284
2804
挑战不是,"如何在线转账?"
06:22
It was, "How do I do that without being defrauded by organized crime?"
138
382088
3872
而是,"如何避免有组织犯罪的诈骗?"
06:25
Why so challenging? Because while computers can learn
139
385960
2088
为什么如此具有挑战性?因为虽然计算机能学到
06:28
to detect and identify fraud based on patterns,
140
388048
3144
探测和识别基于模式的欺诈,
06:31
they can't learn to do that based on patterns
141
391192
1479
他们学不会做基于模式
06:32
they've never seen before, and organized crime
142
392671
2116
之外的判断,这同有组织犯罪
06:34
has a lot in common with this audience: brilliant people,
143
394787
2709
有很多共同点: 聪明,
06:37
relentlessly resourceful, entrepreneurial spirit — (Laughter) —
144
397496
3640
足智多谋、 有创业精神 —(笑声)—
06:41
and one huge and important difference: purpose.
145
401136
2712
还有一个重大的区别:目的。
06:43
And so while computers alone can catch all but the cleverest
146
403848
2832
所以在单独的计算机可以捕获所有得同时,最聪明
06:46
fraudsters, catching the cleverest is the difference
147
406680
2253
的诈骗犯捕捉最聪明的,区别就是
06:48
between success and failure.
148
408933
2545
成功与失败。
06:51
There's a whole class of problems like this, ones with
149
411478
2221
像这类的问题有很多,都是
06:53
adaptive adversaries. They rarely if ever present with a
150
413699
2575
相互适应。他们很少显示出
06:56
repeatable pattern that's discernable to computers.
151
416274
2736
可以辨认到计算机的可重复执行的模式。
06:59
Instead, there's some inherent component of innovation or disruption,
152
419010
3993
相反,有一些继承下来的创新或中断的部分
07:03
and increasingly these problems are buried in big data.
153
423003
2735
同时这些问题越来越多地被藏在了大量的数据中。
07:05
For example, terrorism. Terrorists are always adapting
154
425738
2500
例如,恐怖主义。恐怖分子总可以适应这种
07:08
in minor and major ways to new circumstances, and despite
155
428238
2052
次要和主要方式的新环境,而且即使
07:10
what you might see on TV, these adaptations,
156
430290
3094
在电视上,你可能会看到这些适应能力,
07:13
and the detection of them, are fundamentally human.
157
433384
2293
和对他们的检测,基本上都是人类。
07:15
Computers don't detect novel patterns and new behaviors,
158
435677
3117
计算机不会检测新的模式和新的行为,
07:18
but humans do. Humans, using technology, testing hypotheses,
159
438794
3235
但人类可以。人类,利用技术、 测试假设,
07:22
searching for insight by asking machines to do things for them.
160
442029
4620
通过机器为他们寻找目标。
07:26
Osama bin Laden was not caught by artificial intelligence.
161
446649
2320
本 · 拉登不是被人工智能抓住的。
07:28
He was caught by dedicated, resourceful, brilliant people
162
448969
2553
他被抓住是因为专注、足智多谋和聪明的
07:31
in partnerships with various technologies.
163
451522
4269
人与各种技术的合作。
07:35
As appealing as it might sound, you cannot algorithmically
164
455791
2818
这听起来颇具吸引力,你不能通过计算
07:38
data mine your way to the answer.
165
458609
1601
数据的方式来挖掘你的答案。
07:40
There is no "Find Terrorist" button, and the more data
166
460210
2855
没有"找到恐怖分子"的按钮,同时越多的数据
07:43
we integrate from a vast variety of sources
167
463065
2302
,整合的来源越多,
07:45
across a wide variety of data formats from very
168
465367
2133
格式的种类越广,形成了一个非常
07:47
disparate systems, the less effective data mining can be.
169
467500
3309
迥异的系统,数据挖掘也更加低效。
07:50
Instead, people will have to look at data
170
470809
2024
相反,人们还要参考数据
07:52
and search for insight, and as Licklider foresaw long ago,
171
472833
3456
和搜索目标,Licklider 很久以前预见到的,
07:56
the key to great results here is the right type of cooperation,
172
476289
2685
成功的关键是正确的合作,
07:58
and as Kasparov realized,
173
478974
1524
正如卡斯帕罗夫意识到的,
08:00
that means minimizing friction at the interface.
174
480498
3031
这意味着,尽量减少操作界面的摩擦。
08:03
Now this approach makes possible things like combing
175
483529
2758
现在这种方法使得梳理
08:06
through all available data from very different sources,
176
486287
3386
所有可用且来源非常不同的数据成为了可能,
08:09
identifying key relationships and putting them in one place,
177
489673
2792
确定关键的关系,并将它们放在一个地方,
08:12
something that's been nearly impossible to do before.
178
492465
2928
之前看似几乎不可能完成的东西。
08:15
To some, this has terrifying privacy and civil liberties
179
495393
1942
对某些人来说,这会影响隐私和公民自由
08:17
implications. To others it foretells of an era of greater
180
497335
3410
的实行。对其他人来说,这预示了的一个更加伟大的时代
08:20
privacy and civil liberties protections,
181
500745
1909
对于保护隐私和公民自由,
08:22
but privacy and civil liberties are of fundamental importance.
182
502654
2936
但隐私和公民自由是根本也是最重要的。
08:25
That must be acknowledged, and they can't be swept aside,
183
505590
2193
必须承认,他们不能被抛在一边,
08:27
even with the best of intents.
184
507783
2530
即使是出于好意。
08:30
So let's explore, through a couple of examples, the impact
185
510313
2518
让我们探讨,通过几个例子,
08:32
that technologies built to drive human-computer symbiosis
186
512831
2406
科技构建驱动人机共生
08:35
have had in recent time.
187
515237
2919
最近产生的影响。
08:38
In October, 2007, U.S. and coalition forces raided
188
518156
3416
2007 年 10 月,美国和盟军部队突袭了
08:41
an al Qaeda safe house in the city of Sinjar
189
521572
2416
一个在辛贾尔市的基地组织的安全屋
08:43
on the Syrian border of Iraq.
190
523988
1934
位于叙利亚的伊拉克边界。
08:45
They found a treasure trove of documents:
191
525922
2376
他们发现一份宝贵的文档:
08:48
700 biographical sketches of foreign fighters.
192
528298
2335
700个外国战士的小传草稿。
08:50
These foreign fighters had left their families in the Gulf,
193
530633
2584
这些外国战士在海湾地区,他们离开他们
08:53
the Levant and North Africa to join al Qaeda in Iraq.
194
533217
3146
南欧和北非的家,加入在伊拉克境内的基地组织。
08:56
These records were human resource forms.
195
536363
1616
这些记录是人力资源管理的形式。
08:57
The foreign fighters filled them out as they joined the organization.
196
537979
2855
外国战士填写这些之后加入该组织。
09:00
It turns out that al Qaeda, too,
197
540834
1211
事实证明,基地组织,也,
09:02
is not without its bureaucracy. (Laughter)
198
542045
2597
并不是没有其官僚作风。(笑声)
09:04
They answered questions like, "Who recruited you?"
199
544642
2098
他们回答类似的问题,"谁聘请的你?"
09:06
"What's your hometown?" "What occupation do you seek?"
200
546740
2854
"你的家乡是哪儿?""你要求从事什么职业呢?"
09:09
In that last question, a surprising insight was revealed.
201
549594
3169
这个最后的问题,据透露出十分惊人的洞察力。
09:12
The vast majority of foreign fighters
202
552763
2400
绝大多数的外国战士
09:15
were seeking to become suicide bombers for martyrdom --
203
555163
2400
在谋求成为自爆烈士 — —
09:17
hugely important, since between 2003 and 2007, Iraq
204
557563
4338
极其重要的是,自 2003 年至 2007 年,伊拉克
09:21
had 1,382 suicide bombings, a major source of instability.
205
561901
4244
有 1,382 自杀性爆炸,不稳定的主要根源。
09:26
Analyzing this data was hard. The originals were sheets
206
566145
2058
分析这些数据是困难的。原始的表格
09:28
of paper in Arabic that had to be scanned and translated.
207
568203
2742
是阿拉伯语的,必须要扫描和翻译。
09:30
The friction in the process did not allow for meaningful
208
570945
2192
这过程中的摩擦不允许有意义的
09:33
results in an operational time frame using humans, PDFs
209
573137
3350
运用时间构架人类的结果,PDFs
09:36
and tenacity alone.
210
576487
2218
和独立的坚韧。
09:38
The researchers had to lever up their human minds
211
578705
1953
研究者们不得不撬动了他们人类的思维
09:40
with technology to dive deeper, to explore non-obvious
212
580658
2345
并运用科技去潜得更深,去探索非显而易见
09:43
hypotheses, and in fact, insights emerged.
213
583003
3218
的假说,事实上,目标实现了。
09:46
Twenty percent of the foreign fighters were from Libya,
214
586221
2644
20 % 的外国战士来自利比亚,
09:48
50 percent of those from a single town in Libya,
215
588865
2968
50%的人来自利比亚的同一个镇,
09:51
hugely important since prior statistics put that figure at
216
591833
2450
非常重要,因为以前的统计数字显示,
09:54
three percent. It also helped to hone in on a figure
217
594283
2383
是3%。它还帮助找出
09:56
of rising importance in al Qaeda, Abu Yahya al-Libi,
218
596666
2977
了基地组织新的重要人物,阿布叶海亚 · 阿尔-利比亚,
09:59
a senior cleric in the Libyan Islamic fighting group.
219
599643
2631
利比亚伊斯兰战斗组中的高级官员。
10:02
In March of 2007, he gave a speech, after which there was
220
602274
2664
2007 年 3 月,他给过一个演讲, 之后
10:04
a surge in participation amongst Libyan foreign fighters.
221
604938
3466
来自利比亚的外国战士数量激增。
10:08
Perhaps most clever of all, though, and least obvious,
222
608404
3106
也许最聪明的是,而且,最不明显的是,
10:11
by flipping the data on its head, the researchers were
223
611510
2073
通过整理其有关数据,研究人员
10:13
able to deeply explore the coordination networks in Syria
224
613583
2900
能够深入的探索了叙利亚的协调网络,
10:16
that were ultimately responsible for receiving and
225
616483
2517
它负责接收和
10:19
transporting the foreign fighters to the border.
226
619000
2464
运送外国战士到边境。
10:21
These were networks of mercenaries, not ideologues,
227
621464
2633
这些都是网络的雇佣军,不是空想,
10:24
who were in the coordination business for profit.
228
624097
2398
同过协调生意赚取利润。
10:26
For example, they charged Saudi foreign fighters
229
626495
1904
例如,他们收取沙特外国战士的钱
10:28
substantially more than Libyans, money that would have
230
628399
2199
大大超过利比亚的,钱
10:30
otherwise gone to al Qaeda.
231
630598
2320
最终会去向基地组织。
10:32
Perhaps the adversary would disrupt their own network
232
632918
2045
敌人可能会破坏他们的网络
10:34
if they knew they cheating would-be jihadists.
233
634963
3035
如果他们知道他们作弊是为了圣战。
10:37
In January, 2010, a devastating 7.0 earthquake struck Haiti,
234
637998
3745
2010 年 1 月,破坏性的 7.0级地震袭击了海地,
10:41
third deadliest earthquake of all time, left one million people,
235
641743
2916
有史以来第三次惨重的地震灾害,100 万人,
10:44
10 percent of the population, homeless.
236
644659
2584
10%的人口,无家可归。
10:47
One seemingly small aspect of the overall relief effort
237
647243
3137
一个看似小规模的整体救灾工作
10:50
became increasingly important as the delivery of food
238
650380
2176
变得越来越重要,从提供粮食
10:52
and water started rolling.
239
652556
2160
和水开始。
10:54
January and February are the dry months in Haiti,
240
654716
1458
在海地,一月和二月是干燥的月份
10:56
yet many of the camps had developed standing water.
241
656174
2942
然而许多难民的帐篷都被水淹了。
10:59
The only institution with detailed knowledge of Haiti's
242
659116
2122
唯一拥有海地详细信息的机构
11:01
floodplains had been leveled
243
661238
1297
已经被洪水淹没了
11:02
in the earthquake, leadership inside.
244
662535
3008
在地震中,包括领导。
11:05
So the question is, which camps are at risk,
245
665543
2575
所以,问题是,哪些营地处于危险之中,
11:08
how many people are in these camps, what's the
246
668118
1921
在这些营地有多少人,
11:10
timeline for flooding, and given very limited resources
247
670039
2311
洪水的时间是什么时候,给予有限的资源和时间
11:12
and infrastructure, how do we prioritize the relocation?
248
672350
3384
和基础设施,我们如何排定搬迁呢?
11:15
The data was incredibly disparate. The U.S. Army had
249
675734
2344
数据得出迥然不同的结论。美国陆军曾
11:18
detailed knowledge for only a small section of the country.
250
678078
2929
有一小部分这个国家详细资料。
11:21
There was data online from a 2006 environmental risk
251
681007
2511
在线数据源于2006年环境风险
11:23
conference, other geospatial data, none of it integrated.
252
683518
2664
会议,其他的地理空间数据,没有其它的集成。
11:26
The human goal here was to identify camps for relocation
253
686182
2958
在这里,人的目标是要确定可以搬迁的营地
11:29
based on priority need.
254
689140
2395
基于优先级别的需要。
11:31
The computer had to integrate a vast amount of geospacial
255
691535
2440
计算机不得不把大量的空间地理
11:33
information, social media data and relief organization
256
693975
2584
信息、 社交媒体数据和救援组织
11:36
information to answer this question.
257
696559
3480
信息集成后来回答这个问题。
11:40
By implementing a superior process, what was otherwise
258
700039
2415
通过实施一个优秀的程序,要不然
11:42
a task for 40 people over three months became
259
702454
2608
这是一个需要40 人超过三个月才能完成的任务
11:45
a simple job for three people in 40 hours,
260
705062
3176
现在简化到三个人用40小时就能完成的工作,
11:48
all victories for human-computer symbiosis.
261
708238
2628
这是人机共生所取得的胜利。
11:50
We're more than 50 years into Licklider's vision
262
710866
2054
Licklider 的梦想, 50 年之后
11:52
for the future, and the data suggests that we should be
263
712920
2242
的未来,数据表明我们应该
11:55
quite excited about tackling this century's hardest problems,
264
715162
3030
很兴奋的解决这个世纪最困难的问题,
11:58
man and machine in cooperation together.
265
718192
2947
人与机器在一起合作。
12:01
Thank you. (Applause)
266
721139
2197
谢谢。(掌声)
12:03
(Applause)
267
723336
2505
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7