Shyam Sankar: The rise of human-computer cooperation

62,527 views ・ 2012-09-06

TED


Dvaput kliknite na engleske titlove ispod za reprodukciju videozapisa.

00:00
Translator: Joseph Geni Reviewer: Morton Bast
0
0
7000
Prevoditelj: Igor Pureta Recezent: Ivan Stamenković
00:15
I'd like to tell you about two games of chess.
1
15772
2556
Želim vam pričati o dvije partije šaha.
00:18
The first happened in 1997, in which Garry Kasparov,
2
18328
3864
Prva se dogodila 1997., u kojoj je Garry Kasparov,
00:22
a human, lost to Deep Blue, a machine.
3
22192
3716
čovjek, izgubio od Deep Bluea, stroja.
00:25
To many, this was the dawn of a new era,
4
25908
2240
Za mnoge, ovo je bilo svitanje nove ere,
00:28
one where man would be dominated by machine.
5
28148
2779
one u kojoj će stroj dominirati nad čovjekom.
00:30
But here we are, 20 years on, and the greatest change
6
30927
3334
No, evo nas 20 godina poslije i najveća promjena
00:34
in how we relate to computers is the iPad,
7
34261
2690
u našem pogledu na računala je iPad,
00:36
not HAL.
8
36951
2045
ne HAL.
00:38
The second game was a freestyle chess tournament
9
38996
2648
Druga partija je bilo natjecanje u šahu slobodnog stila
00:41
in 2005, in which man and machine could enter together
10
41644
2969
2005., u kojoj su se računalo i čovjek mogli prijaviti zajedno
00:44
as partners, rather than adversaries, if they so chose.
11
44613
4666
kao partneri, a ne protivnici, ako bi tako odabrali.
00:49
At first, the results were predictable.
12
49279
1851
Na startu, rezultati su bili predvidljivi.
00:51
Even a supercomputer was beaten by a grandmaster
13
51130
2497
Čak je i velemajstor s relativno slabim laptopom
00:53
with a relatively weak laptop.
14
53627
2312
pobijedio super računalo.
00:55
The surprise came at the end. Who won?
15
55939
2985
Iznenađenje je stiglo na kraju. Tko je pobijedio?
00:58
Not a grandmaster with a supercomputer,
16
58924
2776
Nije velemajstor sa super računalom,
01:01
but actually two American amateurs
17
61700
1493
već dva američka amatera
01:03
using three relatively weak laptops.
18
63193
3822
koristeći tri relativno slaba laptopa.
01:07
Their ability to coach and manipulate their computers
19
67015
2596
Njihova sposobnost da manipuliraju svojim računalima
01:09
to deeply explore specific positions
20
69611
2435
tako da dublje istraže određene pozicije
01:12
effectively counteracted the superior chess knowledge
21
72046
2390
efektivno je kontrirala superiornom znanju šaha
01:14
of the grandmasters and the superior computational power
22
74436
2609
velemajstora i superiornu moć računanja
01:17
of other adversaries.
23
77045
1909
ostalih protivnika.
01:18
This is an astonishing result: average men,
24
78954
2905
To je zapanjujuć rezultat: prosječni ljudi,
01:21
average machines beating the best man, the best machine.
25
81859
4081
prosječni strojevi, pobjeđuju najbolje ljude, najbolje strojeve.
01:25
And anyways, isn't it supposed to be man versus machine?
26
85940
3199
I uostalom, ne bi li trebalo biti čovjek protiv stroja?
01:29
Instead, it's about cooperation, and the right type of cooperation.
27
89139
4152
Umjesto toga, radi se o suradnji, i to pravoj vrsti suradnje.
01:33
We've been paying a lot of attention to Marvin Minsky's
28
93291
2857
Pridavali smo dosta pažnje viziji Marvina Minskya
01:36
vision for artificial intelligence over the last 50 years.
29
96148
3242
o umjetnoj inteligenciji tijekom zadnjih 50 godina.
01:39
It's a sexy vision, for sure. Many have embraced it.
30
99390
2262
Ta vizija je seksi i mnogi su je prihvatili.
01:41
It's become the dominant school of thought in computer science.
31
101652
2753
Postala je dominantna misao u računalnim znanostima.
01:44
But as we enter the era of big data, of network systems,
32
104405
3072
No, kako ulazimo u doba velikih podataka, mrežnih sustava,
01:47
of open platforms, and embedded technology,
33
107477
2698
otvorenih platformi i ugrađene tehnologije,
01:50
I'd like to suggest it's time to reevaluate an alternative vision
34
110175
3392
volio bih predložiti da je vrijeme za revaluaciju alternativnih vizija
01:53
that was actually developed around the same time.
35
113567
3070
koje su razvijene u isto doba.
01:56
I'm talking about J.C.R. Licklider's human-computer symbiosis,
36
116637
3332
Govorim o simbiozi računala i čovjeka J. C. R. Licklidera,
01:59
perhaps better termed "intelligence augmentation," I.A.
37
119969
3808
možda bolje nazvanom "proširenjem inteligencije".
02:03
Licklider was a computer science titan who had a profound
38
123777
2640
Licklider je bio titan računalnih znanosti i imao je znatan
02:06
effect on the development of technology and the Internet.
39
126417
3006
utjecaj na razvoj tehnologije i interneta.
02:09
His vision was to enable man and machine to cooperate
40
129423
2868
Njegova vizija je bila omogućiti suradnju čovjeka i stroja
02:12
in making decisions, controlling complex situations
41
132291
3590
u donošenju odluka, kontroli kompleksnih situacija
02:15
without the inflexible dependence
42
135881
1770
bez fleksibilne ovisnosti
02:17
on predetermined programs.
43
137651
2533
o predprogramiranim programima
02:20
Note that word "cooperate."
44
140184
2498
Primijetite riječ "suradnja".
02:22
Licklider encourages us not to take a toaster
45
142682
2747
Licklider nas ohrabruje da ne uzimamo toster
02:25
and make it Data from "Star Trek,"
46
145429
2284
i napravimo Datu iz "Star Treka",
02:27
but to take a human and make her more capable.
47
147713
3535
već da uzmemo čovjeka i napravimo ga sposobnijim.
02:31
Humans are so amazing -- how we think,
48
151248
1911
Ljudi su čudesni -- kako mislimo,
02:33
our non-linear approaches, our creativity,
49
153159
2618
naši nelinearni pristupi, naša kreativnost,
02:35
iterative hypotheses, all very difficult if possible at all
50
155777
2131
stalne hipoteze, vrlo teške ako uopće moguće
02:37
for computers to do.
51
157908
1345
za obradu računalom.
02:39
Licklider intuitively realized this, contemplating humans
52
159253
2452
Licklider to intuitivno shvaća promatrajući ljude
02:41
setting the goals, formulating the hypotheses,
53
161705
2327
kako postavljaju ciljeve, postavljaju hipoteze,
02:44
determining the criteria, and performing the evaluation.
54
164032
3376
određuju kriterije i obavljaju procjene.
02:47
Of course, in other ways, humans are so limited.
55
167408
1775
Za neke stvari ljudi su vrlo ograničeni.
02:49
We're terrible at scale, computation and volume.
56
169183
3235
Užasni smo u mjerenju, računanju i veličini.
02:52
We require high-end talent management
57
172418
1836
Trebamo vrhunsko upravljanje talentima
02:54
to keep the rock band together and playing.
58
174254
2064
kako bi rock bend opstao i nastavio svirati.
02:56
Licklider foresaw computers doing all the routinizable work
59
176318
2204
Licklider je predvidio da će računala obavljati sav rutinski posao
02:58
that was required to prepare the way for insights and decision making.
60
178522
3276
potreban za pripremu dolaska do uvida i donošenje odluka.
03:01
Silently, without much fanfare,
61
181798
2224
Tiho, bez mnogo galame,
03:04
this approach has been compiling victories beyond chess.
62
184022
3354
ovaj pristup je sakupljao pobjede i dalje od šaha.
03:07
Protein folding, a topic that shares the incredible expansiveness of chess —
63
187376
3356
Savijanje proteina, tema koja dijeli nevjerojatnu širinu šaha --
03:10
there are more ways of folding a protein than there are atoms in the universe.
64
190732
3042
postoji više načina za savijanje proteina nego atoma u svemiru.
03:13
This is a world-changing problem with huge implications
65
193774
2353
Ovo je svjetski problem s velikim značajem
03:16
for our ability to understand and treat disease.
66
196127
2308
za našu sposobnost liječenja bolesti.
03:18
And for this task, supercomputer field brute force simply isn't enough.
67
198435
4248
Za ovaj zadatak, sirova snaga super računala jednostavno nije dovoljna.
03:22
Foldit, a game created by computer scientists,
68
202683
2384
Foldit, igra koju su razvili računalni znanstvenici,
03:25
illustrates the value of the approach.
69
205067
2502
prikazuje vrijednost pristupa.
03:27
Non-technical, non-biologist amateurs play a video game
70
207569
3041
Amateri koji nisu tehničari niti biolozi igraju igru
03:30
in which they visually rearrange the structure of the protein,
71
210610
3073
u kojoj vizualno preslaguju strukturu proteina,
03:33
allowing the computer to manage the atomic forces
72
213683
1499
dopuštajući računalu da upravlja snagama atoma,
03:35
and interactions and identify structural issues.
73
215182
2957
interakcijama i da prepoznaje probleme u strukturi.
03:38
This approach beat supercomputers 50 percent of the time
74
218139
3023
Ovaj pristup pobjeđuje super računalo u 50% slučajeva
03:41
and tied 30 percent of the time.
75
221162
2584
i igra nerješeno s njim u 30%.
03:43
Foldit recently made a notable and major scientific discovery
76
223746
3137
Foldit je nedavno napravio značajno i veliko znanstveno otkriće
03:46
by deciphering the structure of the Mason-Pfizer monkey virus.
77
226883
3160
dešifrirajući strukturu Mason-Pfizer majmunskog virusa.
03:50
A protease that had eluded determination for over 10 years
78
230043
3015
Proteaze koje su izmicale otkriću 10 godina
03:53
was solved was by three players in a matter of days,
79
233058
2626
riješila su tri igrača u nekoliko dana,
03:55
perhaps the first major scientific advance
80
235684
2025
možda prvo veliko znanstveno otkriće
03:57
to come from playing a video game.
81
237709
2323
koje dolazi iz igranja video igara.
04:00
Last year, on the site of the Twin Towers,
82
240032
2181
Prošle godine, na mjestu srušenih blizanaca,
04:02
the 9/11 memorial opened.
83
242213
1473
otvorio se spomenik za 9/11.
04:03
It displays the names of the thousands of victims
84
243686
2721
Prikazuje imena tisuća žrtava
04:06
using a beautiful concept called "meaningful adjacency."
85
246407
3063
koristeći predivan koncept zvan "značajno susjedstvo."
04:09
It places the names next to each other based on their
86
249470
2166
Postavlja imena jedno pored drugoga na temelju
04:11
relationships to one another: friends, families, coworkers.
87
251636
2213
njihovih međusobnih veza: prijatelja, obitelji, suradnika.
04:13
When you put it all together, it's quite a computational
88
253849
3028
Kada spojite sve zajedno, popriličan je računalni izazov:
04:16
challenge: 3,500 victims, 1,800 adjacency requests,
89
256877
4223
3500 žrtava, 1800 zahtjeva za susjedstvo,
04:21
the importance of the overall physical specifications
90
261100
3092
važnost sveukupnih fizičkih odredbi
04:24
and the final aesthetics.
91
264192
2137
i završne estetike.
04:26
When first reported by the media, full credit for such a feat
92
266329
2615
Kada su mediji prvi puta javili to, cijela zasluga je
04:28
was given to an algorithm from the New York City
93
268944
1892
dana algoritmu iz New Yorške
04:30
design firm Local Projects. The truth is a bit more nuanced.
94
270836
4001
dizajnerske tvrtke Local Projects. Istina je ponešto drugačija.
04:34
While an algorithm was used to develop the underlying framework,
95
274837
2871
Dok je korišten algoritam za razvoj osnovnog okvira,
04:37
humans used that framework to design the final result.
96
277708
3008
ljudi su koristili taj okvir za dizajn završnog rezultata.
04:40
So in this case, a computer had evaluated millions
97
280716
2225
Dakle u ovom slučaju, računalo je procijenilo
04:42
of possible layouts, managed a complex relational system,
98
282941
3335
milijune mogućih rasporeda, upravljalo kompleksnim sustavom odnosa,
04:46
and kept track of a very large set of measurements
99
286276
2414
i pratilo vrlo velik set mjera
04:48
and variables, allowing the humans to focus
100
288690
2410
i varijabli, dopuštajući ljudima da se usmjere
04:51
on design and compositional choices.
101
291100
2802
na dizajn i kompozicijske izbore.
04:53
So the more you look around you,
102
293902
1036
Što više gledate,
04:54
the more you see Licklider's vision everywhere.
103
294938
1962
sve više vidite Lickliderovu viziju.
04:56
Whether it's augmented reality in your iPhone or GPS in your car,
104
296900
3304
Bilo da je proširena stvarnost u vašem iPhoneu ili GPS-u u autu,
05:00
human-computer symbiosis is making us more capable.
105
300204
2970
simbioza čovjeka i računala nas čini sposobnijima.
05:03
So if you want to improve human-computer symbiosis,
106
303174
1655
Dakle, ako želite poboljšati tu simbiozu,
05:04
what can you do?
107
304829
1429
što možete napraviti?
05:06
You can start by designing the human into the process.
108
306258
2452
Možete početi stavljanjem čovjeka u proces.
05:08
Instead of thinking about what a computer will do to solve the problem,
109
308710
2204
Umjesto da razmišljate što računalo može napraviti da riješi problem,
05:10
design the solution around what the human will do as well.
110
310914
3869
stvorite rješenje oko onoga što će i čovjek napraviti.
05:14
When you do this, you'll quickly realize that you spent
111
314783
1937
Kada ovo napravite, brzo ćete shvatiti da
05:16
all of your time on the interface between man and machine,
112
316720
2879
ste potrošili svo vrijeme na sučelju između čovjeka i stroja,
05:19
specifically on designing away the friction in the interaction.
113
319599
3099
posebno na uklanjanju trvenja u interakciji.
05:22
In fact, this friction is more important than the power
114
322698
2766
Ustvari, to trvenje je važnije nego snaga
05:25
of the man or the power of the machine
115
325464
2052
čovjeka ili stroja
05:27
in determining overall capability.
116
327516
1931
za sveukupnu sposobnost.
05:29
That's why two amateurs with a few laptops
117
329447
1977
To je razlog zašto dva amatera s laptopima
05:31
handily beat a supercomputer and a grandmaster.
118
331424
2456
mogu pobijediti super računalo i velemajstora.
05:33
What Kasparov calls process is a byproduct of friction.
119
333880
3005
Ono što Kasparov zove procesom, je nusprodukt trvenja.
05:36
The better the process, the less the friction.
120
336885
2401
Što je bolji proces, manje je trvenja.
05:39
And minimizing friction turns out to be the decisive variable.
121
339286
4256
Smanjenje trvenja je, čini se, odlučujuća varijabla.
05:43
Or take another example: big data.
122
343542
2243
Ili uzmite drugi primjer: veliki podaci.
05:45
Every interaction we have in the world is recorded
123
345785
1906
Svaka interakcija koju imamo u svijetu
05:47
by an ever growing array of sensors: your phone,
124
347691
3059
je snimljena vječno rastućim brojem senzora: vaš mobitel,
05:50
your credit card, your computer. The result is big data,
125
350750
2373
vaša kreditna kartica, vaše računalo. Rezultat su
05:53
and it actually presents us with an opportunity
126
353123
1742
veliki podaci, i daju nam priliku
05:54
to more deeply understand the human condition.
127
354865
2662
da dublje razumijemo ljudsko stanje.
05:57
The major emphasis of most approaches to big data
128
357527
2305
Najveći naglasak na većini ovih pristupa
05:59
focus on, "How do I store this data? How do I search
129
359832
2215
je fokus na "Kako spremim ove podatke?
06:02
this data? How do I process this data?"
130
362047
2276
Kako ih pretražujem? Kako ih obrađujem?"
06:04
These are necessary but insufficient questions.
131
364323
2204
Ovo su važna ali nedovoljna pitanja.
06:06
The imperative is not to figure out how to compute,
132
366527
2471
Imperativ nije na shvaćanju kako računati,
06:08
but what to compute. How do you impose human intuition
133
368998
2184
nego što računati. Kako umetnuti ljudsku
06:11
on data at this scale?
134
371182
1791
intuiciju u tolikim podacima?
06:12
Again, we start by designing the human into the process.
135
372973
3499
Ponovo, počinjemo stavljanjem čovjeka u proces.
06:16
When PayPal was first starting as a business, their biggest
136
376472
2812
Kad je PayPal počinjao svoj posao, njihov najveći izazov
06:19
challenge was not, "How do I send money back and forth online?"
137
379284
2804
nije bio "Kako šaljem novac tamo - amo preko mreže?"
06:22
It was, "How do I do that without being defrauded by organized crime?"
138
382088
3872
Bio je "Kako da to napravim bez da me prevari organizirani kriminal?"
06:25
Why so challenging? Because while computers can learn
139
385960
2088
Zašto je toliki izazov? Jer, dok računala
06:28
to detect and identify fraud based on patterns,
140
388048
3144
mogu naučiti prepoznati prevaru na temelju uzoraka,
06:31
they can't learn to do that based on patterns
141
391192
1479
ne mogu to napraviti na temelju uzoraka
06:32
they've never seen before, and organized crime
142
392671
2116
koje nisu nikada vidjeli, a organizirani kriminal
06:34
has a lot in common with this audience: brilliant people,
143
394787
2709
ima mnogo toga zajedničkog s ovom publikom: briljantni ljudi,
06:37
relentlessly resourceful, entrepreneurial spirit — (Laughter) —
144
397496
3640
neumoro snalažljivi, poduzetnički duh -- (Smijeh) --
06:41
and one huge and important difference: purpose.
145
401136
2712
i jedna ključna razlika: svrha.
06:43
And so while computers alone can catch all but the cleverest
146
403848
2832
I dok računala sama mogu uhvatiti sve osim najpametnijih
06:46
fraudsters, catching the cleverest is the difference
147
406680
2253
prevaranata, hvatanje najpametnijih je razlika
06:48
between success and failure.
148
408933
2545
između uspjeha i neuspjeha.
06:51
There's a whole class of problems like this, ones with
149
411478
2221
Postoji mnogo ovakvih problema, onih s
06:53
adaptive adversaries. They rarely if ever present with a
150
413699
2575
prilagodljivim protivnicima. Rijetko, ako ikad
06:56
repeatable pattern that's discernable to computers.
151
416274
2736
ponavljaju uzorak primjetan računalima.
06:59
Instead, there's some inherent component of innovation or disruption,
152
419010
3993
Umjesto, postoji nasljedna sastavnica inovacije ili remećenja,
07:03
and increasingly these problems are buried in big data.
153
423003
2735
i taj rastući broj problema je zakopan u velikim podacima.
07:05
For example, terrorism. Terrorists are always adapting
154
425738
2500
Na primjer, terorizam. Teroristi se uvijek prilagode
07:08
in minor and major ways to new circumstances, and despite
155
428238
2052
na bolje ili lošije načine novim okolnostima
07:10
what you might see on TV, these adaptations,
156
430290
3094
i unatoč viđenom na TV-u, ove prilagodbe,
07:13
and the detection of them, are fundamentally human.
157
433384
2293
i njihovo primjećivanje, su temeljno ljudske.
07:15
Computers don't detect novel patterns and new behaviors,
158
435677
3117
Računala ne raspoznaju nove uzorke ili ponašanja,
07:18
but humans do. Humans, using technology, testing hypotheses,
159
438794
3235
ali ljudi da. Ljudi, koristeći tehnologiju, testirajući hipoteze,
07:22
searching for insight by asking machines to do things for them.
160
442029
4620
tražeći uvide traženjem strojeva da urade nešto za njih.
07:26
Osama bin Laden was not caught by artificial intelligence.
161
446649
2320
Osamu bin Ladena nije uhvatila umjetna inteligencija.
07:28
He was caught by dedicated, resourceful, brilliant people
162
448969
2553
Uhvatili su ga predani, snalažljivi, genijalni ljudi
07:31
in partnerships with various technologies.
163
451522
4269
u partnerstvu s raznim tehnologijama.
07:35
As appealing as it might sound, you cannot algorithmically
164
455791
2818
Koliko god zvučalo primamljivo, ne možete algoritamski
07:38
data mine your way to the answer.
165
458609
1601
iskopati svoj put do odgovora.
07:40
There is no "Find Terrorist" button, and the more data
166
460210
2855
Ne postoji gumb "nađi terorista", a što više podataka
07:43
we integrate from a vast variety of sources
167
463065
2302
integriramo iz iznimnog broja izvora
07:45
across a wide variety of data formats from very
168
465367
2133
preko širokog spektra formata podataka iz
07:47
disparate systems, the less effective data mining can be.
169
467500
3309
različitih sustava, to kopanje može biti manje učinkovito.
07:50
Instead, people will have to look at data
170
470809
2024
Umjesto toga, ljudi moraju gledati podatke
07:52
and search for insight, and as Licklider foresaw long ago,
171
472833
3456
i tražiti uvide, i kako je Licklider davno predvidio,
07:56
the key to great results here is the right type of cooperation,
172
476289
2685
ključ sjajnih rezultata je prava vrsta suradnje,
07:58
and as Kasparov realized,
173
478974
1524
i kako je Kasparov shvatio,
08:00
that means minimizing friction at the interface.
174
480498
3031
to znači smanjivati trvenje na sučelju.
08:03
Now this approach makes possible things like combing
175
483529
2758
Ovaj pristup omogućava stvari poput pročešljavanja
08:06
through all available data from very different sources,
176
486287
3386
svih mogućih podataka iz drugačijih izvora,
08:09
identifying key relationships and putting them in one place,
177
489673
2792
prepoznati ključne veze i stavljati ih na jedno mjesto,
08:12
something that's been nearly impossible to do before.
178
492465
2928
nešto što je ranije bilo nemoguće izvesti.
08:15
To some, this has terrifying privacy and civil liberties
179
495393
1942
Za neke, ovo ima užasan utjecaj na
08:17
implications. To others it foretells of an era of greater
180
497335
3410
privatnost i građanska prava. Drugima, predskazuje doba veće privatnosti
08:20
privacy and civil liberties protections,
181
500745
1909
i zaštite građanskih prava,
08:22
but privacy and civil liberties are of fundamental importance.
182
502654
2936
no privatnost i građanska prava su od ključne važnosti.
08:25
That must be acknowledged, and they can't be swept aside,
183
505590
2193
To mora biti obznanjeno i ne smiju biti stavljeni sa strane,
08:27
even with the best of intents.
184
507783
2530
čak ni iz najboljih namjera.
08:30
So let's explore, through a couple of examples, the impact
185
510313
2518
Dakle, istražujmo kroz nekoliko primjera, utjecaj koji
08:32
that technologies built to drive human-computer symbiosis
186
512831
2406
su tehnologije, napravljene da služe simbiozi računala i čovjeka,
08:35
have had in recent time.
187
515237
2919
imale u zadnje vrijeme.
08:38
In October, 2007, U.S. and coalition forces raided
188
518156
3416
U listopadu, 2007., SAD i koalicijske snage su pretresli
08:41
an al Qaeda safe house in the city of Sinjar
189
521572
2416
sigurnu kuću Al Qaede u gradu Sinjaru
08:43
on the Syrian border of Iraq.
190
523988
1934
na sirijskoj granici s Irakom.
08:45
They found a treasure trove of documents:
191
525922
2376
Našli su bogatstvo dokumenata:
08:48
700 biographical sketches of foreign fighters.
192
528298
2335
700 biografskih skica stranih boraca.
08:50
These foreign fighters had left their families in the Gulf,
193
530633
2584
Ti strani borci su ostavili svoje obitelji u Zaljevu,
08:53
the Levant and North Africa to join al Qaeda in Iraq.
194
533217
3146
Levantu i sjevernoj Africi da bi se pridružili Al Qaedi u Iraku.
08:56
These records were human resource forms.
195
536363
1616
Ovi zapisi su formulari kadrovske.
08:57
The foreign fighters filled them out as they joined the organization.
196
537979
2855
Strani borci su ih ispunjavali kako su se pridruživali organizaciji.
09:00
It turns out that al Qaeda, too,
197
540834
1211
Čini se kako ni Al Qaeda
09:02
is not without its bureaucracy. (Laughter)
198
542045
2597
nije bez birokracije. (Smijeh)
09:04
They answered questions like, "Who recruited you?"
199
544642
2098
Odgovarali su na pitanja poput: "Tko te unovačio?
09:06
"What's your hometown?" "What occupation do you seek?"
200
546740
2854
Gdje ti je rodni grad? Koju poziciju tražiš?"
09:09
In that last question, a surprising insight was revealed.
201
549594
3169
U tom zadnjem pitanju otkriven je iznenađujuć uvid.
09:12
The vast majority of foreign fighters
202
552763
2400
Velika većina stranih boraca
09:15
were seeking to become suicide bombers for martyrdom --
203
555163
2400
je htjela biti bombaš samoubojica zbog mučeništva --
09:17
hugely important, since between 2003 and 2007, Iraq
204
557563
4338
vrlo važno, između 2003. i 2007., u Iraku se dogodilo
09:21
had 1,382 suicide bombings, a major source of instability.
205
561901
4244
1.382 samoubilačkih bombaških napada, velik izvor nestabilnosti.
09:26
Analyzing this data was hard. The originals were sheets
206
566145
2058
Analiza podataka je bila teška. Originali su bili
09:28
of paper in Arabic that had to be scanned and translated.
207
568203
2742
na arapskom i morali su biti skenirani i prevedeni.
09:30
The friction in the process did not allow for meaningful
208
570945
2192
Trvenje u procesu nije dozvoljavalo važne
09:33
results in an operational time frame using humans, PDFs
209
573137
3350
rezultate u operativnom vremenu samo korištenjem ljudi, PDF-ova
09:36
and tenacity alone.
210
576487
2218
i ustrajnošću.
09:38
The researchers had to lever up their human minds
211
578705
1953
Istraživači su morali poduprijeti svoje umove
09:40
with technology to dive deeper, to explore non-obvious
212
580658
2345
tehnologijom kako bi zaronili dublje, istražili
09:43
hypotheses, and in fact, insights emerged.
213
583003
3218
ne očite hipoteze i, ustvari, dobili su rezultate.
09:46
Twenty percent of the foreign fighters were from Libya,
214
586221
2644
20% stranih boraca je bilo iz Libije,
09:48
50 percent of those from a single town in Libya,
215
588865
2968
50% njih je iz istog grada u Libiji,
09:51
hugely important since prior statistics put that figure at
216
591833
2450
vrlo važno s obzirom da prijašnja statistika taj
09:54
three percent. It also helped to hone in on a figure
217
594283
2383
broj određuje na 3%. Također je pomoglo u približavanju
09:56
of rising importance in al Qaeda, Abu Yahya al-Libi,
218
596666
2977
osobi rastuće važnosti u Al Qaedi, Abu Yahya al-Libiju,
09:59
a senior cleric in the Libyan Islamic fighting group.
219
599643
2631
starijem kleriku u libijskoj islamskoj borbenoj grupi.
10:02
In March of 2007, he gave a speech, after which there was
220
602274
2664
U ožujku 2007., održao je govor nakon kojeg se dogodio
10:04
a surge in participation amongst Libyan foreign fighters.
221
604938
3466
snažan rast prijava među libijskim borcima.
10:08
Perhaps most clever of all, though, and least obvious,
222
608404
3106
Možda najpametnije od svega, iako najmanje očito,
10:11
by flipping the data on its head, the researchers were
223
611510
2073
okretanjem podataka naopako, istraživači su
10:13
able to deeply explore the coordination networks in Syria
224
613583
2900
mogli dublje istražiti koordinacijske mreže u Siriji
10:16
that were ultimately responsible for receiving and
225
616483
2517
koje su bile odgovorne za prihvat
10:19
transporting the foreign fighters to the border.
226
619000
2464
i transport stranih boraca na granicu.
10:21
These were networks of mercenaries, not ideologues,
227
621464
2633
To su bile mreže plaćenika, ne ideologa,
10:24
who were in the coordination business for profit.
228
624097
2398
koji su u koordinacijskom poslu bili zbog profita.
10:26
For example, they charged Saudi foreign fighters
229
626495
1904
Na primjer, naplaćivali su saudijskim borcima,
10:28
substantially more than Libyans, money that would have
230
628399
2199
značajno više nego libijskim, novac koji
10:30
otherwise gone to al Qaeda.
231
630598
2320
bi inače išao Al Qaedi.
10:32
Perhaps the adversary would disrupt their own network
232
632918
2045
Možda bi protivnici prekinuli vlastitu mrežu
10:34
if they knew they cheating would-be jihadists.
233
634963
3035
da su znali da varaju buduće džihadiste.
10:37
In January, 2010, a devastating 7.0 earthquake struck Haiti,
234
637998
3745
U siječnju 2010., razorni potres od 7.0 po Richteru je pogodio Haiti,
10:41
third deadliest earthquake of all time, left one million people,
235
641743
2916
treći najsmrtonosniji potres ikad je ostavio milijun ljudi,
10:44
10 percent of the population, homeless.
236
644659
2584
10% stanovništva, bez krova nad glavom.
10:47
One seemingly small aspect of the overall relief effort
237
647243
3137
Jedan mali aspekt cjelokupnog pokušaja olakšanja
10:50
became increasingly important as the delivery of food
238
650380
2176
je postajao sve važniji kako su hrana i
10:52
and water started rolling.
239
652556
2160
voda počeli stizati.
10:54
January and February are the dry months in Haiti,
240
654716
1458
Siječanj i veljača su suhi mjeseci na Haitiju,
10:56
yet many of the camps had developed standing water.
241
656174
2942
no mnogi kampovi su bili poplavljeni.
10:59
The only institution with detailed knowledge of Haiti's
242
659116
2122
Jedina institucija s detaljnim znanjem o
11:01
floodplains had been leveled
243
661238
1297
poplavnim područjima Haitija je sravljena sa zemljom
11:02
in the earthquake, leadership inside.
244
662535
3008
u potresu zajedno s vodstvom.
11:05
So the question is, which camps are at risk,
245
665543
2575
Pitanje je koji su kampovi rizični,
11:08
how many people are in these camps, what's the
246
668118
1921
koliko ljudi ima u tim kampovima, koji je
11:10
timeline for flooding, and given very limited resources
247
670039
2311
raspored plavljenja i uz vrlo ograničene resurse
11:12
and infrastructure, how do we prioritize the relocation?
248
672350
3384
i infrastrukturu, kako prioritizirati premještaj?
11:15
The data was incredibly disparate. The U.S. Army had
249
675734
2344
Podaci su bili vrlo različiti. Američka vojska je
11:18
detailed knowledge for only a small section of the country.
250
678078
2929
imala detaljno znanje za samo mali dio države.
11:21
There was data online from a 2006 environmental risk
251
681007
2511
Postoje podaci na mreži s konferencije o okolišnom riziku iz 2006.,
11:23
conference, other geospatial data, none of it integrated.
252
683518
2664
drugi geospacijalni podaci, ništa nije integrirano.
11:26
The human goal here was to identify camps for relocation
253
686182
2958
Ljudski cilj je bio prepoznati kampove za relokaciju
11:29
based on priority need.
254
689140
2395
na temelju prioritetnih potreba.
11:31
The computer had to integrate a vast amount of geospacial
255
691535
2440
Računalo je trebalo integrirati iznimnu količinu geospacijalnih
11:33
information, social media data and relief organization
256
693975
2584
informacija, podataka s društvenih mreža i podataka organizacije za humanitarnu pomoć
11:36
information to answer this question.
257
696559
3480
kako bi odgovorilo na ovo pitanje.
11:40
By implementing a superior process, what was otherwise
258
700039
2415
Primjenjujući superiorni proces, zadatak
11:42
a task for 40 people over three months became
259
702454
2608
za 40 ljudi kroz 3 mjeseca je postao
11:45
a simple job for three people in 40 hours,
260
705062
3176
jednostavan posao za troje ljudi u 40 sati,
11:48
all victories for human-computer symbiosis.
261
708238
2628
sve pobjede za simbiozu čovjeka i računala.
11:50
We're more than 50 years into Licklider's vision
262
710866
2054
Više smo od 50 godina u Lickliderovoj viziji
11:52
for the future, and the data suggests that we should be
263
712920
2242
budućnosti, i podaci govore da bismo trebali biti
11:55
quite excited about tackling this century's hardest problems,
264
715162
3030
poprilično uzbuđeni oko savladavanja najtežih problema ovog stoljeća,
11:58
man and machine in cooperation together.
265
718192
2947
čovjek i stroj u zajedničkoj suradnji.
12:01
Thank you. (Applause)
266
721139
2197
Hvala vam.
12:03
(Applause)
267
723336
2505
(Pljesak)
O ovoj web stranici

Ova stranica će vas upoznati s YouTube videozapisima koji su korisni za učenje engleskog jezika. Vidjet ćete lekcije engleskog koje vode vrhunski profesori iz cijelog svijeta. Dvaput kliknite na engleske titlove prikazane na svakoj video stranici da biste reproducirali video s tog mjesta. Titlovi se pomiču sinkronizirano s reprodukcijom videozapisa. Ako imate bilo kakvih komentara ili zahtjeva, obratite nam se putem ovog obrasca za kontakt.

https://forms.gle/WvT1wiN1qDtmnspy7