Shyam Sankar: The rise of human-computer cooperation

62,717 views ใƒป 2012-09-06

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

00:00
Translator: Joseph Geni Reviewer: Morton Bast
0
0
7000
ืžืชืจื’ื: Zeeva Livshitz ืžื‘ืงืจ: Ido Dekkers
00:15
I'd like to tell you about two games of chess.
1
15772
2556
ืื ื™ ืืกืคืจ ืœื›ื ืขืœ ืฉื ื™ ืžืฉื—ืงื™ ืฉื—ืžื˜
00:18
The first happened in 1997, in which Garry Kasparov,
2
18328
3864
ื”ืจืืฉื•ืŸ ื”ืชื ื”ืœ ื‘-1997 ื›ืฉื’ืืจื™ ืงืกืคืืจื•ื‘
00:22
a human, lost to Deep Blue, a machine.
3
22192
3716
ื‘ืŸ ืื“ื, ื”ืคืกื™ื“ ืœ-"ื“ื™ืค ื‘ืœื•" ืžื›ื•ื ื”.
00:25
To many, this was the dawn of a new era,
4
25908
2240
ืขื‘ื•ืจ ืจื‘ื™ื ื–ื” ื”ื™ื” ื”ืฉื—ืจ ืฉืœ ืขื™ื“ืŸ ื—ื“ืฉ,
00:28
one where man would be dominated by machine.
5
28148
2779
ืฉื‘ื• ื”ืื“ื ื™ื™ืฉืœื˜ ืขืœ ื™ื“ื™ ื”ืžื›ื•ื ื”
00:30
But here we are, 20 years on, and the greatest change
6
30927
3334
ืื‘ืœ, ื”ื ื” ื›ืืŸ ืื—ื ื•, 20 ืฉื ื” ืžืื•ื—ืจ ื™ื•ืชืจ, ื•ื”ืฉื™ื ื•ื™ ื”ื’ื“ื•ืœ
00:34
in how we relate to computers is the iPad,
7
34261
2690
ื›ื™ืฆื“ ืื ื• ืžืชื™ื™ื—ืกื™ื ืœืžื—ืฉื‘ื™ื ื”ื•ื ื”-ืื™ื™ืคื“
00:36
not HAL.
8
36951
2045
ืœื ื”ืืœ
00:38
The second game was a freestyle chess tournament
9
38996
2648
ื”ืžืฉื—ืง ื”ืฉื ื™ ื”ื™ื” ื‘ืžืกื’ืจืช ื˜ื•ืจื ื™ืจ ืฉื—
00:41
in 2005, in which man and machine could enter together
10
41644
2969
ื‘-2005, ืฉื‘ื• ื”ืื“ื ื•ื”ืžื›ื•ื ื” ื™ื•ื›ืœื• ืœื”ื™ื›ื ืก
00:44
as partners, rather than adversaries, if they so chose.
11
44613
4666
ื›ื‘ื ื™ ื–ื•ื’, ื•ืœื ื›ื™ืจื™ื‘ื™ื, ืื ื”ื ื™ื‘ื—ืจื• ื‘ื›ืš.
00:49
At first, the results were predictable.
12
49279
1851
ื‘ืชื—ื™ืœื” ื”ืชื•ืฆืื•ืช ื”ื™ื• ืฆืคื•ื™ื•ืช.
00:51
Even a supercomputer was beaten by a grandmaster
13
51130
2497
ืืคื™ืœื• ืžื—ืฉื‘ ื”ืขืœ ื”ื•ื‘ืก ืขืœ ื™ื“ื™ ื”ืจื‘-ืืžืŸ
00:53
with a relatively weak laptop.
14
53627
2312
ื‘ืขื–ืจืช ืžื—ืฉื‘ ื ื™ื™ื“ ื—ืœืฉ ื™ื—ืกื™ืช
00:55
The surprise came at the end. Who won?
15
55939
2985
ื”ื”ืคืชืขื” ื”ื’ื™ืขื” ื‘ืกื•ืฃ. ืžื™ ื–ื›ื”?
00:58
Not a grandmaster with a supercomputer,
16
58924
2776
ืœื ืจื‘ ื”ืืžืŸ ืขื ืžื—ืฉื‘ ื”ืขืœ
01:01
but actually two American amateurs
17
61700
1493
ืืœื ื“ื•ื•ืงื 2 ื—ื•ื‘ื‘ื™ื ืืžืจื™ืงืื™ื
01:03
using three relatively weak laptops.
18
63193
3822
ืฉื”ืชืžืฉื• ื‘ืฉืœื•ืฉื” ืžื—ืฉื‘ื™ื ื ื™ื“ื™ื ื—ืœืฉื™ื.
01:07
Their ability to coach and manipulate their computers
19
67015
2596
ื™ื›ื•ืœืชื ืœื”ื“ืจื™ืš ื•ืœื”ืคืขื™ืœ ืžื ื™ืคื•ืœืฆื™ื•ืช ืขืœ ื”ืžื—ืฉื‘ื™ื ืฉืœื”ื
01:09
to deeply explore specific positions
20
69611
2435
ื›ื“ื™ ืœื—ืงื•ืจ ืœืขื•ืžืง ืžืฆื‘ื™ื ืกืคืฆื™ืคื™ื™ื
01:12
effectively counteracted the superior chess knowledge
21
72046
2390
ืคืขืœื• ื‘ื™ืขื™ืœื•ืช ื ื’ื“ ื”ื™ื“ืข ื”ื ืขืœื” ื‘ืฉื—ืžื˜
01:14
of the grandmasters and the superior computational power
22
74436
2609
ืฉืœ ืจื‘ื™ ื”ืืžืŸ ื”ื’ื“ื•ืœื™ื ื•ื›ื•ื—ื• ื”ื ืขืœื” ืฉืœ ืžื—ืฉื‘ ื”ืขืœ
01:17
of other adversaries.
23
77045
1909
ืฉืœ ื”ื™ืจื™ื‘ื™ื ื”ืื—ืจื™ื.
01:18
This is an astonishing result: average men,
24
78954
2905
ื–ื•ื”ื™ ืชื•ืฆืื” ืžื“ื”ื™ืžื”: ืื“ื ืžืžื•ืฆืข,
01:21
average machines beating the best man, the best machine.
25
81859
4081
ืžื›ืฉื™ืจื™ื ืžืžื•ืฆืขื™ื ื’ื•ื‘ืจื™ื ืขืœ ื”ืื ืฉื™ื ื”ื˜ื•ื‘ื™ื ื‘ื™ื•ืชืจ, ื•ื”ืžื›ื•ื ื” ื”ื˜ื•ื‘ื” ื‘ื™ื•ืชืจ.
01:25
And anyways, isn't it supposed to be man versus machine?
26
85940
3199
ื•ื‘ื›ืœ ืื•ืคืŸ, ื–ื” ืœื ืืžื•ืจ ืœื”ื™ื•ืช ื”ืื“ื ื ื’ื“ ื”ืžื›ื•ื ื”?
01:29
Instead, it's about cooperation, and the right type of cooperation.
27
89139
4152
ื‘ืžืงื•ื ื–ื”, ื–ื” ืขื ื™ื™ืŸ ืฉืœ ืฉื™ืชื•ืฃ-ืคืขื•ืœื” ื•ื”ืกื•ื’ ื”ื ื›ื•ืŸ ืฉืœ ืฉื™ืชื•ืฃ ืคืขื•ืœื”
01:33
We've been paying a lot of attention to Marvin Minsky's
28
93291
2857
ื”ืงื“ืฉื ื• ืชืฉื•ืžืช ืœื‘ ืจื‘ื” ืœื—ื–ื•ื ื• ืฉืœ ืžืจื•ื•ื™ืŸ ืžื™ื ืกืงื™
01:36
vision for artificial intelligence over the last 50 years.
29
96148
3242
ืื•ื“ื•ืช ืื™ื ื˜ืœื™ื’ื ืฆื™ื” ืžืœืื›ื•ืชื™ืช ื‘-50 ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช
01:39
It's a sexy vision, for sure. Many have embraced it.
30
99390
2262
ื–ื” ื—ื–ื•ืŸ ืžื•ืฉืš, ืœื‘ื˜ื—, ืจื‘ื™ื ืื™ืžืฆื• ืื•ืชื•
01:41
It's become the dominant school of thought in computer science.
31
101652
2753
ื”ื•ื ื”ืคืš ืœืืกื›ื•ืœื” ื”ื“ื•ืžื™ื ื ื˜ื™ืช ื‘ืžื“ืขื™ ื”ืžื—ืฉื‘.
01:44
But as we enter the era of big data, of network systems,
32
104405
3072
ืื‘ืœ ื›ืฉืื ื• ื ื›ื ืกื™ื ืœืขื™ื“ืŸ ื”ื’ื“ื•ืœ ืฉืœ ื”ืžื™ื“ืข, ืฉืœ ืžืขืจื›ื•ืช ืชืงืฉื•ืจืช
01:47
of open platforms, and embedded technology,
33
107477
2698
ืฉืœ ืคืœื˜ืคื•ืจืžื•ืช ืคืชื•ื—ื•ืช ื•ื˜ื›ื ื•ืœื•ื’ื™ื” ืžืฉื•ื‘ืฆืช
01:50
I'd like to suggest it's time to reevaluate an alternative vision
34
110175
3392
ื”ื™ื™ืชื™ ืจื•ืฆื” ืœื”ืฆื™ืข ืฉื”ื’ื™ืข ื”ื–ืžืŸ ืœื”ืขืจื™ืš ืžื—ื“ืฉ ื—ื–ื•ืŸ ืืœื˜ืจื ื˜ื™ื‘ื™
01:53
that was actually developed around the same time.
35
113567
3070
ืฉื”ืชืคืชื— ื‘ืขืจืš ื‘ืื•ืชื• ื–ืžืŸ.
01:56
I'm talking about J.C.R. Licklider's human-computer symbiosis,
36
116637
3332
ืื ื™ ืžื“ื‘ืจ ืขืœ ื”ืกื™ืžื‘ื™ื•ื–ื” ื‘ื™ืŸ ืื“ื ืœืžื—ืฉื‘ ืฉืœ ื’'ื™ื™ ืกื™ ืืจ ืœื™ืงืœื™ื“ืจ
01:59
perhaps better termed "intelligence augmentation," I.A.
37
119969
3808
ืฉื™ื•ืชืจ ื˜ื•ื‘ ืœื›ื ื•ืช ืื•ืชื” "ืจื™ื‘ื•ื“ ืื™ื ื˜ื™ืœื™ื’ื ืฆื™ื”".
02:03
Licklider was a computer science titan who had a profound
38
123777
2640
ืœื™ืงืœื™ื“ืจ ื”ื™ื” ืขื ืง ืžื—ืฉื‘ื™ื ืฉื”ื™ืชื” ืœื• ื”ืฉืคืขื”
02:06
effect on the development of technology and the Internet.
39
126417
3006
ืขืžื•ืงื” ืขืœ ื”ืชืคืชื—ื•ืช ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ื•ื”ืื™ื ื˜ืจื ื˜.
02:09
His vision was to enable man and machine to cooperate
40
129423
2868
ื”ื—ื–ื•ืŸ ืฉืœื• ื”ื™ื” ืœืืคืฉืจ ืœืื“ื ื•ืœืžื›ื•ื ื” ืœืฉืชืฃ ืคืขื•ืœื”
02:12
in making decisions, controlling complex situations
41
132291
3590
ื‘ืงื‘ืœืช ื”ื—ืœื˜ื•ืช, ื‘ืคื™ืงื•ื— ืขืœ ืžืฆื‘ื™ื ืžืกื•ื‘ื›ื™ื
02:15
without the inflexible dependence
42
135881
1770
ืœืœื ื”ืชืœื•ืช ื”ื ื•ืงืฉื”
02:17
on predetermined programs.
43
137651
2533
ื‘ืชื•ื›ื ื™ื•ืช ืงื‘ื•ืขื•ืช ืžืจืืฉ.
02:20
Note that word "cooperate."
44
140184
2498
ืฉื™ืžื• ืœื‘ ืœืžื™ืœื” "ืœืฉืชืฃ ืคืขื•ืœื”."
02:22
Licklider encourages us not to take a toaster
45
142682
2747
ืœื™ืงืœื™ื“ืจ ืžืขื•ื“ื“ ืื•ืชื ื• ืœื ืœืงื—ืช ืžืฆื ื
02:25
and make it Data from "Star Trek,"
46
145429
2284
ื•ืœื”ืคื›ื• ืœื“ืื˜ื” ืž"ืžืกืข ื‘ื™ืŸ ื›ื•ื›ื‘ื™ื,"
02:27
but to take a human and make her more capable.
47
147713
3535
ืืœื ืœืงื—ืช ื‘ืŸ-ืื“ื ื•ืœืขืฉื•ืชื• ื™ื•ืชืจ ืžื•ื›ืฉืจ.
02:31
Humans are so amazing -- how we think,
48
151248
1911
ื‘ื ื™ ืื“ื ื”ื ื›ื” ืžื“ื”ื™ืžื™ื--ื›ื™ืฆื“ ืื ื• ื—ื•ืฉื‘ื™ื,
02:33
our non-linear approaches, our creativity,
49
153159
2618
ื”ื’ื™ืฉื•ืช ืฉืื™ื ืŸ ื—ื“-ืžืžื“ื™ื•ืช, ื”ื™ืฆื™ืจืชื™ื•ืช ืฉืœื ื•,
02:35
iterative hypotheses, all very difficult if possible at all
50
155777
2131
ื”ื”ื™ืคื•ืชื™ื–ื•ืช ื”ื ื™ืฉื ื•ืช, ื›ืœ ืืœื” ื”ื ื“ื‘ืจื™ื ืงืฉื™ื ืžืื“ ืื ื‘ื›ืœืœ ืืคืฉืจื™ื™ื
02:37
for computers to do.
51
157908
1345
ืœื‘ื™ืฆื•ืข ืขืœ ื™ื“ื™ ืžื—ืฉื‘ื™ื.
02:39
Licklider intuitively realized this, contemplating humans
52
159253
2452
ืœื™ืงืœื™ื“ืจ ื”ื‘ื™ืŸ ื–ืืช ื‘ืื•ืคืŸ ืื™ื ื˜ื•ืื™ื˜ื™ื‘ื™, ืžืชื•ืš ื”ืชื‘ื•ื ื ื•ืช ื‘ืื ืฉื™ื
02:41
setting the goals, formulating the hypotheses,
53
161705
2327
ืœืงื‘ื•ืข ืืช ื”ืžื˜ืจื•ืช, ืœื ืกื— ืืช ื”ื”ื™ืคื•ืชื™ื–ื•ืช,
02:44
determining the criteria, and performing the evaluation.
54
164032
3376
ืœืงื‘ื•ืข ืืช ื”ืงืจื™ื˜ืจื™ื•ื ื™ื, ื•ืœื‘ืฆืข ืืช ื”ื”ืขืจื›ื”.
02:47
Of course, in other ways, humans are so limited.
55
167408
1775
ื›ืžื•ื‘ืŸ, ืฉื‘ื“ื‘ืจื™ื ืื—ืจื™ื ื‘ื ื™-ื”ืื“ื ื”ื ืžื•ื’ื‘ืœื™ื ืžืื“
02:49
We're terrible at scale, computation and volume.
56
169183
3235
ืื ื—ื ื• ื ื•ืจืื™ื ื‘ื ื•ืฉืื™ ืงื ื” ืžื™ื“ื”, ื—ื™ืฉื•ื‘ ื•ื ืคื—.
02:52
We require high-end talent management
57
172418
1836
ืื ื—ื ื• ื“ื•ืจืฉื™ื ื›ืฉืจื•ื ื•ืช ื ื™ื”ื•ืœ ื‘ืจืžื” ื’ื‘ื•ื”ื”
02:54
to keep the rock band together and playing.
58
174254
2064
ื›ื“ื™ ืœืฉืžื•ืจ ืฉืœื”ืงืช ืจื•ืง ืชื•ืคื™ืข ื™ื—ื“.
02:56
Licklider foresaw computers doing all the routinizable work
59
176318
2204
ืœื™ืงืœื™ื“ืจ ื—ื–ื” ืžื—ืฉื‘ื™ื ืฉืขื•ืฉื™ื ืืช ื›ืœ ื”ืขื‘ื•ื“ื” ื”ืฉื™ื’ืจืชื™ืช
02:58
that was required to prepare the way for insights and decision making.
60
178522
3276
ืฉื”ื™ืชื” ื ื—ื•ืฆื” ื›ื“ื™ ืœื”ื›ื™ืŸ ืืช ื”ื“ืจืš ืœืงื‘ืœืช ืชื•ื‘ื ื•ืช ื•ืงื‘ืœืช ื”ื—ืœื˜ื•ืช.
03:01
Silently, without much fanfare,
61
181798
2224
ื‘ืฉืงื˜, ื‘ืœื™ ื”ืจื‘ื” ืžื”ื•ืžื”,
03:04
this approach has been compiling victories beyond chess.
62
184022
3354
ื’ื™ืฉื” ื–ื• ื™ืฆืจื” ื ืฆื—ื•ื ื•ืช ืžืขื‘ืจ ืœืฉื—ืžื˜.
03:07
Protein folding, a topic that shares the incredible expansiveness of chess โ€”
63
187376
3356
ืงื™ืคื•ืœ ื—ืœื‘ื•ื ื™ื, ื ื•ืฉื ืฉื—ื•ืœืง ืืช ื”ืชืจื—ื‘ื•ืช ื”ืžื“ื”ื™ืžื” ืฉืœ ืฉื—ืžื˜ -
03:10
there are more ways of folding a protein than there are atoms in the universe.
64
190732
3042
ืงื™ื™ืžื•ืช ื™ื•ืชืจ ื“ืจื›ื™ื ืœืงื™ืคื•ืœ ื—ืœื‘ื•ื ื™ื ืžืืฉืจ ื™ืฉ ืื˜ื•ืžื™ื ื‘ื™ืงื•ื.
03:13
This is a world-changing problem with huge implications
65
193774
2353
ื–ื•ื”ื™ ื‘ืขื™ื” ืฉืœ ืžืฉืชื ืช ืขื•ืœื ืขื ื”ืฉืœื›ื•ืช ืขืฆื•ืžื•ืช
03:16
for our ability to understand and treat disease.
66
196127
2308
ืขื‘ื•ืจ ื”ื™ื›ื•ืœืช ืฉืœื ื• ืœื”ื‘ื™ืŸ ื•ืœื˜ืคืœ ื‘ืžื—ืœื”.
03:18
And for this task, supercomputer field brute force simply isn't enough.
67
198435
4248
ื•ืขื‘ื•ืจ ืžืฉื™ืžื” ื–ื•, ื›ื•ื— ื’ืก ืฉืœ ืžื—ืฉื‘-ืขืœ ืคืฉื•ื˜ ืื™ื ื• ืžืกืคื™ืง.
03:22
Foldit, a game created by computer scientists,
68
202683
2384
ืคื•ืœื“ื™ื˜, ืžืฉื—ืง ืฉื ื•ืฆืจ ืขืœ-ื™ื“ื™ ืžื“ืขื ื™ ืžื—ืฉื‘,
03:25
illustrates the value of the approach.
69
205067
2502
ืžื“ื’ื™ื ืืช ื”ืขืจืš ืฉืœ ื”ื’ื™ืฉื”.
03:27
Non-technical, non-biologist amateurs play a video game
70
207569
3041
ื—ื•ื‘ื‘ื™ื ืฉืื™ื ื ืื ืฉื™ื ื˜ื›ื ื™ื™ื, ื•ืื™ื ื ื‘ื™ื•ืœื•ื’ื™ื ืžืฉื—ืงื™ื ื‘ืžืฉื—ืง ื•ื™ื“ืื•
03:30
in which they visually rearrange the structure of the protein,
71
210610
3073
ืฉื‘ื• ื”ื ื‘ืื•ืคืŸ ื—ื–ื•ืชื™ ืžืกื“ืจื™ื ืžื—ื“ืฉ ืืช ื”ืžื‘ื ื” ืฉืœ ื”ื—ืœื‘ื•ื ื™ื,
03:33
allowing the computer to manage the atomic forces
72
213683
1499
ืชื•ืš ืžืชืŸ ืืคืฉืจื•ืช ืœืžื—ืฉื‘ ืœื ื”ืœ ืืช ื”ื›ื•ื—ื•ืช ื”ืื˜ื•ืžื™ื
03:35
and interactions and identify structural issues.
73
215182
2957
ื•ืื™ื ื˜ืจืืงืฆื™ื•ืช ืฉืžื–ื”ื•ืช ื‘ืขื™ื•ืช ืžื‘ื ื™ื•ืช.
03:38
This approach beat supercomputers 50 percent of the time
74
218139
3023
ื’ื™ืฉื” ื–ื• ื”ื™ื›ืชื” ืืช ืžื—ืฉื‘ื™ ื”ืขืœ ื‘-50% ืžื”ื–ืžืŸ
03:41
and tied 30 percent of the time.
75
221162
2584
ื•ื”ื™ืฉื•ื•ืชื” 30 ืื—ื•ื– ืžื”ื–ืžืŸ.
03:43
Foldit recently made a notable and major scientific discovery
76
223746
3137
ืœืคื•ืœื“ื™ื˜ ื”ื™ืชื” ืœืื—ืจื•ื ื” ืชื’ืœื™ืช ืžื“ืขื™ืช ื‘ื•ืœื˜ืช ื•ื—ืฉื•ื‘ื”
03:46
by deciphering the structure of the Mason-Pfizer monkey virus.
77
226883
3160
ืขืœ-ื™ื“ื™ ืคื™ืขื ื•ื— ื”ืžื‘ื ื” ืฉืœ ื•ื•ื™ืจื•ืก ื”ืงื•ืฃ ืžื™ื™ืกื•ืŸ-ืคื™ื™ื–ืจ.
03:50
A protease that had eluded determination for over 10 years
78
230043
3015
ืคืจื•ื˜ืื– ืฉื”ืชื—ืžืง ืžื”ื’ื“ืจื” ืžืขืœ 10 ืฉื ื™ื
03:53
was solved was by three players in a matter of days,
79
233058
2626
ื ืคืชืจ ืขืœ ื™ื“ื™ ืฉืœื•ืฉื” ืฉื—ืงื ื™ื ื‘ืชืงื•ืคื” ืฉืœ ื™ืžื™ื,
03:55
perhaps the first major scientific advance
80
235684
2025
ืื•ืœื™ ื”ื”ืชืงื“ืžื•ืช ืžื“ืขื™ืช ื”ื’ื“ื•ืœื” ื”ืจืืฉื•ื ื”
03:57
to come from playing a video game.
81
237709
2323
ืฉื”ื’ื™ืขื” ืžืžืฉื—ืง ื•ื™ื“ืื•.
04:00
Last year, on the site of the Twin Towers,
82
240032
2181
ื‘ืฉื ื” ืฉืขื‘ืจื”, ื‘ืืชืจ ืฉืœ ืžื’ื“ืœื™ ื”ืชืื•ืžื™ื,
04:02
the 9/11 memorial opened.
83
242213
1473
ืื ื“ืจื˜ืช 9/11 ื ืคืชื—ื”.
04:03
It displays the names of the thousands of victims
84
243686
2721
ื”ื™ื ืžืฆื™ื’ื” ืืช ืฉืžื•ืช ืฉืœ ืืœืคื™ ื”ืงื•ืจื‘ื ื•ืช
04:06
using a beautiful concept called "meaningful adjacency."
85
246407
3063
ื›ืฉื”ื ืžืฉืชืžืฉื™ื ื‘ืืžืฆืขื•ืช ืจืขื™ื•ืŸ ื™ืคื” ื‘ืฉื "ืงื™ืจื‘ื” ืžืฉืžืขื•ืชื™ืช".
04:09
It places the names next to each other based on their
86
249470
2166
ื”ื™ื ืžืฆื™ื‘ื” ืืช ื”ืฉืžื•ืช ืื—ื“ ืœื™ื“ ื”ืฉื ื™ ื‘ื”ืชื‘ืกืก ืขืœ
04:11
relationships to one another: friends, families, coworkers.
87
251636
2213
ื”ืงืฉืจื™ื ืฉื‘ื™ื ื™ื”ื: ื—ื‘ืจื™ื, ืžืฉืคื—ื•ืช, ื—ื‘ืจื™ื ืœืขื‘ื•ื“ื”.
04:13
When you put it all together, it's quite a computational
88
253849
3028
ื›ืืฉืจ ืืชื ืฉืžื™ื ืืช ื›ืœ ื–ื” ื™ื—ื“ , ื–ื”ื• ืžืžืฉ ืืชื’ืจ
04:16
challenge: 3,500 victims, 1,800 adjacency requests,
89
256877
4223
ื—ื™ืฉื‘ื•: 3,500 ืงื•ืจื‘ื ื•ืช, 1,800, ื‘ืงืฉื•ืช ืงื™ืจื‘ื”,
04:21
the importance of the overall physical specifications
90
261100
3092
ื”ื—ืฉื™ื‘ื•ืช ืฉืœ ื”ืžืคืจื˜ ื”ืคื™ื–ื™ ื”ื›ื•ืœืœ
04:24
and the final aesthetics.
91
264192
2137
ื•ื”ืืกืชื˜ื™ืงื” ื”ืกื•ืคื™ืช.
04:26
When first reported by the media, full credit for such a feat
92
266329
2615
ื›ืืฉืจ ื–ื” ื“ื•ื•ื— ืœืจืืฉื•ื ื” ื‘ืžื“ื™ื”, ื ื™ืชืŸ ืžืœื•ื ื”ืงืจื“ื™ื˜ ืขื‘ื•ืจ ืžื‘ืฆืข ื›ื–ื”
04:28
was given to an algorithm from the New York City
93
268944
1892
ืœืืœื’ื•ืจื™ืชื ืž"ืœื•ืงืืœ ืคืจื•ื’'ืงืก" ื—ื‘ืจืช ืขื™ืฆื•ื‘ ืคืจื•ื™ื™ืงื˜ื™ื
04:30
design firm Local Projects. The truth is a bit more nuanced.
94
270836
4001
ืžืงื•ืžื™ื™ื ืžื”ืขื™ืจ ื ื™ื•-ื™ื•ืจืง. ื”ืืžืช ืžืขื˜ ื™ื•ืชืจ ืžื’ื•ื•ื ืช.
04:34
While an algorithm was used to develop the underlying framework,
95
274837
2871
ื‘ืขื•ื“ ื ืขืฉื” ืฉื™ืžื•ืฉ ื‘ืืœื’ื•ืจื™ืชื ื›ื“ื™ ืœืคืชื— ืืช ื”ืžืกื’ืจืช ื”ื‘ืกื™ืกื™ืช,
04:37
humans used that framework to design the final result.
96
277708
3008
ื‘ื ื™ ืื“ื ื”ืฉืชืžืฉื• ื‘ืžืกื’ืจืช ื‘ืกื™ืกื™ืช ื–ื• ื›ื“ื™ ืœืขืฆื‘ ืืช ื”ืชื•ืฆืื” ื”ืกื•ืคื™ืช.
04:40
So in this case, a computer had evaluated millions
97
280716
2225
ื›ืš, ืฉื‘ืžืงืจื” ื–ื”, ื”ืžื—ืฉื‘ ื”ืขืจื™ืš ืžื™ืœื™ื•ื ื™
04:42
of possible layouts, managed a complex relational system,
98
282941
3335
ืคืจื™ืกื•ืช ืืคืฉืจื™ื•ืช, ื ื™ื”ืœ ืžืขืจื›ืช ืžื•ืจื›ื‘ืช ืฉืœ ื™ื—ืกื™ ืงื™ืจื‘ื”,
04:46
and kept track of a very large set of measurements
99
286276
2414
ื•ืขืงื‘ ืื—ืจื™ ืงื‘ื•ืฆื” ื’ื“ื•ืœื” ืžืื•ื“ ืฉืœ ืžื™ื“ื•ืช
04:48
and variables, allowing the humans to focus
100
288690
2410
ื•ืžืฉืชื ื™ื, ื›ืฉื”ื•ื ืžืืคืฉืจ ืœื‘ื ื™-ื”ืื“ื ืœื”ืชืžืงื“
04:51
on design and compositional choices.
101
291100
2802
ืขืœ ื”ืขื™ืฆื•ื‘ ื•ื”ืืคืฉืจื•ื™ื•ืช ืฉืœ ื”ืงื•ืžืคื•ื–ื™ืฆื™ื•ืช.
04:53
So the more you look around you,
102
293902
1036
ื›ืš ืฉื›ื›ืœ ืฉืืชื ืžืกืชื›ืœื™ื ื™ื•ืชืจ ืกื‘ื™ื‘ื›ื,
04:54
the more you see Licklider's vision everywhere.
103
294938
1962
ืืชื ืจื•ืื™ื ืืช ื—ื–ื•ื ื• ืฉืœ ืœื™ืงืœื™ื“ืจ ื‘ื›ืœ ืžืงื•ื.
04:56
Whether it's augmented reality in your iPhone or GPS in your car,
104
296900
3304
ื‘ื™ืŸ ืื ื–ื” ื™ืฉ ื”ืžืฆื™ืื•ืช ื”ืžืจื•ื‘ื“ืช ืฉืœื›ื ื‘ืื™ื™ืคื•ืŸ ืื• ื‘ื’'ื™ ืคื™ ืืก ืฉื‘ืžื›ื•ื ื™ืชื›ื,
05:00
human-computer symbiosis is making us more capable.
105
300204
2970
ืกื™ืžื‘ื™ื•ื–ื” ืฉืœ ืื“ื-ืžื—ืฉื‘ ืžืงื ื” ืœื ื• ื™ื•ืชืจ ื™ื›ื•ืœืช.
05:03
So if you want to improve human-computer symbiosis,
106
303174
1655
ื›ืš, ืฉืื ืจื•ืฆื™ื ืœืฉืคืจ ืกื™ืžื‘ื™ื•ื–ืช ืื“ื-ืžื—ืฉื‘,
05:04
what can you do?
107
304829
1429
ืžื” ื ื™ืชืŸ ืœืขืฉื•ืช?
05:06
You can start by designing the human into the process.
108
306258
2452
ืืคืฉืจ ืœื”ืชื—ื™ืœ ืžืชื›ื ื•ืŸ ืฉื™ืฉืœื‘ ืืช ื”ืื“ื ืœืชื•ืš ื”ืชื”ืœื™ืš.
05:08
Instead of thinking about what a computer will do to solve the problem,
109
308710
2204
ื‘ืžืงื•ื ืœื—ืฉื•ื‘ ืขืœ ืžื” ืฉื”ืžื—ืฉื‘ ื™ืขืฉื” ื›ื“ื™ ืœืคืชื•ืจ ืืช ื”ื‘ืขื™ื”,
05:10
design the solution around what the human will do as well.
110
310914
3869
ืœืชื›ื ืŸ ืืช ื”ืคื™ืชืจื•ืŸ ืกื‘ื™ื‘ ืžื” ืฉื”ืื“ื ื™ืขืฉื” ื’ื ื›ืŸ.
05:14
When you do this, you'll quickly realize that you spent
111
314783
1937
ื›ืืฉืจ ืชืขืฉื• ื–ืืช, ืชื‘ื™ื ื• ืขื“ ืžื”ืจื” ืฉื‘ื™ืœื™ืชื ืืช
05:16
all of your time on the interface between man and machine,
112
316720
2879
ื›ืœ ื–ืžื ื›ื ื‘ืžืžืฉืง ื‘ื™ืŸ ืื“ื ืœืžื›ื•ื ื”,
05:19
specifically on designing away the friction in the interaction.
113
319599
3099
ื‘ืื•ืคืŸ ืกืคืฆื™ืคื™ ื‘ืชื›ื ื•ืŸ ืกื™ืœื•ืง ื”ื—ื™ื›ื•ืš ืฉื‘ืื™ื ื˜ืจืืงืฆื™ื”.
05:22
In fact, this friction is more important than the power
114
322698
2766
ืœืžืขืฉื”, ื—ื™ื›ื•ืš ื–ื” ื—ืฉื•ื‘ ื™ื•ืชืจ ืžืืฉืจ ื›ื•ื—ื•
05:25
of the man or the power of the machine
115
325464
2052
ืฉืœ ื”ืื“ื, ืื• ื›ื•ื—ื” ืฉืœ ื”ืžื›ื•ื ื”
05:27
in determining overall capability.
116
327516
1931
ื‘ืงื‘ื™ืขืช ื”ื™ื›ื•ืœืช ื”ื›ื•ืœืœืช.
05:29
That's why two amateurs with a few laptops
117
329447
1977
ื–ื• ื”ืกื™ื‘ื” ืฉืฉื ื™ ื—ื•ื‘ื‘ื™ื ืขื ืžืกืคืจ ืžื—ืฉื‘ื™ื ื ื™ืฉืื™ื
05:31
handily beat a supercomputer and a grandmaster.
118
331424
2456
ื ื™ืฆื—ื• ื‘ืงืœื•ืช ืžื—ืฉื‘-ืขืœ ื•ืจื‘-ืืžืŸ.
05:33
What Kasparov calls process is a byproduct of friction.
119
333880
3005
ืžื” ืฉืงืกืคืจื•ื‘ ืงื•ืจื ืœื• ืชื”ืœื™ืš ื”ื•ื ืชื•ืฆืจ-ืœื•ื•ืื™ ืฉืœ ื—ื™ื›ื•ืš.
05:36
The better the process, the less the friction.
120
336885
2401
ื›ื›ืœ ืฉื”ืชื”ืœื™ืš ื˜ื•ื‘ ื™ื•ืชืจ, ื›ืš ื™ืฉ ืคื—ื•ืช ื”ื—ื™ื›ื•ืš.
05:39
And minimizing friction turns out to be the decisive variable.
121
339286
4256
ื•ืฆืžืฆื•ื ื”ื—ื™ื›ื•ืš ื™ืชื‘ืจืจ ื›ืžืฉืชื ื” ื”ืžื›ืจื™ืข.
05:43
Or take another example: big data.
122
343542
2243
ืื• ืงื‘ืœื• ื“ื•ื’ืžื” ื ื•ืกืคืช: ืžื™ื“ืข ืจื‘.
05:45
Every interaction we have in the world is recorded
123
345785
1906
ื›ืœ ืื™ื ื˜ืจืืงืฆื™ื” ืฉื™ืฉ ืœื ื• ื‘ืขื•ืœื ื ืจืฉืžืช
05:47
by an ever growing array of sensors: your phone,
124
347691
3059
ืขืœ ื™ื“ื™ ืžืขืจืš ื”ื•ืœืš ื•ื’ื“ืœ ืฉืœ ื—ื™ื™ืฉื ื™ื: ื”ื˜ืœืคื•ืŸ ืฉืœืš,
05:50
your credit card, your computer. The result is big data,
125
350750
2373
ื›ืจื˜ื™ืก ื”ืืฉืจืื™ ืฉืœืš, ื”ืžื—ืฉื‘ ืฉืœืš. ื”ืชื•ืฆืื” ื”ื™ื ื”ืจื‘ื” ืžื™ื“ืข,
05:53
and it actually presents us with an opportunity
126
353123
1742
ื•ื–ื” ืœืžืขืฉื” ื ื•ืชืŸ ืœื ื• ื”ื”ื–ื“ืžื ื•ืช
05:54
to more deeply understand the human condition.
127
354865
2662
ืœื”ื‘ื™ืŸ ื™ื•ืชืจ ืœืขื•ืžืง ืืช ื”ืžืฆื‘ ื”ืื ื•ืฉื™.
05:57
The major emphasis of most approaches to big data
128
357527
2305
ื”ื“ื’ืฉ ื”ืขื™ืงืจื™ ืฉืœ ืจื•ื‘ ื”ื’ื™ืฉื•ืช ืœืžื™ื“ืข ืจื‘
05:59
focus on, "How do I store this data? How do I search
129
359832
2215
ืžืชืžืงื“ ืขืœ, "ื›ื™ืฆื“ ื ื™ืชืŸ ืœืื—ืกืŸ ื ืชื•ื ื™ื ืืœื”? ื›ื™ืฆื“ ืžื—ืคืฉื™ื
06:02
this data? How do I process this data?"
130
362047
2276
ื ืชื•ื ื™ื ืืœื”? ื›ื™ืฆื“ ืื ื™ ืžืขื‘ื“ ื ืชื•ื ื™ื ืืœื”?"
06:04
These are necessary but insufficient questions.
131
364323
2204
ืืœื• ืฉืืœื•ืช ื”ื›ืจื—ื™ื•ืช ืืš ืœื ืžืกืคื™ืงื•ืช.
06:06
The imperative is not to figure out how to compute,
132
366527
2471
ืžื” ืฉื—ื™ื•ื ื™ ื”ื•ื ืœื ืื™ืš ืœื”ื‘ื™ืŸ ื›ื™ืฆื“ ืœื—ืฉื‘,
06:08
but what to compute. How do you impose human intuition
133
368998
2184
ืืœื ืžื” ืœื—ืฉื‘ ื›ื™ืฆื“ ื‘ืืคืฉืจื•ืชืš ืœื›ืคื•ืช ืืช ื”ืื™ื ื˜ื•ืื™ืฆื™ื” ื”ืื ื•ืฉื™ืช
06:11
on data at this scale?
134
371182
1791
ืขืœ ืžื™ื“ืข ื‘ืงื ื” ืžื™ื“ื” ื–ื”?
06:12
Again, we start by designing the human into the process.
135
372973
3499
ืฉื•ื‘, ืื ื—ื ื• ืžืชื—ื™ืœื™ื ืขืœ-ื™ื“ื™ ืชื›ื ื•ืŸ ื”ื›ื ืกืช ื”ืื“ื ืœืชื”ืœื™ืš.
06:16
When PayPal was first starting as a business, their biggest
136
376472
2812
ื›ืืฉืจ "ืคื™ื™-ืคืืœ" ื”ื—ืœื” ืืช ื“ืจื›ื” ื›ืขืกืง, ื”ืืชื’ืจ ื”ื’ื“ื•ืœ ื‘ื™ื•ืชืจ
06:19
challenge was not, "How do I send money back and forth online?"
137
379284
2804
ืฉืœื”ื ื”ื™ื” ืœื, "ื›ื™ืฆื“ ืฉื•ืœื—ื™ื ื›ืกืฃ ื”ืœื•ืš ื•ืฉื•ื‘ ื‘ืื™ื ื˜ืจื ื˜?"
06:22
It was, "How do I do that without being defrauded by organized crime?"
138
382088
3872
ืืœื ื”ื™ื”, "ื›ื™ืฆื“ ืขื•ืฉื™ื ื–ืืช ืžื‘ืœื™ ืœื”ื™ื•ืช ืžืจื•ืžื™ื ืขืœ-ื™ื“ื™ ืคืฉืข ืžืื•ืจื’ืŸ?"
06:25
Why so challenging? Because while computers can learn
139
385960
2088
ืžื“ื•ืข ื›ืœ ื›ืš ืžืืชื’ืจ? ื›ื™ ื‘ืขื•ื“ ืฉืžื—ืฉื‘ื™ื ื™ื›ื•ืœื™ื ืœืœืžื•ื“
06:28
to detect and identify fraud based on patterns,
140
388048
3144
ืœืืชืจ ื•ืœื–ื”ื•ืช ื”ื•ื ืื•ืช ืฉืžื‘ื•ืกืกื•ืช ืขืœ ื“ืคื•ืกื™ื,
06:31
they can't learn to do that based on patterns
141
391192
1479
ื”ื ืœื ื™ื›ื•ืœื™ื ืœืœืžื•ื“ ืœืขืฉื•ืช ื–ืืช ื‘ื”ืชื‘ืกืก ืขืœ ืชื‘ื ื™ื•ืช
06:32
they've never seen before, and organized crime
142
392671
2116
ืฉื”ื ืœื ืจืื• ืœืคื ื™ ื›ืŸ, ื•ืœืืจื’ื•ืŸ ืคืฉืข
06:34
has a lot in common with this audience: brilliant people,
143
394787
2709
ื™ืฉ ื”ืจื‘ื” ืžืŸ ื”ืžืฉื•ืชืฃ ืขื ืงื”ืœ ื–ื”: ืื ืฉื™ื ืžื‘ืจื™ืงื™ื,
06:37
relentlessly resourceful, entrepreneurial spirit โ€” (Laughter) โ€”
144
397496
3640
ืขื–ื™-ืจื•ื— ื•ืจื‘ื™ ืชื•ืฉื™ื™ื”, ื—ื“ื•ืจื™ื ื‘ืจื•ื— ื™ื–ืžื•ืช โ€” (ืฆื—ื•ืง) โ€”
06:41
and one huge and important difference: purpose.
145
401136
2712
ื•ื”ื‘ื“ืœ ืขืฆื•ื, ื•ื—ืฉื•ื‘ ืื—ื“: ื”ืžื˜ืจื”.
06:43
And so while computers alone can catch all but the cleverest
146
403848
2832
ื•ื›ืš ื‘ืขื•ื“ ืฉืžื—ืฉื‘ื™ื ืœื‘ื“ื ื™ื›ื•ืœื™ื ืœืชืคื•ืก ื”ื›ืœ ืคืจื˜ ืœืคื™ืงื—ื•ืช
06:46
fraudsters, catching the cleverest is the difference
147
406680
2253
ืฉื‘ื”ื•ื ืื•ืช, ืœืชืคื•ืก ืืช ื”ืคื™ืงื—ื™ื ื‘ื™ื•ืชืจ ืขื•ืฉื” ืืช ื”ื”ื‘ื“ืœ
06:48
between success and failure.
148
408933
2545
ื‘ื™ืŸ ื”ืฆืœื—ื” ืœื›ื™ืฉืœื•ืŸ.
06:51
There's a whole class of problems like this, ones with
149
411478
2221
ื™ืฉ ืžื—ืœืงื” ืฉืœืžื” ืฉืœ ื‘ืขื™ื•ืช ื›ืžื• ื–ื•, ืื—ื“ื•ืช ืžื”ืŸ ืขื
06:53
adaptive adversaries. They rarely if ever present with a
150
413699
2575
ื™ืจื™ื‘ื™ื ืกืชื’ืœืชื ื™ื. ื”ื ืœืขืชื™ื ืจื—ื•ืงื•ืช, ืื ื‘ื›ืœืœ, ืžืฆื™ื’ื™ื
06:56
repeatable pattern that's discernable to computers.
151
416274
2736
ืชื‘ื ื™ืช ืฉื—ื•ื–ืจืช ืขืœ ืขืฆืžื” ืฉืžื•ื›ืจืช ืœืžื—ืฉื‘ื™ื.
06:59
Instead, there's some inherent component of innovation or disruption,
152
419010
3993
ื‘ืžืงื•ื ื–ื”, ื™ืฉ ื›ืžื” ืจื›ื™ื‘ื™ื ืื™ื ื”ืจื ื˜ื™ื ืฉืœ ื—ื“ืฉื ื•ืช ืื• ืฉื™ื‘ื•ืฉ,
07:03
and increasingly these problems are buried in big data.
153
423003
2735
ื•ื‘ืžื™ื“ื” ื’ื•ื‘ืจืช ื•ื”ื•ืœื›ืช ื‘ืขื™ื•ืช ืืœื• ื ืงื‘ืจื•ืช ื‘ืชื•ืš ื™ื ืฉืœ ื ืชื•ื ื™ื.
07:05
For example, terrorism. Terrorists are always adapting
154
425738
2500
ืœื“ื•ื’ืžื”, ื˜ืจื•ืจ. ื”ืžื—ื‘ืœื™ื ืชืžื™ื“ ืžืกื’ืœื™ื ืขืฆืžื
07:08
in minor and major ways to new circumstances, and despite
155
428238
2052
ื‘ื“ืจื›ื™ื ืงื˜ื ื•ืช ื•ื’ื“ื•ืœื•ืช ืœื ืกื™ื‘ื•ืช ื—ื“ืฉื•ืช, ื•ืœืžืจื•ืช
07:10
what you might see on TV, these adaptations,
156
430290
3094
ืžื” ืฉืืชื ืจื•ืื™ื ื‘ื˜ืœื•ื•ื™ื–ื™ื”, ื”ืชืืžื•ืช ืืœื•,
07:13
and the detection of them, are fundamentally human.
157
433384
2293
ื•ื–ื™ื”ื•ื™ื™ืŸ, ื”ืŸ ืื ื•ืฉื™ื•ืช ืžื™ืกื•ื“ืŸ.
07:15
Computers don't detect novel patterns and new behaviors,
158
435677
3117
ื”ืžื—ืฉื‘ื™ื ืœื ืžื–ื”ื™ื ื“ืคื•ืกื™ื ื•ื”ืชื ื”ื’ื•ื™ื•ืช ื—ื“ืฉื•ืช,
07:18
but humans do. Humans, using technology, testing hypotheses,
159
438794
3235
ืื‘ืœ ื‘ื ื™-ื”ืื“ื ื›ืŸ. ื‘ื ื™ ืื“ื, ื‘ืืžืฆืขื•ืช ื˜ื›ื ื•ืœื•ื’ื™ื”, ื ื™ืกื•ื™ื™ื ื•ื•ื”ื™ืคื•ืชื™ื–ื•ืช,
07:22
searching for insight by asking machines to do things for them.
160
442029
4620
ืžื—ืคืฉื™ื ืืช ื”ืชื•ื‘ื ื” ืขืœ ื™ื“ื™ ื›ืš ืฉื”ื ืžื‘ืงืฉื™ื ืžืžื›ื•ื ื•ืช ืœืขืฉื•ืช ื“ื‘ืจื™ื ืขื‘ื•ืจื.
07:26
Osama bin Laden was not caught by artificial intelligence.
161
446649
2320
ืื•ืกืžื” ื‘ื™ืŸ ืœืื“ืŸ ืœื ื ืชืคืก ืขืœ ื™ื“ื™ ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช.
07:28
He was caught by dedicated, resourceful, brilliant people
162
448969
2553
ื”ื•ื ื ืชืคืก ืขืœ ื™ื“ื™ ืื ืฉื™ื ื“ื‘ืงื™ื ื‘ืžื˜ืจื”, ืžื‘ืจื™ืงื™ื ื•ื‘ืขืœื™ ืชื•ืฉื™ื”
07:31
in partnerships with various technologies.
163
451522
4269
ื‘ืฉื•ืชืคื•ืช ืขื ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ืฉื•ื ื•ืช.
07:35
As appealing as it might sound, you cannot algorithmically
164
455791
2818
ื›ื›ืœ ืฉื–ื” ื ืฉืžืข ืžืคืชื”, ืื™ื ืš ื™ื›ื•ืœ ื‘ืื•ืคืŸ ืืœื’ื•ืจื™ืชืžื™
07:38
data mine your way to the answer.
165
458609
1601
ืœื›ืจื•ืช ืžื™ื“ืข ื‘ื“ืจืš ืืœ ื”ืชืฉื•ื‘ื”.
07:40
There is no "Find Terrorist" button, and the more data
166
460210
2855
ืื™ืŸ ืœื—ืฆืŸ "ืžืฆื ืžื—ื‘ืœ" ื•ื›ื›ืœ ืฉืื ื• ืžืฆืœื™ื‘ื™ื
07:43
we integrate from a vast variety of sources
167
463065
2302
ื™ื•ืชืจ ืžื™ื“ืข ืžืžื’ื•ื•ืŸ ืจื—ื‘ ืฉืœ ืžืงื•ืจื•ืช
07:45
across a wide variety of data formats from very
168
465367
2133
ืœืจื•ื—ื‘ ืžื’ื•ื•ืŸ ืจื—ื‘ ืฉืœ ืชื‘ื ื™ื•ืช ืžื™ื“ืข
07:47
disparate systems, the less effective data mining can be.
169
467500
3309
ื‘ืžืขืจื›ื•ืช ืฉื•ื ื•ืช ืœื’ืžืจื™, ื›ืš ื›ืจื™ื™ืช ื”ื ืชื•ื ื™ื ืชื”ื™ื” ืคื—ื•ืช ื™ืขื™ืœื”.
07:50
Instead, people will have to look at data
170
470809
2024
ื‘ืžืงื•ื ื–ื”, ืื ืฉื™ื ื™ืฆื˜ืจื›ื• ืœื”ืกืชื›ืœ ืขืœ ื”ืžื™ื“ืข
07:52
and search for insight, and as Licklider foresaw long ago,
171
472833
3456
ื•ืœื—ืคืฉ ืชื•ื‘ื ื”, ื•ื›ืคื™ ืฉืœื™ืงืœื™ื“ืจ ื—ื–ื” ืœืคื ื™ ื–ืžืŸ ืจื‘,
07:56
the key to great results here is the right type of cooperation,
172
476289
2685
ื”ืžืคืชื— ืœืชื•ืฆืื•ืช ืžืฆื•ื™ื ื•ืช ื›ืืŸ ื ืžืฆื ื‘ืกื•ื’ ื”ื ื›ื•ืŸ ืฉืœ ืฉื™ืชื•ืฃ ืคืขื•ืœื”,
07:58
and as Kasparov realized,
173
478974
1524
ื•ื›ืคื™ ืฉืงืกืคืจื•ื‘ ื”ื‘ื™ืŸ,
08:00
that means minimizing friction at the interface.
174
480498
3031
ืคื™ืจื•ืฉ ื”ื“ื‘ืจ ื”ื•ื ืฆืžืฆื•ื ื”ื—ื™ื›ื•ืš ื‘ืžืžืฉืง.
08:03
Now this approach makes possible things like combing
175
483529
2758
ื›ืขืช ื’ื™ืฉื” ื–ื• ืžืืคืฉืจืช ื“ื‘ืจื™ื ื›ืžื• ืกืจื™ืงืช
08:06
through all available data from very different sources,
176
486287
3386
ื›ืœ ื”ื ืชื•ื ื™ื ื”ื–ืžื™ื ื™ื ืžืžืงื•ืจื•ืช ืฉื•ื ื™ื ืžืื•ื“,
08:09
identifying key relationships and putting them in one place,
177
489673
2792
ื–ื™ื”ื•ื™ ืงืฉืจื™ ื’ื•ืžืœื™ืŸ ืขื™ืงืจื™ื™ื ื•ืœืจื›ื– ืื•ืชื ื‘ืžืงื•ื ืื—ื“,
08:12
something that's been nearly impossible to do before.
178
492465
2928
ืžืฉื”ื• ืฉื”ื™ื” ื›ืžืขื˜ ื‘ืœืชื™ ืืคืฉืจื™ ืœืขืฉื•ืช ืœืคื ื™ ื›ืŸ.
08:15
To some, this has terrifying privacy and civil liberties
179
495393
1942
ื‘ืขื™ื ื™ ืื—ื“ื™ื, ื™ืฉ ืœื›ืš ื”ืฉืœื›ื•ืช ืžื‘ื”ื™ืœื•ืช ื‘ื ื•ืฉืื™ื ืฉืœ ื—ืจื•ืช ืคืจื˜ื™ืช ื•ืื–ืจื—ื™ืช
08:17
implications. To others it foretells of an era of greater
180
497335
3410
ื‘ืขื™ื ื™ ืื—ืจื™ื ื–ื” ืžื ื‘ื ืชืงื•ืคื” ืฉืœ ื™ื•ืชืจ
08:20
privacy and civil liberties protections,
181
500745
1909
ื”ื’ื ื•ืช ืขืœ ื—ืจื•ื™ื•ืช ืคืจื˜ื™ื•ืช ื•ืื–ืจื—ื™ื•ืช,
08:22
but privacy and civil liberties are of fundamental importance.
182
502654
2936
ืื‘ืœ ื—ืจื•ื™ื•ืช ืคืจื˜ื™ื•ืช ื•ืื–ืจื—ื™ื•ืช ื”ื™ื ืŸ ื‘ืขืœื•ืช ื—ืฉื™ื‘ื•ืช ื‘ืกื™ืกื™ืช.
08:25
That must be acknowledged, and they can't be swept aside,
183
505590
2193
ื‘ื–ื” ื—ื™ื™ื‘ื™ื ืœื”ื•ื“ื•ืช, ื•ืœื ื ื™ืชืŸ ืœื˜ืื˜ื ืื•ืชืŸ ื”ืฆื™ื“ื”,
08:27
even with the best of intents.
184
507783
2530
ืืคื™ืœื• ืขื ื”ื˜ื•ื‘ื•ืช ืฉื‘ื›ื•ื•ื ื•ืช.
08:30
So let's explore, through a couple of examples, the impact
185
510313
2518
ืื– ื‘ื•ืื• ื•ื ื‘ื—ืŸ ื‘ืขื–ืจืช ื›ืžื” ื“ื•ื’ืžืื•ืช. ืืช ื”ื”ืฉืคืขื”
08:32
that technologies built to drive human-computer symbiosis
186
512831
2406
ืฉื”ื™ืชื” ืœื˜ื›ื ื•ืœื•ื’ื™ื•ืช ืฉื ื‘ื ื• ืœืื—ืจื•ื ื” ื›ื“ื™ ืœื”ืจื™ืฅ
08:35
have had in recent time.
187
515237
2919
ืกื™ืžื‘ื™ื•ื–ืช ืื“ื-ืžื—ืฉื‘.
08:38
In October, 2007, U.S. and coalition forces raided
188
518156
3416
ื‘ืื•ืงื˜ื•ื‘ืจ, 2007, ืืจืฆื•ืช ื”ื‘ืจื™ืช ื•ื›ื•ื—ื•ืช ื”ืงื•ืืœื™ืฆื™ื” ืคืฉื˜ื• ืขืœ
08:41
an al Qaeda safe house in the city of Sinjar
189
521572
2416
ื‘ื™ืช ืžื•ื’ืŸ ืฉืœ ืืœ ืงืืขื™ื“ื” ื‘ืขื™ืจ ืกื™ื ื–'ืืจ
08:43
on the Syrian border of Iraq.
190
523988
1934
ืขืœ ื”ื’ื‘ื•ืœ ื”ืกื•ืจื™ ืฉืœ ืขื™ืจืืง.
08:45
They found a treasure trove of documents:
191
525922
2376
ื”ื ืžืฆืื• ืื•ืฆืจ ืฉืœ ืื•ืกืฃ ืžืกืžื›ื™ื:
08:48
700 biographical sketches of foreign fighters.
192
528298
2335
700 ืกืงื™ืฆื•ืช ื‘ื™ื•ื’ืจืคื™ื•ืช ืฉืœ ืœื•ื—ืžื™ื ื–ืจื™ื.
08:50
These foreign fighters had left their families in the Gulf,
193
530633
2584
ืœื•ื—ืžื™ื ื–ืจื™ื ืืœื” ืขื–ื‘ื• ืืช ืžืฉืคื—ื•ืชื™ื”ื ื‘ืžืคืจืฅ,
08:53
the Levant and North Africa to join al Qaeda in Iraq.
194
533217
3146
ื‘ืœื‘ื ื˜, ื•ื‘ืฆืคื•ืŸ ืืคืจื™ืงื” ื›ื“ื™ ืœื”ืฆื˜ืจืฃ ืœืืœ-ืงืืขื™ื“ื” ื‘ืขื™ืจืืง.
08:56
These records were human resource forms.
195
536363
1616
ืจืฉื•ืžื•ืช ืืœื• ื”ื™ื• ื˜ืคืกื™ื ืฉืœ ืžืฉืื‘ื™ ืื ื•ืฉ.
08:57
The foreign fighters filled them out as they joined the organization.
196
537979
2855
ื”ืœื•ื—ืžื™ื ื”ื–ืจื™ื ืžื™ืœืื• ืื•ืชื ื›ืฉื”ืฆื˜ืจืคื• ืœืืจื’ื•ืŸ.
09:00
It turns out that al Qaeda, too,
197
540834
1211
ืžืชื‘ืจืจ ื›ื™ ืืœ ืงืืขื™ื“ื”, ื’ื ื”ื™ื,
09:02
is not without its bureaucracy. (Laughter)
198
542045
2597
ืื™ื ื” ื ื˜ื•ืœืช ื‘ื™ืจื•ืงืจื˜ื™ื”. (ืฆื—ื•ืง)
09:04
They answered questions like, "Who recruited you?"
199
544642
2098
ื”ื ืขื ื• ืขืœ ืฉืืœื•ืช ื›ืžื•, "ืžื™ ื’ื™ื™ืก ืื•ืชืš?"
09:06
"What's your hometown?" "What occupation do you seek?"
200
546740
2854
"ืžื”ื™ ืขื™ืจ ืžื•ืœื“ืชืš?" "ืื™ื–ื• ืชืขืกื•ืงื” ืืชื” ืžื—ืคืฉ?"
09:09
In that last question, a surprising insight was revealed.
201
549594
3169
ื‘ืฉืืœื” ืื—ืจื•ื ื” ื–ื•, ื ื—ืฉืคื” ืชื•ื‘ื ื” ืžืคืชื™ืขื”.
09:12
The vast majority of foreign fighters
202
552763
2400
ื”ืจื•ื‘ ื”ื’ื“ื•ืœ ืฉืœ ื”ืœื•ื—ืžื™ื ื–ืจื™ื
09:15
were seeking to become suicide bombers for martyrdom --
203
555163
2400
ื‘ื™ืงืฉื• ืœื”ื™ื•ืช ืžื—ื‘ืœื™ื ืžืชืื‘ื“ื™ื ื•ืœืžื•ืช ืžื•ืช ืงื“ื•ืฉื™ื-
09:17
hugely important, since between 2003 and 2007, Iraq
204
557563
4338
ื—ืฉื•ื‘ ื‘ื™ื•ืชืจ, ืžืื– 2003 ืœ- 2007 ื‘ืขืจืš, ื”ื™ื• ื‘ืขื™ืจืืง
09:21
had 1,382 suicide bombings, a major source of instability.
205
561901
4244
1,382, ืคื™ื’ื•ืขื™ ื”ืชืื‘ื“ื•ืช, ืžืงื•ืจ ืขื™ืงืจื™ื™ ืœืื™ ื™ืฆื™ื‘ื•ืช.
09:26
Analyzing this data was hard. The originals were sheets
206
566145
2058
ื ื™ืชื•ื— ื ืชื•ื ื™ื ืืœื” ื”ื™ื” ืงืฉื”. ื”ืžืงื•ืจ ื”ื™ื• ื’ืœื™ื•ื ื•ืช
09:28
of paper in Arabic that had to be scanned and translated.
207
568203
2742
ื ื™ื™ืจ ื‘ืขืจื‘ื™ืช ืฉื”ื™ื” ืฆืจื™ืš ืœืกืจื•ืง ื•ืœืชืจื’ื.
09:30
The friction in the process did not allow for meaningful
208
570945
2192
ื”ื—ื™ื›ื•ืš ื‘ืชื”ืœื™ืš ืœื ืื™ืคืฉืจ ืœืงื‘ืœ ืชื•ืฆืื•ืช
09:33
results in an operational time frame using humans, PDFs
209
573137
3350
ืžืฉืžืขื•ืชื™ื•ืช ื‘ืžืกื’ืจืช ื–ืžืŸ ืชืคืขื•ืœื™ ื‘ืืžืฆืขื•ืช ื‘ื ื™-ื”ืื“ื, ืžืกืžื›ื™ Pdf
09:36
and tenacity alone.
210
576487
2218
ื•ื ื—ื™ืฉื•ืช ื‘ืœื‘ื“.
09:38
The researchers had to lever up their human minds
211
578705
1953
ื”ื—ื•ืงืจื™ื ื ืืœืฆื• ืœื”ืชืืžืฅ ื›ื“ื™ ืœื”ืชืขืœื•ืช ื‘ืžื—ืฉื‘ืชื ื”ืื ื•ืฉื™ืช
09:40
with technology to dive deeper, to explore non-obvious
212
580658
2345
ืขื ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ื›ื“ื™ ืœืฆืœื•ืœ ืขืžื•ืง ื™ื•ืชืจ, ื›ื“ื™ ืœื—ืงื•ืจ ื”ืฉืขืจื•ืช
09:43
hypotheses, and in fact, insights emerged.
213
583003
3218
ืฉืื™ื ืŸ ืžื•ื‘ื ื•ืช ืžืืœื™ื”ืŸ, ื•ืœืžืขืฉื”, ืฆืฆื• ืชื•ื‘ื ื•ืช.
09:46
Twenty percent of the foreign fighters were from Libya,
214
586221
2644
ืขืฉืจื™ื ืื—ื•ื– ืฉืœ ื”ืœื•ื—ืžื™ื ื”ื–ืจื™ื ื”ื™ื• ืžืœื•ื‘.
09:48
50 percent of those from a single town in Libya,
215
588865
2968
50 ืื—ื•ื– ืžืืœื” ื”ื™ื• ืžืขื™ืจ ืื—ืช ื‘ืœื•ื‘,
09:51
hugely important since prior statistics put that figure at
216
591833
2450
ื—ืฉื•ื‘ ืขื“ ืžืื•ื“ ืžืคื ื™ ืฉื‘ืกื˜ื˜ื™ืกื˜ื™ืงื” ื”ืงื•ื“ืžืช ื”ืžืกืคืจ ื”ื™ื”
09:54
three percent. It also helped to hone in on a figure
217
594283
2383
ืฉืœื•ืฉื” ืื—ื•ื–ื™ื. ื–ื” ืกื™ื™ืข ืœื”ืชืžืงื“ ื‘ื“ืžื•ืช
09:56
of rising importance in al Qaeda, Abu Yahya al-Libi,
218
596666
2977
ืฉื—ืฉื™ื‘ื•ืชื” ืขื•ืœื” ื‘ืืœ ืงืืขื™ื“ื”, ืื‘ื• ื™ื—ื™ื ืืœ-ืœื™ื‘ื™,
09:59
a senior cleric in the Libyan Islamic fighting group.
219
599643
2631
ืื™ืฉ ื“ืช ื‘ื›ื™ืจ ื‘ืงื‘ื•ืฆืช ื”ืœื—ื™ืžื” ื”ืืกืœืืžื™ืช ื”ืœื•ื‘ื™ืช.
10:02
In March of 2007, he gave a speech, after which there was
220
602274
2664
ื‘ืžืจืฅ 2007, ื”ื•ื ื ืฉื ื ืื•ื, ืฉืœืื—ืจื™ื• ื”ื™ื”
10:04
a surge in participation amongst Libyan foreign fighters.
221
604938
3466
ืคืจืฅ ื”ื”ืฉืชืชืคื•ืช ื‘ืงืจื‘ ืœื•ื—ืžื™ื ื–ืจื™ื ืœื•ื‘ื™ื.
10:08
Perhaps most clever of all, though, and least obvious,
222
608404
3106
ืื•ืœื™ ื”ื—ื›ื ื‘ื™ื•ืชืจ, ืื‘ืœ, ื”ืคื—ื•ืช ืžื•ื‘ืŸ ืžืืœื™ื•,
10:11
by flipping the data on its head, the researchers were
223
611510
2073
ืขืœ-ื™ื“ื™ ื”ื™ืคื•ืš ื”ื ืชื•ื ื™ื , ื”ื—ื•ืงืจื™ื
10:13
able to deeply explore the coordination networks in Syria
224
613583
2900
ื™ื›ืœื• ืœื—ืงื•ืจ ืœืขื•ืžืง ืจืฉืชื•ืช ืชื™ืื•ื ื‘ืกื•ืจื™ื”
10:16
that were ultimately responsible for receiving and
225
616483
2517
ืฉื”ื™ื• ืื—ืจืื™ื•ืช ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ ืœืงื‘ืœื”,
10:19
transporting the foreign fighters to the border.
226
619000
2464
ื•ื”ื•ื‘ืœื” ืฉืœ ืœื•ื—ืžื™ื ื–ืจื™ื ืืœ ื”ื’ื‘ื•ืœ.
10:21
These were networks of mercenaries, not ideologues,
227
621464
2633
ืืœื• ื”ื™ื• ืจืฉืชื•ืช ืฉืœ ืฉื›ื™ืจื™-ื—ืจื‘, ืœื ืื™ื“ื™ืื•ืœื•ื’ื™ื,
10:24
who were in the coordination business for profit.
228
624097
2398
ืฉื”ื™ื• ื‘ืขืกืงื™ ื”ืชื™ืื•ื ืœืžื˜ืจื•ืช ืจื•ื•ื—.
10:26
For example, they charged Saudi foreign fighters
229
626495
1904
ืœื“ื•ื’ืžื”, ื”ื ื—ื™ื™ื‘ื• ืœื•ื—ืžื™ื ื–ืจื™ื ืกืขื•ื“ื™ื
10:28
substantially more than Libyans, money that would have
230
628399
2199
ื‘ืื•ืคืŸ ืžืฉืžืขื•ืชื™ ื™ื•ืชืจ ืžืืฉืจ ืืช ื”ืœื•ื‘ื™ื, ื‘ื›ืกืฃ
10:30
otherwise gone to al Qaeda.
231
630598
2320
ืฉืื—ืจืช ื”ืœืš ืœืืœ ืงืืขื™ื“ื”.
10:32
Perhaps the adversary would disrupt their own network
232
632918
2045
ืื•ืœื™ ื”ื™ืจื™ื‘ ื”ื™ื” ืžืฉื‘ืฉ ืืช ื”ืจืฉืช ืฉืœื”ื
10:34
if they knew they cheating would-be jihadists.
233
634963
3035
ืื ื”ื ื”ื• ื™ื•ื“ืขื™ื ืฉื”ื ืžืจืžื™ื ืื ืฉื™ ื’'ื™ื”ืื“ ืขืชื™ื“ื™ื™ื.
10:37
In January, 2010, a devastating 7.0 earthquake struck Haiti,
234
637998
3745
ื‘ื™ื ื•ืืจ, 2010, ืคื’ืขื” ื‘ื”ืื™ื˜ื™ ืจืขื™ื“ืช ืื“ืžื” ื”ืจืกื ื™ืช ืฉืœ 7.0 ,
10:41
third deadliest earthquake of all time, left one million people,
235
641743
2916
ืจืขื™ื“ืช ื”ืื“ืžื” ื”ืงื˜ืœื ื™ืช ื”ืฉืœื™ืฉื™ืช ื‘ื›ืœ ื”ื–ืžื ื™ื, ืฉื”ื•ืชื™ืจื” ืžื™ืœื™ื•ืŸ ืื ืฉื™ื,
10:44
10 percent of the population, homeless.
236
644659
2584
10 ืื—ื•ื–ื™ื ืžื”ืื•ื›ืœื•ืกื™ื™ื”, ืœืœื ืงื•ืจืช ื’ื’.
10:47
One seemingly small aspect of the overall relief effort
237
647243
3137
ื”ื™ื‘ื˜ ืื—ื“, ืงื˜ืŸ ืœื›ืื•ืจื”, ืฉืœ ื”ืžืืžืฅ ื”ื›ื•ืœืœ
10:50
became increasingly important as the delivery of food
238
650380
2176
ื ืขืฉื” ื‘ื”ื“ืจื’ื” ื—ืฉื•ื‘ ื›ืฉืžืฉืœื•ื—ื™ ืžื–ื•ืŸ
10:52
and water started rolling.
239
652556
2160
ื•ืžื™ื, ื”ื—ืœื• ืœื”ืชื’ืœื’ืœ.
10:54
January and February are the dry months in Haiti,
240
654716
1458
ื™ื ื•ืืจ ื•ืคื‘ืจื•ืืจ ื”ื ื—ื•ื“ืฉื™ ื™ื•ื‘ืฉ ื‘ื”ืื™ื˜ื™,
10:56
yet many of the camps had developed standing water.
241
656174
2942
ืื•ืœื ืจื‘ื™ื ืžื”ืžื—ื ื•ืช ืคื™ืชื—ื• ืžื™ื ืขื•ืžื“ื™ื.
10:59
The only institution with detailed knowledge of Haiti's
242
659116
2122
ื”ืžื•ืกื“ ื”ื™ื—ื™ื“ ืขื ื™ื“ืข ื ืจื—ื‘ ื‘ื ื•ืฉื ื”ืฆืคืช ื ื”ืจื•ืช
11:01
floodplains had been leveled
243
661238
1297
ื‘ื”ืื™ื˜ื™ ื ื”ืจืก ื›ืœื™ืœ
11:02
in the earthquake, leadership inside.
244
662535
3008
ื‘ืจืขื™ื“ืช ืื“ืžื”, ื™ื—ื“ ื”ืื ืฉื™ื ื‘ืชื•ื›ื•.
11:05
So the question is, which camps are at risk,
245
665543
2575
ื›ืš ืฉื”ืฉืืœื” ื”ื™ื, ืื™ืœื• ืžื—ื ื•ืช ื ืžืฆืื™ื ื‘ืกื™ื›ื•ืŸ,
11:08
how many people are in these camps, what's the
246
668118
1921
ื›ืžื” ืื ืฉื™ื ื™ืฉ ื‘ืžื—ื ื•ืช ืืœื”, ืžื”ื•
11:10
timeline for flooding, and given very limited resources
247
670039
2311
ืฆื™ืจ ื”ื–ืžืŸ ืขื‘ื•ืจ ืฉื˜ืคื•ื ื•ืช, ื•ื‘ืื™ืŸ ื“ื™ ืžืฉืื‘ื™ื
11:12
and infrastructure, how do we prioritize the relocation?
248
672350
3384
ื•ืชืฉืชื™ื•ืช, ื›ื™ืฆื“ ื ืงื‘ืข ืกื“ืจื™ ืขื“ื™ืคื•ื™ื•ืช ืœืžื™ืงื•ื ืžื—ื“ืฉ?
11:15
The data was incredibly disparate. The U.S. Army had
249
675734
2344
ื”ื ืชื•ื ื™ื ื”ื™ื” ืžืื•ื“ ืฉื•ื ื™ื. ืœืฆื‘ื ืืจืฆื•ืช ื”ื‘ืจื™ืช ื”ื™ื”
11:18
detailed knowledge for only a small section of the country.
250
678078
2929
ื™ื“ืข ื ืจื—ื‘ ืจืง ืขื‘ื•ืจ ืงื˜ืข ืงื˜ืŸ ืฉืœ ื”ืžื“ื™ื ื”.
11:21
There was data online from a 2006 environmental risk
251
681007
2511
ื”ื™ื” ืžื™ื“ืข ืžืงื•ื•ืŸ ืžื›ื ืก ืกื™ื›ื•ืŸ ืกื‘ื™ื‘ืชื™ ืž- 2006,
11:23
conference, other geospatial data, none of it integrated.
252
683518
2664
ืœืœื ืฉื•ื ื ืชื•ื ื™ื ื’ืื•-ืžืจื—ื‘ื™ื™ื ืื—ืจื™ื.
11:26
The human goal here was to identify camps for relocation
253
686182
2958
ื”ืžื˜ืจื” ื”ืื ื•ืฉื™ืช ื›ืืŸ ื”ื™ืชื” ืœื–ื”ื•ืช ืžื—ื ื•ืช ืœืฉื ื”ืขื‘ืจืชื ืœืžื™ืงื•ื ื—ื“ืฉ
11:29
based on priority need.
254
689140
2395
ืฉืžื‘ื•ืกืกืช ืขืœ ืฆื•ืจื›ื™ ืขื“ื™ืคื•ืช.
11:31
The computer had to integrate a vast amount of geospacial
255
691535
2440
ืขืœ ื”ืžื—ืฉื‘ ื”ื™ื” ืœืฉืœื‘ ื›ืžื•ืช ืื“ื™ืจื” ืฉืœ ืžื™ื“ืข ื’ื™ืื•-ืžืจื—ื‘ื™,
11:33
information, social media data and relief organization
256
693975
2584
ืžื™ื“ืข ืžืžื“ื™ื” ื—ื‘ืจืชื™ืช ื•ืžื™ื“ืข ืžืืจื’ื•ื ื™ ืกื™ื•ืข
11:36
information to answer this question.
257
696559
3480
ื›ื“ื™ ืœืขื ื•ืช ืขืœ ืฉืืœื” ื–ื•.
11:40
By implementing a superior process, what was otherwise
258
700039
2415
ืขืœ-ื™ื“ื™ ื™ื™ืฉื•ื ืชื”ืœื™ืš-ืขืœ, ืฉื‘ืžืงืจื™ื ืื—ืจื™ื
11:42
a task for 40 people over three months became
259
702454
2608
ื”ื™ื” ืžืฉื™ืžื” ืœ-40 ืื ืฉื™ื ื‘ืžืฉืš ืฉืœื•ืฉื” ื—ื•ื“ืฉื™ื ืฉืœ ืคืขื™ืœื•ืช
11:45
a simple job for three people in 40 hours,
260
705062
3176
ื”ืคืš ืœืžืฉื™ืžื” ืคืฉื•ื˜ื” ืขื‘ื•ืจ ืฉืœื•ืฉื” ืื ืฉื™ื ื‘- 40 ืฉืขื•ืช,
11:48
all victories for human-computer symbiosis.
261
708238
2628
ื›ืœ ืืœื” ื ื™ืฆื—ื•ื ื•ืช ืœืกื™ืžื‘ื™ื•ื–ืช ืื“ื-ืžื—ืฉื‘.
11:50
We're more than 50 years into Licklider's vision
262
710866
2054
ืื ื—ื ื• ืจื—ื•ืงื™ื ื›ืขืช ื™ื•ืชืจ ืž- 50 ืฉื ื” ืžื—ื–ื•ื ื• ืœืขืชื™ื“ ืฉืœ ืœื™ืงืœื™ื“ืจ,
11:52
for the future, and the data suggests that we should be
263
712920
2242
ื•ื”ื ืชื•ื ื™ื ืžืฆื™ืขื™ื ืฉืขืœื™ื ื• ืœื”ื™ื•ืช
11:55
quite excited about tackling this century's hardest problems,
264
715162
3030
ื“ื™ ื ืœื”ื‘ื™ื ื‘ืฉืœ ื”ืขื•ื‘ื“ื” ืฉื‘ื”ืชืžื•ื“ื“ื•ืช ืขื ื”ื‘ืขื™ื•ืช ื”ืงืฉื•ืช ื‘ื™ื•ืชืจ ืฉืœ ื”ืžืื” ื”ื–ื•,
11:58
man and machine in cooperation together.
265
718192
2947
ืื“ื ื•ืžื—ืฉื‘ ืžืฉืชืคื™ื ืคืขื•ืœื” ื™ื—ื“.
12:01
Thank you. (Applause)
266
721139
2197
ืชื•ื“ื”. (ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
12:03
(Applause)
267
723336
2505
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7