What we learned from 5 million books

236,151 views ・ 2011-09-20

TED


Please double-click on the English subtitles below to play the video.

Prevodilac: Tijana Ćuić Lektor: Tatjana Jevdjic
00:15
Erez Lieberman Aiden: Everyone knows
0
15260
2000
Erez Liberman Ejdan: Svi znaju
00:17
that a picture is worth a thousand words.
1
17260
3000
da slika vredi hiljadu reči.
00:22
But we at Harvard
2
22260
2000
Ali mi na Harvadu
00:24
were wondering if this was really true.
3
24260
3000
smo se pitali da li je ovo stvarno tačno.
00:27
(Laughter)
4
27260
2000
(Smeh)
00:29
So we assembled a team of experts,
5
29260
4000
Okupili smo tim stručnjaka,
00:33
spanning Harvard, MIT,
6
33260
2000
iz Harvarda, MIT-a,
00:35
The American Heritage Dictionary, The Encyclopedia Britannica
7
35260
3000
Rečnika američkog nasleđa, Enciklopedije Britanika
00:38
and even our proud sponsors,
8
38260
2000
čak i naše ponosne sponzore,
00:40
the Google.
9
40260
3000
Google.
00:43
And we cogitated about this
10
43260
2000
Razmišljali smo o ovome
00:45
for about four years.
11
45260
2000
oko četiri godine.
00:47
And we came to a startling conclusion.
12
47260
5000
I došli smo do zapanjujućeg zaključka.
00:52
Ladies and gentlemen, a picture is not worth a thousand words.
13
52260
3000
Dame i gospodo, slika ne vredi hiljadu reči.
00:55
In fact, we found some pictures
14
55260
2000
U stvari, našli smo neke slike
00:57
that are worth 500 billion words.
15
57260
5000
koje vrede 500 milijardi reči.
01:02
Jean-Baptiste Michel: So how did we get to this conclusion?
16
62260
2000
Žan-Baptist Mišel: Kako smo došli do ovog zaključka?
01:04
So Erez and I were thinking about ways
17
64260
2000
Erez i ja smo razmišljali o načinima
01:06
to get a big picture of human culture
18
66260
2000
na koje bismo mogli steći opštu sliku ljudske kulture
01:08
and human history: change over time.
19
68260
3000
i ljudske istorije: promene kroz vreme.
01:11
So many books actually have been written over the years.
20
71260
2000
Mnoštvo knjiga je napisano tokom godina.
01:13
So we were thinking, well the best way to learn from them
21
73260
2000
Mislili smo, najbolji način da iz njih naučimo
01:15
is to read all of these millions of books.
22
75260
2000
je da pročitamo sve te milione knjiga.
01:17
Now of course, if there's a scale for how awesome that is,
23
77260
3000
Kada bi postojala skala koja pokazuje koliko je to izuzetno,
01:20
that has to rank extremely, extremely high.
24
80260
3000
rangirala bi to vrlo, vrlo visoko.
01:23
Now the problem is there's an X-axis for that,
25
83260
2000
Problem je u tome što postoji X-osa za to,
01:25
which is the practical axis.
26
85260
2000
koja je osa praktičnosti.
01:27
This is very, very low.
27
87260
2000
Ovo je veoma, veoma nisko.
01:29
(Applause)
28
89260
3000
(Aplauz)
01:32
Now people tend to use an alternative approach,
29
92260
3000
Ljudi uglavnom nastoje da koriste alternativni pristup,
01:35
which is to take a few sources and read them very carefully.
30
95260
2000
koriste nekoliko izvora i pažljivo ih pročitaju.
01:37
This is extremely practical, but not so awesome.
31
97260
2000
Ovo je izuzetno praktično, ali ne tako izvanredno.
01:39
What you really want to do
32
99260
3000
Ono što zaista želite da uradite
01:42
is to get to the awesome yet practical part of this space.
33
102260
3000
je da dođete do onog izuzetnog, ali i praktičnog dela ovog prostora.
01:45
So it turns out there was a company across the river called Google
34
105260
3000
Ispostavilo se da tamo, preko reke, postoji kompanija po imenu Google,
01:48
who had started a digitization project a few years back
35
108260
2000
koja je pre nekoliko godina započela projekat digitalizacije,
01:50
that might just enable this approach.
36
110260
2000
koji bi mogao omogućiti ovakav pristup.
01:52
They have digitized millions of books.
37
112260
2000
Oni su digitalizovali nekoliko miliona knjiga.
01:54
So what that means is, one could use computational methods
38
114260
3000
A to znači da se računske metode mogu koristiti
01:57
to read all of the books in a click of a button.
39
117260
2000
za čitanje svih knjiga samo jednim klikom na dugme.
01:59
That's very practical and extremely awesome.
40
119260
3000
Što je vrlo praktično i totalno fantastično.
02:03
ELA: Let me tell you a little bit about where books come from.
41
123260
2000
ELE: Pričaću vam malo o tome odakle knjige dolaze.
02:05
Since time immemorial, there have been authors.
42
125260
3000
Još od pamtiveka, postoje pisci.
02:08
These authors have been striving to write books.
43
128260
3000
Oni se trude da pišu knjige.
02:11
And this became considerably easier
44
131260
2000
To je postalo znatno lakše
02:13
with the development of the printing press some centuries ago.
45
133260
2000
sa razvojem štamparske tehnike pre nekoliko vekova.
02:15
Since then, the authors have won
46
135260
3000
Od tada, pisci su pobedili
02:18
on 129 million distinct occasions,
47
138260
2000
u 129 miliona različitih prilika
02:20
publishing books.
48
140260
2000
i objavili su knjige.
02:22
Now if those books are not lost to history,
49
142260
2000
Ako te knjige nisu zaboravljene,
02:24
then they are somewhere in a library,
50
144260
2000
onda se nalaze negde u biblioteci
02:26
and many of those books have been getting retrieved from the libraries
51
146260
3000
i mnoge od ovih knjiga Google uzima iz biblioteka,
02:29
and digitized by Google,
52
149260
2000
digitalizuje ih
02:31
which has scanned 15 million books to date.
53
151260
2000
i do danas je skenirano 15 miliona knjiga.
02:33
Now when Google digitizes a book, they put it into a really nice format.
54
153260
3000
Kad Google digitalizuje knjigu, stavlja je u jedan zgodan format.
02:36
Now we've got the data, plus we have metadata.
55
156260
2000
Imamo podatke i meta-podatke.
02:38
We have information about things like where was it published,
56
158260
3000
Imamo informacije o stvarima kao što su mesto izdavanja,
02:41
who was the author, when was it published.
57
161260
2000
ime autora, vreme izdavanja.
02:43
And what we do is go through all of those records
58
163260
3000
Mi prolazimo kroz sve ove zapise
02:46
and exclude everything that's not the highest quality data.
59
166260
4000
i izbacujemo sve ono što nije visokokvalitetan podatak.
02:50
What we're left with
60
170260
2000
Ono što nam ostaje
02:52
is a collection of five million books,
61
172260
3000
jeste kolekcija od 5 miliona knjiga,
02:55
500 billion words,
62
175260
3000
500 milijardi reči,
02:58
a string of characters a thousand times longer
63
178260
2000
niz slova hiljadu puta duži
03:00
than the human genome --
64
180260
3000
od ljudskog genoma --
03:03
a text which, when written out,
65
183260
2000
tekst koji bi se, kada bi bio ispisan,
03:05
would stretch from here to the Moon and back
66
185260
2000
prostirao odavde do Meseca i nazad
03:07
10 times over --
67
187260
2000
puta 10 --
03:09
a veritable shard of our cultural genome.
68
189260
4000
zaista tek delić našeg kulturnog genoma.
03:13
Of course what we did
69
193260
2000
Naravno, ono što smo uradili
03:15
when faced with such outrageous hyperbole ...
70
195260
3000
kada smo se suočili sa tako preteranom hiperbolom...
03:18
(Laughter)
71
198260
2000
(Smeh)
03:20
was what any self-respecting researchers
72
200260
3000
je ono što bi svi istraživači koji drže do sebe
03:23
would have done.
73
203260
3000
uradili.
03:26
We took a page out of XKCD,
74
206260
2000
Uzeli smo stranicu iz XKCD-a
03:28
and we said, "Stand back.
75
208260
2000
i rekli: "Odmaknite se.
03:30
We're going to try science."
76
210260
2000
Sad ćemo da isprobamo nauku."
03:32
(Laughter)
77
212260
2000
(Smeh)
03:34
JM: Now of course, we were thinking,
78
214260
2000
ŽM: Naravno, mislili smo,
03:36
well let's just first put the data out there
79
216260
2000
hajde prvo samo da objavimo podatke
03:38
for people to do science to it.
80
218260
2000
da bi ih ljudi naučno proučili.
03:40
Now we're thinking, what data can we release?
81
220260
2000
Razmišljali smo, kakve podatke možemo da objavimo?
03:42
Well of course, you want to take the books
82
222260
2000
Pa svakako, želite da uzmete knjige
03:44
and release the full text of these five million books.
83
224260
2000
i objavite čitave tekstove ovih 5 miliona knjiga.
03:46
Now Google, and Jon Orwant in particular,
84
226260
2000
Google, tačnije Džon Orvant,
03:48
told us a little equation that we should learn.
85
228260
2000
rekao nam je za malu jednačinu koju treba da naučimo.
03:50
So you have five million, that is, five million authors
86
230260
3000
Imate pet miliona knjiga, to je pet miliona autora,
03:53
and five million plaintiffs is a massive lawsuit.
87
233260
3000
a pet miliona tužilaca čini masivnu parnicu.
03:56
So, although that would be really, really awesome,
88
236260
2000
Iako bi to bilo jako, jako fantastično,
03:58
again, that's extremely, extremely impractical.
89
238260
3000
opet, to je izuzetno nepraktično.
04:01
(Laughter)
90
241260
2000
(Smeh)
04:03
Now again, we kind of caved in,
91
243260
2000
Opet smo popustilli
04:05
and we did the very practical approach, which was a bit less awesome.
92
245260
3000
i pristupili smo tome veoma praktično, što je bilo malo manje izuzetno.
04:08
We said, well instead of releasing the full text,
93
248260
2000
Rekli smo, umesto objavljivanja kompletnog teksta,
04:10
we're going to release statistics about the books.
94
250260
2000
objavićemo statistike o knjigama.
04:12
So take for instance "A gleam of happiness."
95
252260
2000
Uzmite na primer "Zračak sreće."
04:14
It's four words; we call that a four-gram.
96
254260
2000
To su dve reči; zovemo ih bigram.
04:16
We're going to tell you how many times a particular four-gram
97
256260
2000
Reći ćemo vam koliko puta se određeni bigram
04:18
appeared in books in 1801, 1802, 1803,
98
258260
2000
pojavljuje u knjigama iz 1801.,1802., 1803.,
04:20
all the way up to 2008.
99
260260
2000
sve do 2008. godine.
04:22
That gives us a time series
100
262260
2000
To nam daje vremenske serije
04:24
of how frequently this particular sentence was used over time.
101
264260
2000
učestalosti korišćenja ove rečenice kroz vreme.
04:26
We do that for all the words and phrases that appear in those books,
102
266260
3000
To uradimo sa svim rečima i frazama koje se pojavljuju u tim knjigama
04:29
and that gives us a big table of two billion lines
103
269260
3000
i to nam daje veliku tabelu od dve milijarde redova
04:32
that tell us about the way culture has been changing.
104
272260
2000
koji nam prikazuju način na koji se kultura menja.
04:34
ELA: So those two billion lines,
105
274260
2000
ELE: Te dve milijarde redova,
04:36
we call them two billion n-grams.
106
276260
2000
zovemo dve milijarde n-grama.
04:38
What do they tell us?
107
278260
2000
Šta nam oni govore?
04:40
Well the individual n-grams measure cultural trends.
108
280260
2000
Pojedinačni n-grami mere trendove u kulturi.
04:42
Let me give you an example.
109
282260
2000
Daću vam primer.
04:44
Let's suppose that I am thriving,
110
284260
2000
Pretpostavimo da ja uspevam,
04:46
then tomorrow I want to tell you about how well I did.
111
286260
2000
te sutradan želim da vam kažem kako sam uspeo.
04:48
And so I might say, "Yesterday, I throve."
112
288260
3000
Mogu da kažem: "Juče, ja sam uspeo."
04:51
Alternatively, I could say, "Yesterday, I thrived."
113
291260
3000
Ili mogu da kažem: "Juče, ja uspeh."
04:54
Well which one should I use?
114
294260
3000
Koje od ova dva bi trebalo da upotrebim?
04:57
How to know?
115
297260
2000
Kako da znam?
04:59
As of about six months ago,
116
299260
2000
Pre nekih šest meseci,
05:01
the state of the art in this field
117
301260
2000
stanje u ovom području je takvo
05:03
is that you would, for instance,
118
303260
2000
da biste, na primer,
05:05
go up to the following psychologist with fabulous hair,
119
305260
2000
otišli kod psihologa sjajne frizure
05:07
and you'd say,
120
307260
2000
i rekli biste:
05:09
"Steve, you're an expert on the irregular verbs.
121
309260
3000
"Stiv, Vi ste stručnjak za glagole.
05:12
What should I do?"
122
312260
2000
Šta da radim?"
05:14
And he'd tell you, "Well most people say thrived,
123
314260
2000
A on bi vam rekao: "Većina ljudi kaže 'uspeo sam',
05:16
but some people say throve."
124
316260
3000
ali neki kažu 'ja uspeh'."
05:19
And you also knew, more or less,
125
319260
2000
Takođe biste znali, manje-više,
05:21
that if you were to go back in time 200 years
126
321260
3000
da ako biste se vratili 200 godina unazad
05:24
and ask the following statesman with equally fabulous hair,
127
324260
3000
i pitali državnika jednako sjajne frizure:
05:27
(Laughter)
128
327260
3000
(Smeh)
05:30
"Tom, what should I say?"
129
330260
2000
"Tom, kako treba da kažem?"
05:32
He'd say, "Well, in my day, most people throve,
130
332260
2000
On bi rekao: "Pa, u moje vreme, mnogi uspeše,
05:34
but some thrived."
131
334260
3000
ali neki su uspeli."
05:37
So now what I'm just going to show you is raw data.
132
337260
2000
Ono što ću sada da vam pokažem su neobrađeni podaci.
05:39
Two rows from this table of two billion entries.
133
339260
4000
Dva reda ove tabele od dve milijarde unosa.
05:43
What you're seeing is year by year frequency
134
343260
2000
Možete videti učestalost godinu za godinom
05:45
of "thrived" and "throve" over time.
135
345260
3000
za reči "uspeo" i "uspeh".
05:49
Now this is just two
136
349260
2000
Ovo su samo dva
05:51
out of two billion rows.
137
351260
3000
od dve milijarde redova.
05:54
So the entire data set
138
354260
2000
Dakle, kompletan set podataka
05:56
is a billion times more awesome than this slide.
139
356260
3000
milijardu puta je izuzetniji od ovog slajda.
05:59
(Laughter)
140
359260
2000
(Smeh)
06:01
(Applause)
141
361260
4000
(Aplauz)
06:05
JM: Now there are many other pictures that are worth 500 billion words.
142
365260
2000
ŽM: Postoje mnoge druge slike koje vrede 500 milijardi reči.
06:07
For instance, this one.
143
367260
2000
Na primer, ova.
06:09
If you just take influenza,
144
369260
2000
Ako samo uzmete u obzir grip,
06:11
you will see peaks at the time where you knew
145
371260
2000
videćete maksimume u razdobljima za koje znate
06:13
big flu epidemics were killing people around the globe.
146
373260
3000
da su velike epidemije ubijale ljude širom planete.
06:16
ELA: If you were not yet convinced,
147
376260
3000
ELE: Ako pak i dalje niste ubeđeni,
06:19
sea levels are rising,
148
379260
2000
nivoi mora rastu,
06:21
so is atmospheric CO2 and global temperature.
149
381260
3000
kao i nivo CO2 u atmosferi i globalna temperatura.
06:24
JM: You might also want to have a look at this particular n-gram,
150
384260
3000
ŽM: Možda takođe želite da pogledate konkretno ovaj n-gram,
06:27
and that's to tell Nietzsche that God is not dead,
151
387260
3000
koji pokazuje Ničeu da bog nije mrtav,
06:30
although you might agree that he might need a better publicist.
152
390260
3000
iako se možda slažete sa tim da mu treba bolji izdavač.
06:33
(Laughter)
153
393260
2000
(Smeh)
06:35
ELA: You can get at some pretty abstract concepts with this sort of thing.
154
395260
3000
ELE: Na ovaj način možete doći do nekih prilično apstraktnih koncepata.
06:38
For instance, let me tell you the history
155
398260
2000
Na primer, ispričaću vam priču
06:40
of the year 1950.
156
400260
2000
o 1950. godini.
06:42
Pretty much for the vast majority of history,
157
402260
2000
Veliki deo istorije,
06:44
no one gave a damn about 1950.
158
404260
2000
nikog nije bilo briga za 1950.
06:46
In 1700, in 1800, in 1900,
159
406260
2000
Tokom 1700. godine, 1800., 1900.,
06:48
no one cared.
160
408260
3000
niko nije mario.
06:52
Through the 30s and 40s,
161
412260
2000
tokom '30-ih i '40-ih,
06:54
no one cared.
162
414260
2000
niko nije mario.
06:56
Suddenly, in the mid-40s,
163
416260
2000
Iznenada, sredinom '40-ih,
06:58
there started to be a buzz.
164
418260
2000
počelo je da se šuška.
07:00
People realized that 1950 was going to happen,
165
420260
2000
Ljudi su shvatili da će se 1950. dogoditi.
07:02
and it could be big.
166
422260
2000
i da bi mogla biti važna.
07:04
(Laughter)
167
424260
3000
(Smeh)
07:07
But nothing got people interested in 1950
168
427260
3000
Ali ništa nije zainteresovalo ljude za 1950.
07:10
like the year 1950.
169
430260
3000
kao sama 1950. godina.
07:13
(Laughter)
170
433260
3000
(Smeh)
07:16
People were walking around obsessed.
171
436260
2000
Ljudi su hodali naokolo opsednuti.
07:18
They couldn't stop talking
172
438260
2000
Nisu mogli da prestanu da pričaju
07:20
about all the things they did in 1950,
173
440260
3000
o stvarima koje su radili 1950.
07:23
all the things they were planning to do in 1950,
174
443260
3000
o svim stvarima koje su planirali da urade 1950.
07:26
all the dreams of what they wanted to accomplish in 1950.
175
446260
5000
o svim snovima koje su želeli da ostvare te 1950.
07:31
In fact, 1950 was so fascinating
176
451260
2000
U stvari, 1950. je bila tako fascinantna
07:33
that for years thereafter,
177
453260
2000
da su, godinama nakon što je prošla,
07:35
people just kept talking about all the amazing things that happened,
178
455260
3000
ljudi nastavljali da pričaju o neverovatnim stvarima koje su se dogodile
07:38
in '51, '52, '53.
179
458260
2000
u '51., '52., '53.
07:40
Finally in 1954,
180
460260
2000
Konačno 1954. godine,
07:42
someone woke up and realized
181
462260
2000
neko se probudio i shvatio
07:44
that 1950 had gotten somewhat passé.
182
464260
4000
da je 1950. postala nekako passé.
07:48
(Laughter)
183
468260
2000
(Smeh)
07:50
And just like that, the bubble burst.
184
470260
2000
I tek tako, mehurić je pukao.
07:52
(Laughter)
185
472260
2000
(Smeh)
07:54
And the story of 1950
186
474260
2000
A priča o 1950.
07:56
is the story of every year that we have on record,
187
476260
2000
je priča o svakoj godini koju imamo zabeleženu,
07:58
with a little twist, because now we've got these nice charts.
188
478260
3000
sa malim preokretom, jer sad imamo ove lepe grafikone.
08:01
And because we have these nice charts, we can measure things.
189
481260
3000
A zbog toga što imamo ove lepe grafikone, možemo da merimo stvari.
08:04
We can say, "Well how fast does the bubble burst?"
190
484260
2000
Možemo pitati: "Koliko se brzo mehurić rasprsne?"
08:06
And it turns out that we can measure that very precisely.
191
486260
3000
Ispostavlja se da to možemo izmeriti vrlo precizno.
08:09
Equations were derived, graphs were produced,
192
489260
3000
Jednačine su izvedene, grafikoni su napravljeni
08:12
and the net result
193
492260
2000
i krajnji rezultat
08:14
is that we find that the bubble bursts faster and faster
194
494260
3000
je da smo izračunali da mehurić puca sve brže i brže
08:17
with each passing year.
195
497260
2000
svake godine.
08:19
We are losing interest in the past more rapidly.
196
499260
5000
Gubimo interesovanje za prošlost sve brže.
08:24
JM: Now a little piece of career advice.
197
504260
2000
ŽM: Sad mali savet vezan za izbor karijere.
08:26
So for those of you who seek to be famous,
198
506260
2000
Za sve vas koji želite da budete slavni,
08:28
we can learn from the 25 most famous political figures,
199
508260
2000
saznali smo od 25 najpoznatijih političkih figura,
08:30
authors, actors and so on.
200
510260
2000
pisaca, glumaca i tako dalje.
08:32
So if you want to become famous early on, you should be an actor,
201
512260
3000
Dakle, ako želite rano da postanete slavni, treba da se bavite glumom,
08:35
because then fame starts rising by the end of your 20s --
202
515260
2000
jer u tom slučaju, slava počinje da raste do kraja vaših 20-ih --
08:37
you're still young, it's really great.
203
517260
2000
a još uvek ste mladi, to je stvarno sjajno.
08:39
Now if you can wait a little bit, you should be an author,
204
519260
2000
A ako možete da čekate malo, onda treba da budete pisac,
08:41
because then you rise to very great heights,
205
521260
2000
jer onda slava doseže velike visine,
08:43
like Mark Twain, for instance: extremely famous.
206
523260
2000
kao Mark Tven, na primer, bio je izuzetno slavan.
08:45
But if you want to reach the very top,
207
525260
2000
Ali ako želite da dosegnete sam vrh,
08:47
you should delay gratification
208
527260
2000
trebalo bi da odgodite zadovoljstvo
08:49
and, of course, become a politician.
209
529260
2000
i da, naravno, postanete političar.
08:51
So here you will become famous by the end of your 50s,
210
531260
2000
Na taj način ćete postati poznati do kraja svojih 50-ih
08:53
and become very, very famous afterward.
211
533260
2000
i ostati vrlo, vrlo poznati nakon toga.
08:55
So scientists also tend to get famous when they're much older.
212
535260
3000
Naučnici takođe obično postanu poznati tek kada ostare.
08:58
Like for instance, biologists and physics
213
538260
2000
Kao, na primer, biolozi i fizičari
09:00
tend to be almost as famous as actors.
214
540260
2000
koji mogu biti poznati skoro koliko i glumci.
09:02
One mistake you should not do is become a mathematician.
215
542260
3000
Jedina greška koju ne smete da napravite je da postanete matematičar.
09:05
(Laughter)
216
545260
2000
(Smeh)
09:07
If you do that,
217
547260
2000
Ako to uradite,
09:09
you might think, "Oh great. I'm going to do my best work when I'm in my 20s."
218
549260
3000
možete pomisliti: "Oh, sjajno. U svojim 20-im ću napraviti svoj najbolji rad."
09:12
But guess what, nobody will really care.
219
552260
2000
Ali pogodite, nikoga neće biti briga.
09:14
(Laughter)
220
554260
3000
(Smeh)
09:17
ELA: There are more sobering notes
221
557260
2000
ELE: Postoje i neke ozbiljnije činjenice
09:19
among the n-grams.
222
559260
2000
među n-gramima.
09:21
For instance, here's the trajectory of Marc Chagall,
223
561260
2000
Na primer, ovo je putanja Marka Šagala,
09:23
an artist born in 1887.
224
563260
2000
umetnika rođenog 1887.
09:25
And this looks like the normal trajectory of a famous person.
225
565260
3000
I ona izgleda kao obična putanja slavne osobe.
09:28
He gets more and more and more famous,
226
568260
4000
Postaje sve poznatiji,
09:32
except if you look in German.
227
572260
2000
osim ako pogledate na nemačkom.
09:34
If you look in German, you see something completely bizarre,
228
574260
2000
Ako pogledate na nemačkom, možete videti nešto stvarno bizarno,
09:36
something you pretty much never see,
229
576260
2000
nešto što se baš i ne viđa,
09:38
which is he becomes extremely famous
230
578260
2000
a to je da on postaje izuzetno slavan,
09:40
and then all of a sudden plummets,
231
580260
2000
a onda iznenada, njegova popularnost naglo opada,
09:42
going through a nadir between 1933 and 1945,
232
582260
3000
prolazi kroz najnižu tačku između 1933. i 1945. godine
09:45
before rebounding afterward.
233
585260
3000
i nakon toga ponovo naglo raste.
09:48
And of course, what we're seeing
234
588260
2000
Naravno, uviđamo
09:50
is the fact Marc Chagall was a Jewish artist
235
590260
3000
činjenicu da je Mark Šagal bio jevrejski umetnik
09:53
in Nazi Germany.
236
593260
2000
u nacističkoj Nemačkoj.
09:55
Now these signals
237
595260
2000
Ovi znaci
09:57
are actually so strong
238
597260
2000
su toliko jaki
09:59
that we don't need to know that someone was censored.
239
599260
3000
da ne moramo da znamo da li je neko bio cenzurisan.
10:02
We can actually figure it out
240
602260
2000
To u stvari možemo zaključiti
10:04
using really basic signal processing.
241
604260
2000
koristeći osnovnu obradu znakova.
10:06
Here's a simple way to do it.
242
606260
2000
Ovo je jednostavan način da se to uradi.
10:08
Well, a reasonable expectation
243
608260
2000
Opravdano očekivanje je da
10:10
is that somebody's fame in a given period of time
244
610260
2000
nečija slava u određenom periodu,
10:12
should be roughly the average of their fame before
245
612260
2000
treba da, otprilike, bude prosek njegove slave
10:14
and their fame after.
246
614260
2000
pre i posle tog perioda.
10:16
So that's sort of what we expect.
247
616260
2000
Dakle, to je ono što očekujemo.
10:18
And we compare that to the fame that we observe.
248
618260
3000
Uporedimo to sa slavom koju opažamo.
10:21
And we just divide one by the other
249
621260
2000
I onda samo podelimo jednu sa drugom
10:23
to produce something we call a suppression index.
250
623260
2000
da bismo dobili nešto što se zove indeks zabrane.
10:25
If the suppression index is very, very, very small,
251
625260
3000
Ako je indeks zabrane jako, jako mali,
10:28
then you very well might be being suppressed.
252
628260
2000
onda najverovatnije bivate zabranjeni.
10:30
If it's very large, maybe you're benefiting from propaganda.
253
630260
3000
Ako je indeks velik, možda vam propaganda ide u korist.
10:34
JM: Now you can actually look at
254
634260
2000
ŽM: Sada možete pogledati
10:36
the distribution of suppression indexes over whole populations.
255
636260
3000
raspodelu indeksa zabrane po čitavim populacijama.
10:39
So for instance, here --
256
639260
2000
Tako, na primer, ovde --
10:41
this suppression index is for 5,000 people
257
641260
2000
ovo je indeks zabrane za 5 000 ljudi
10:43
picked in English books where there's no known suppression --
258
643260
2000
odabranih u engleskim knjigama gde nije poznata zabrana --
10:45
it would be like this, basically tightly centered on one.
259
645260
2000
bilo bi to ovako, u suštini, usko centrisano na jednu tačku.
10:47
What you expect is basically what you observe.
260
647260
2000
Ono što očekujete je, praktično, ono što zapažate.
10:49
This is distribution as seen in Germany --
261
649260
2000
Ovako je raspodela viđena u Nemačkoj --
10:51
very different, it's shifted to the left.
262
651260
2000
dosta drugačije, pomerena je ulevo.
10:53
People talked about it twice less as it should have been.
263
653260
3000
Ljudi su o njoj pričali dvaput manje nego što je trebalo.
10:56
But much more importantly, the distribution is much wider.
264
656260
2000
Ali što je još važnije, raspodela je mnogo šira.
10:58
There are many people who end up on the far left on this distribution
265
658260
3000
Ima dosta ljudi koji su završili na samom kraju s leve strane ove raspodele
11:01
who are talked about 10 times fewer than they should have been.
266
661260
3000
o kojima se pričalo 10 puta manje nego što je trebalo.
11:04
But then also many people on the far right
267
664260
2000
Ali ima i dosta ljudi na krajnjoj desnoj strani
11:06
who seem to benefit from propaganda.
268
666260
2000
koji su, čini se, imali veliku korist od propagande.
11:08
This picture is the hallmark of censorship in the book record.
269
668260
3000
Ova slika je glavni znak cenzure u knjigama.
11:11
ELA: So culturomics
270
671260
2000
ELE: Ovu metodu
11:13
is what we call this method.
271
673260
2000
zovemo kulturomika.
11:15
It's kind of like genomics.
272
675260
2000
Podseća na genomiku.
11:17
Except genomics is a lens on biology
273
677260
2000
Samo što je genomika deo biologije
11:19
through the window of the sequence of bases in the human genome.
274
679260
3000
koji izučava nizove podataka u ljudskom genomu.
11:22
Culturomics is similar.
275
682260
2000
Kulturomika je slična.
11:24
It's the application of massive-scale data collection analysis
276
684260
3000
To je primena kolekcije podataka masovnih razmera
11:27
to the study of human culture.
277
687260
2000
za izučavanje ljudske kulture.
11:29
Here, instead of through the lens of a genome,
278
689260
2000
Ovde se, umesto kroz prizmu jednog genoma,
11:31
through the lens of digitized pieces of the historical record.
279
691260
3000
to radi kroz prizmu digitalizovanih delova istorijskog zapisa.
11:34
The great thing about culturomics
280
694260
2000
Odlična stvar kod kulturomike
11:36
is that everyone can do it.
281
696260
2000
jeste to da svi mogu njome da se bave.
11:38
Why can everyone do it?
282
698260
2000
Zašto mogu svi?
11:40
Everyone can do it because three guys,
283
700260
2000
Zato što su tri lika,
11:42
Jon Orwant, Matt Gray and Will Brockman over at Google,
284
702260
3000
Džon Orvant, Met Grej i Vil Brokmen iz Goole-a,
11:45
saw the prototype of the Ngram Viewer,
285
705260
2000
videli prototip Ngram pretraživača,
11:47
and they said, "This is so fun.
286
707260
2000
i rekli: "Ovo je tako zabavno.
11:49
We have to make this available for people."
287
709260
3000
Moramo ovo da učinimo dostupnim za sve ljude."
11:52
So in two weeks flat -- the two weeks before our paper came out --
288
712260
2000
I nakon dve nedelje -- dve nedelje pre nego što je naša studija izašla --
11:54
they coded up a version of the Ngram Viewer for the general public.
289
714260
3000
programirali su verziju Ngram pretraživača za javnost.
11:57
And so you too can type in any word or phrase that you're interested in
290
717260
3000
Tako da i vi možete ukucati bilo koju reč ili frazu koja vas interesuje
12:00
and see its n-gram immediately --
291
720260
2000
i odmah videti njen n-gram --
12:02
also browse examples of all the various books
292
722260
2000
takođe možete pretraživati različite knjige
12:04
in which your n-gram appears.
293
724260
2000
u kojima se vaš n-gram pojavljuje.
12:06
JM: Now this was used over a million times on the first day,
294
726260
2000
ŽM: Ovo je prvog dana bilo korišćeno preko milion puta,
12:08
and this is really the best of all the queries.
295
728260
2000
a ovo je zaista najbolje o svih pitanja.
12:10
So people want to be their best, put their best foot forward.
296
730260
3000
Ljudi hoće da daju sve od sebe, da urade sve što je bolje moguće.
12:13
But it turns out in the 18th century, people didn't really care about that at all.
297
733260
3000
Ali ispostavilo se da u 18. veku, ljudi uopšte nisu marili za to.
12:16
They didn't want to be their best, they wanted to be their beft.
298
736260
3000
Nisu želeli da budu najbolji (best), želeli su da budu osrednji (beft).
12:19
So what happened is, of course, this is just a mistake.
299
739260
3000
Ono što se desilo je, naravno, samo greška.
12:22
It's not that strove for mediocrity,
300
742260
2000
Nije težnja ka prosečnosti,
12:24
it's just that the S used to be written differently, kind of like an F.
301
744260
3000
već je samo S bilo pisano drugačije, slično kao F. (beSt - beFt)
12:27
Now of course, Google didn't pick this up at the time,
302
747260
3000
Naravno, Google to nije prepoznao na vreme,
12:30
so we reported this in the science article that we wrote.
303
750260
3000
pa smo ovo objavili u naučnom članku koji smo napisali.
12:33
But it turns out this is just a reminder
304
753260
2000
Ali ispostavlja se da je ovo samo podsetnik
12:35
that, although this is a lot of fun,
305
755260
2000
da, iako je jako zabavno,
12:37
when you interpret these graphs, you have to be very careful,
306
757260
2000
kada interpretirate ove grafikone, morate biti veoma oprezni,
12:39
and you have to adopt the base standards in the sciences.
307
759260
3000
i morate usvojiti osnovne naučne standarde.
12:42
ELA: People have been using this for all kinds of fun purposes.
308
762260
3000
ELE: Ljudi koriste ovaj program u razne zabavne svrhe.
12:45
(Laughter)
309
765260
7000
(Smeh)
12:52
Actually, we're not going to have to talk,
310
772260
2000
U stvari, nećemo morati da pričamo,
12:54
we're just going to show you all the slides and remain silent.
311
774260
3000
samo ćemo da vam pokažemo sve slajdove i da ćutimo.
12:57
This person was interested in the history of frustration.
312
777260
3000
Ova osoba je bila zainteresovana za istoriju frustracije.
13:00
There's various types of frustration.
313
780260
3000
Postoje razni tipovi frustracije.
13:03
If you stub your toe, that's a one A "argh."
314
783260
3000
Ako udarite nožni prst, onda je to jedno A "ah."
13:06
If the planet Earth is annihilated by the Vogons
315
786260
2000
Ako su planetu Zemlju razorili Vogoni
13:08
to make room for an interstellar bypass,
316
788260
2000
da bi napravili mesta za međuzvezdanu zaobilaznicu,
13:10
that's an eight A "aaaaaaaargh."
317
790260
2000
onda imamo 8 A "aaaaaaaah."
13:12
This person studies all the "arghs,"
318
792260
2000
Ova osoba izučava sve "ah-ove",
13:14
from one through eight A's.
319
794260
2000
od jednog do 8 A.
13:16
And it turns out
320
796260
2000
I ispostavlja se
13:18
that the less-frequent "arghs"
321
798260
2000
da su ređi "ah-ovi"
13:20
are, of course, the ones that correspond to things that are more frustrating --
322
800260
3000
naravno, oni koji odgovaraju stvarima koje izazivaju veću frustraciju --
13:23
except, oddly, in the early 80s.
323
803260
3000
osim, što je čudno, u ranim '80-im.
13:26
We think that might have something to do with Reagan.
324
806260
2000
Mi mislimo da to ima veze sa Reganom.
13:28
(Laughter)
325
808260
2000
(Smeh)
13:30
JM: There are many usages of this data,
326
810260
3000
ŽM: Ovi podaci se mogu koristiti u razne svrhe,
13:33
but the bottom line is that the historical record is being digitized.
327
813260
3000
ali poenta je da se istorijski zapis digitalizuje.
13:36
Google has started to digitize 15 million books.
328
816260
2000
Google je počeo da digitalizuje 15 miliona knjiga.
13:38
That's 12 percent of all the books that have ever been published.
329
818260
2000
To je 12 procenata svih knjiga koje su ikada objavljene.
13:40
It's a sizable chunk of human culture.
330
820260
3000
Što je povelik deo ljudske kulture.
13:43
There's much more in culture: there's manuscripts, there newspapers,
331
823260
3000
Ali postoji još mnogo više: postoje rukopisi, novine,
13:46
there's things that are not text, like art and paintings.
332
826260
2000
stvari koje su bez teksta, kao što su umetnička dela, slike.
13:48
These all happen to be on our computers,
333
828260
2000
Sve te stvari će se naći na našim računarima,
13:50
on computers across the world.
334
830260
2000
na računarima širom sveta.
13:52
And when that happens, that will transform the way we have
335
832260
3000
A kada se to desi, promeniće se način na koji
13:55
to understand our past, our present and human culture.
336
835260
2000
shvatamo našu prošlost, sadašnjost i našu kulturu.
13:57
Thank you very much.
337
837260
2000
Hvala vam mnogo.
13:59
(Applause)
338
839260
3000
(Aplauz)
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7