What we learned from 5 million books

236,154 views ・ 2011-09-20

TED


Molimo dvaput kliknite na engleski titl ispod za reprodukciju videa.

Translator: Samra Cebiric Reviewer: Mateja Nenadovic
00:15
Erez Lieberman Aiden: Everyone knows
0
15260
2000
Erez Lieberman Aide: Svako zna
00:17
that a picture is worth a thousand words.
1
17260
3000
da jedna slika vrijedi hiljadu riječi.
00:22
But we at Harvard
2
22260
2000
Ali mi na Harvardu
00:24
were wondering if this was really true.
3
24260
3000
smo se pitali da li je ovo stvarno tačno.
00:27
(Laughter)
4
27260
2000
(Smijeh)
00:29
So we assembled a team of experts,
5
29260
4000
Stoga smo skupili tim eksperata,
00:33
spanning Harvard, MIT,
6
33260
2000
iz Harvarda, MIT-a,
00:35
The American Heritage Dictionary, The Encyclopedia Britannica
7
35260
3000
The American Heritage Dictionary, Enciklopedije Britannica,
00:38
and even our proud sponsors,
8
38260
2000
i naših ponosnih sponzora,
00:40
the Google.
9
40260
3000
Googlea.
00:43
And we cogitated about this
10
43260
2000
Razmišljali smo o tome
00:45
for about four years.
11
45260
2000
oko 4 godine.
00:47
And we came to a startling conclusion.
12
47260
5000
I došli smo do zapanjujućeg zaključka.
00:52
Ladies and gentlemen, a picture is not worth a thousand words.
13
52260
3000
Dame i gospodo, slika ne vrijedi hiljadu riječi.
00:55
In fact, we found some pictures
14
55260
2000
Zapravo, našli smo neke slike
00:57
that are worth 500 billion words.
15
57260
5000
koje vrijede 500 milijardi riječi.
01:02
Jean-Baptiste Michel: So how did we get to this conclusion?
16
62260
2000
Jean-Baptiste Michel: Kako smo došli do ovog zaključka?
01:04
So Erez and I were thinking about ways
17
64260
2000
Erez i ja smo razmišljali kako da pronađemo načine
01:06
to get a big picture of human culture
18
66260
2000
da napravimo sliku ljudske kulture
01:08
and human history: change over time.
19
68260
3000
i ljudske historije: promjenu tokom vremena.
01:11
So many books actually have been written over the years.
20
71260
2000
Mnoštvo knjiga je napisano tokom godina.
01:13
So we were thinking, well the best way to learn from them
21
73260
2000
Pa smo razmišljali da je najbolji način da se iz njih uči
01:15
is to read all of these millions of books.
22
75260
2000
jeste da pročitamo sve ove knjige.
01:17
Now of course, if there's a scale for how awesome that is,
23
77260
3000
Naravno, ako postoji skala fenomenalnosti,
01:20
that has to rank extremely, extremely high.
24
80260
3000
mora biti jako, jako visoko.
01:23
Now the problem is there's an X-axis for that,
25
83260
2000
Problem je što za to postoji X-osa,
01:25
which is the practical axis.
26
85260
2000
stvarna osa.
01:27
This is very, very low.
27
87260
2000
Koja je veoma, veoma nisko.
01:29
(Applause)
28
89260
3000
(Aplauz)
01:32
Now people tend to use an alternative approach,
29
92260
3000
Ljudi obično koriste drugi pristup,
01:35
which is to take a few sources and read them very carefully.
30
95260
2000
uzmu par izvora i pažljivo ih čitaju.
01:37
This is extremely practical, but not so awesome.
31
97260
2000
Ovo je veoma praktično, ali nije tako fenomenalno.
01:39
What you really want to do
32
99260
3000
Ono što zapravo želite postići
01:42
is to get to the awesome yet practical part of this space.
33
102260
3000
jeste fenomenalno, ali praktični dio ovog prostora.
01:45
So it turns out there was a company across the river called Google
34
105260
3000
Postoji kompanija koja se zove Google
01:48
who had started a digitization project a few years back
35
108260
2000
i koja je prije nekoliko godina krenula sa digitalizacijom
01:50
that might just enable this approach.
36
110260
2000
koja bi pomogla ovom pristupu.
01:52
They have digitized millions of books.
37
112260
2000
Digitalizirali su milione knjiga.
01:54
So what that means is, one could use computational methods
38
114260
3000
To znači da možemo kompjuterski
01:57
to read all of the books in a click of a button.
39
117260
2000
pročitati sve knjige u samo jednom kliku.
01:59
That's very practical and extremely awesome.
40
119260
3000
To je veoma praktično i fenomenalno.
02:03
ELA: Let me tell you a little bit about where books come from.
41
123260
2000
ELA: Dozvolite mi da nešto kažem o tome odakle su potjekle knjige.
02:05
Since time immemorial, there have been authors.
42
125260
3000
Od prastarih vremena, postojali su autori.
02:08
These authors have been striving to write books.
43
128260
3000
Ovi autori su težili da pišu knjige.
02:11
And this became considerably easier
44
131260
2000
Ovo je postalo znatno lakše
02:13
with the development of the printing press some centuries ago.
45
133260
2000
od kada se, prije nekoliko stoljeća, pojavila mašina za štampanje.
02:15
Since then, the authors have won
46
135260
3000
Od tada, autori su
02:18
on 129 million distinct occasions,
47
138260
2000
objavili oko 129 miliona
02:20
publishing books.
48
140260
2000
knjiga.
02:22
Now if those books are not lost to history,
49
142260
2000
Ako se ove knjige nisu izgubile u prošlosti,
02:24
then they are somewhere in a library,
50
144260
2000
onda su negdje u knjižari,
02:26
and many of those books have been getting retrieved from the libraries
51
146260
3000
a mnoge knjige su podizane iz bibilioteka
02:29
and digitized by Google,
52
149260
2000
i digitalizovane od strane Goolgea,
02:31
which has scanned 15 million books to date.
53
151260
2000
koji je do sada skenirao 15 miliona knjiga.
02:33
Now when Google digitizes a book, they put it into a really nice format.
54
153260
3000
Kada Google digitalizuje knjigu, stave je u veoma dobar format.
02:36
Now we've got the data, plus we have metadata.
55
156260
2000
Sada imamo podatke i meta-podatke.
02:38
We have information about things like where was it published,
56
158260
3000
Imamo podatke o tome gdje je objavljena,
02:41
who was the author, when was it published.
57
161260
2000
ko je autor, kada je objavljena.
02:43
And what we do is go through all of those records
58
163260
3000
I mi prelazimo sve ove podatke
02:46
and exclude everything that's not the highest quality data.
59
166260
4000
i izbacujemo sve one podatke koji nisu kvalitetni.
02:50
What we're left with
60
170260
2000
Ono što nam preostaje je
02:52
is a collection of five million books,
61
172260
3000
kolekcija od 5 miliona knjiga,
02:55
500 billion words,
62
175260
3000
500 milijardi riječi,
02:58
a string of characters a thousand times longer
63
178260
2000
i niz slova, 1000 puta duži od
03:00
than the human genome --
64
180260
3000
ljudskog genoma --
03:03
a text which, when written out,
65
183260
2000
tekst koji, kada se ispiše,
03:05
would stretch from here to the Moon and back
66
185260
2000
bi se protezao do Mjeseca i nazad
03:07
10 times over --
67
187260
2000
10 puta --
03:09
a veritable shard of our cultural genome.
68
189260
4000
prava krhotina našeg kulturnog genoma.
03:13
Of course what we did
69
193260
2000
Naravno,
03:15
when faced with such outrageous hyperbole ...
70
195260
3000
kada smo se suočili sa ovakvom nečuvenom hiperbolom...
03:18
(Laughter)
71
198260
2000
(Smijeh)
03:20
was what any self-respecting researchers
72
200260
3000
uradili smo ono
03:23
would have done.
73
203260
3000
što bi svaki istraživač uradio.
03:26
We took a page out of XKCD,
74
206260
2000
Uzeli smo stranicu iz XKCD,
03:28
and we said, "Stand back.
75
208260
2000
i rekli, "Odmaknite se.
03:30
We're going to try science."
76
210260
2000
Isprobat ćemo nauku."
03:32
(Laughter)
77
212260
2000
(Smijeh)
03:34
JM: Now of course, we were thinking,
78
214260
2000
JM: Naravno, mislili smo,
03:36
well let's just first put the data out there
79
216260
2000
hajmo prvo ubaciti podatke
03:38
for people to do science to it.
80
218260
2000
koji bi ih iskoristili u nauci.
03:40
Now we're thinking, what data can we release?
81
220260
2000
Razmišljali smo, koje podatke možemo obajaviti?
03:42
Well of course, you want to take the books
82
222260
2000
Naravno, želite objaviti
03:44
and release the full text of these five million books.
83
224260
2000
cijeli tekst ovih 5 miliona knjiga.
03:46
Now Google, and Jon Orwant in particular,
84
226260
2000
Google, a posebno Jon Orwant,
03:48
told us a little equation that we should learn.
85
228260
2000
nam je pokazao jednu jednačinu koju trebamo znati.
03:50
So you have five million, that is, five million authors
86
230260
3000
Ako imate 5 miliona, tj., 5 miliona autora,
03:53
and five million plaintiffs is a massive lawsuit.
87
233260
3000
to znači 5 miliona tužilaca.
03:56
So, although that would be really, really awesome,
88
236260
2000
Iako bi to bilo veoma, veoma fenomenalno,
03:58
again, that's extremely, extremely impractical.
89
238260
3000
ipak je jako nepraktično.
04:01
(Laughter)
90
241260
2000
(Smijeh)
04:03
Now again, we kind of caved in,
91
243260
2000
Nekako smo popustili,
04:05
and we did the very practical approach, which was a bit less awesome.
92
245260
3000
i krenuli smo praktični pristup, koji je bio malo manje fenomenalan.
04:08
We said, well instead of releasing the full text,
93
248260
2000
Umjesto da objavljujemo cijeli tekst,
04:10
we're going to release statistics about the books.
94
250260
2000
objavit ćemo statistiku o knjigama.
04:12
So take for instance "A gleam of happiness."
95
252260
2000
Uzmite naprimjer "Tračak sreće."
04:14
It's four words; we call that a four-gram.
96
254260
2000
Ima četiri riječi; zovemo je četiri-grama.
04:16
We're going to tell you how many times a particular four-gram
97
256260
2000
Pokazat ćemo vam koliko puta se ona
04:18
appeared in books in 1801, 1802, 1803,
98
258260
2000
pojavila u knjigama u 1801, 1802, 1803,
04:20
all the way up to 2008.
99
260260
2000
sve do 2008.
04:22
That gives us a time series
100
262260
2000
Tako znamo
04:24
of how frequently this particular sentence was used over time.
101
264260
2000
koliko često se neka rečenica ponavljala tokom vremena.
04:26
We do that for all the words and phrases that appear in those books,
102
266260
3000
Uradili smo to za sve riječi i fraze koje se pojavljuju u ovim knjigama,
04:29
and that gives us a big table of two billion lines
103
269260
3000
i tako imamo tabelu od 2 milijarde redova
04:32
that tell us about the way culture has been changing.
104
272260
2000
koji nam govore kako se kultura mijenjala.
04:34
ELA: So those two billion lines,
105
274260
2000
ELA: Te redove
04:36
we call them two billion n-grams.
106
276260
2000
zovemo 2 milijarde n-grama.
04:38
What do they tell us?
107
278260
2000
Šta nam oni govore?
04:40
Well the individual n-grams measure cultural trends.
108
280260
2000
Pojedinačni n-grami određuju kulturalne trendove.
04:42
Let me give you an example.
109
282260
2000
Evo primjera.
04:44
Let's suppose that I am thriving,
110
284260
2000
Pretpostavimo da napredujem,
04:46
then tomorrow I want to tell you about how well I did.
111
286260
2000
i sutra vam želim ispričati kako sam uradio.
04:48
And so I might say, "Yesterday, I throve."
112
288260
3000
Mogu reći, "Jučer sam napredovao."
04:51
Alternatively, I could say, "Yesterday, I thrived."
113
291260
3000
Umjesto toga, mogu reći, "Jučer napredovah."
04:54
Well which one should I use?
114
294260
3000
Koju riječ da koristim?
04:57
How to know?
115
297260
2000
Kako da znam?
04:59
As of about six months ago,
116
299260
2000
Od prije šest mjeseci,
05:01
the state of the art in this field
117
301260
2000
stanje u ovom području je takvo
05:03
is that you would, for instance,
118
303260
2000
da biste mogli, naprimjer,
05:05
go up to the following psychologist with fabulous hair,
119
305260
2000
otići psihologu sa odličnom kosom,
05:07
and you'd say,
120
307260
2000
i reći,
05:09
"Steve, you're an expert on the irregular verbs.
121
309260
3000
"Steve, ti si ekspert u nepravilnim glagolima.
05:12
What should I do?"
122
312260
2000
Šta trebam uraditi?"
05:14
And he'd tell you, "Well most people say thrived,
123
314260
2000
A on bi ti rekao, "Većina ljudi kaže napredova,
05:16
but some people say throve."
124
316260
3000
ali neki kažu napredovah."
05:19
And you also knew, more or less,
125
319260
2000
Takođe ste znali, manje ili više,
05:21
that if you were to go back in time 200 years
126
321260
3000
da ako se vratite 200 godina unazad
05:24
and ask the following statesman with equally fabulous hair,
127
324260
3000
i pitate državnika sa jednako dobrom kosom
05:27
(Laughter)
128
327260
3000
(Smijeh)
05:30
"Tom, what should I say?"
129
330260
2000
"Tom, šta da kažem?"
05:32
He'd say, "Well, in my day, most people throve,
130
332260
2000
On bi rekao, "Pa, u moje vrijeme, većina ljudi kaže napredovao,
05:34
but some thrived."
131
334260
3000
a neki kažu napredovah."
05:37
So now what I'm just going to show you is raw data.
132
337260
2000
Sada ću vam pokazati nepripremljene podatke.
05:39
Two rows from this table of two billion entries.
133
339260
4000
Dvije kolone u tabeli sa 2 milijarde unosa.
05:43
What you're seeing is year by year frequency
134
343260
2000
Možete vidjeti frekvenciju godinu za godinom
05:45
of "thrived" and "throve" over time.
135
345260
3000
za riječi "napredovao" i "napredovah".
05:49
Now this is just two
136
349260
2000
Ovo je samo 2
05:51
out of two billion rows.
137
351260
3000
od 2 milijarde kolona.
05:54
So the entire data set
138
354260
2000
Čitav set podataka
05:56
is a billion times more awesome than this slide.
139
356260
3000
je milijardu puta fenomenalniji od ovog slajda.
05:59
(Laughter)
140
359260
2000
(Smijeh)
06:01
(Applause)
141
361260
4000
(Aplauz)
06:05
JM: Now there are many other pictures that are worth 500 billion words.
142
365260
2000
JM: Ima drugih slika koje vrijede 500 milijardi riječi.
06:07
For instance, this one.
143
367260
2000
Naprimjer, ova.
06:09
If you just take influenza,
144
369260
2000
Ako uzmemo gripu,
06:11
you will see peaks at the time where you knew
145
371260
2000
vidjećete razdoblja kada je poznato
06:13
big flu epidemics were killing people around the globe.
146
373260
3000
da je epidemija gripe ubijala ljude širom planete.
06:16
ELA: If you were not yet convinced,
147
376260
3000
ELA: Ako još niste uvjereni,
06:19
sea levels are rising,
148
379260
2000
nivo mora se povećava,
06:21
so is atmospheric CO2 and global temperature.
149
381260
3000
kao i nivo CO2 u atmosferi i globalna temperatura.
06:24
JM: You might also want to have a look at this particular n-gram,
150
384260
3000
JM: Pogledajte ovaj n-gram,
06:27
and that's to tell Nietzsche that God is not dead,
151
387260
3000
koji pokazuje Nietzscheu da Bog nije mrtav,
06:30
although you might agree that he might need a better publicist.
152
390260
3000
iako se morate složiti da on bi mu dobro došao bolji publicist.
06:33
(Laughter)
153
393260
2000
(Smijeh)
06:35
ELA: You can get at some pretty abstract concepts with this sort of thing.
154
395260
3000
ELA: Možete posmatrati neke vrlo abstraktne koncepte.
06:38
For instance, let me tell you the history
155
398260
2000
Naprimjer, dopustite da vam kažem nešto
06:40
of the year 1950.
156
400260
2000
o godini 1950-toj.
06:42
Pretty much for the vast majority of history,
157
402260
2000
Tokom čitave prošlosti, poprilično
06:44
no one gave a damn about 1950.
158
404260
2000
nikome nije bilo stalo do godine 1950.
06:46
In 1700, in 1800, in 1900,
159
406260
2000
U 1700, 1800, i 1900.
06:48
no one cared.
160
408260
3000
nikome nije bilo stalo.
06:52
Through the 30s and 40s,
161
412260
2000
Kroz 30-te i 40-te,
06:54
no one cared.
162
414260
2000
nikome nije bilo stalo.
06:56
Suddenly, in the mid-40s,
163
416260
2000
Najednom, sredinom 40-tih,
06:58
there started to be a buzz.
164
418260
2000
počela je galama.
07:00
People realized that 1950 was going to happen,
165
420260
2000
Ljudi su shvatili da će se desiti 1950 godina,
07:02
and it could be big.
166
422260
2000
i da bi mogla biti važna.
07:04
(Laughter)
167
424260
3000
(Smijeh)
07:07
But nothing got people interested in 1950
168
427260
3000
Ali nikada se ljudi nisu više zainteresirali za godinu 1950.
07:10
like the year 1950.
169
430260
3000
kao u godini 1950.
07:13
(Laughter)
170
433260
3000
(Smijeh)
07:16
People were walking around obsessed.
171
436260
2000
Ljudi su opsjednuto hodali uokolo.
07:18
They couldn't stop talking
172
438260
2000
Nisu mogli prestati pričati
07:20
about all the things they did in 1950,
173
440260
3000
o stvarima koje su radili godine 1050.,
07:23
all the things they were planning to do in 1950,
174
443260
3000
i o stvarima koje su planirali raditi godine 1950.
07:26
all the dreams of what they wanted to accomplish in 1950.
175
446260
5000
o snovima koje su htjeli ostvariti godine 1950.
07:31
In fact, 1950 was so fascinating
176
451260
2000
Zapravo, godina 1950 bila je tako fascinantna
07:33
that for years thereafter,
177
453260
2000
da su godinama nakon,
07:35
people just kept talking about all the amazing things that happened,
178
455260
3000
ljudi nastavili pričati o svim zapanjujućim stvarima koje su se desile,
07:38
in '51, '52, '53.
179
458260
2000
godine 1951, '52, '53.
07:40
Finally in 1954,
180
460260
2000
Napokon 1954.,
07:42
someone woke up and realized
181
462260
2000
neko je shvatio
07:44
that 1950 had gotten somewhat passé.
182
464260
4000
da je 1950. nekako zastarijela.
07:48
(Laughter)
183
468260
2000
(Smijeh)
07:50
And just like that, the bubble burst.
184
470260
2000
I samo tako, balon je pukao.
07:52
(Laughter)
185
472260
2000
(Smijeh)
07:54
And the story of 1950
186
474260
2000
Priča o godini 1950.
07:56
is the story of every year that we have on record,
187
476260
2000
je priča o svakoj godini koju smo zabilježili,
07:58
with a little twist, because now we've got these nice charts.
188
478260
3000
a malim preokretom, jer sada imamo ove lijepe grafikone.
08:01
And because we have these nice charts, we can measure things.
189
481260
3000
I zbog toga što imamo ove grafikone, možemo da mjerimo stvari.
08:04
We can say, "Well how fast does the bubble burst?"
190
484260
2000
Možemo reći, "Kako brzo balon može da pukne?"
08:06
And it turns out that we can measure that very precisely.
191
486260
3000
Ispostavilo se da to možemo veoma precizno da izmjerimo.
08:09
Equations were derived, graphs were produced,
192
489260
3000
Jednačine su izvedene, grafikoni su napravljeni,
08:12
and the net result
193
492260
2000
i jednostavan rezultat
08:14
is that we find that the bubble bursts faster and faster
194
494260
3000
je taj da balon buca sve brže
08:17
with each passing year.
195
497260
2000
kako godine prolaze.
08:19
We are losing interest in the past more rapidly.
196
499260
5000
Sve brže gubimo interes za prošlost.
08:24
JM: Now a little piece of career advice.
197
504260
2000
JM: Sada ću vam dati jedan mali savjet u vezi odabira karijere.
08:26
So for those of you who seek to be famous,
198
506260
2000
Za one koji žele postati poznati,
08:28
we can learn from the 25 most famous political figures,
199
508260
2000
saznali smo od 25 najpoznatijih političkih figura,
08:30
authors, actors and so on.
200
510260
2000
pisaca, glumaca i tako dalje.
08:32
So if you want to become famous early on, you should be an actor,
201
512260
3000
Ako želite rano postati poznat, trebali ste biti glumac,
08:35
because then fame starts rising by the end of your 20s --
202
515260
2000
jer u tom slučaju slava počinje da raste krajem vaših 20-tih godina --
08:37
you're still young, it's really great.
203
517260
2000
još uvijek ste mladi, što je sjajno.
08:39
Now if you can wait a little bit, you should be an author,
204
519260
2000
Ako možete čekati još malo, onda bi ste trebali biti pisac,
08:41
because then you rise to very great heights,
205
521260
2000
jer onda slava doseže velike visine,
08:43
like Mark Twain, for instance: extremely famous.
206
523260
2000
kao Mark Twain, naprimjer: on je veoma poznat.
08:45
But if you want to reach the very top,
207
525260
2000
Ali ako želite doseći sam vrh,
08:47
you should delay gratification
208
527260
2000
trebali bi ste odgoditi slavu
08:49
and, of course, become a politician.
209
529260
2000
i, naravno, postati političar.
08:51
So here you will become famous by the end of your 50s,
210
531260
2000
Ovako ćete postati popularni krajem vaših 50-tih godina,
08:53
and become very, very famous afterward.
211
533260
2000
i ostati veoma, veoma, poznati i nakon.
08:55
So scientists also tend to get famous when they're much older.
212
535260
3000
I naučnici postaju slavni kako stare.
08:58
Like for instance, biologists and physics
213
538260
2000
Naprimejr, biolozi i fizičari
09:00
tend to be almost as famous as actors.
214
540260
2000
su obično poznati kao i glumci.
09:02
One mistake you should not do is become a mathematician.
215
542260
3000
Jedina greška koju ne smijete napraviti jeste da postanete matematičar.
09:05
(Laughter)
216
545260
2000
(Smijeh)
09:07
If you do that,
217
547260
2000
Ako to uradite,
09:09
you might think, "Oh great. I'm going to do my best work when I'm in my 20s."
218
549260
3000
možete pomisliti, "Super. Objavit ću najbolji rad u svojim 20-tim."
09:12
But guess what, nobody will really care.
219
552260
2000
Ali pogodite, nikome zaista neće biti stalo.
09:14
(Laughter)
220
554260
3000
(Smijeh)
09:17
ELA: There are more sobering notes
221
557260
2000
ELA: Ima i nešto trezvenih bilješki
09:19
among the n-grams.
222
559260
2000
mešu n-gramima.
09:21
For instance, here's the trajectory of Marc Chagall,
223
561260
2000
Naprimjer, ovo je put Marca Chagalla,
09:23
an artist born in 1887.
224
563260
2000
umjetnika rođenog 1887.
09:25
And this looks like the normal trajectory of a famous person.
225
565260
3000
I ovo izgleda kao normalan put poznate osobe.
09:28
He gets more and more and more famous,
226
568260
4000
On postaje sve poznatiji,
09:32
except if you look in German.
227
572260
2000
osim ako gledate na njemačkom.
09:34
If you look in German, you see something completely bizarre,
228
574260
2000
Na njemačkom, postoji nešto veoma bizarno,
09:36
something you pretty much never see,
229
576260
2000
nešto što se skoro nikada ne može vidjeti,
09:38
which is he becomes extremely famous
230
578260
2000
a to je da on postaje strašno poznat
09:40
and then all of a sudden plummets,
231
580260
2000
i onda najednom njegova popularnost snažno se penje,
09:42
going through a nadir between 1933 and 1945,
232
582260
3000
i doseže nebeske visine između 1933 i 1945.,
09:45
before rebounding afterward.
233
585260
3000
prije se ponovo vraća.
09:48
And of course, what we're seeing
234
588260
2000
Naravno, vidimo
09:50
is the fact Marc Chagall was a Jewish artist
235
590260
3000
da je Marc Chagall bio jevrejski umjetnih
09:53
in Nazi Germany.
236
593260
2000
u nacističkoj Njemačkoj.
09:55
Now these signals
237
595260
2000
Ovi signali
09:57
are actually so strong
238
597260
2000
su zapravo tako jaki
09:59
that we don't need to know that someone was censored.
239
599260
3000
da ne moramo znati da je neko cenzurisan.
10:02
We can actually figure it out
240
602260
2000
Možemo zapravo shvatiti
10:04
using really basic signal processing.
241
604260
2000
procesuirajući jednostavne signale.
10:06
Here's a simple way to do it.
242
606260
2000
Evo jednostavnog načina za to.
10:08
Well, a reasonable expectation
243
608260
2000
Logično je očekivati
10:10
is that somebody's fame in a given period of time
244
610260
2000
da nečija slava u datom preiodu
10:12
should be roughly the average of their fame before
245
612260
2000
bi trebala otprilike biti prosjek njihove slave prije
10:14
and their fame after.
246
614260
2000
i slave poslije.
10:16
So that's sort of what we expect.
247
616260
2000
Takvo nešto mi očekujemo.
10:18
And we compare that to the fame that we observe.
248
618260
3000
I poredimo to sa slavom koju mi posmatramo.
10:21
And we just divide one by the other
249
621260
2000
I jednostavno podijelimo jedno sa drugim
10:23
to produce something we call a suppression index.
250
623260
2000
da bismo dobili nešto što nazivamo indeks zabrane.
10:25
If the suppression index is very, very, very small,
251
625260
3000
Ako je indeks veoma, veoma, veoma mali,
10:28
then you very well might be being suppressed.
252
628260
2000
onda možda ste zabranjeni.
10:30
If it's very large, maybe you're benefiting from propaganda.
253
630260
3000
Ako je veoma veliki, onda možda imate korist od propagande.
10:34
JM: Now you can actually look at
254
634260
2000
JM: Možete zapravo posmatrati
10:36
the distribution of suppression indexes over whole populations.
255
636260
3000
distribuciju indeksa zabrane čitave populacije.
10:39
So for instance, here --
256
639260
2000
Naprimjer, ovdje --
10:41
this suppression index is for 5,000 people
257
641260
2000
indeks zabrane za 5,000 ljudi
10:43
picked in English books where there's no known suppression --
258
643260
2000
odabranih iz engleskih udžbenika gdje nema zabrana --
10:45
it would be like this, basically tightly centered on one.
259
645260
2000
izgledalo bi ovako, usko centrirani na jedan.
10:47
What you expect is basically what you observe.
260
647260
2000
Ono što očekujete je jednostavno ono što posmatrate.
10:49
This is distribution as seen in Germany --
261
649260
2000
Ovo je rasprostranjenost posmatrana u Njemačkoj --
10:51
very different, it's shifted to the left.
262
651260
2000
veoma različita, pomjerena u lijevo.
10:53
People talked about it twice less as it should have been.
263
653260
3000
Ljudi su o tome govorili dva puta manje nego što je trebalo.
10:56
But much more importantly, the distribution is much wider.
264
656260
2000
Ali što je najvažnije, rasprostranjenost je mnogo šira.
10:58
There are many people who end up on the far left on this distribution
265
658260
3000
Mnogo je ljudi koji završe na krajnje lijevoj tački rasprostranjenosti
11:01
who are talked about 10 times fewer than they should have been.
266
661260
3000
o kojima se govori 10 puta manje nego što bi trebalo.
11:04
But then also many people on the far right
267
664260
2000
Ali i mnogi ljudi na krajnje desnoj tački
11:06
who seem to benefit from propaganda.
268
666260
2000
očigledno imaju korist od propadande.
11:08
This picture is the hallmark of censorship in the book record.
269
668260
3000
Ova slika je znak cenzure.
11:11
ELA: So culturomics
270
671260
2000
ELA: Kulturomija
11:13
is what we call this method.
271
673260
2000
je naziv ove naše metode.
11:15
It's kind of like genomics.
272
675260
2000
Nešto je nalik genomiji.
11:17
Except genomics is a lens on biology
273
677260
2000
Osim što je genomija uvid u bilogiju
11:19
through the window of the sequence of bases in the human genome.
274
679260
3000
kroz prozor slijeda baza u ljudskom genomu.
11:22
Culturomics is similar.
275
682260
2000
Kulturomija je slična.
11:24
It's the application of massive-scale data collection analysis
276
684260
3000
To je primjena skupljanja podataka velikog uzorka
11:27
to the study of human culture.
277
687260
2000
na ljudsku kulturu.
11:29
Here, instead of through the lens of a genome,
278
689260
2000
Umjesto kroz ljudski genom,
11:31
through the lens of digitized pieces of the historical record.
279
691260
3000
gleda se kroz digitalizirane historijske zapise.
11:34
The great thing about culturomics
280
694260
2000
Odlična stvar u vezi kulturonomije
11:36
is that everyone can do it.
281
696260
2000
je da svako to može uraditi.
11:38
Why can everyone do it?
282
698260
2000
Zašto je dostupna svima?
11:40
Everyone can do it because three guys,
283
700260
2000
Zato što su tri čovjeka,
11:42
Jon Orwant, Matt Gray and Will Brockman over at Google,
284
702260
3000
Jon Orwant, Matt Gray i Will Brockman iz Googlea,
11:45
saw the prototype of the Ngram Viewer,
285
705260
2000
su vidjeli prototip Ngram VIewera,
11:47
and they said, "This is so fun.
286
707260
2000
i rekli su, "Ovo je tako zabavno.
11:49
We have to make this available for people."
287
709260
3000
Moramo ovo pružiti ljudima."
11:52
So in two weeks flat -- the two weeks before our paper came out --
288
712260
2000
Za ravno dvije sedmice -- dvije sedmice prije nego naš rad objavljen --
11:54
they coded up a version of the Ngram Viewer for the general public.
289
714260
3000
napravili su verziju Ngram Viewera za javnost.
11:57
And so you too can type in any word or phrase that you're interested in
290
717260
3000
Tako da sada možete ukucati bilo koju riječ ili frazu koja vas zanima
12:00
and see its n-gram immediately --
291
720260
2000
i odmah vidjeti njen n-gram --
12:02
also browse examples of all the various books
292
722260
2000
i naći primjere iz ranih knjiga
12:04
in which your n-gram appears.
293
724260
2000
u kojima se vaš n-gram spominje.
12:06
JM: Now this was used over a million times on the first day,
294
726260
2000
JM: Ngram Viewer
12:08
and this is really the best of all the queries.
295
728260
2000
i ovo je najbolje od svih upita.
12:10
So people want to be their best, put their best foot forward.
296
730260
3000
Ljudi žele najbolje, da urade najbolje što mogu.
12:13
But it turns out in the 18th century, people didn't really care about that at all.
297
733260
3000
Ali izgleda da ljudi u 18-tom stoljeću o tome nisu marili.
12:16
They didn't want to be their best, they wanted to be their beft.
298
736260
3000
Nisu željeli uraditi najbolje, željeli su najbolje.
12:19
So what happened is, of course, this is just a mistake.
299
739260
3000
Desilo se, naravno, ovo je samo pogreška.
12:22
It's not that strove for mediocrity,
300
742260
2000
Nije da su težili prosjećnosti,
12:24
it's just that the S used to be written differently, kind of like an F.
301
744260
3000
već se S pisalo drugačije, slično F.
12:27
Now of course, Google didn't pick this up at the time,
302
747260
3000
Naravno, Google nije ovo izdvojio,
12:30
so we reported this in the science article that we wrote.
303
750260
3000
tako da smo ovo naveli u naučnom članku.
12:33
But it turns out this is just a reminder
304
753260
2000
Ali ovo je ispalo kao podsjetnik
12:35
that, although this is a lot of fun,
305
755260
2000
da, iako je ovo veoma zabavno,
12:37
when you interpret these graphs, you have to be very careful,
306
757260
2000
kada tumačite ove grafikone, morate biti veoma pažljivi,
12:39
and you have to adopt the base standards in the sciences.
307
759260
3000
i morati primijeniti ove standarde u nauci.
12:42
ELA: People have been using this for all kinds of fun purposes.
308
762260
3000
ELA: Ljudi ovo koriste za razne zabavne svrhe.
12:45
(Laughter)
309
765260
7000
(Smijeh)
12:52
Actually, we're not going to have to talk,
310
772260
2000
Zapravo, ne moramo pričati,
12:54
we're just going to show you all the slides and remain silent.
311
774260
3000
samo ćemo vam u tišini pokazati sve slajdove.
12:57
This person was interested in the history of frustration.
312
777260
3000
Ovu osobu je interesovala historija frustracije.
13:00
There's various types of frustration.
313
780260
3000
Postoje razni tipovi fustracija.
13:03
If you stub your toe, that's a one A "argh."
314
783260
3000
Ako se udarite u nožni prst, to je jedno A "argh".
13:06
If the planet Earth is annihilated by the Vogons
315
786260
2000
Ako planetu Zemlju nasele Vogonci
13:08
to make room for an interstellar bypass,
316
788260
2000
da naprave međuzvjezdanu zaobliaznicu,
13:10
that's an eight A "aaaaaaaargh."
317
790260
2000
to je osam A "aaaaaaaargh."
13:12
This person studies all the "arghs,"
318
792260
2000
Ova osoba je istražila sve "arghove,"
13:14
from one through eight A's.
319
794260
2000
od jednog pa do osam slova A.
13:16
And it turns out
320
796260
2000
I ispada
13:18
that the less-frequent "arghs"
321
798260
2000
najrjeđi "arghovi"
13:20
are, of course, the ones that correspond to things that are more frustrating --
322
800260
3000
su, naravno, oni koji se odnose na stvari koji više frustrirajuće --
13:23
except, oddly, in the early 80s.
323
803260
3000
osim, začudo, početkom 80-tih.
13:26
We think that might have something to do with Reagan.
324
806260
2000
Možda to ima neke veze sa Reaganom.
13:28
(Laughter)
325
808260
2000
(Smijeh)
13:30
JM: There are many usages of this data,
326
810260
3000
JM: Ovi podaci se koriste u razne svrhe,
13:33
but the bottom line is that the historical record is being digitized.
327
813260
3000
ali historijski zapisi se digitalizuju.
13:36
Google has started to digitize 15 million books.
328
816260
2000
Google je počeo sa digitalizacijom 15 miliona knjiga.
13:38
That's 12 percent of all the books that have ever been published.
329
818260
2000
To je 12 posto svih knjiga koje su izdate.
13:40
It's a sizable chunk of human culture.
330
820260
3000
To je veliki dio ljudske kulture.
13:43
There's much more in culture: there's manuscripts, there newspapers,
331
823260
3000
Tu su i rukopisi, novine,
13:46
there's things that are not text, like art and paintings.
332
826260
2000
tu su i materijali bez teksta, kao umjetnost i slike.
13:48
These all happen to be on our computers,
333
828260
2000
To je sve u našim kompjuterima,
13:50
on computers across the world.
334
830260
2000
i kompjuterima širom svijeta.
13:52
And when that happens, that will transform the way we have
335
832260
3000
Kada se to desi, to će promijeniti način na koji
13:55
to understand our past, our present and human culture.
336
835260
2000
mi shvatamo prošlost, sadašnjost i ljudsku kulturu.
13:57
Thank you very much.
337
837260
2000
Hvala vam mnogo.
13:59
(Applause)
338
839260
3000
(Aplauz)
O ovoj web stranici

Ova stranica će vas upoznati sa YouTube video zapisima koji su korisni za učenje engleskog jezika. Vidjet ćete časove engleskog jezika koje drže vrhunski nastavnici iz cijelog svijeta. Dvaput kliknite na titlove na engleskom koji su prikazani na svakoj stranici s videozapisom da odatle reprodukujete videozapis. Titlovi se pomeraju sinhronizovano sa video reprodukcijom. Ako imate bilo kakvih komentara ili zahtjeva, kontaktirajte nas putem ove kontakt forme.

https://forms.gle/WvT1wiN1qDtmnspy7