What we learned from 5 million books

236,062 views ใƒป 2011-09-20

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

๋ฒˆ์—ญ: Ji-Hyuk Park ๊ฒ€ํ† : Jeong-Lan Kinser
00:15
Erez Lieberman Aiden: Everyone knows
0
15260
2000
์ด๋ ˆ์ฆˆ: ๋ˆ„๊ตฌ๋‚˜ ์•„๋Š”
00:17
that a picture is worth a thousand words.
1
17260
3000
'๋ฐฑ๋ฌธ์ด ๋ถˆ์—ฌ์ผ๊ฒฌ'์ด๋ผ๋Š” ๋ง์ด ์žˆ์Šต๋‹ˆ๋‹ค.
00:22
But we at Harvard
2
22260
2000
ํ•˜์ง€๋งŒ ํ•˜๋ฒ„๋“œ์—์„œ ์šฐ๋ฆฌ๋Š”
00:24
were wondering if this was really true.
3
24260
3000
์ € ๋ง์ด ์ฐธ์ธ์ง€ ๊ฑฐ์ง“์ธ์ง€๋ฅผ ๋…ผํ•˜๊ณค ํ–ˆ์ฃ .
00:27
(Laughter)
4
27260
2000
(์›ƒ์Œ)
00:29
So we assembled a team of experts,
5
29260
4000
๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๋Š” ํ•˜๋ฒ„ํŠธ์™€ MIT์— ๊ฑธ์ณ
00:33
spanning Harvard, MIT,
6
33260
2000
์ „๋ฌธ๊ฐ€๋“ค์„ ๋ชจ์ง‘ํ•˜๊ณ 
00:35
The American Heritage Dictionary, The Encyclopedia Britannica
7
35260
3000
์•„๋ฉ”๋ฆฌ์นธ ํ—ค๋ฆฌํ‹ฐ์ง€ ์‚ฌ์ „, ๋ธŒ๋ฆฌํƒœ๋‹ˆ์ปค ๋ฐฑ๊ณผ์‚ฌ์ „
00:38
and even our proud sponsors,
8
38260
2000
๊ทธ๋ฆฌ๊ณ  ์‹ฌ์ง€์–ด ์šฐ๋ฆฌ์˜ ์ž๋ž‘์Šค๋Ÿฐ ํ›„์›,
00:40
the Google.
9
40260
3000
๊ตฌ๊ธ€๊นŒ์ง€ ํฌ๊ด„ํ•˜๋Š” ํŒ€์„ ๊ตฌ์„ฑํ–ˆ์Šต๋‹ˆ๋‹ค.
00:43
And we cogitated about this
10
43260
2000
๊ทธ๋ฆฌ๊ณ  ์šฐ๋ฆฌ๋Š” ์ด๊ฒƒ์— ๋Œ€ํ•ด
00:45
for about four years.
11
45260
2000
์•ฝ 4๋…„ ๋™์•ˆ ๊นŠ์ด์žˆ๊ฒŒ ์—ฐ๊ตฌํ–ˆ์ฃ .
00:47
And we came to a startling conclusion.
12
47260
5000
์šฐ๋ฆฌ๋Š” ๋†€๋ผ์šด ๊ฒฐ๋ก ์— ๋„๋‹ฌํ–ˆ์Šต๋‹ˆ๋‹ค.
00:52
Ladies and gentlemen, a picture is not worth a thousand words.
13
52260
3000
์‹ ์‚ฌ ์ˆ™๋…€ ์—ฌ๋Ÿฌ๋ถ„, ํ•œ ๊ทธ๋ฆผ์€ ์ฒœ ๋‹จ์–ด์˜ ๊ฐ€์น˜๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค. [์—ญ: '์ผ๊ฒฌ'์ด ๋ฐฑ๋ฌธ์˜ ๊ฐ€์น˜๊ฐ€ ๋˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.]
00:55
In fact, we found some pictures
14
55260
2000
์‚ฌ์‹ค, ์šฐ๋ฆฌ๋Š” ๋ช‡ ๊ฐ€์ง€ ์‚ฌ์ง„๋“ค์˜ ๊ฒฝ์šฐ
00:57
that are worth 500 billion words.
15
57260
5000
5์ฒœ์–ต ๋‹จ์–ด ์ •๋„์˜ ๊ฐ€์น˜๊ฐ€ ์žˆ์Œ์„ ๋ฐœ๊ฒฌํ–ˆ์ฃ .
01:02
Jean-Baptiste Michel: So how did we get to this conclusion?
16
62260
2000
๋ฏธ์…ธ : ์–ด๋–ป๊ฒŒ ์šฐ๋ฆฌ๊ฐ€ ์ด ๊ฒฐ๋ก ์— ๋„๋‹ฌํ–ˆ์„๊นŒ์š”?
01:04
So Erez and I were thinking about ways
17
64260
2000
์ด๋ ˆ์ฆˆ์™€ ์ „, ์—ฐ๊ตฌ ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ์ƒ๊ฐํ•˜๊ณ  ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
01:06
to get a big picture of human culture
18
66260
2000
์–ด๋–ป๊ฒŒ ํ•˜๋ฉด ์ธ๊ฐ„ ๋ฌธํ™”์™€ ์—ญ์‚ฌ์˜ ํฐ ๊ทธ๋ฆผ์„
01:08
and human history: change over time.
19
68260
3000
์–ป์„ ์ˆ˜ ์žˆ์„๊นŒ: ์‹œ๊ฐ„์— ๋”ฐ๋ผ ๋ณ€ํ™”๋˜๋Š” ๊ฒƒ์„ ํฌํ•จํ•ด์„œ
01:11
So many books actually have been written over the years.
20
71260
2000
์‹ค์ œ๋กœ ์ˆ˜ ๋งŽ์€ ์ฑ…๋“ค์€ ์ง€๋‚œ ์ˆ˜๋…„ ๋™์•ˆ ๊ธฐ๋ก๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
01:13
So we were thinking, well the best way to learn from them
21
73260
2000
๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๊ฐ€ ๊ทธ๋“ค๋กœ ๋ถ€ํ„ฐ ๋ฐฐ์šธ ์ˆ˜ ์žˆ๋Š” ๊ฐ€์žฅ ์ข‹์€ ๋ฐฉ๋ฒ•์€
01:15
is to read all of these millions of books.
22
75260
2000
์ด ์ˆ˜์ฒœ ์ˆ˜๋งŒ๊ถŒ์˜ ์ฑ…๋“ค์„ ๋‹ค ์ฝ๋Š”๊ฑฐ๋ผ ์ƒ๊ฐํ–ˆ์Šต๋‹ˆ๋‹ค.
01:17
Now of course, if there's a scale for how awesome that is,
23
77260
3000
๋ฌผ๋ก , ์ € ์ผ์ด ์–ผ๋งˆ๋‚˜ ๋ฉ‹์ง„ ์ผ์ธ์ง€ ์ธก์ •ํ•  ์ˆ˜ ์žˆ๋‹ค๋ฉด
01:20
that has to rank extremely, extremely high.
24
80260
3000
์ €๊ฒƒ์€ ๋งค์šฐ, ์•„์ฃผ ๋†’์€ ์ˆœ์œ„๊ฐ€ ๋งค๊ฒจ์งˆ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
01:23
Now the problem is there's an X-axis for that,
25
83260
2000
๋ฌธ์ œ๋Š”, ๊ทธ๊ณณ์— x์ถ•์ด ์žˆ๋‹ค๋Š” ๊ฑฐ์ฃ .
01:25
which is the practical axis.
26
85260
2000
์‹ค์šฉ์„ฑ์„ ๋‚˜ํƒ€๋‚ด๋Š” ์ถ•์ด์ฃ .
01:27
This is very, very low.
27
87260
2000
์ด ์ถ•์—์„œ์˜ ์ ์ˆ˜๋Š” ๋งค์šฐ ๋‚ฎ์Šต๋‹ˆ๋‹ค.
01:29
(Applause)
28
89260
3000
(๋ฐ•์ˆ˜)
01:32
Now people tend to use an alternative approach,
29
92260
3000
ํ˜„์žฌ, ์‚ฌ๋žŒ๋“ค์€ ๋Œ€์•ˆ์œผ๋กœ ๋ช‡ ๊ฐ€์ง€ ์†Œ์Šค๋“ค์„
01:35
which is to take a few sources and read them very carefully.
30
95260
2000
์„ ํƒํ•ด์„œ ๊ทธ๊ฒƒ๋“ค์„ ์ฃผ์˜๊นŠ๊ฒŒ ์ฝ์–ด๋‚˜๊ฐ€์ฃ .
01:37
This is extremely practical, but not so awesome.
31
97260
2000
์ด ๋ฐฉ์‹์€ ๋งค์šฐ ์‹ค์šฉ์ ์ด์ง€๋งŒ ์•„์ฃผ ๋ฉ‹์ง€์ง€๋Š” ์•Š์Šต๋‹ˆ๋‹ค.
01:39
What you really want to do
32
99260
3000
๋‹น์‹ ์ด ์ •๋งํ•˜๊ณ  ์›ํ•˜๋Š” ๊ฒƒ์€
01:42
is to get to the awesome yet practical part of this space.
33
102260
3000
์•„์ฃผ ๋ฉ‹์ง„ ์ผ์„ ์•„์ฃผ ์‹ค์šฉ์ ์œผ๋กœ ํ•˜๋Š” ๊ฑฐ์ฃ .
01:45
So it turns out there was a company across the river called Google
34
105260
3000
๊ทธ๋ž˜์„œ ๋ณด๋‹ˆ ๊ฐ• ๊ฑด๋„ˆ์— ๊ตฌ๊ธ€์ด๋ผ ๋ถˆ๋ฆฌ๋Š” ํšŒ์‚ฌ๊ฐ€ ์žˆ๋”๊ตฐ์š”.
01:48
who had started a digitization project a few years back
35
108260
2000
๋ช‡ ๋…„ ์ „์— ๋””์ง€ํ„ธํ™” ํ”„๋กœ์ ํŠธ๋ฅผ ์‹œ์ž‘ํ–ˆ์—ˆ๋˜ ํšŒ์‚ฌ์ฃ .
01:50
that might just enable this approach.
36
110260
2000
๊ทธ๊ฒƒ์ด ์šฐ๋ฆฌ์˜ ์ ‘๊ทผ๋ฐฉ์‹์„ ๊ฐ€๋Šฅ์ผ€ ํ• ์ˆ˜๋„ ์žˆ๊ฒ ๋”๊ตฐ์š”.
01:52
They have digitized millions of books.
37
112260
2000
๊ทธ๋“ค์€ ์ˆ˜๋ฐฑ๋งŒ๊ถŒ์˜ ์ฑ…์„ ๋””์ง€ํ„ธํ™” ํ–ˆ์Šต๋‹ˆ๋‹ค.
01:54
So what that means is, one could use computational methods
38
114260
3000
๊ทธ๊ฒƒ์ด ๋ฌด์Šจ ๋œป์ธ๊ณ  ํ•˜๋‹ˆ, ๋ˆ„๊ตฐ๊ฐ€ ์›ํ•˜๋ฉด ๋‹จ ํ•˜๋‚˜์˜ ํด๋ฆญ์œผ๋กœ
01:57
to read all of the books in a click of a button.
39
117260
2000
์ฑ…์„ ํ•œ๊ถŒ์„ ํ›‘์–ด๋ณผ ์ˆ˜ ์žˆ๋‹ค๋Š” ๋œป์ด์ฃ .
01:59
That's very practical and extremely awesome.
40
119260
3000
์•„์ฃผ ์‹ค์šฉ์ ์ด์ด๋ฉฐ ๊ทน๋„๋กœ ๋ฉ‹์ง„ ์ผ์ด์ฃ .
02:03
ELA: Let me tell you a little bit about where books come from.
41
123260
2000
์ด๋ ˆ์ฆˆ: ์ œ๊ฐ€ ์ฑ…๋“ค์ด ์–ด๋””์„œ ์™”๋Š”์ง€ ์„ค๋ช…์„ ์ข€ ํ•˜์ฃ .
02:05
Since time immemorial, there have been authors.
42
125260
3000
ํƒœ๊ณ ์ ๋ถ€ํ„ฐ, ์ž‘๊ฐ€๋Š” ๋Š˜ ์กด์žฌํ•ด ์™”์Šต๋‹ˆ๋‹ค.
02:08
These authors have been striving to write books.
43
128260
3000
์ด ์ €์ž๋“ค์€ ์ฑ…์„ ์“ฐ๊ธฐ ์œ„ํ•ด ๋ถ„ํˆฌํ•ด์™”์ฃ .
02:11
And this became considerably easier
44
131260
2000
๊ทธ ์ผ์€ ์ ์  ์‰ฌ์›Œ์ก‹์Šต๋‹ˆ๋‹ค.
02:13
with the development of the printing press some centuries ago.
45
133260
2000
๋ช‡ ์„ธ๊ธฐ์ „์˜ ์ธ์‡„๊ธฐ ๋ฐœ๋‹ฌ๊ณผ ํ•จ๊ป˜๋ง์ด์ฃ .
02:15
Since then, the authors have won
46
135260
3000
๊ทธ ์ดํ›„๋กœ ๋ถ€ํ„ฐ๋Š” ์ €์ž๋“ค์˜ ์Šน๋ฆฌ์˜€์ฃ .
02:18
on 129 million distinct occasions,
47
138260
2000
๋šœ๋ ท์ด 1์–ต2์ฒœ9๋ฐฑ๋งŒ๋ฒˆ ๋™์•ˆ
02:20
publishing books.
48
140260
2000
์ฑ…์„ ์ถœํŒํ–ˆ์œผ๋‹ˆ๊นŒ์š”
02:22
Now if those books are not lost to history,
49
142260
2000
์—ญ์‚ฌ ์†์— ๋ถ„์‹ค๋˜์ง€ ์•Š์•˜๋‹ค๋ฉด ํ•ด๋‹น ๋„์„œ๋Š”
02:24
then they are somewhere in a library,
50
144260
2000
์ง€๊ธˆ ์–ด๋Š ๋„์„œ๊ด€ ์–ด๋”˜๊ฐ€์— ์žˆ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
02:26
and many of those books have been getting retrieved from the libraries
51
146260
3000
๊ทธ ๋„์„œ์˜ ๋Œ€๋ถ€๋ถ„์ด ๋„์„œ๊ด€์—์„œ ํšŒ์ˆ˜๋˜์–ด์ ธ
02:29
and digitized by Google,
52
149260
2000
๊ตฌ๊ธ€์— ์˜ํ•ด ๋””์ง€ํ„ธํ™” ๋˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
02:31
which has scanned 15 million books to date.
53
151260
2000
ํ˜„์žฌ๊นŒ์ง€ ์ฒœ์˜ค๋ฐฑ๋งŒ๊ถŒ์˜ ๋„์„œ๋ฅผ ์Šค์บ”ํ–ˆ์Šต๋‹ˆ๋‹ค.
02:33
Now when Google digitizes a book, they put it into a really nice format.
54
153260
3000
์ง€๊ธˆ ๊ตฌ๊ธ€์ด ์ฑ…์„ ๋””์ง€ํ„ธํ™”ํ•˜๋ฉด, ์ข‹์€ ํฌ๋งท์œผ๋กœ ๋ฐ”๊ฟ”๋‘์ฃ .
02:36
Now we've got the data, plus we have metadata.
55
156260
2000
์ด์ œ ์šฐ๋ฆฌ๋Š” ๋ฐ์ดํ„ฐ๊ฐ€ ์žˆ๊ณ  ๊ทธ์— ๊ด€ํ•œ ์†์„ฑ ์ •๋ณด๊นŒ์ง€ ์žˆ์ฃ .
02:38
We have information about things like where was it published,
56
158260
3000
์šฐ๋ฆฌ์—๊ฒ ๊ทธ๊ฒƒ์ด ์–ด๋””์„œ ์ถœํŒ๋˜์—ˆ๊ณ  ๋ˆ„๊ฐ€ ์ผ์œผ๋ฉฐ
02:41
who was the author, when was it published.
57
161260
2000
์–ธ์ œ ๋ฐœํ–‰๋˜์—ˆ๋Š”์ง€์— ๊ด€ํ•œ ์ •๋ณด๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
02:43
And what we do is go through all of those records
58
163260
3000
ํ•ด์„œ, ์šฐ๋ฆฌ๊ฐ€ ๊ฐ€์ง„ ๋ชจ๋“  ์ž๋ฃŒ๋“ค์„ ํ›‘์–ด์„œ
02:46
and exclude everything that's not the highest quality data.
59
166260
4000
์ƒํƒœ๊ฐ€ ์ข‹์ง€์•Š์€ ๋ฐ์ดํ„ฐ๋Š” ์ „๋ถ€ ์ œํ•˜์—ฌ
02:50
What we're left with
60
170260
2000
์ถ”๋ ค์„œ ๋‚จ์€ ๊ฒƒ์ด
02:52
is a collection of five million books,
61
172260
3000
์˜ค๋ฐฑ๋งŒ๊ถŒ์˜ ์ฑ… ์ž…๋‹ˆ๋‹ค.
02:55
500 billion words,
62
175260
3000
5์ฒœ์–ต๊ฐœ์˜ ๋‹จ์–ด๋“ค,
02:58
a string of characters a thousand times longer
63
178260
2000
์ผ๋ ฌ๋กœ ๋‚˜์—ดํ–ˆ์„ ๊ฒฝ์šฐ
03:00
than the human genome --
64
180260
3000
์šฐ๋ฆฌ ์œ ์ „์ž์˜ ์ด์ฒด, ์ธ๊ฐ„ ๊ฒŒ๋†ˆ๋ณด๋‹ค ์ฒœ๋ฐฐ ์ด์ƒ ๊ธด ๊ฒ๋‹ˆ๋‹ค.
03:03
a text which, when written out,
65
183260
2000
์ด ํ…์ŠคํŠธ๋“ค์„ ๋ชจ๋‘ ๋ชจ์•„์„œ
03:05
would stretch from here to the Moon and back
66
185260
2000
ํ•œ ์ค„๋กœ ์“ฐ๋ฉด ์—ฌ๊ธฐ์„œ ๋‹ฌ๊นŒ์ง€
03:07
10 times over --
67
187260
2000
10๋ฒˆ ์™”๋‹ค๊ฐ”๋‹ค ํ•  ๋งŒํผ ๋‚˜์˜ค์ฃ .
03:09
a veritable shard of our cultural genome.
68
189260
4000
์ง„์ • ์šฐ๋ฆฌ ๋ฌธํ™” ๊ฒŒ๋†ˆ์˜ ํ•œ ์กฐ๊ฐ์ด๋ผ ํ•  ์ˆ˜ ์žˆ์ฃ .
03:13
Of course what we did
69
193260
2000
๋ฌผ๋ก  ์ด๋Ÿฐ ๋ง๋„ ์•ˆ๋˜๋Š” ๊ณผ์žฅ์— ์ง๋ฉดํ•˜๊ฒŒ ๋˜๋ฉด
03:15
when faced with such outrageous hyperbole ...
70
195260
3000
์šฐ๋ฆฌ๊ฐ€ ํ•  ์ˆ˜ ์žˆ๋Š” ์ผ์ด๋ผ๊ณค
03:18
(Laughter)
71
198260
2000
(์›ƒ์Œ)
03:20
was what any self-respecting researchers
72
200260
3000
์ž์กด๊ฐ์žˆ๋Š” ์—ฐ๊ตฌ์›์ด๋ผ๋ฉด
03:23
would have done.
73
203260
3000
๋ˆ„๊ตฌ๋‚˜ ํ–ˆ์„ ๋ฒ•ํ•œ ์ผ์ด์ฃ .
03:26
We took a page out of XKCD,
74
206260
2000
XKCD์˜ ํ•œ ํŽ˜์ด์ง€๋ฅผ ๊บผ๋‚ด ๋“ค๊ณ 
03:28
and we said, "Stand back.
75
208260
2000
์™ธ์น˜๋Š” ๊ฑฐ์ฃ . "๋’ค๋กœ ๋ฌผ๋Ÿฌ๋‚˜.
03:30
We're going to try science."
76
210260
2000
์šฐ๋ฆฌ๋Š” ์ด์ œ ๊ณผํ•™์„ ์‹œ๋„ ํ•  ๊ฒƒ์ด์•ผ."
03:32
(Laughter)
77
212260
2000
(์›ƒ์Œ) [์—ญ: XKCD.com ๋ฏธ๊ตญ์˜ ์œ ๋ช… ์›นํˆฐ. ์›น์‚ฌ์ดํŠธ์—์„œ ํ•ด๋‹น ๋ฌธ๊ตฌ์˜ ํ‹ฐ์…”์ธ ๋ฅผ ํŒ๋งคํ•˜๊ณ  ์žˆ์Œ]
03:34
JM: Now of course, we were thinking,
78
214260
2000
JM์€ : ์ง€๊ธˆ์€ ๋ฌผ๋ก , ์šฐ๋ฆฌ๋Š” ์ƒ๊ฐํ•˜๊ณ  ์žˆ์—ˆ์ฃ ,
03:36
well let's just first put the data out there
79
216260
2000
๋ฌผ๋ก  ๊ทธ๋ƒฅ ๋จผ์ € ๋ฐ–์œผ๋กœ ๋ฐ์ดํ„ฐ๋ฅผ ๋„ฃ์–ด ๋ด…์‹œ๋‹ค
03:38
for people to do science to it.
80
218260
2000
๊ทธ๊ฒƒ์„ ํ•  ๊ณผํ•™์„ ํ•˜๋Š” ์‚ฌ๋žŒ๋“ค์„ ์œ„ํ•ด์„œ๋ง์ด์ฃ .
03:40
Now we're thinking, what data can we release?
81
220260
2000
์ง€๊ธˆ ์šฐ๋ฆฌ๊ฐ€ ์ƒ๊ฐํ•˜๊ณ , ์šฐ๋ฆฌ๋Š” ์–ด๋–ค ๋ฐ์ดํ„ฐ๋ฅผ ๊ณต๊ฐœํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๊นŒ?
03:42
Well of course, you want to take the books
82
222260
2000
๊ทธ๋Ÿผ์š”, ๋‹น์‹ ์€ ์ฑ…์„ ์ทจํ•ด์„œ
03:44
and release the full text of these five million books.
83
224260
2000
์ด๋Ÿฌํ•œ ์˜ค๋ฐฑ๋งŒ ๋„์„œ์˜ ์ „์ฒด ํ…์ŠคํŠธ๋ฅผ ๋†“๊ณ  ์‹ถ์–ดํ•ฉ๋‹ˆ๋‹ค.
03:46
Now Google, and Jon Orwant in particular,
84
226260
2000
ํŠนํžˆ ์ด์ œ Google๊ณผ ์กด Orwant,
03:48
told us a little equation that we should learn.
85
228260
2000
์šฐ๋ฆฌ๊ฐ€ ๋ฐฐ์›Œ์•ผํ•  ๋ฐฉ์ •์‹์ด ์กฐ๊ธˆ์žˆ๋‹ค๊ณ  ๋งํ–ˆ์Šต๋‹ˆ๋‹ค.
03:50
So you have five million, that is, five million authors
86
230260
3000
๊ทธ๋ž˜์„œ 5 ๋ฐฑ๋งŒ ์ž‘๊ฐ€, ์ฆ‰, 5 ๋ฐฑ๋งŒ ๋‹ฌ๋Ÿฌ๋ฅผ ๊ฐ€์ง€๊ณ 
03:53
and five million plaintiffs is a massive lawsuit.
87
233260
3000
๊ทธ๋ฆฌ๊ณ  5 ๋ฐฑ๋งŒ ์›๊ณ ์ธก์€ ๋Œ€๊ทœ๋ชจ์˜ ์†Œ์†ก์ด๋‹ค.
03:56
So, although that would be really, really awesome,
88
236260
2000
๊ทธ๋Ÿผ, ๊ทธ๊ฑด ์ •๋ง ๊ต‰์žฅํ•œ ๊ฒƒ์ด๊ธด ํ•˜์ง€๋งŒ
03:58
again, that's extremely, extremely impractical.
89
238260
3000
๋‹ค์‹œ๋งํ•ด, ๊ทธ๊ฑด ๊ทนํžˆ, ๊ทนํžˆ ๋น„์‹ค์šฉ์ ์ž…๋‹ˆ๋‹ค.
04:01
(Laughter)
90
241260
2000
(์›ƒ์Œ)
04:03
Now again, we kind of caved in,
91
243260
2000
์ด์ œ ๋‹ค์‹œ, ์šฐ๋ฆฌ๋Š” ๊ตด๋ณตํ•œ๊ฒƒ์ฒ˜๋Ÿผ ๋˜์–ด์„œ,
04:05
and we did the very practical approach, which was a bit less awesome.
92
245260
3000
๊ทธ๋ฆฌ๊ณ  ์•ฝ๊ฐ„ ๋œ ๊ต‰์žฅํ•˜์ง€๋งŒ, ์•„์ฃผ ์‹ค์šฉ์ ์ธ ์ ‘๊ทผ์„ ํ•˜๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
04:08
We said, well instead of releasing the full text,
93
248260
2000
์šฐ๋ฆฌ๊ฐ€ ๋งํ•˜๊ธธ, "๊ธ€์Ž„, ์ „์ฒด ํ…์ŠคํŠธ๋ฅผ ๋ฐœํ‘œํ•˜๋Š” ๋Œ€์‹ 
04:10
we're going to release statistics about the books.
94
250260
2000
์šฐ๋ฆฌ๋Š” ๋„์„œ์— ๋Œ€ํ•œ ํ†ต๊ณ„๋ฅผ ๊ณต๊ฐœํ• ๊ฑฐ์•ผ.
04:12
So take for instance "A gleam of happiness."
95
252260
2000
์˜ˆ๋ฅผ ๋“ค์–ด, 'ํ–‰๋ณต์˜ ๊ด‘์ฑ„"๋ฅผ ๋ด…์‹œ๋‹ค.
04:14
It's four words; we call that a four-gram.
96
254260
2000
๊ทธ๊ฒƒ์€ ๋„ค ๋‹จ์–ด์ž…๋‹ˆ๋‹ค; ์šฐ๋ฆฌ๋Š” 4 ๊ทธ๋žจ์ด๋ผ๊ณ  ๋ถ€๋ฆ…๋‹ˆ๋‹ค.
04:16
We're going to tell you how many times a particular four-gram
97
256260
2000
์šฐ๋ฆฌ๋Š” ํŠน์ • 4 ๊ทธ๋žจ์ด 1801, 1802, 1803,
04:18
appeared in books in 1801, 1802, 1803,
98
258260
2000
2008๋…„๊นŒ์ง€ ์ฃฝ ์˜ฌ๋ผ๊ฐ€์„œ ์ฑ…์—
04:20
all the way up to 2008.
99
260260
2000
๋ช‡๋ฒˆ์ด๋‚˜ ๋‚˜ํƒ€๋‚˜๋Š”์ง€ ์—ฌ๋Ÿฌ๋ถ„๊ป˜ ๋งํ• ๊ฒ๋‹ˆ๋‹ค.
04:22
That gives us a time series
100
262260
2000
๊ทธ๊ฒƒ์€ ์šฐ๋ฆฌ์—๊ฒŒ ์ด ํŠน์ • ๋ฌธ์žฅ์€ ์‹œ๊ฐ„์ด ์ง€๋‚จ์— ๋”ฐ๋ผ ์–ผ๋งˆ๋‚˜ ์ž์ฃผ ์‚ฌ์šฉ๋˜์—ˆ๋Š”์ง€
04:24
of how frequently this particular sentence was used over time.
101
264260
2000
์‹œ๊ฐ„ ์‹œ๋ฆฌ์ฆˆ๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.
04:26
We do that for all the words and phrases that appear in those books,
102
266260
3000
์šฐ๋ฆฌ๊ฐ€ ๊ทธ ๋„์„œ์— ๋‚˜ํƒ€๋‚˜๋Š” ๋ชจ๋“  ๋‹จ์–ด์™€ ๊ตฌ๋ฌธ์— ๋Œ€ํ•ด ๊ทธ๋ ‡๊ฒŒ ํ•˜๋ฉด,
04:29
and that gives us a big table of two billion lines
103
269260
3000
๊ทธ๊ฒƒ์€ ์šฐ๋ฆฌ์—๊ฒŒ ์ด์‹ญ์–ต ์ค„์˜ ํฐ ํ…Œ์ด๋ธ”์„ ์ œ๊ณตํ•˜๋Š”๋ฐ
04:32
that tell us about the way culture has been changing.
104
272260
2000
๊ทธ๊ฒƒ์€ ๋ฐฉ์‹ ๋ฌธํ™”๊ฐ€ ๋ณ€๊ฒฝ๋˜๋Š” ๋ฐฉ๋ฒ•์— ๊ด€ํ•ด์„œ ์šฐ๋ฆฌ์—๊ฒŒ ์•Œ๋ ค์ค๋‹ˆ๋‹ค.
04:34
ELA: So those two billion lines,
105
274260
2000
ELA : ๊ทธ๋Ÿผ ๊ทธ ์ด์‹ญ์–ต ๋ผ์ธ,
04:36
we call them two billion n-grams.
106
276260
2000
์šฐ๋ฆฌ๋Š” ๊ทธ๋“ค ์ด์‹ญ์–ต N -๊ทธ๋žจ.
04:38
What do they tell us?
107
278260
2000
๊ทธ๋“ค์ด ์šฐ๋ฆฌ์—๊ฒŒ ๋ญ๋ผ๊ณ  ํ• ๊นŒ์š”?
04:40
Well the individual n-grams measure cultural trends.
108
280260
2000
๊ทธ๋Ÿผ ๊ฐ๊ฐ์˜ N - ๊ทธ๋žจ์€ ๋ฌธํ™”๋™ํ–ฅ์„ ์ธก์ •ํ•ฉ๋‹ˆ๋‹ค.
04:42
Let me give you an example.
109
282260
2000
ํ•œ๊ฐ€์ง€ ์˜ˆ๋ฅผ ๋“ค์–ด ๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค.
04:44
Let's suppose that I am thriving,
110
284260
2000
๋‚ด๊ฐ€ ๋ฒˆ์„ฑํ•˜๊ณ  ์žˆ๋‹ค๊ณ  ๊ฐ€์ •ํ•ด ๋ด…์‹œ๋‹ค
04:46
then tomorrow I want to tell you about how well I did.
111
286260
2000
๊ทธ๋Ÿฌ๋ฉด ๋‚ด์ผ์€ ๋‚ด๊ฐ€ ์–ผ๋งˆ๋‚˜ ์ž˜ํ–ˆ๋Š”์ง€ ๋งํ•ด์ฃผ๊ณ  ์‹ถ์–ด์š”.
04:48
And so I might say, "Yesterday, I throve."
112
288260
3000
๊ทธ๋ž˜์„œ ๋‚œ "์–ด์ œ ๋‚ด๊ฐ€ ๋ฒˆ์„ฑํ–ˆ์–ด์š”(throve)."๋งํ• ์ง€๋„ ๋ชจ๋ฆ…๋‹ˆ๋‹ค.
04:51
Alternatively, I could say, "Yesterday, I thrived."
113
291260
3000
๋˜ ์ €๋Š” "์–ด์ œ, ๋‚ด๊ฐ€ ๋ฒˆ์ฐฝํ–ˆ์–ด์š” (thrived)." ๋ผ๊ณ  ํ•  ์ˆ˜ ๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
04:54
Well which one should I use?
114
294260
3000
๊ธ€์Ž„, ์–ด๋–ค๊ฒƒ์„ ์‚ฌ์šฉํ•ด์•ผ ํ• ๊นŒ์š”?
04:57
How to know?
115
297260
2000
์–ด๋–ป๊ฒŒ ์••๋‹ˆ๊นŒ?
04:59
As of about six months ago,
116
299260
2000
์•ฝ 6 ๊ฐœ์›” ์ „์˜ ์‹œ๊ธฐ์—,
05:01
the state of the art in this field
117
301260
2000
์ด ๋ถ„์•ผ์—์„œ ์˜ˆ์ˆ ์˜ ์ƒํƒœ๋Š”
05:03
is that you would, for instance,
118
303260
2000
์˜ˆ๋ฅผ ๋“ค์–ด, ๋‹น์‹ ์ด,
05:05
go up to the following psychologist with fabulous hair,
119
305260
2000
๋ฉ‹์ง„ ๋จธ๋ฆฌ๋ฅผ ๊ฐ€์ง„ ์‹ฌ๋ฆฌํ•™์ž๋ฅผ ๋”ฐ๋ผ ์˜ฌ๋ผ๊ฐ€,
05:07
and you'd say,
120
307260
2000
๋‹น์‹ ์ด ๋งํ•˜๊ธธ,
05:09
"Steve, you're an expert on the irregular verbs.
121
309260
3000
"์Šคํ‹ฐ๋ธŒ, ๋‹น์‹ ์€ ๋ถˆ๊ทœ์น™ ๋™์‚ฌ์— ๊ด€ํ•œ ์ „๋ฌธ๊ฐ€์ž…๋‹ˆ๋‹ค.
05:12
What should I do?"
122
312260
2000
์ œ๊ฐ€ ์–ด๋–ป๊ฒŒ ํ•ด์•ผ ํ• ๊นŒ์š”? "
05:14
And he'd tell you, "Well most people say thrived,
123
314260
2000
๊ทธ๊ฑฐ๋ฉด ๊ทธ๋Š”, "๊ธ€์Ž„์š”, ๋Œ€๋ถ€๋ถ„์˜ ์‚ฌ๋žŒ๋“ค์ด ๋งํ•˜๊ธธ ๋ฒˆ์„ฑํ–ˆ๋‹ค(thrive) ๊ณ  ํ–ˆ์ง€๋งŒ,
05:16
but some people say throve."
124
316260
3000
๋ช‡๋ช‡ ์‚ฌ๋žŒ์€ ๋ฒˆ์ฐฝํ–ˆ๋‹ค(throve) ๋ผ๊ณ  ํ–ˆ์–ด์š”."
05:19
And you also knew, more or less,
125
319260
2000
๊ทธ๋ž˜์„œ ์—ฌ๋Ÿฌ๋ถ„์€ ๋‹น์‹ ์€ ๋˜ํ•œ ๋‹ค์†Œ๋Š”
05:21
that if you were to go back in time 200 years
126
321260
3000
๋งŒ์ผ ์ด๋ฐฑ๋…„์ „ ์ด์ „์œผ๋กœ ๊ฑฐ์Šฌ๋Ÿฌ ์˜ฌ๋ผ๊ฐ€์„œ
05:24
and ask the following statesman with equally fabulous hair,
127
324260
3000
๊ทธ๋ฆฌ๊ณ , ๋˜‘๊ฐ™์ด ๋ฉ‹์ง„ ๋จธ๋ฆฌ๋ฅผ ๊ฐ€์ง„ ๋‹ค์Œ์˜ ์ •์น˜๊ฐ€์—๊ฒŒ ๋ฌป๋Š”๋‹ค๋ฉด,
05:27
(Laughter)
128
327260
3000
(์›ƒ์Œ)
05:30
"Tom, what should I say?"
129
330260
2000
"ํ†ฐ, ๋‚ด๊ฐ€ ๋ฌด์Šจ ๋ง์„ํ•ด์•ผํ•ฉ๋‹ˆ๊นŒ?"
05:32
He'd say, "Well, in my day, most people throve,
130
332260
2000
๊ทธ๋Š” "๊ธ€์Ž„, ๋‚˜์˜ ์„ธ๋Œ€๋Š” ๋Œ€๋ถ€๋ถ„์˜ ์‚ฌ๋žŒ๋“ค์ด ๋ฒˆ์„ฑํ–ˆ๋‹ค (throve) ๋ผ๊ณ  ๋งํ–ˆ์ง€๋งŒ
05:34
but some thrived."
131
334260
3000
๋ช‡๋ช‡์‚ฌ๋žŒ์€ ๋ฒˆ์ฐฝํ–ˆ๋‹ค (thrive)๋ผ๊ณ  ๋งํ–ˆ์–ด์š”." ํ• ๊ฒ๋‹ˆ๋‹ค.
05:37
So now what I'm just going to show you is raw data.
132
337260
2000
๊ทธ๋ž˜์„œ ์ œ๊ฐ€ ์—ฌ๋Ÿฌ๋ถ„์—๊ฒŒ ๊ทธ๋ƒฅ ๋ณด์—ฌ๋“œ๋ฆฌ๋ ค๊ณ  ํ•˜๋Š”๊ฒƒ์€ ์›๋ž˜์˜ ๋ฐ์ดํ„ฐ์ž…๋‹ˆ๋‹ค.
05:39
Two rows from this table of two billion entries.
133
339260
4000
์ด์‹ญ์–ต ํ•ญ๋ชฉ์˜ ์ด ํ…Œ์ด๋ธ”์—์„œ ๋‘ ์ค„์ž…๋‹ˆ๋‹ค.
05:43
What you're seeing is year by year frequency
134
343260
2000
์—ฌ๋Ÿฌ๋ถ„์ด ์ง€๊ธˆ๋ณด๊ณ  ๊ณ„์‹œ๋Š” ๊ฒƒ์€ ๋ฒˆ์„ฑํ–ˆ๋‹ค(throve)์™€ ๋ฒˆ์ฐฝํ–ˆ๋‹ค(thrive)์˜
05:45
of "thrived" and "throve" over time.
135
345260
3000
์˜ค๋žœ์‹œ๊ฐ„์— ๊ฑธ์นœ ๊ฐ ๋…„๋„์˜ ๋นˆ๋„์ž…๋‹ˆ๋‹ค.
05:49
Now this is just two
136
349260
2000
์ด์ œ ์ด์‹ญ์–ต ํ–‰์—์„œ
05:51
out of two billion rows.
137
351260
3000
์ด ๋‘ ๊ฐœ๋งŒ ์žˆ์Šต๋‹ˆ๋‹ค
05:54
So the entire data set
138
354260
2000
๋”ฐ๋ผ์„œ ์ „์ฒด ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š”
05:56
is a billion times more awesome than this slide.
139
356260
3000
์ด ์Šฌ๋ผ์ด๋“œ๋ณด๋‹ค ์–ต ๋ฐฐ ์ด์ƒ ๊ต‰์žฅํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
05:59
(Laughter)
140
359260
2000
(์›ƒ์Œ)
06:01
(Applause)
141
361260
4000
(๋ฐ•์ˆ˜)
06:05
JM: Now there are many other pictures that are worth 500 billion words.
142
365260
2000
JM : ์ง€๊ธˆ 5 ๋ฐฑ์กฐ๊ฐœ๋‹จ์–ด์˜ ๊ฐ€์น˜๊ฐ€ ์žˆ๋Š” ๋งŽ์€ ๋‹ค๋ฅธ ๊ทธ๋ฆผ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
06:07
For instance, this one.
143
367260
2000
์˜ˆ๋ฅผ ๋“ค์–ด,์ด๊ฒƒ์„ ๋ณด์„ธ์š”.
06:09
If you just take influenza,
144
369260
2000
์—ฌ๋Ÿฌ๋ถ„์ด ๋…๊ฐ์„ ์ทจํ• ๊ฒฝ์šฐ,
06:11
you will see peaks at the time where you knew
145
371260
2000
์—ฌ๋Ÿฌ๋ถ„์€ ํฐ ๋…๊ฐ ์ „์—ผ๋ณ‘์ด ์ „์„ธ๊ณ„์˜ ์‚ฌ๋žŒ์„ ์ฃฝ์ด๊ณ  ์žˆ์—ˆ๋˜๊ฒƒ์„
06:13
big flu epidemics were killing people around the globe.
146
373260
3000
์•Œ์•˜๋˜ ์ง€์ ์˜ ๊ฐ€์žฅ ์ตœ๊ณ ์  ์‹œ๊ฐ„์„ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
06:16
ELA: If you were not yet convinced,
147
376260
3000
ELA : ์—ฌ๋Ÿฌ๋ถ„์ด ์•„์ง๋„ ๋‚ฉ๋“๋˜์ง€ ์•Š์œผ์…จ๋‹ค๋ฉด,
06:19
sea levels are rising,
148
379260
2000
ํ•ด์ˆ˜๋ฉด์ด ์ƒ์Šนํ•˜๊ณ  ์žˆ์œผ๋ฉฐ,
06:21
so is atmospheric CO2 and global temperature.
149
381260
3000
๊ทธ๋ž˜์„œ ๋Œ€๊ธฐ CO2์™€ ์ง€๊ตฌ์˜ ์˜จ๋„๋„ ์ƒ์Šนํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
06:24
JM: You might also want to have a look at this particular n-gram,
150
384260
3000
JM : ๋‹น์‹ ์€ ๋˜ํ•œ,์ด ํŠน์ • N - ๊ทธ๋žจ์„ ๋ณด๊ณ ์‹ถ์–ดํ• ์ง€๋„ ๋ชจ๋ฅด๊ณ ,
06:27
and that's to tell Nietzsche that God is not dead,
151
387260
3000
๊ทธ๊ฒƒ์€ ๋‹ˆ์ฒด์—๊ฒŒ ํ•˜๋‚˜๋‹˜์ด ์ฃฝ์€๊ฒƒ์ด ์•„๋‹ˆ๋ผ๊ณ  ๋งํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค,
06:30
although you might agree that he might need a better publicist.
152
390260
3000
์—ฌ๋Ÿฌ๋ถ„์€ ๋‹ˆ์ฒด๊ฐ€ ๋” ๋‚˜์€ ํ™๋ณด๊ฐ€๊ฐ€ ํ•„์š”ํ•˜๋‹ค๋Š”๋ฐ ๋™์˜ํ•  ์ง€ ๋ชจ๋ฅด์ง€๋งŒ์š”.
06:33
(Laughter)
153
393260
2000
(์›ƒ์Œ)
06:35
ELA: You can get at some pretty abstract concepts with this sort of thing.
154
395260
3000
ELA : ๋‹น์‹ ์€ ์ด๋Ÿฐ ๋น„์Šทํ•œ๊ฒƒ๋“ค๋กœ ๊ฝค ์ถ”์ƒ์ ์ธ ๊ฐœ๋…์„ ์–ป์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
06:38
For instance, let me tell you the history
155
398260
2000
์˜ˆ๋ฅผ ๋“ค์–ด, ๋‚ด๊ฐ€ ์—ฌ๋Ÿฌ๋ถ„์—๊ฒŒ 1950๋…„๋„์˜ ์—ญ์‚ฌ๋ฅผ
06:40
of the year 1950.
156
400260
2000
์•Œ๋ ค๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค.
06:42
Pretty much for the vast majority of history,
157
402260
2000
์—ญ์‚ฌ์˜ ๋Œ€๋ถ€๋ถ„์— ๋Œ€ํ•ด์„œ
06:44
no one gave a damn about 1950.
158
404260
2000
๊ทธ ๋ˆ„๊ตฌ๋„ 1950์— ๋Œ€ํ•ด ์ฃผ์˜๋ฅผ ๊ธฐ์šธ์ด์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค
06:46
In 1700, in 1800, in 1900,
159
406260
2000
1700 ๋…„, 1800 ๋…„, 1900 ๋…„์—,
06:48
no one cared.
160
408260
3000
๊ทธ ๋ˆ„๊ตฌ๋„ ์‹ ๊ฒฝ ์“ฐ์ง€ ์•Š์•˜์–ด์š”.
06:52
Through the 30s and 40s,
161
412260
2000
30๋…„๋Œ€์™€ 40๋…„๋Œ€๋ฅผ ํ†ต๊ณผํ•˜๋ฉฐ,
06:54
no one cared.
162
414260
2000
๊ทธ ๋ˆ„๊ตฌ๋„ ์‹ ๊ฒฝ ์“ฐ์ง€ ์•Š์•˜์–ด์š”.
06:56
Suddenly, in the mid-40s,
163
416260
2000
๊ฐ‘์ž๊ธฐ 40 ๋…„๋Œ€ ์ค‘๋ฐ˜์—
06:58
there started to be a buzz.
164
418260
2000
์–˜๊นƒ๊ฑฐ๋ฆฌ๊ฐ€ ์ƒ๊ธฐ๊ธฐ ์‹œ์ž‘ํ–ˆ์Šต๋‹ˆ๋‹ค.
07:00
People realized that 1950 was going to happen,
165
420260
2000
์‚ฌ๋žŒ๋“ค์€ 1950 ๋…„์ด ์ผ์–ด๋‚  ๊ฒƒ์ด๋ผ๋Š”๊ฒƒ๊ณผ
07:02
and it could be big.
166
422260
2000
๊ทธ๊ฒŒ ํฐ์ผ์ผ ๊ฒƒ์ด๋ผ๋Š” ๊ฒƒ์„ ๊นจ๋‹ซ๊ฒŒ ๋˜์—ˆ์ง€์š”.
07:04
(Laughter)
167
424260
3000
(์›ƒ์Œ)
07:07
But nothing got people interested in 1950
168
427260
3000
๊ทธ๋Ÿฌ๋‚˜ ์•„๋ฌด๊ฒƒ๋„ 1950 ๋…„๊ณผ ๊ฐ™์ด
07:10
like the year 1950.
169
430260
3000
1950๋…„์— ์‚ฌ๋žŒ๋“ค์—๊ฒŒ ๊ด€์‹ฌ์ด์žˆ๋Š”๊ฒƒ์€ ์—†์—ˆ์Šต๋‹ˆ๋‹ค.
07:13
(Laughter)
170
433260
3000
(์›ƒ์Œ)
07:16
People were walking around obsessed.
171
436260
2000
์‚ฌ๋žŒ๋“ค์€ ์ง‘์ฐฉํ•ด์„œ ๋Œ์•„๋‚˜๋…”์Šต๋‹ˆ๋‹ค
07:18
They couldn't stop talking
172
438260
2000
๊ทธ๋“ค์€ ๊ทธ๋“ค์ด 1950 ๋…„ ํ•œ ๋ชจ๋“  ๊ฒƒ์— ๋Œ€ํ•ด,
07:20
about all the things they did in 1950,
173
440260
3000
๋ง์„ ๋ฉˆ์ถœ์ˆ˜ ์—†์—ˆ์Šต๋‹ˆ๋‹ค,
07:23
all the things they were planning to do in 1950,
174
443260
3000
๊ทธ๋“ค์ด 1950๋…„์— ํ•  ์ค€๋น„๋ฅผ ํ•˜๊ณ ์žˆ๋˜ ๋ชจ๋“ ๊ฒƒ๋“ค,
07:26
all the dreams of what they wanted to accomplish in 1950.
175
446260
5000
๊ทธ๋“ค์ด 1950 ๋…„์— ๋‹ฌ์„ฑํ•˜๊ณ  ์‹ถ์–ดํ–ˆ๋˜ ๋ชจ๋“  ๊ฟˆ์— ๋Œ€ํ•ด.
07:31
In fact, 1950 was so fascinating
176
451260
2000
์‚ฌ์‹ค 1950 ๋…„ ์ •๋ง ๋งคํ˜น์ ์ด์–ด์„œ
07:33
that for years thereafter,
177
453260
2000
๊ทธ ์ดํ›„ ๋…„ ๋™์•ˆ
07:35
people just kept talking about all the amazing things that happened,
178
455260
3000
์‚ฌ๋žŒ๋“ค์€ 51๋…„, 52๋…„, 53๋…„์—
07:38
in '51, '52, '53.
179
458260
2000
์ผ์–ด๋‚œ ๋ชจ๋“  ๋†€๋ผ์šด ์ผ๋“ค์— ๋Œ€ํ•ด ์–˜๊ธฐ๋ฅผ ๊ณ„์†ํ–ˆ์Šต๋‹ˆ๋‹ค.
07:40
Finally in 1954,
180
460260
2000
๊ฒฐ๊ตญ 1954๋…„์—,
07:42
someone woke up and realized
181
462260
2000
๋ˆ„๊ตฐ๊ฐ€๊ฐ€ ์ž ์— ๊นจ์–ด ์ผ์–ด๋‚˜์„œ๋Š”
07:44
that 1950 had gotten somewhat passรฉ.
182
464260
4000
1950์€ ๋‹ค์†Œ ์ง€๋‚˜๊ฐ”๋‹ค๋Š”๊ฒƒ์„ ๊นจ๋‹ฌ์•˜์Šต๋‹ˆ๋‹ค.
07:48
(Laughter)
183
468260
2000
(์›ƒ์Œ)
07:50
And just like that, the bubble burst.
184
470260
2000
๊ทธ๋ฆฌ๊ณ  ๊ทธ๋ƒฅ ๊ทธ๋ ‡๊ฒŒ, ๊ทธ ๊ฑฐํ’ˆ์ด ํ„ฐ์กŒ์ง€์š”.
07:52
(Laughter)
185
472260
2000
(์›ƒ์Œ)
07:54
And the story of 1950
186
474260
2000
๊ทธ๋ฆฌ๊ณ  1950 ๋…„ ์ด์•ผ๊ธฐ๋Š”
07:56
is the story of every year that we have on record,
187
476260
2000
์šฐ๋ฆฌ๊ฐ€ ๊ธฐ๋ก์„ ๋ณด์œ ํ•˜๊ณ  ์žˆ๋Š” ๋งค๋…„์˜ ์ด์•ผ๊ธฐ๊ฐ€
07:58
with a little twist, because now we've got these nice charts.
188
478260
3000
์ง€๊ธˆ์€ ์ด ์ข‹์€ ์ฐจํŠธ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์•ฝ๊ฐ„ ๊ผฌ์—ฌ ์žˆ์–ด์š”.
08:01
And because we have these nice charts, we can measure things.
189
481260
3000
๊ทธ๋ฆฌ๊ณ  ์šฐ๋ฆฌ๊ฐ€์ด ๋ฉ‹์ง„ ์ฐจํŠธ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์—, ์šฐ๋ฆฌ๋Š” ๋ฌผ๊ฑด์„ ์ธก์ •ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
08:04
We can say, "Well how fast does the bubble burst?"
190
484260
2000
์šฐ๋ฆฌ๋Š” "๊ธ€์Ž„ ์–ผ๋งˆ๋‚˜ ๋นจ๋ฆฌ ๊ฑฐํ’ˆ์ด ํ„ฐ์งˆ๊นŒ?" ๋ผ๊ณ  ๋งํ•  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
08:06
And it turns out that we can measure that very precisely.
191
486260
3000
๊ทธ๋ฆฌ๊ณ  ๊ทธ๊ฒƒ์€ ์šฐ๋ฆฌ๊ฐ€ ๋งค์šฐ ์ •ํ™•ํ•˜๊ฒŒ ์ธก์ •ํ•  ์ˆ˜์žˆ๋‹ค๋Š” ๊ฒŒ ๋ฐํ˜€์กŒ์Šต๋‹ˆ๋‹ค.
08:09
Equations were derived, graphs were produced,
192
489260
3000
๋ฐฉ์ •์‹์ด ๋„์ถœ๋˜์—ˆ๊ณ , ๊ทธ๋ž˜ํ”„๊ฐ€ ๋งŒ๋“ค์–ด์กŒ๊ณ ,
08:12
and the net result
193
492260
2000
๊ทธ๋ฆฌ๊ณ  ๊ทธ ์‹ค์ œ ๊ฒฐ๊ณผ๋Š”
08:14
is that we find that the bubble bursts faster and faster
194
494260
3000
์šฐ๋ฆฌ๊ฐ€ ๊ทธ ๊ฑฐํ’ˆ์ด ํ„ฐ์ง€๋Š”๊ฒƒ์ด ๊ฐ ์ง€๋‚˜๊ฐ€๋Š” ํ•ด์™€ ๋”๋ถˆ์–ด
08:17
with each passing year.
195
497260
2000
์ ์  ๋” ๋นจ๋ผ์ง€๋Š”๊ฒƒ์„ ๋ฐœ๊ฒฌํ–ˆ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
08:19
We are losing interest in the past more rapidly.
196
499260
5000
์šฐ๋ฆฌ๋Š” ๋” ๋นจ๋ฆฌ ๊ณผ๊ฑฐ์— ํฅ๋ฏธ๋ฅผ ์žƒ์–ด ๊ฐ€๊ณ ์žˆ์Šต๋‹ˆ๋‹ค.
08:24
JM: Now a little piece of career advice.
197
504260
2000
JM : ์ง€๊ธˆ ๊ฒฝ๋ ฅ ์กฐ์–ธ์˜ ์ž‘์€ ์กฐ๊ฐ.
08:26
So for those of you who seek to be famous,
198
506260
2000
๊ทธ๋ž˜์„œ ์œ ๋ช…ํ•œ ์‚ฌ๋žŒ์ด ๋˜๊ธฐ๋ฅผ ์ถ”๊ตฌํ•˜๋Š” ์—ฌ๋Ÿฌ๋ถ„๋“ค์„ ์œ„ํ•ด,
08:28
we can learn from the 25 most famous political figures,
199
508260
2000
์šฐ๋ฆฌ๋Š” 25์—์„œ ๊ฐ€์žฅ ์œ ๋ช…ํ•œ ์ •์น˜์  ์ธ๋ฌผ๋“ค์—๊ฒŒ์„œ,
08:30
authors, actors and so on.
200
510260
2000
์ €์ž, ๋ฐฐ์šฐ ๋“ฑ๋“ฑ์—๊ฒŒ์„œ ๋ฐฐ์šธ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
08:32
So if you want to become famous early on, you should be an actor,
201
512260
3000
๋‹น์‹ ์ด ๋นจ๋ฆฌ ์œ ๋ช…ํ•ด์ง€๊ณ  ์‹ถ๋‹ค๋ฉด, ๋‹น์‹ ์€ ๋ฐฐ์šฐ๊ฐ€ ๋˜์–ด์•ผํ•ฉ๋‹ˆ๋‹ค
08:35
because then fame starts rising by the end of your 20s --
202
515260
2000
๊ทธ๋ฆฌ๊ณ  ๋ช…์„ฑ์ด 20๋Œ€์˜ ๋งˆ์ง€๋ง‰์— ์ƒ์Šนํ•˜๊ธฐ ์‹œ์ž‘ํ•˜๊ธฐ ๋•Œ๋ฌธ์— -
08:37
you're still young, it's really great.
203
517260
2000
์—ฌ๋Ÿฌ๋ถ„์ด ์•„์ง ์–ด๋ฆฌ๋‹ค๋ฉด, ์ •๋ง ์ข‹์•„์š”.
08:39
Now if you can wait a little bit, you should be an author,
204
519260
2000
๋‹น์‹ ์€ ์กฐ๊ธˆ ๊ธฐ๋‹ค๋ฆด ์ˆ˜์žˆ๋‹ค๋ฉด, ์ด์ œ ๋‹น์‹ ์€ ์ €์ž๋˜์–ด์•ผํ•ฉ๋‹ˆ๋‹ค
08:41
because then you rise to very great heights,
205
521260
2000
๋‹ค์Œ ์•„์ฃผ ์ข‹์€ ๋†’์ด๋กœ ์ƒ์Šนํ•˜๊ธฐ ๋•Œ๋ฌธ์ธ๋ฐ,
08:43
like Mark Twain, for instance: extremely famous.
206
523260
2000
๊ทนํžˆ ์œ ๋ช…ํ•œ ์‚ฌ๋žŒ๊ณผ ๊ฐ™์ด ๋ง์ด์ฃ .
08:45
But if you want to reach the very top,
207
525260
2000
ํ•˜์ง€๋งŒ ๋‹น์‹ ์ด ๋งจ ์ƒ์œ„์— ๋„๋‹ฌํ•˜๋ ค๋Š” ๊ฒฝ์šฐ,
08:47
you should delay gratification
208
527260
2000
๋‹น์‹ ์€ ๋งŒ์กฑ์„ ์ง€์—ฐํ•ด์•ผํ•˜๊ณ 
08:49
and, of course, become a politician.
209
529260
2000
๊ทธ๋ฆฌ๊ณ , ๋ฌผ๋ก , ์ •์น˜๊ฐ€๊ฐ€ ๋˜์•ผ ํ•ฉ๋‹ˆ๋‹ค.
08:51
So here you will become famous by the end of your 50s,
210
531260
2000
๊ทธ๋Ÿผ ์—ฌ๊ธฐ์„œ ๋‹น์‹ ์€ ๋‹น์‹ ์˜ 50 ๋Œ€ ๋ง๊นŒ์ง€ ์œ ๋ช… ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค
08:53
and become very, very famous afterward.
211
533260
2000
๊ทธ๋ฆฌ๊ณ  ๊ทธ ์ดํ›„์—๋Š” ์•„์ฃผ ์œ ๋ช…ํ•˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
08:55
So scientists also tend to get famous when they're much older.
212
535260
3000
๊ทธ๋ž˜์„œ ๊ณผํ•™์ž๋“ค์€ ๋˜ํ•œ ํ›จ์”ฌ ๋‚˜์ด๋“ค์—ˆ์„ ๋•Œ ์œ ๋ช…ํ•ด์ง€๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
08:58
Like for instance, biologists and physics
213
538260
2000
์˜ˆ๋ฅผ ๋“ค์–ด, ์ƒ๋ฌผํ•™ ๋ฐ ๋ฌผ๋ฆฌํ•™์— ๋Œ€ํ•œ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ
09:00
tend to be almost as famous as actors.
214
540260
2000
๋ฐฐ์šฐ๋งŒํผ์ด๋‚˜ ์œ ๋ช…ํ•ด์ง€๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
09:02
One mistake you should not do is become a mathematician.
215
542260
3000
๋‹น์‹ ์ด ๋ฒ”ํ•˜์ง€ ๋ง์•„์•ผ ํ•  ํ•œ๊ฐ€์ง€ ์‹ค์ˆ˜๋Š” ์ˆ˜ํ•™์ž๊ฐ€ ๋˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
09:05
(Laughter)
216
545260
2000
(์›ƒ์Œ)
09:07
If you do that,
217
547260
2000
๋งŒ์•ฝ ๋‹น์‹ ์ด ๊ทธ๋ ‡๊ฒŒํ•œ๋‹ค๋ฉด,
09:09
you might think, "Oh great. I'm going to do my best work when I'm in my 20s."
218
549260
3000
๋‹น์‹ ์€ "์ข‹์•„. ์•„ ๋‚ด๊ฐ€ ๋‚ด๊ฐ€ 20๋Œ€์— ์žˆ์„ ๋•Œ ๋‚ด ์ตœ๊ณ ์˜ ์ž‘์—…์„ ํ• ๊ฑฐ์•ผ."๋ผ๊ณ  ์ƒ๊ฐํ•  ์ˆ˜๋„ ์žˆ์ง€๋งŒ
09:12
But guess what, nobody will really care.
219
552260
2000
๊ทธ๋Ÿฌ๋‚˜ ์ง์ž‘ํ•ด๋ณด์„ธ์š”, ์•„๋ฌด๋„ ์ƒ๊ด€ํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
09:14
(Laughter)
220
554260
3000
(์›ƒ์Œ)
09:17
ELA: There are more sobering notes
221
557260
2000
ELA: N-๊ทธ๋žจ์‚ฌ์ด์—
09:19
among the n-grams.
222
559260
2000
๋ณด๋‹ค ๋ƒ‰์ •ํ•œ ๋…ธํŠธ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
09:21
For instance, here's the trajectory of Marc Chagall,
223
561260
2000
์˜ˆ๋ฅผ ๋“ค์–ด, ์—ฌ๊ธฐ, 1887๋…„์— ํƒœ์–ด๋‚œ
09:23
an artist born in 1887.
224
563260
2000
๋งˆํฌ ์ƒค๊ฐˆ์˜ ํƒ„๋„๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
09:25
And this looks like the normal trajectory of a famous person.
225
565260
3000
๊ทธ๋ฆฌ๊ณ  ์ด๊ฒƒ์€ ์œ ๋ช…ํ•œ ์‚ฌ๋žŒ์˜ ์ •์ƒ์ ์ธ ๊ถค๋„ ๊ฐ™์Šต๋‹ˆ๋‹ค.
09:28
He gets more and more and more famous,
226
568260
4000
๊ทธ๋Š” ์ ์  ๋” ์œ ๋ช…ํ•ด์ง‘๋‹ˆ๋‹ค,
09:32
except if you look in German.
227
572260
2000
๋…์ผ์–ด๋กœ ์—ฌ๋Ÿฌ๋ถ„์ด ๋ณด๋Š” ๊ฒฝ์šฐ๋ฅผ ์ œ์™ธํ•˜๊ณ ๋Š”์š”.
09:34
If you look in German, you see something completely bizarre,
228
574260
2000
๋‹น์‹ ์ด ๋…์ผ์–ด๋กœ ๋ณด๋ฉด, ๋‹น์‹ ์€ ์™„์ „ํžˆ ์ด์ƒํ•œ ๋ฌด์–ธ๊ฐ€๋ฅผ ๋ด…๋‹ˆ๋‹ค,
09:36
something you pretty much never see,
229
576260
2000
๋‹น์‹ ์€ ๊ฑฐ์˜ ๋ชป ๋ณผ ๊ฒƒ์„๋ง์ด์ฃ ,
09:38
which is he becomes extremely famous
230
578260
2000
๊ทธ๊ฒƒ์€ ๊ทธ๊ฐ€ ๊ทน๋„๋กœ ์œ ๋ช…ํ•˜๊ฒŒ๋˜๊ณ 
09:40
and then all of a sudden plummets,
231
580260
2000
๊ทธ๋ฆฌ๊ณ  ๊ฐ‘์ž๊ธฐ ๊ณค๋‘๋ฐ•์งˆ์„ ํ•˜๋Š”๊ฒƒ์ž…๋‹ˆ๋‹ค,
09:42
going through a nadir between 1933 and 1945,
232
582260
3000
1933๊ณผ 1945๋…„ ์‚ฌ์ด์˜ ์ตœํ•˜์ ์„ ๊ฒช์œผ๋ฉด์„œ,
09:45
before rebounding afterward.
233
585260
3000
๊ทธ ์ดํ›„ ๋ณต๊ท€ํ•˜๊ธฐ ์ „์—์š”.
09:48
And of course, what we're seeing
234
588260
2000
๊ทธ๋ฆฌ๊ณ  ๋ฌผ๋ก , ์šฐ๋ฆฌ๊ฐ€ ๋ณด๋Š”๊ฒƒ์€
09:50
is the fact Marc Chagall was a Jewish artist
235
590260
3000
์‚ฌ์‹ค ๋งˆํฌ ์ƒค๊ฐˆ์€ ๋‚˜์น˜ ๋…์ผ์—์„œ์˜
09:53
in Nazi Germany.
236
593260
2000
์œ ๋Œ€์ธ ์˜ˆ์ˆ ๊ฐ€์˜€๋‹ค๋Š” ์‚ฌ์‹ค์ž…๋‹ˆ๋‹ค.
09:55
Now these signals
237
595260
2000
์ง€๊ธˆ ์ด๋Ÿฌํ•œ ์‹ ํ˜ธ๋“ค์€
09:57
are actually so strong
238
597260
2000
์‹ค์ œ๋กœ ๋Œ€๋‹จํžˆ ๊ฐ•ํ•ด์„œ
09:59
that we don't need to know that someone was censored.
239
599260
3000
์šฐ๋ฆฌ๋Š” ๋ˆ„๊ตฐ๊ฐ€๊ฐ€ ๊ฒ€์—ด ๋ฐ›์•˜๋Š”์ง€ ์•Œ ํ•„์š”๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.
10:02
We can actually figure it out
240
602260
2000
์šฐ๋ฆฌ๋Š” ์‹ค์ œ๋กœ ๊ธฐ๋ณธ์ ์ธ ์‹ ํ˜ธ ์ฒ˜๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•ด์„œ
10:04
using really basic signal processing.
241
604260
2000
์‹ค์ œ๋กœ ๊ทธ๊ฒƒ์„ ์•Œ์•„๋‚ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
10:06
Here's a simple way to do it.
242
606260
2000
์—ฌ๊ธฐ ๊ทธ๊ฒƒ์„ํ•˜๋Š” ๊ฐ„๋‹จํ•œ ๋ฐฉ๋ฒ•์ด ์žˆ์Šต๋‹ˆ๋‹ค.
10:08
Well, a reasonable expectation
243
608260
2000
์Œ, ํ•ฉ๋ฆฌ์ ์ธ ๊ธฐ๋Œ€๋Š”
10:10
is that somebody's fame in a given period of time
244
610260
2000
์ฃผ์–ด์ง„ ์‹œ๊ฐ„์•ˆ์— ๋ˆ„๊ตฐ๊ฐ€์˜ ๋ช…์„ฑ์€
10:12
should be roughly the average of their fame before
245
612260
2000
๋Œ€๋žต ๊ทธ๋“ค์˜ ๋ช…์„ฑ์˜ ์ด์ „๊ณผ ์ดํ›„์˜ ํ‰๊ท ์œผ๋กœ
10:14
and their fame after.
246
614260
2000
๋˜์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
10:16
So that's sort of what we expect.
247
616260
2000
๊ทธ๋ž˜์„œ ๊ทธ๊ฒƒ์€ ์šฐ๋ฆฌ๊ฐ€ ๊ธฐ๋Œ€ํ•˜๋Š” ์–ด๋–ค๊ฒƒ์ž…๋‹ˆ๋‹ค.
10:18
And we compare that to the fame that we observe.
248
618260
3000
๊ทธ๋ฆฌ๊ณ  ์šฐ๋ฆฌ๋Š” ์šฐ๋ฆฌ๊ฐ€ ๊ด€์ฐฐํ•˜๋Š” ๋ช…์„ฑ์— ๊ทธ๊ฒƒ์„ ๋น„๊ตํ•ฉ๋‹ˆ๋‹ค.
10:21
And we just divide one by the other
249
621260
2000
๊ทธ๋ฆฌ๊ณ  ์šฐ๋ฆฌ๋Š” ๋‹ค๋ฅธ ๊ฒƒ์„ 1๋กœ ๋‚˜๋ˆ„์–ด์„œ
10:23
to produce something we call a suppression index.
250
623260
2000
์šฐ๋ฆฌ๊ฐ€ ์–ต์ œ ์ง€์ˆ˜๋ผ๊ณ  ๋ถ€๋ฅด๋Š” ๋ฌด์–ธ๊ฐ€๋ฅผ ์ƒ์‚ฐํ•ฉ๋‹ˆ๋‹ค.
10:25
If the suppression index is very, very, very small,
251
625260
3000
๋งŒ์ผ ๊ทธ ์–ต์ œ ์ง€์ˆ˜๊ฐ€ ๋งค์šฐ, ๋งค์šฐ, ๋งค์šฐ ์ž‘์œผ๋ฉด,
10:28
then you very well might be being suppressed.
252
628260
2000
๊ทธ๋‹ค์Œ์— ๋‹น์‹ ์€ ์ž˜ ์–ต์••๋  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
10:30
If it's very large, maybe you're benefiting from propaganda.
253
630260
3000
๋งŒ์ผ ๊ทธ๊ฒƒ์ด ๋งค์šฐ ํฌ๋ฉด, ์•„๋งˆ ๋‹น์‹ ์ด ์„ ์ „์—์„œ ํ˜œํƒ์„ ๋ฐ›๋Š”๊ฒƒ์ผ๊ฒ๋‹ˆ๋‹ค.
10:34
JM: Now you can actually look at
254
634260
2000
JM์ด : ์ด์ œ ์—ฌ๋Ÿฌ๋ถ„์€
10:36
the distribution of suppression indexes over whole populations.
255
636260
3000
์ „์ฒด ์ธ๊ตฌ์— ๋Œ€ํ•œ ์–ต์ œ ์ง€์ˆ˜์˜ ๋ถ„ํฌ๋ฅผ ์‹ค์ œ๋กœ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
10:39
So for instance, here --
256
639260
2000
๋”ฐ๋ผ์„œ ์˜ˆ๋ฅผ ๋“ค์–ด, ์—ฌ๊ธฐ์— -
10:41
this suppression index is for 5,000 people
257
641260
2000
์ด ์–ต์ œ ์ง€์ˆ˜๋Š” ์•Œ๋ ค์ง„ ์–ต์••์ด ์—†๋Š” ๊ณณ์—์„œ
10:43
picked in English books where there's no known suppression --
258
643260
2000
์˜์–ด๋กœ ์“ฐ์—ฌ์ง„ ๋„์„œ๋ฅผ ๊ณ ๋ฅธ 5,000 ๋ช…์— ๋Œ€ํ•œ ๊ฒƒ์ธ๋ฐ-
10:45
it would be like this, basically tightly centered on one.
259
645260
2000
๊ทธ๊ฒƒ์€ ๊ธฐ๋ณธ์ ์œผ๋กœ ๊ธด๋ฐ€ํ•˜๊ฒŒ ํ•˜๋‚˜๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ํ•œ ์ด๊ฒƒ๊ณผ ๊ฐ™์€ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
10:47
What you expect is basically what you observe.
260
647260
2000
์˜ˆ์ƒํ•  ์ˆ˜ ์žˆ๋Š”๊ฒƒ์€ ๊ธฐ๋ณธ์ ์œผ๋กœ ์—ฌ๋Ÿฌ๋ถ„์ด ๊ด€์ฐฐํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
10:49
This is distribution as seen in Germany --
261
649260
2000
๋…์ผ์—์„œ ๋ณด์—ฌ์ง„๊ฒƒ๊ณผ ๊ฐ™์ด ์ด ๋ฐฐํฌ๋Š” -
10:51
very different, it's shifted to the left.
262
651260
2000
๋งค์šฐ ๋‹ค๋ฆ…๋‹ˆ๋‹ค, ๊ทธ๊ฒƒ์€ ์™ผ์ชฝ์œผ๋กœ ์ด๋™๋˜์–ด ์žˆ์ง€์š”.
10:53
People talked about it twice less as it should have been.
263
653260
3000
์‚ฌ๋žŒ๋“ค์€ ๊ทธ๊ฒƒ์ด ํ•ด ์กŒ์–ด์•ผ๋งŒ ํ•  ๊ฒƒ๋ณด๋‹ค ๋‘ ๋ฒˆ ์ดํ•˜๋กœ ์–˜๊ธฐํ–ˆ์Šต๋‹ˆ๋‹ค.
10:56
But much more importantly, the distribution is much wider.
264
656260
2000
๊ทธ๋Ÿฌ๋‚˜ ๋” ์ค‘์š”ํ•˜๊ฒŒ, ๊ทธ ๋ฐฐํฌ๋Š” ํ›จ์”ฌ ๋” ๋„“๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
10:58
There are many people who end up on the far left on this distribution
265
658260
3000
์ด ๋ฐฐํฌํŒ์—์„œ ๋งจ ์™ผ์ชฝ์— ๊ฒฐ๊ตญ ๋งŽ์€ ์‚ฌ๋žŒ๋“ค์€
11:01
who are talked about 10 times fewer than they should have been.
266
661260
3000
๊ทธ๋“ค์ด ์žˆ์—ˆ์–ด์•ผ ํ•  ๊ฒƒ๋ณด๋‹ค 10 ๋ฐฐ ์ดํ•˜๋กœ ์–˜๊ธฐํ•œ ์‚ฌ๋žŒ๋“ค์ž…๋‹ˆ๋‹ค.
11:04
But then also many people on the far right
267
664260
2000
ํ•˜์ง€๋งŒ ๊ทธ๋‹ค์Œ์—๋Š” ์„ ์ „์˜ ํ˜œํƒ์„ ๋ฐ›์€๊ฒƒ์ฒ˜๋Ÿผ ๋ณด์ด๋Š”
11:06
who seem to benefit from propaganda.
268
666260
2000
๋งจ ์˜ค๋ฅธ์ชฝ์—๋„ ๋งŽ์€ ์‚ฌ๋žŒ๋“ค์ด์žˆ์Šต๋‹ˆ๋‹ค.
11:08
This picture is the hallmark of censorship in the book record.
269
668260
3000
์ด ์‚ฌ์ง„์€ ์ฑ…์— ๊ธฐ๋ก์— ๊ฒ€์—ด์˜ ํŠน์ง•์ด๋‹ค.
11:11
ELA: So culturomics
270
671260
2000
ELA : ๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๋Š” ์ด ๋ฐฉ๋ฒ•์„
11:13
is what we call this method.
271
673260
2000
์ปฌ์ณ๋กœ๋ฏน์Šค๋ผ๊ณ  ๋ถ€๋ฆ…๋‹ˆ๋‹ค.
11:15
It's kind of like genomics.
272
675260
2000
๊ทธ๊ฒƒ์€ ๊ฐ™์€ ๊ฒŒ๋†ˆ์˜ ์ผ์ข… ์ด์ฃ .
11:17
Except genomics is a lens on biology
273
677260
2000
๊ฒŒ๋…ธ๋ฏน์Šค๊ฐ€ ์ธ๊ฐ„ ๊ฒŒ๋†ˆ์—์žˆ๋Š” ๊ธฐ๋ฐ˜์˜ ์ˆœ์„œ์˜ ์ฐฝ๋ฌธ์„ ํ†ตํ•œ
11:19
through the window of the sequence of bases in the human genome.
274
679260
3000
์ƒ๋ฌผํ•™์—์„œ๋Š” ๋ Œ์ฆˆ๋ผ๋Š”๊ฒƒ์„ ์ œ์™ธํ•˜๊ณ ๋Š” ๋ง์ž…๋‹ˆ๋‹ค.
11:22
Culturomics is similar.
275
682260
2000
์ปฌ์ณ๋กœ๋ฏน์Šค๋Š” ๋น„์Šทํ•ฉ๋‹ˆ๋‹ค.
11:24
It's the application of massive-scale data collection analysis
276
684260
3000
๊ทธ๊ฒƒ์€ ์ธ๊ฐ„ ๋ฌธํ™”์˜ ์—ฐ๊ตฌ์—
11:27
to the study of human culture.
277
687260
2000
๊ฑฐ๋Œ€ํ•œ ๊ทœ๋ชจ์˜ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๋ถ„์„ ์‘์šฉ ํ”„๋กœ๊ทธ๋žจ์ž…๋‹ˆ๋‹ค.
11:29
Here, instead of through the lens of a genome,
278
689260
2000
์—ฌ๊ธฐ์—์„œ๋Š”, ๊ฒŒ๋†ˆ์˜ ๋ Œ์ฆˆ๋ฅผ ํ†ตํ•˜๋Š”๊ฒƒ์„ ๋Œ€์‹ ํ•ด์„œ,
11:31
through the lens of digitized pieces of the historical record.
279
691260
3000
์—ญ์‚ฌ ๊ธฐ๋ก์˜ ๋””์ง€ํ„ธํ™”๋œ ์กฐ๊ฐ์˜ ๋ Œ์ฆˆ๋ฅผ ํ†ตํ•ฉ๋‹ˆ๋‹ค.
11:34
The great thing about culturomics
280
694260
2000
์ปฌ์ณ๋กœ๋ฏน์Šค์— ๋Œ€ํ•œ ๊ต‰์žฅํ•œ ์ ์€
11:36
is that everyone can do it.
281
696260
2000
๋ชจ๋“  ์‚ฌ๋žŒ์ด ๊ทธ๊ฒƒ์„ ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ ์ž…๋‹ˆ๋‹ค.
11:38
Why can everyone do it?
282
698260
2000
์™œ ๋‹ค๋“ค ๊ทธ๊ฒƒ์„ ํ•  ์ˆ˜ ์žˆ์„๊นŒ์š”?
11:40
Everyone can do it because three guys,
283
700260
2000
๋ˆ„๊ตฌ๋‚˜ ํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์„ธ ๋‚จ์ž,
11:42
Jon Orwant, Matt Gray and Will Brockman over at Google,
284
702260
3000
์กด ์˜ค๋ฅด์™„ํŠธ, ๋งคํŠธ ๊ทธ๋ ˆ์ด์™€ ์œŒ ๋ธŒ๋ก๋งŒ์ด ๊ตฌ๊ธ€์—์„œ
11:45
saw the prototype of the Ngram Viewer,
285
705260
2000
N ๊ทธ๋žจ์˜ ๋ทฐ์–ด์˜ ํ”„๋กœํ†  ํƒ€์ž…์„ ๋ณด๊ณ ,
11:47
and they said, "This is so fun.
286
707260
2000
๊ทธ๋ฆฌ๊ณ  ๊ทธ๋“ค์ด ๋งํ•˜๊ธฐ๋ฅผ, "์ด๊ฑด ์ •๋ง ์žฌ๋ฏธ์žˆ๋„ค.
11:49
We have to make this available for people."
287
709260
3000
์šฐ๋ฆฌ๋Š” ์‚ฌ๋žŒ๋“ค์ด ์ด๊ฑธ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋„๋กํ•ด์•ผํ•˜๊ฒ ๋Š”๊ฑธ "์ด๋ผ๊ณ  ๋งํ–ˆ์Šต๋‹ˆ๋‹ค.
11:52
So in two weeks flat -- the two weeks before our paper came out --
288
712260
2000
๊ทธ๋ž˜์„œ 2 ์ฃผ๋ฅผ ์ซ™ ๊น”์•„์„œ-- ์šฐ๋ฆฌ ์‹ ๋ฌธ์ด ๋‚˜์˜จ ๋‘ ์ฃผ ์ „์— ---
11:54
they coded up a version of the Ngram Viewer for the general public.
289
714260
3000
๊ทธ๋“ค์€ ์ผ๋ฐ˜ ๋Œ€์ค‘์„ ์œ„ํ•œ N๊ทธ๋žจ ๋ทฐ์–ด์˜ ๋ฒ„์ „์„ ์ฝ”๋“œํ™” ํ–ˆ์Šต๋‹ˆ๋‹ค .
11:57
And so you too can type in any word or phrase that you're interested in
290
717260
3000
๊ทธ๋ž˜์„œ ๋‹น์‹ ๋„ ๋‹น์‹ ์ด ๊ด€์‹ฌ์ด ์žˆ๋Š” ์–ด๋–ค ๋‹จ์–ด ๋˜๋Š” ๊ตฌ์ ˆ์ด๋“ ์ง€ ํƒ€์ดํ”„์น  ์ˆ˜ ์žˆ๊ณ 
12:00
and see its n-gram immediately --
291
720260
2000
๊ทธ ์ฆ‰์‹œ N ๊ทธ๋žจ์„ ๋ณผ ์ˆ˜ ์žˆ๊ณ  -
12:02
also browse examples of all the various books
292
722260
2000
๋˜ํ•œ ์—ฌ๋Ÿฌ๋ถ„์˜ N๊ทธ๋žจ์— ๋‚˜ํƒ€๋‚˜๋Š”
12:04
in which your n-gram appears.
293
724260
2000
๋‹ค์–‘ํ•œ ๋„์„œ์˜ ์‚ฌ๋ก€๋ฅผ ํƒ์ƒ‰ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
12:06
JM: Now this was used over a million times on the first day,
294
726260
2000
JM : ์ด์ œ ์ด๊ฒƒ์€ ์ฒซ๋‚ ์— ๋ฐฑ๋งŒ ๋ฒˆ ์ด์ƒ ์‚ฌ์šฉ๋˜์—ˆ๊ณ ,
12:08
and this is really the best of all the queries.
295
728260
2000
์ด๊ฒƒ์€ ์ •๋ง ๋ชจ๋“  ์งˆ๋ฌธ์ค‘ ์ตœ๊ณ ์ž…๋‹ˆ๋‹ค.
12:10
So people want to be their best, put their best foot forward.
296
730260
3000
๊ทธ๋ž˜์„œ ์‚ฌ๋žŒ๋“ค์€ ์•ž์œผ๋กœ ์ตœ์„ ์˜ ๋ฐœ์ฐจ์ทจ๋กœ ๊ทธ ์ž์‹ ๋“ค์˜ ์ตœ๊ณ ๊ฐ€ ๋˜๊ณ  ์‹ถ์–ดํ•ฉ๋‹ˆ๋‹ค.
12:13
But it turns out in the 18th century, people didn't really care about that at all.
297
733260
3000
ํ•˜์ง€๋งŒ 18 ์„ธ๊ธฐ์— ๋ฐํ˜€์กŒ๋“ฏ์ด, ์‚ฌ๋žŒ๋“ค์€ ์ „ํ˜€ ์‹ ๊ฒฝ ์“ฐ์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค.
12:16
They didn't want to be their best, they wanted to be their beft.
298
736260
3000
๊ทธ๋“ค์€ ๊ทธ๋“ค์˜ ์ตœ๊ณ ๊ฐ€ ๋˜๊ณ  ์‹ถ์ง€ ์•Š์•„ํ–ˆ์Šต๋‹ˆ๋‹ค, ๊ทธ๋“ค์€ ๊ทธ๋“ค์˜ ๋ฐฉ์–ด์ธ๋“ค์ด ๋˜๊ณ  ์‹ถ์–ดํ–ˆ์–ด์š”.
12:19
So what happened is, of course, this is just a mistake.
299
739260
3000
๊ทธ๋ž˜์„œ ๋ฌด์Šจ ์ผ์ด ์ผ์–ด๋‚ฌ๋Š”๊ฐ€ ํ•˜๋ฉด, ์ด๊ฑด ์‹ค์ˆ˜์ž…๋‹ˆ๋‹ค.
12:22
It's not that strove for mediocrity,
300
742260
2000
์ด๊ฒƒ์€, ํ‰๋ฒ”์„์œ„ํ•œ ํˆฌ์ง€๊ฐ€ ์•„๋‹ˆ์—์š”
12:24
it's just that the S used to be written differently, kind of like an F.
301
744260
3000
๊ทธ๊ฒƒ์€ S๊ฐ€ F ๋น„์Šทํ•˜๊ฒŒ ๋‹ค๋ฅด๊ฒŒ ์“ฐ์—ฌ์ง€๊ณค ํ–ˆ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
12:27
Now of course, Google didn't pick this up at the time,
302
747260
3000
์ง€๊ธˆ์€ ๋ฌผ๋ก , ๊ตฌ๊ธ€์€ ๋‹น์‹œ์— ์ด๊ฒƒ์„ ์•Œ์•„์ฐจ๋ฆฌ์ง€ ๋ชปํ–ˆ์Šต๋‹ˆ๋‹ค,
12:30
so we reported this in the science article that we wrote.
303
750260
3000
๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๋Š” ์šฐ๋ฆฌ๊ฐ€ ์“ด ๊ณผํ•™ ๊ธฐ์‚ฌ์—์„œ ์ด๊ฒƒ์„ ๋ณด๋„ํ–ˆ์Šต๋‹ˆ๋‹ค.
12:33
But it turns out this is just a reminder
304
753260
2000
๊ทธ๋Ÿฌ๋‚˜ ๊ทธ๊ฒƒ์€ ์ด๊ฒƒ์ด ๋‹จ์ง€ ์ด๊ฒƒ์ด ์•„์ฃผ ์žฌ๋ฏธ์žˆ์ง€๋งŒ,
12:35
that, although this is a lot of fun,
305
755260
2000
์—ฌ๋Ÿฌ๋ถ„์ด ์ด ๊ทธ๋ž˜ํ”„๋ฅผ ํ•ด์„ํ•  ๋•Œ,
12:37
when you interpret these graphs, you have to be very careful,
306
757260
2000
์—ฌ๋Ÿฌ๋ถ„์ด ๋งค์šฐ ์‹ ์ค‘ํ•ด์•ผ ํ•œ๋‹ค๋Š” ๊ฒƒ์„,
12:39
and you have to adopt the base standards in the sciences.
307
759260
3000
๊ทธ๋ฆฌ๊ณ  ๊ณผํ•™์—์„œ ๊ธฐ๋ณธ ํ‘œ์ค€์„ ์ฑ„ํƒํ•ด์•ผ๋งŒ ํ•œ๋‹ค๋Š” ๊ฒƒ์„ ์ƒ๊ธฐ์‹œ์ผœ์ฃผ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
12:42
ELA: People have been using this for all kinds of fun purposes.
308
762260
3000
ELA : ์‚ฌ๋žŒ๋“ค์€ ์žฌ๋ฏธ ๋ชฉ์ ์ธ ์ข…๋ฅ˜์— ์ด๊ฒƒ์„ ์‚ฌ์šฉํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
12:45
(Laughter)
309
765260
7000
(์›ƒ์Œ)
12:52
Actually, we're not going to have to talk,
310
772260
2000
์‚ฌ์‹ค, ์šฐ๋ฆฌ๋Š” ์–˜๊ธฐ๋ฅผ ํ•  ์ˆ˜ ์—†์–ด์•ผ๋งŒ ํ•˜๋Š” ์•Š์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค,
12:54
we're just going to show you all the slides and remain silent.
311
774260
3000
์šฐ๋ฆฌ๋Š” ๋‹น์‹ ์—๊ฒŒ ๋ชจ๋“  ์Šฌ๋ผ์ด๋“œ๋ฅผ ๋ณด์—ฌํ•˜๊ณ  ์กฐ์šฉํžˆ ์žˆ์„๊ฒ๋‹ˆ๋‹ค.
12:57
This person was interested in the history of frustration.
312
777260
3000
์ด ์‚ฌ๋žŒ์€ ์ขŒ์ ˆ์˜ ์—ญ์‚ฌ์— ๊ด€์‹ฌ์ด ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
13:00
There's various types of frustration.
313
780260
3000
๋‹ค์–‘ํ•œ ์ข…๋ฅ˜์˜ ์ขŒ์ ˆ์ด ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
13:03
If you stub your toe, that's a one A "argh."
314
783260
3000
๋งŒ์ผ ์—ฌ๋Ÿฌ๋ถ„์ด ์—ฌ๋Ÿฌ๋ถ„์˜ ๋ฐœ๊ฐ€๋ฝ์„ ์ฐŒ๋ฅธ๋‹ค๋ฉด, ๊ทธ๊ฒƒ์€ ํ•˜๋‚˜์˜ A "argh."์ž…๋‹ˆ๋‹ค.
13:06
If the planet Earth is annihilated by the Vogons
315
786260
2000
๋งŒ์ผ ์ง€๊ตฌ๊ฐ€ ์„ฑ๊ฐ„ ์šฐํšŒ๋ฅผ ์œ„ํ•œ ๊ณต๊ฐ„์„ ๋งˆ๋ จํ•˜๊ธฐ ์œ„ํ•œ,
13:08
to make room for an interstellar bypass,
316
788260
2000
๋ณด๊ณค์— ์˜ํ•ด ์ „๋ฉธ๋‹นํ•˜๊ฒŒ ๋˜๋ฉด,
13:10
that's an eight A "aaaaaaaargh."
317
790260
2000
๊ทธ๊ฒƒ์€ ์—ฌ๋Ÿ๊ฐœ์˜ A "argh" ์ž…๋‹ˆ๋‹ค.
13:12
This person studies all the "arghs,"
318
792260
2000
์ด ์‚ฌ๋žŒ์€ ๋ชจ๋“  "argh" ๋ฅผ
13:14
from one through eight A's.
319
794260
2000
ํ•˜๋‚˜์—์„œ๋ถ€ํ„ฐ 8 A๋ฅผ ํ†ตํ•ด์„œ ๊ณต๋ถ€ํ•ฉ๋‹ˆ๋‹ค.
13:16
And it turns out
320
796260
2000
๊ทธ๋ฆฌ๊ณ  ๊ทธ๊ฒƒ์€
13:18
that the less-frequent "arghs"
321
798260
2000
๊ทธ "arghs" ๊ฐ€ ๋œ ๋นˆ๋ฒˆํ•˜๊ฒŒ ๋‚˜์˜ฌ๋•Œ,
13:20
are, of course, the ones that correspond to things that are more frustrating --
322
800260
3000
๋ฌผ๋ก , ์ด๊ฒƒ๋“ค์— ํ•ด๋‹นํ•˜๋Š” ๊ฒƒ๋“ค์€ ๋” ์–ด๋ ต๊ฒŒ๋ฉ๋‹ˆ๋‹ค--
13:23
except, oddly, in the early 80s.
323
803260
3000
์ด์ƒํ•˜๊ฒŒ๋„ ์ดˆ๊ธฐ 80 ๋…„๋Œ€์—์„œ๋ฅผ ์ œ์™ธํ•˜๊ณ ๋Š”์š”.
13:26
We think that might have something to do with Reagan.
324
806260
2000
์šฐ๋ฆฌ๋Š” ๋ ˆ์ด๊ฑด๊ณผ ๋ญ”๊ฐ€ ๊ด€๋ จ์ด ์žˆ์„์ง€ ๋ชจ๋ฅธ๋‹ค๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.ยฃ
13:28
(Laughter)
325
808260
2000
(์›ƒ์Œ)
13:30
JM: There are many usages of this data,
326
810260
3000
JM :์ด ๋ฐ์ดํ„ฐ์˜ ์—ฌ๋Ÿฌ ์šฉ๋„๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค,
13:33
but the bottom line is that the historical record is being digitized.
327
813260
3000
ํ•˜์ง€๋งŒ ์š”์ ์€ ์—ญ์‚ฌ์  ๊ธฐ๋ก์ด ๋””์ง€ํ„ธํ™” ๋˜๊ณ  ์žˆ๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค.
13:36
Google has started to digitize 15 million books.
328
816260
2000
Google์€ ์ฒœ์˜ค๋ฐฑ๋งŒ๊ถŒ์˜ ์ฑ…์„ ๋””์ง€ํ„ธํ™”ํ•˜๊ธฐ ์‹œ์ž‘ํ–ˆ์Šต๋‹ˆ๋‹ค.
13:38
That's 12 percent of all the books that have ever been published.
329
818260
2000
๊ทธ๊ฒƒ์€ ์‚ฌ์ƒ ์ถœํŒ๋œ ๋ชจ๋“  ์ฑ…๋“ค์˜ 12 % ์ž…๋‹ˆ๋‹ค.
13:40
It's a sizable chunk of human culture.
330
820260
3000
๊ทธ๊ฒƒ์€ ์ธ๊ฐ„ ๋ฌธํ™”์˜ ์ƒ๋‹นํ•œ ๋ถ€๋ถ„์ž…๋‹ˆ๋‹ค.
13:43
There's much more in culture: there's manuscripts, there newspapers,
331
823260
3000
๋ฌธํ™”์—๋Š” ํ›จ์”ฌ ๋” ์žˆ์Šต๋‹ˆ๋‹ค: ๊ฑฐ๊ธฐ์—๋Š” ์›๊ณ , ์‹ ๋ฌธ์ด ์žˆ๊ณ ,
13:46
there's things that are not text, like art and paintings.
332
826260
2000
์˜ˆ์ˆ ๊ณผ ๊ทธ๋ฆผ๊ณผ ๊ฐ™์€, ํ…์ŠคํŠธ๊ฐ€ ์•„๋‹Œ ๊ฒƒ๋“ค์ด ์žˆ์Šต๋‹ˆ๋‹ค.
13:48
These all happen to be on our computers,
333
828260
2000
์ด๊ฒƒ๋“ค์€ ๋ชจ๋‘ ์šฐ๋ฆฌ์˜ ์ปดํ“จํ„ฐ์œ„์—์„œ ์ผ์–ด๋‚ฌ์Šต๋‹ˆ๋‹ค,
13:50
on computers across the world.
334
830260
2000
์ „์„ธ๊ณ„์— ๊ฑธ์ณ ์ปดํ“จํ„ฐ์œ„์—์„œ.
13:52
And when that happens, that will transform the way we have
335
832260
3000
๊ทธ๋ฆฌ๊ณ  ๊ทธ๊ฒƒ์ด ์ผ์–ด๋‚˜๋Š” ๋•Œ๋ฉด, ์šฐ๋ฆฌ๊ฐ€ ์šฐ๋ฆฌ์˜ ๊ณผ๊ฑฐ, ํ˜„์žฌ, ๊ทธ๋ฆฌ๊ณ  ๋ฏธ๋ž˜๋ฅผ ์ดํ•ดํ•˜๋Š”
13:55
to understand our past, our present and human culture.
336
835260
2000
์šฐ๋ฆฌ์˜ ๊ณผ๊ฑฐ, ํ˜„์žฌ ์šฐ๋ฆฌ์˜ ์ธ๊ฐ„ ๋ฌธํ™”๋ฅผ ์ดํ•ดํ•ฉ๋‹ˆ๋‹ค.
13:57
Thank you very much.
337
837260
2000
์ •๋ง ๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
13:59
(Applause)
338
839260
3000
(๋ฐ•์ˆ˜)
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7