Ben Wellington: How we found the worst place to park in New York City — using big data

80,081 views

2015-02-26 ・ TED


New videos

Ben Wellington: How we found the worst place to park in New York City — using big data

80,081 views ・ 2015-02-26

TED


Za predvajanje videoposnetka dvakrat kliknite na spodnje angleške podnapise.

Translator: Nika Kotnik Reviewer: Klavdija Cernilogar
00:12
Six thousand miles of road,
0
12711
2820
9656 kilometrov cest,
00:15
600 miles of subway track,
1
15531
2203
965 kilometrov podzemne železnice,
00:17
400 miles of bike lanes
2
17734
1644
643 kilometrov kolesarskih poti,
00:19
and a half a mile of tram track,
3
19378
1821
in 804 metri tramvajske proge
00:21
if you've ever been to Roosevelt Island.
4
21199
1953
če ste kdaj bili na Roosevelt Island-u.
00:23
These are the numbers that make up the infrastructure of New York City.
5
23152
3334
To so številke, ki sestavljajo infrastrukturo mesta New York.
00:26
These are the statistics of our infrastructure.
6
26486
2619
To je statistika naše infrastrukture.
00:29
They're the kind of numbers you can find released in reports by city agencies.
7
29105
3706
To so številke, ki jih lahko najdete v poročilih mestnih agencij.
00:32
For example, the Department of Transportation will probably tell you
8
32811
3199
Na primer, Oddelek za transport vam bo najbrž povedal
00:36
how many miles of road they maintain.
9
36010
1781
koliko kilometrov ceste nadzorujejo.
00:37
The MTA will boast how many miles of subway track there are.
10
37791
2821
MTA se hvali, koliko km podzemne železnice je tu.
00:40
Most city agencies give us statistics.
11
40612
1807
Večina mestnih agencij nam da statistiko.
00:42
This is from a report this year
12
42419
1483
To je poročilo iz tega leta
00:43
from the Taxi and Limousine Commission,
13
43902
1892
iz Komisije za taksije in limuzine,
00:45
where we learn that there's about 13,500 taxis here in New York City.
14
45794
3276
kjer izvemo da je v mestu New York 13,500 taksijev.
00:49
Pretty interesting, right?
15
49070
1290
Precej zanimivo, kajne?
00:50
But did you ever think about where these numbers came from?
16
50360
2784
Ste kdaj pomislili, odkod vse te številke?
00:53
Because for these numbers to exist, someone at the city agency
17
53144
2903
Da te številke obstajajo, se je moral nekdo v mestni agenciji
00:56
had to stop and say, hmm, here's a number that somebody might want want to know.
18
56047
3880
ustaviti in reči, hmm, tu je številka, ki bi jo nekdo morda hotel vedeti.
00:59
Here's a number that our citizens want to know.
19
59927
2250
Tu je številka, ki jo želijo vedeti meščani.
01:02
So they go back to their raw data,
20
62177
1830
Vzamejo gole podatke,
01:04
they count, they add, they calculate,
21
64007
1797
štejejo, dodajajo, računajo
01:05
and then they put out reports,
22
65804
1467
in izdajo poročila,
01:07
and those reports will have numbers like this.
23
67271
2177
in ta poročila bodo imela številke, kot so te.
01:09
The problem is, how do they know all of our questions?
24
69448
2540
Težava je, kako vedo vsa naša vprašanja?
01:11
We have lots of questions.
25
71988
1243
Imamo veliko vprašanj.
01:13
In fact, in some ways there's literally an infinite number of questions
26
73231
3340
Pravzaprav je tu na nek način dobesedno neskončno število vprašanj,
01:16
that we can ask about our city.
27
76571
1649
ki jih lahko vprašamo o mestu.
01:18
The agencies can never keep up.
28
78220
1475
Agencije nas ne dohajajo.
01:19
So the paradigm isn't exactly working, and I think our policymakers realize that,
29
79695
4056
Paradigma torej ne deluje in mislim, da naši odločevalci to vedo,
01:23
because in 2012, Mayor Bloomberg signed into law what he called
30
83751
3959
ker je leta 2012 župan Bloomberg podpisal zakon, ki ga je označil za
01:27
the most ambitious and comprehensive open data legislation in the country.
31
87710
3837
najbolj ambiciozen in izčrpen zakon o dostopnih podatkih v državi.
01:31
In a lot of ways, he's right.
32
91547
1573
V veliko stvareh, je imel prav.
01:33
In the last two years, the city has released 1,000 datasets
33
93120
2861
V zadnjih dveh letih je mesto izdalo 1000 setov podatkov
01:35
on our open data portal,
34
95981
1610
na našem portalu dostopnih podatkov
01:37
and it's pretty awesome.
35
97591
1764
in to je precej neverjetno.
01:39
So you go and look at data like this,
36
99355
1968
Greste in takole pogledate podatke
01:41
and instead of just counting the number of cabs,
37
101323
2289
in namesto da bi samo šteli število taksijev,
01:43
we can start to ask different questions.
38
103612
1943
lahko vprašate različna vprašanja.
01:45
So I had a question.
39
105555
1200
Imel sem vprašanje.
01:46
When's rush hour in New York City?
40
106755
1701
Kdaj je prometna konica v New Yorku?
01:48
It can be pretty bothersome. When is rush hour exactly?
41
108456
2581
Lahko je neprijetna. Kdaj točno je prometna konica?
01:51
And I thought to myself, these cabs aren't just numbers,
42
111037
2625
In pomislil sem, ti taksiji niso samo številke,
01:53
these are GPS recorders driving around in our city streets
43
113662
2711
so GPS snemalniki, ki se vozijo po naših mestnih cestah
01:56
recording each and every ride they take.
44
116373
1913
in posnamejo vsako vožnjo.
01:58
There's data there, and I looked at that data,
45
118286
2322
Tu so podatki, in pogledal sem jih,
02:00
and I made a plot of the average speed of taxis in New York City throughout the day.
46
120608
3961
in grafično sem prikazal povprečno hitrost taksijev v mestu New York čez dan.
02:04
You can see that from about midnight to around 5:18 in the morning,
47
124569
3412
Lahko vidite, da se od polnoči do okrog 5:18 zjutraj
02:07
speed increases, and at that point, things turn around,
48
127981
3563
hitrost poveča in ta tej točki se stvari obrnejo
02:11
and they get slower and slower and slower until about 8:35 in the morning,
49
131544
3962
in postajajo počasnejše in počasnejše in počasnejše do 8:35 zjutraj,
02:15
when they end up at around 11 and a half miles per hour.
50
135506
2693
ko končajo pri 18 kilometrih in pol na uro.
02:18
The average taxi is going 11 and a half miles per hour on our city streets,
51
138199
3562
Povprečen taksi gre 18 kilometrov in pol na uro po naših cestah
02:21
and it turns out it stays that way
52
141761
1987
in izkaže se, da tako ostane
02:23
for the entire day.
53
143748
3368
ves dan.
02:27
(Laughter)
54
147116
1373
(Smeh)
02:28
So I said to myself, I guess there's no rush hour in New York City.
55
148489
3180
Pa sem si rekel, v mestu New York prometna konica ne traja eno uro.
02:31
There's just a rush day.
56
151669
1537
Traja kar cel dan.
02:33
Makes sense. And this is important for a couple of reasons.
57
153206
2850
To ima smisel. In je pomembno zaradi nekaj razlogov.
02:36
If you're a transportation planner, this might be pretty interesting to know.
58
156056
3637
Če si načrtovalec prevoza, je to zanimiv podatek.
02:39
But if you want to get somewhere quickly,
59
159693
1975
A če bi rad nekam prišel hitro,
02:41
you now know to set your alarm for 4:45 in the morning and you're all set.
60
161668
3468
veš, da moraš nastaviti alarm za 4:45 zjutraj in si pripravljen.
02:45
New York, right?
61
165136
1044
New York, kajne?
02:46
But there's a story behind this data.
62
166180
1762
A za temi podatki je zgodba.
02:47
This data wasn't just available, it turns out.
63
167942
2185
Ti podatki, se izkaže, niso bili kar na voljo.
02:50
It actually came from something called a Freedom of Information Law Request,
64
170127
3619
Prišli so iz obrazca po zakonu o javnih informacijah,
02:53
or a FOIL Request.
65
173746
1076
oziroma FOIL.
02:54
This is a form you can find on the Taxi and Limousine Commission website.
66
174822
3466
Na strani Komisije za taksije in limuzine lahko najdete obrazec.
02:58
In order to access this data, you need to go get this form,
67
178288
2826
Da bi lahko dostopali do teh informacij,
03:01
fill it out, and they will notify you,
68
181114
1846
morate izpolniti obrazec in obvestili vas bodo
03:02
and a guy named Chris Whong did exactly that.
69
182960
2130
in možakar Chris Whong je naredil točno to.
03:05
Chris went down, and they told him,
70
185090
1890
Chris je šel tja in povedali so mu:
03:06
"Just bring a brand new hard drive down to our office,
71
186980
2827
"Prinesi nov trdi disk v našo pisarno,
03:09
leave it here for five hours, we'll copy the data and you take it back."
72
189807
3424
pusti ga tu 5 ur, prekopirali bomo podatke in ti ga vzameš nazaj."
03:13
And that's where this data came from.
73
193231
2032
Od tu so prišli ti podatki.
03:15
Now, Chris is the kind of guy who wants to make the data public,
74
195263
3005
Chris je take vrste tip, ki bi rad te podatke naredil javne,
03:18
and so it ended up online for all to use, and that's where this graph came from.
75
198268
3784
zato so končali na spletu. Odtod tale graf.
03:22
And the fact that it exists is amazing. These GPS recorders -- really cool.
76
202052
3518
Dejstvo, da to obstaja, je neverjetno. Ti GPS snemalniki--res so kul.
03:25
But the fact that we have citizens walking around with hard drives
77
205570
3118
A dejstvo, da meščani s trdimi diski hodijo okrog agencij
03:28
picking up data from city agencies to make it public --
78
208688
2582
in dobivajo podatke, da bi jih objavili--
03:31
it was already kind of public, you could get to it,
79
211270
2390
bili so že delno javni, dostopni,
03:33
but it was "public," it wasn't public.
80
213660
1812
a bili so "javni", ne pa javni.
03:35
And we can do better than that as a city.
81
215472
1962
Veliko bolje lahko to naredimo kot mesto.
03:37
We don't need our citizens walking around with hard drives.
82
217434
2756
Ni treba, da naši meščani hodijo naokrog z diski.
03:40
Now, not every dataset is behind a FOIL Request.
83
220190
2337
Ni vsak set podatkov posledica obrazca FOIL.
03:42
Here is a map I made with the most dangerous intersections in New York City
84
222527
3802
Tu je zemljevid, ki sem ga naredil, z najbolj nevarnimi križišči v New Yorku,
03:46
based on cyclist accidents.
85
226329
1878
glede na kolesarske nesreče.
03:48
So the red areas are more dangerous.
86
228207
1939
Rdeča področja so bolj nevarna.
03:50
And what it shows is first the East side of Manhattan,
87
230146
2553
Prvo pokaže vzhodni del Manhattna,
03:52
especially in the lower area of Manhattan, has more cyclist accidents.
88
232699
3611
še posebej nižji predel Manhattna, ima več kolesarskih nesreč.
03:56
That might make sense
89
236310
1019
To ima morda smisel,
03:57
because there are more cyclists coming off the bridges there.
90
237329
2896
ker tu pride več kolesarjev z mostov.
04:00
But there's other hotspots worth studying.
91
240225
2014
A tudi druge vroče točke velja preučiti.
04:02
There's Williamsburg. There's Roosevelt Avenue in Queens.
92
242239
2669
Tu je Williamsburg. Pa Rooseveltova Avenija v Queensu.
04:04
And this is exactly the kind of data we need for Vision Zero.
93
244908
2852
Točno take podatke potrebujemo za Vizijo nič.
04:07
This is exactly what we're looking for.
94
247760
1990
Točno to iščemo.
04:09
But there's a story behind this data as well.
95
249750
2135
A tudi za temi podatki stoji zgodba.
04:11
This data didn't just appear.
96
251885
2067
Ti podatki se niso kar pojavili.
04:13
How many of you guys know this logo?
97
253952
2391
Koliko vas pozna tale logo?
04:16
Yeah, I see some shakes.
98
256343
1352
Ja, vidim nekaj kimanja.
04:17
Have you ever tried to copy and paste data out of a PDF
99
257695
2655
Ste kdaj poskušali kopirati podatke iz PDF formata
04:20
and make sense of it?
100
260350
1357
in jih nato urediti?
04:21
I see more shakes.
101
261707
1060
Še več kimanja.
04:22
More of you tried copying and pasting than knew the logo. I like that.
102
262767
3345
Več vas je kopiralo, kot pa vas je poznalo logo. To mi je všeč.
04:26
So what happened is, the data that you just saw was actually on a PDF.
103
266112
3510
Zgodilo se je, da so bili ti podatki pravzaprav v PDF formatu.
04:29
In fact, hundreds and hundreds and hundreds of pages of PDF
104
269622
3105
Pravzaprav na stotine in stotine strani PDF,
04:32
put out by our very own NYPD,
105
272727
2159
ki jih je izdala naša NYPD,
04:34
and in order to access it, you would either have to copy and paste
106
274886
3152
in da bi prišli do njih, bi morali kopirati in lepiti
04:38
for hundreds and hundreds of hours,
107
278038
1726
na stotine in stotine ur,
04:39
or you could be John Krauss.
108
279764
1344
ali pa bi bili John Krauss.
04:41
John Krauss was like,
109
281108
1043
John Krauss je menil,
04:42
I'm not going to copy and paste this data. I'm going to write a program.
110
282151
3413
ne bom kopiral in lepil teh podatkov. Program bom napisal.
04:45
It's called the NYPD Crash Data Band-Aid,
111
285564
2288
Imenuje se NYPD obliž za zlomljene podatke
04:47
and it goes to the NYPD's website and it would download PDFs.
112
287852
3032
in gre na stran NYPD in naloži PDF-je.
04:50
Every day it would search; if it found a PDF, it would download it
113
290884
3126
Vsak dan išče; če bi našel PDF, bi ga naložil
04:54
and then it would run some PDF-scraping program,
114
294010
2250
in potem bi zagnal nek PDF pretvornik
04:56
and out would come the text,
115
296260
1336
in ven bi prišlo besedilo
04:57
and it would go on the Internet, and then people could make maps like that.
116
297596
3565
in potem bi ga dal na internet, da bi lahko ljudje delali take zemljevide.
05:01
And the fact that the data's here, the fact that we have access to it --
117
301161
3429
Dejstvo, da so ti podatki tu, dejstvo, da imamo do njih dostop--
05:04
Every accident, by the way, is a row in this table.
118
304590
2450
Vsaka nesreča, mimogrede, je ena vrstica.
05:07
You can imagine how many PDFs that is.
119
307040
1836
Predstavljajte si količino PDF-jev.
05:08
The fact that we have access to that is great,
120
308876
2207
Dejstvo, da imamo do tega dostop, je super,
05:11
but let's not release it in PDF form,
121
311083
2110
a ne izdajmo jih v PDF obliki,
05:13
because then we're having our citizens write PDF scrapers.
122
313193
2739
ker morajo potem naši meščani napisati PDF pretvornike.
05:15
It's not the best use of our citizens' time,
123
315932
2076
To ni najboljša raba časa naših meščanov,
05:18
and we as a city can do better than that.
124
318008
2004
in mi kot mesto lahko to storimo bolje.
05:20
Now, the good news is that the de Blasio administration
125
320012
2736
Dobra novica je, da je administracija župana De Blasia
05:22
actually recently released this data a few months ago,
126
322748
2532
pravzaprav izdala podatke pred nekaj meseci,
05:25
and so now we can actually have access to it,
127
325280
2158
tako da imamo sedaj dostop do njih,
05:27
but there's a lot of data still entombed in PDF.
128
327438
2536
a še vedno je veliko podatkov v formatu PDF.
05:29
For example, our crime data is still only available in PDF.
129
329974
3197
Na primer, podatki o kriminalu so še vedno dostopni samo v PDF.
05:33
And not just our crime data, our own city budget.
130
333171
3755
Ne samo podatki o kriminalu, proračun našega mesta.
05:36
Our city budget is only readable right now in PDF form.
131
336926
3729
Proračun našega mesta lahko preberete samo v PDF obliki.
05:40
And it's not just us that can't analyze it --
132
340655
2141
Nismo edini, ki ga ne moremo analizirati--
05:42
our own legislators who vote for the budget
133
342796
2955
naši zakonodajalci, ki glasujejo o proračunu,
05:45
also only get it in PDF.
134
345751
1943
ga dobijo samo v PDF obliki.
05:47
So our legislators cannot analyze the budget that they are voting for.
135
347694
3844
Tako zakonodajalec ne more analizirati proračuna, o katerem glasuje.
05:51
And I think as a city we can do a little better than that as well.
136
351538
3608
Mislim, da bi kot mesto lahko izvedli tudi to malo bolje.
05:55
Now, there's a lot of data that's not hidden in PDFs.
137
355146
2488
Veliko je podatkov, ki niso skriti v PDF-jih.
05:57
This is an example of a map I made,
138
357634
1700
To je primer zemljevida
05:59
and this is the dirtiest waterways in New York City.
139
359334
2926
in na njem so najbolj umazane vodne poti v New Yorku.
06:02
Now, how do I measure dirty?
140
362260
1509
Kako merimo umazanost?
06:03
Well, it's kind of a little weird,
141
363769
1857
No, malo je čudno,
06:05
but I looked at the level of fecal coliform,
142
365626
2113
a pogledal sem raven fekalne bakterije,
06:07
which is a measurement of fecal matter in each of our waterways.
143
367739
3506
s čimer merimo fekalije v vsaki vodni poti.
06:11
The larger the circle, the dirtier the water,
144
371245
3274
Večji ko je krog, bolj umazana je voda,
06:14
so the large circles are dirty water, the small circles are cleaner.
145
374519
3357
tako so veliki krogi umazana voda, manjši krogi so čistejši.
06:17
What you see is inland waterways.
146
377876
1644
To so kopenske vodne poti.
06:19
This is all data that was sampled by the city over the last five years.
147
379520
3404
To so vsi podatki, ki bili pridobljeni v mestu v zadnjih petih letih.
06:22
And inland waterways are, in general, dirtier.
148
382924
2694
Kopenske vodne poti so v večini bolj umazane.
06:25
That makes sense, right?
149
385618
1218
To je logično, kajne?
06:26
And the bigger circles are dirty. And I learned a few things from this.
150
386836
3374
Večji krogi so bolj umazani. Iz tega sem se naučil nekaj stvari.
06:30
Number one: Never swim in anything that ends in "creek" or "canal."
151
390210
3164
Prvič: Nikoli ne plavaj v nečem kar se konča s "potok" ali "kanal".
06:33
But number two: I also found the dirtiest waterway in New York City,
152
393374
4318
Drugič: prav tako sem našel najbolj umazano vodno pot v New Yorku
06:37
by this measure, one measure.
153
397692
1834
s to meritvijo, eno meritvijo.
06:39
In Coney Island Creek, which is not the Coney Island you swim in, luckily.
154
399526
3648
V potoku Coney Island, na srečo ne tistem, v katerem plavate.
06:43
It's on the other side.
155
403174
1158
Je na drugi strani.
06:44
But Coney Island Creek, 94 percent of samples taken over the last five years
156
404332
3878
V potoku Coney Island ima 94 % vzorcev, vzetih v zadnjih petih letih,
06:48
have had fecal levels so high
157
408210
2157
tako visoko raven fekalij,
06:50
that it would be against state law to swim in the water.
158
410367
3093
da bi bilo protizakonito plavati v tej vodi.
06:53
And this is not the kind of fact that you're going to see
159
413460
2729
In to ni ravno dejstvo, s katerim bi se hvalili
06:56
boasted in a city report, right?
160
416189
1537
v mestnem poročilu, kajne?
06:57
It's not going to be the front page on nyc.gov.
161
417726
2250
Ne bo na prvi strani nyc.gov.
06:59
You're not going to see it there,
162
419976
1580
Tam ga ne boste videli,
07:01
but the fact that we can get to that data is awesome.
163
421556
2518
a dejstvo, da lahko dobimo te podatke, je neverjetno.
07:04
But once again, it wasn't super easy,
164
424074
1773
A še enkrat, ni bilo zelo lahko,
07:05
because this data was not on the open data portal.
165
425847
2358
ker ti podatki niso bili na prostem portalu.
07:08
If you were to go to the open data portal,
166
428205
2013
Če bi odprli prost portal podatkov,
07:10
you'd see just a snippet of it, a year or a few months.
167
430218
2613
bi videli samo delček, leto ali pa nekaj mesecev.
07:12
It was actually on the Department of Environmental Protection's website.
168
432831
3390
Bilo je na strani Oddelka za okolje.
07:16
And each one of these links is an Excel sheet, and each Excel sheet is different.
169
436221
3878
Vsaka izmed teh povezav je Excelova tabela in vsaka je drugačna.
07:20
Every heading is different: you copy, paste, reorganize.
170
440099
2630
Vsak vrh strani je drugačen: kopiraš, lepiš, preurejaš.
07:22
When you do you can make maps and that's great, but once again,
171
442729
2952
Nato lahko ustvariš zemljevid, kar je super, a spet
07:25
we can do better than that as a city, we can normalize things.
172
445681
2969
bi lahko kot mesto bolje storili, lahko bi standardizirali stvari.
07:28
And we're getting there, because there's this website that Socrata makes
173
448650
3384
Kmalu bomo tam, ker je tu stran, ki jo izdeluje Socrata,
07:32
called the Open Data Portal NYC.
174
452034
1541
imenovana Portal prostih podatkov NYC.
07:33
This is where 1,100 data sets that don't suffer
175
453575
2257
Tu je 1100 setov podatkov, ki ne trpijo
07:35
from the things I just told you live,
176
455832
1781
za omenjenimi slabostmi,
07:37
and that number is growing, and that's great.
177
457613
2148
in ta številka raste, kar je enkratno.
07:39
You can download data in any format, be it CSV or PDF or Excel document.
178
459761
3412
Lahko si naložite podatke v kateremkoli formatu, naj bo CSV ali PDF ali Excel.
07:43
Whatever you want, you can download the data that way.
179
463173
2547
Karkoli želite, lahko si jih naložite na tak način.
07:45
The problem is, once you do,
180
465720
1352
Težava je, da ko to storite,
07:47
you will find that each agency codes their addresses differently.
181
467072
3686
boste videli, da vsaka agencija kodira svoj naslov drugače.
07:50
So one is street name, intersection street,
182
470758
2141
Eno je ime ulice, ime križišča,
07:52
street, borough, address, building, building address.
183
472899
2491
cesta, mestni okraj, naslov, stavba, naslov stavbe.
07:55
So once again, you're spending time, even when we have this portal,
184
475390
3180
Tako da spet zapravljaš čas kljub portalu,
07:58
you're spending time normalizing our address fields.
185
478570
2606
zapravljaš čas z urejanjem polj z naslovi.
08:01
And that's not the best use of our citizens' time.
186
481176
2423
To ni najboljša raba časa naših državljanov.
08:03
We can do better than that as a city.
187
483599
1796
Kot mesto lahko to naredimo bolje.
08:05
We can standardize our addresses,
188
485395
1645
Lahko standardiziramo naše naslove
08:07
and if we do, we can get more maps like this.
189
487040
2185
in če jih bomo, dobimo več takih zemljevidov.
08:09
This is a map of fire hydrants in New York City,
190
489225
2285
To je zemljevid gasilskih hidrantov v New Yorku,
08:11
but not just any fire hydrants.
191
491510
1531
a ne katerihkoli.
08:13
These are the top 250 grossing fire hydrants in terms of parking tickets.
192
493041
4726
To je top 250 gasilskih hidrantov, kar se tiče kazni za parkiranje.
08:17
(Laughter)
193
497767
1986
(Smeh)
08:19
So I learned a few things from this map, and I really like this map.
194
499753
3358
Nekaj stvari sem se naučil iz tega zemljevida in zelo mi je všeč.
08:23
Number one, just don't park on the Upper East Side.
195
503111
2402
Prvič, ne parkirajte na zgornjem vzhodnem delu.
08:25
Just don't. It doesn't matter where you park, you will get a hydrant ticket.
196
505513
3587
Enostavno ne. Ni važno, kje parkirate, dobili boste kazen zaradi hidranta.
08:29
Number two, I found the two highest grossing hydrants in all of New York City,
197
509100
4153
Drugič, našel sem dva največja zaslužkarja med hidranti v New Yorku,
08:33
and they're on the Lower East Side,
198
513253
1886
sta na nižjem delu vzhodne strani
08:35
and they were bringing in over 55,000 dollars a year in parking tickets.
199
515139
5098
in prinašata več kot 55 000 dolarjev letno v kaznih za parkiranje.
08:40
And that seemed a little strange to me when I noticed it,
200
520237
2738
Zdelo se mi je malo čudno, ko sem to opazil,
08:42
so I did a little digging and it turns out what you had is a hydrant
201
522975
3269
zato sem malo pobrskal in izkaže se, da je tam hidrant
08:46
and then something called a curb extension,
202
526244
1996
nato nekaj, imenovano podaljšek robnika,
08:48
which is like a seven-foot space to walk on,
203
528240
2059
kar je dvometrski prostor za hojo,
08:50
and then a parking spot.
204
530299
1156
in potem parkirno mesto.
08:51
And so these cars came along, and the hydrant --
205
531455
2254
Potem pridejo ti avti, in hidrant--
08:53
"It's all the way over there, I'm fine,"
206
533709
1911
"Saj je tam daleč, v redu je."
08:55
and there was actually a parking spot painted there beautifully for them.
207
535620
3474
Tam je bilo parkirno mesto zanje lepo narisano.
08:59
They would park there, and the NYPD disagreed with this designation
208
539094
3155
Parkirali so tam in NYPD se ni strinjal z njimi
09:02
and would ticket them.
209
542249
1058
in dobili so kazen.
09:03
And it wasn't just me who found a parking ticket.
210
543307
2344
Nisem samo jaz dobil kazni.
09:05
This is the Google Street View car driving by
211
545651
2146
To je Googlov avto Street view,
09:07
finding the same parking ticket.
212
547797
1617
ki je dobil isto kazen.
09:09
So I wrote about this on my blog, on I Quant NY, and the DOT responded,
213
549414
4504
O tem sem pisal na blogu I Quant NY. Urad za transport se je odzval.
09:13
and they said,
214
553918
1020
Dejali so:
09:14
"While the DOT has not received any complaints about this location,
215
554938
3410
Čeprav nismo dobili nobene pritožbe o tej lokaciji,
09:18
we will review the roadway markings and make any appropriate alterations."
216
558348
4542
bomo preverili označbe na cestah in naredili potrebne popravke.
09:22
And I thought to myself, typical government response,
217
562890
2959
Mislil sem si, tipičen vladni odziv,
09:25
all right, moved on with my life.
218
565849
1881
v redu, in nadaljeval z življenjem.
09:27
But then, a few weeks later, something incredible happened.
219
567730
3970
A čez nekaj tednov se je zgodilo nekaj neverjetnega.
09:31
They repainted the spot,
220
571700
2520
To mesto so prebarvali
09:34
and for a second I thought I saw the future of open data,
221
574220
2690
in za sekundo sem videl prihodnost prostih podatkov,
09:36
because think about what happened here.
222
576910
2000
ker pomislite, kaj se je zgodilo tu.
09:38
For five years, this spot was being ticketed, and it was confusing,
223
578910
5100
Pet let so delili kazni na tem mestu in bilo je nejasno,
09:44
and then a citizen found something, they told the city, and within a few weeks
224
584010
4306
potem je meščan našel nekaj, to povedal in čez nekaj tednov
09:48
the problem was fixed.
225
588316
1294
so problem rešili.
09:49
It's amazing. And a lot of people see open data as being a watchdog.
226
589610
3200
Neverjetno je. Veliko ljudi vidi odprte podatke kot psa čuvaja.
09:52
It's not, it's about being a partner.
227
592810
1772
Niso, tu gre za partnerstvo.
09:54
We can empower our citizens to be better partners for government,
228
594582
3138
Lahko damo moč državljanom, da bodo boljši partnerji vladi,
09:57
and it's not that hard.
229
597720
1881
in to ni tako težko.
09:59
All we need are a few changes.
230
599601
1459
Potrebnih je le malo sprememb.
10:01
If you're FOILing data,
231
601060
1107
Ko "FOILate" podatke
10:02
if you're seeing your data being FOILed over and over again,
232
602167
2867
če vidite da so podatki "FOILani" spet in spet,
10:05
let's release it to the public, that's a sign that it should be made public.
233
605034
3574
jih naredite javne, to je znak, da jih naredite javne.
10:08
And if you're a government agency releasing a PDF,
234
608608
2482
Če ste vladna agencija, ki izda PDF,
10:11
let's pass legislation that requires you to post it with the underlying data,
235
611090
3649
sprejmimo zakon, da ga morate izdati skupaj z osnovnimi podatki,
10:14
because that data is coming from somewhere.
236
614739
2028
ker so ti podatki morali od nekje priti,
10:16
I don't know where, but it's coming from somewhere,
237
616767
2482
ne vem, od kje, a prišli so od nekod,
10:19
and you can release it with the PDF.
238
619249
1725
in to lahko izdate poleg PDF.
10:20
And let's adopt and share some open data standards.
239
620974
2411
Osvojimo in delimo nekaj standardov.
10:23
Let's start with our addresses here in New York City.
240
623385
2481
Začnimo z naslovi v New Yorku.
10:25
Let's just start normalizing our addresses.
241
625866
2074
Začnimo normalizirati naše naslove.
10:27
Because New York is a leader in open data.
242
627940
2062
New York je prvi v prostih podatkih.
10:30
Despite all this, we are absolutely a leader in open data,
243
630002
2789
Kljub vsemu smo absolutni prvaki v prostih podatkih.
10:32
and if we start normalizing things, and set an open data standard,
244
632791
3121
Če začnemo normalizirati stvari in postavimo standarde,
10:35
others will follow. The state will follow, and maybe the federal government,
245
635912
3634
bodo drugi sledili. Država, morda federalna vlada.
10:39
Other countries could follow,
246
639546
1445
Druge države bodo sledile,
10:40
and we're not that far off from a time where you could write one program
247
640991
3411
in nismo daleč od časa, ko bomo lahko napisali program
10:44
and map information from 100 countries.
248
644402
1890
in načrtali informacije 100 držav.
10:46
It's not science fiction. We're actually quite close.
249
646292
2487
Ni znanstvena fantastika. Zelo blizu smo.
10:48
And by the way, who are we empowering with this?
250
648779
2240
Komu smo s tem dali moč?
10:51
Because it's not just John Krauss and it's not just Chris Whong.
251
651019
3005
Ker ni samo John Krauss in ni samo Chris Whong.
10:54
There are hundreds of meetups going on in New York City right now,
252
654024
3095
Na stotine srečanj se dogaja v New Yorku,
10:57
active meetups.
253
657119
1025
aktivnih srečanj.
10:58
There are thousands of people attending these meetups.
254
658144
2572
Na tisoče ljudi se udeležuje teh srečanj.
11:00
These people are going after work and on weekends,
255
660716
2368
Ti ljudje pridejo po službi in ob vikendih
11:03
and they're attending these meetups to look at open data
256
663084
2636
in se udeležujejo srečanj, in gledajo proste podatke
11:05
and make our city a better place.
257
665720
1640
in izboljšali naše mesto.
11:07
Groups like BetaNYC, who just last week released something called citygram.nyc
258
667360
4073
Skupine kot je BetaNYC. Ta je ravno prejšnji teden izdala citygram.nyc.
11:11
that allows you to subscribe to 311 complaints
259
671433
2147
ki vam dovoli, da se naročite na pritožbe 311
11:13
around your own home, or around your office.
260
673580
2068
okrog svojega doma ali okoli svoje pisarne.
11:15
You put in your address, you get local complaints.
261
675648
2427
Vpišeš svoj naslov in dobiš lokalne pritožbe.
11:18
And it's not just the tech community that are after these things.
262
678075
3374
In ni samo tehnološka skupnost navdušena nad tem.
11:21
It's urban planners like the students I teach at Pratt.
263
681449
2622
Krajinski arhitekti, kot tisti, ki jih učim na Prattu.
11:24
It's policy advocates, it's everyone,
264
684071
1919
Podporniki zakonov, vsi.
11:25
it's citizens from a diverse set of backgrounds.
265
685990
2563
Meščani iz različnih okolij.
11:28
And with some small, incremental changes,
266
688553
2786
In z nekaj majhnimi, postopnimi spremembami
11:31
we can unlock the passion and the ability of our citizens
267
691339
3225
lahko odklenemo strast in sposobnost naših državljanov,
11:34
to harness open data and make our city even better,
268
694564
3156
da izkoristimo proste podatke, da izboljšamo naše mesto,
11:37
whether it's one dataset, or one parking spot at a time.
269
697720
3626
naj gre za en set podatkov ali eno parkirno mesto naenkrat.
11:41
Thank you.
270
701346
2322
Hvala.
11:43
(Applause)
271
703668
3305
(Aplavz)
O tej spletni strani

Na tem mestu boste našli videoposnetke na YouTubu, ki so uporabni za učenje angleščine. Ogledali si boste lekcije angleščine, ki jih poučujejo vrhunski učitelji z vsega sveta. Z dvoklikom na angleške podnapise, ki so prikazani na vsaki strani z videoposnetki, lahko predvajate videoposnetek od tam. Podnapisi se pomikajo sinhronizirano s predvajanjem videoposnetka. Če imate kakršne koli pripombe ali zahteve, nam pišite prek tega obrazca za stike.

https://forms.gle/WvT1wiN1qDtmnspy7