Ken Goldberg: 4 lessons from robots about being human

14,436 views ใƒป 2015-07-15

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

00:00
Translator: Morton Bast Reviewer: Thu-Huong Ha
0
0
7000
๋ฒˆ์—ญ: Surie Lee ๊ฒ€ํ† : Taejoon Roh
00:12
I know this is going to sound strange,
1
12539
2819
์•„๋งˆ ์กฐ๊ธˆ ์ด์ƒํ•˜๊ฒŒ ๋“ค๋ฆด์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
00:15
but I think robots can inspire us to be better humans.
2
15382
4983
ํ•˜์ง€๋งŒ ๋กœ๋ด‡์ด ๋ถ„๋ช… ์šฐ๋ฆฌ๋ฅผ ๋ณด๋‹ค ๋‚˜์€ ์ธ๊ฐ„์ด ๋˜๋„๋ก
๊ณ ๋ฌด์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
์ €๋Š” ํŽœ์‹ค๋ฒ ๋‹ˆ์•„ ์ฃผ์˜ ๋ฒ ๋“ค๋ ˆํ—ด์—์„œ ์ž๋ž์–ด์š”.
00:21
See, I grew up in Bethlehem, Pennsylvania,
3
21245
3094
00:24
the home of Bethlehem Steel.
4
24363
1938
"๋ฒ ๋“ค๋ ˆํ—ด ์Šคํ‹ธ"์‚ฌ์˜ ๋ณธ์‚ฌ๊ฐ€ ์žˆ๋Š” ๊ณณ์ด์ง€์š”.
00:26
My father was an engineer,
5
26991
2112
์ €ํฌ ์•„๋ฒ„์ง€๋Š” ์—”์ง€๋‹ˆ์–ด์˜€๊ณ ,
์ œ๊ฐ€ ์–ด๋ฆด ๋•Œ ์•„๋ฒ„์ง€๊ป˜์„ 
00:29
and when I was growing up, he would teach me how things worked.
6
29127
4319
๊ธฐ๊ณ„๋“ค์ด ์–ด๋–ป๊ฒŒ ์›€์ง์ด๋Š”์ง€๋ฅผ ๊ฐ€๋ฅด์ณ ์ฃผ์…จ์ฃ .
ํ”„๋กœ์ ํŠธ๋ฅผ ๊ฐ™์ด ํ•˜๊ธฐ๋„ ํ–ˆ์–ด์š”.
00:33
We would build projects together,
7
33470
2094
00:35
like model rockets and slot cars.
8
35588
2768
์žฅ๋‚œ๊ฐ ๋กœ์ผ“์ด๋‚˜ ์ž๋™์ฐจ๋ฅผ ๋งŒ๋“ค์—ˆ์ง€์š”.
00:38
Here's the go-kart that we built together.
9
38732
2908
์•„๋ฒ„์ง€์™€ ๊ฐ™์ด ๋งŒ๋“  *๊ณ  ์นดํŠธ* ์ž…๋‹ˆ๋‹ค. (์—ญ์ฃผ : ํŠธ๋ž™ ๊ฒฝ๊ธฐ์šฉ ์†Œํ˜• ์ž๋™์ฐจ)
์šด์ „๋Œ€๋ฅผ ์žก๊ณ  ์žˆ๋Š” ์‚ฌ๋žŒ์ด ์ €๊ณ ,
00:42
That's me behind the wheel,
10
42208
1744
00:43
with my sister and my best friend at the time.
11
43976
2224
์ œ ๋ˆ„์ด์™€ ๋‹น์‹œ ์ œ์ผ ์นœํ–ˆ๋˜ ์นœ๊ตฌ๋“ค๊ณผ ํ•จ๊ป˜ ์ฐ์€ ์‚ฌ์ง„์ด์—์š”.
00:47
And one day,
12
47875
1926
ํ•˜๋ฃจ๋Š”, ์ œ๊ฐ€ 10์‚ด์ฏค ๋˜์—ˆ์„ ๋•Œ
00:49
he came home, when I was about 10 years old,
13
49825
3083
์•„๋ฒ„์ง€๊ป˜์„œ ์ง‘์— ์˜ค์…”์„œ๋Š”
00:52
and at the dinner table, he announced
14
52932
2626
์ €๋… ์‹์‚ฌ ์ž๋ฆฌ์—์„œ
00:55
that for our next project, we were going to build ...
15
55582
3712
๋‹ค์Œ ๊ณ„ํš์— ๋Œ€ํ•ด ์–˜๊ธฐํ•ด ์ฃผ์…จ์–ด์š”. ๋กœ๋ด‡์„ ๋งŒ๋“ค๊ฑฐ๋ผ๊ณ ์š”.
00:59
a robot.
16
59318
1150
01:01
A robot.
17
61604
1155
๋กœ๋ด‡ ๋ง์ด์ฃ .
์ €๋Š” ๊ทธ ๋•Œ ํฅ๋ถ„ํ–ˆ์–ด์š”.
01:03
Now, I was thrilled about this,
18
63120
2063
01:05
because at school, there was a bully named Kevin,
19
65207
3802
์™œ๋ƒํ•˜๋ฉด ํ•™๊ต์—์„œ
์ผ€๋นˆ์ด๋ผ๋Š” ๋ชป๋œ ๋…€์„์ด ์žˆ์—ˆ๋Š”๋ฐ
๋งจ๋‚  ์ €๋ฅผ ๊ท€์ฐฎ๊ฒŒ ๊ดด๋กญํ˜”์–ด์š”.
01:09
and he was picking on me,
20
69033
1889
01:10
because I was the only Jewish kid in class.
21
70946
2390
์ œ๊ฐ€ ๋ฐ˜์—์„œ ์œ ์ผํ•œ ์œ ๋Œ€์ธ์ด์—ˆ๊ฑฐ๋“ ์š”.
01:13
So I couldn't wait to get started to work on this,
22
73910
2373
๊ทธ๋ž˜์„œ ์ €๋Š” ์ด ์ผ์„ ๋นจ๋ฆฌ ์‹œ์ž‘ํ•˜๊ณ  ์‹ถ์—ˆ์–ด์š”.
01:16
so I could introduce Kevin to my robot.
23
76307
2610
์ผ€๋นˆํ•œํ…Œ ์ œ ๋กœ๋ด‡์„ ๋ณด์—ฌ์ฃผ๊ณ  ์‹ถ์—ˆ๊ฑฐ๋“ ์š” (์›ƒ์Œ)
01:18
(Laughter)
24
78941
1030
01:19
(Robot noises)
25
79995
4243
(๋กœ๋ด‡ ์†Œ์Œ)
01:29
(Laughter)
26
89552
1392
01:30
But that wasn't the kind of robot my dad had in mind.
27
90968
3849
ํ•˜์ง€๋งŒ ์•„๋ฒ„์ง€๊ป˜์„œ ๋งŒ๋“œ์‹œ๋ ค๊ณ  ํ–ˆ๋˜ ๋กœ๋ด‡์€ ์ €๋Ÿฐ๊ฒŒ ์•„๋‹ˆ์—ˆ์–ด์š”.
01:34
(Laughter)
28
94841
1068
01:35
See, he owned a chromium-plating company,
29
95933
3632
์•„๋ฒ„์ง€๊ป˜์„œ๋Š” ํฌ๋กฌ ๋„๊ธˆ ํšŒ์‚ฌ๋ฅผ ์šด์˜ํ•˜๊ณ  ๊ณ„์…จ๋Š”๋ฐ
01:39
and they had to move heavy steel parts between tanks of chemicals.
30
99589
5873
์ž‘์—…์€ ์ฃผ๋กœ
๋ฌด๊ฑฐ์šด ๊ธˆ์† ๋ฌผ์ฒด๋ฅผ ํ™”ํ•™๋ฌผ ํƒฑํฌ์— ๋„ฃ์–ด์•ผ ํ•˜๋Š” ์ผ์ด์—ˆ์ฃ .
๊ทธ๋ž˜์„œ ์•„๋ฒ„์ง€๋Š” ์ด๋Ÿฐ ์‚ฐ์—…์šฉ ๋กœ๋ด‡์ด ํ•„์š”ํ–ˆ๋˜๊ฑฐ์—์š”.
01:45
And so he needed an industrial robot like this,
31
105486
3373
01:48
that could basically do the heavy lifting.
32
108883
2103
๊ธฐ๋ณธ์ ์œผ๋กœ ๋ฌด๊ฑฐ์šด ๋ฌผ์ฒด๋ฅผ ๋“ค๊ธฐ ์œ„ํ•ด์„œ ๋ง์ด์ฃ .
01:51
But my dad didn't get the kind of robot he wanted, either.
33
111684
3591
ํ•˜์ง€๋งŒ ์•„๋ฒ„์ง€๋Š” ์ด๋Ÿฐ ๋กœ๋ด‡๋„ ๊ฐ€์ง€๋ณด์‹œ์ง€ ๋ชปํ–ˆ์ฃ .
01:55
He and I worked on it for several years,
34
115870
2430
์—ฌ๋Ÿฌ ํ•ด ๋™์•ˆ ์•„๋ฒ„์ง€์™€ ์ €๋Š” ์ด ์ผ์— ๋ชฐ๋‘ํ–ˆ์Šต๋‹ˆ๋‹ค.
01:58
but it was the 1970s, and the technology that was available to amateurs
35
118324
4745
ํ•˜์ง€๋งŒ 1970๋…„๋Œ€์—
์šฐ๋ฆฌ ๊ฐ™์€ ์•„๋งˆ์ถ”์–ด๋“ค์ด ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๊ธฐ์ˆ ์ด๋ž€
๋ณด์ž˜ ๊ฒƒ ์—†์—ˆ์ง€์š”.
02:03
just wasn't there yet.
36
123093
1326
02:05
So Dad continued to do this kind of work by hand.
37
125992
2785
๊ทธ๋ž˜์„œ ์•„๋ฒ„์ง€๊ป˜์„  ๊ณ„์† ํ™”ํ•™๋ฌผ ์ž‘์—…์„ ์ˆ˜์ž‘์—…์œผ๋กœ ํ•  ์ˆ˜ ๋ฐ–์— ์—†์—ˆ๊ณ ,
02:09
And a few years later,
38
129595
1428
๋ช‡ ๋…„์ด ์ง€๋‚˜
02:11
he was diagnosed with cancer.
39
131730
1576
์•” ์„ ๊ณ ๋ฅผ ๋ฐ›๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
02:15
You see,
40
135822
1570
์•„์‹œ๊ฒ ๋‚˜์š”? ์šฐ๋ฆฌ๊ฐ€ ๋งŒ๋“ค๋ ค๊ณ  ํ–ˆ๋˜ ๋กœ๋ด‡์€
02:17
what the robot we were trying to build was telling him
41
137416
2596
๋‹จ์ง€ ๋ฌด๊ฑฐ์šด ๋ฌผ์ฒด๋ฅผ ๊ฒƒ์„ ๋“œ๋Š” ๊ฒƒ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ
02:20
was not about doing the heavy lifting.
42
140036
2156
02:22
It was a warning
43
142216
1151
๋…๊ทน ํ™”ํ•™๋ฌผ์— ๋…ธ์ถœ๋˜๋Š” ๊ฒƒ์„ ํ”ผํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์ด์—ˆ์–ด์š”.
02:23
about his exposure to the toxic chemicals.
44
143391
2504
์•„๋ฒ„์ง€๊ป˜์„œ ๊ทธ ๋•Œ๋Š” ๊ทธ ๊ฒƒ์„ ๋ชจ๋ฅด์…จ์ง€์š”.
02:27
He didn't recognize that at the time,
45
147184
2293
02:29
and he contracted leukemia.
46
149501
1686
๊ฒฐ๊ตญ ๋ฐฑํ˜ˆ๋ณ‘์œผ๋กœ
02:31
And he died at the age of 45.
47
151827
1892
45์„ธ์— ๋Œ์•„๊ฐ€์…จ์Šต๋‹ˆ๋‹ค.
๊ทธ ์ผ๋กœ ์ €๋Š” ์ ˆ๋ง์— ๋น ์กŒ์–ด์š”.
02:35
I was devastated by this.
48
155354
1776
02:37
And I never forgot the robot that he and I tried to build.
49
157703
2762
์•„๋ฒ„์ง€์™€ ์ œ๊ฐ€ ๋งŒ๋“ค๋ ค๊ณ  ํ–ˆ๋˜ ๋กœ๋ด‡์„ ๊ฒฐ์ฝ” ์žŠ์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค.
02:42
When I was at college, I decided to study engineering, like him.
50
162195
3553
๋Œ€ํ•™์— ์ง„ํ•™ํ•˜๊ฒŒ ๋˜์ž, ์ €๋Š” ์•„๋ฒ„์ง€์ฒ˜๋Ÿผ ๊ธฐ๊ณ„๊ณตํ•™์„ ์ „๊ณตํ•˜๊ธฐ๋กœ ๊ฒฐ์‹ฌํ–ˆ์–ด์š”.
๊ทธ๋ฆฌ๊ณ ๋‚˜์„œ ์นด๋„ค๊ธฐ ๋ฉœ๋ก ๋Œ€์—์„œ ๋กœ๋ด‡ํ•™์œผ๋กœ ๋ฐ•์‚ฌ ํ•™์œ„๋ฅผ ๋ฐ›์•˜์Šต๋‹ˆ๋‹ค.
02:47
And I went to Carnegie Mellon, and I earned my PhD in robotics.
51
167081
4548
02:51
I've been studying robots ever since.
52
171653
1909
๊ทธ ๋•Œ๋ถ€ํ„ฐ ๋กœ๋ด‡์„ ์ญ‰ ์—ฐ๊ตฌํ•ด์˜ค๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
02:54
So what I'd like to tell you about are four robot projects,
53
174721
4595
์ œ๊ฐ€ ์—ฌ๋Ÿฌ๋ถ„๊ป˜ ๋ง์”€๋“œ๋ฆฌ๊ณ  ์‹ถ์€ ๊ฒƒ์€
๋„ค ๊ฐ€์ง€์˜ ๋กœ๋ด‡ ํ”„๋กœ์ ํŠธ์— ๋Œ€ํ•œ ๋‚ด์šฉ์ด์ž
์–ด๋–ป๊ฒŒ ๋กœ๋ด‡์ด ์ œ๊ฐ€ ๋” ๋‚˜์€ ์‚ฌ๋žŒ์ด ๋˜๋„๋ก ์ผ๊นจ์›Œ ์ฃผ์—ˆ๋Š”์ง€์— ๋Œ€ํ•ด์„œ ์ž…๋‹ˆ๋‹ค.
02:59
and how they've inspired me to be a better human.
54
179340
3049
03:06
By 1993, I was a young professor at USC,
55
186206
5614
1993๋…„๋ถ€ํ„ฐ ์ €๋Š” USC์˜ ์ Š์€ ๊ต์ˆ˜์˜€์ง€์š”. (์—ญ์ฃผ : ๋‚จ๊ฐ€์ฃผ๋Œ€ํ•™ Univ. of Southern California)
03:11
and I was just building up my own robotics lab,
56
191844
2818
์ œ๊ฐ€ ์ด๋„๋Š” ๋กœ๋ด‡ ์—ฐ๊ตฌ์‹ค์„ ๋งŒ๋“ค์–ด๊ฐ€๊ณ  ์žˆ์—ˆ๊ณ ,
03:14
and this was the year the World Wide Web came out.
57
194686
3221
์ธํ„ฐ๋„ท ์›น ์„œ๋น„์Šค๊ฐ€ ์‹œ์ž‘๋œ ํ•ด์˜€์Šต๋‹ˆ๋‹ค.
03:18
And I remember my students were the ones who told me about it,
58
198487
2985
์ œ ํ•™์ƒ ์ค‘ ํ•œ๋ช…์ด ์ธํ„ฐ๋„ท์— ๋Œ€ํ•ด
์•Œ๋ ค์ฃผ์—ˆ์—ˆ๋˜ ์ผ์„ ๊ธฐ์–ตํ•ฉ๋‹ˆ๋‹ค.
03:21
and we would -- we were just amazed.
59
201496
2317
๋งค์šฐ ๋†€๋ผ์› ์ง€์š”.
03:23
We started playing with this, and that afternoon,
60
203837
3383
์šฐ๋ฆฌ๋Š” ์ธํ„ฐ๋„ท์„ ๊ฐ€์ง€๊ณ  ๋†€๊ธฐ ์‹œ์ž‘ํ–ˆ์–ด์š”. ๊ทธ๋ฆฌ๊ณ  ๊ทธ๋‚  ์˜คํ›„ ์šฐ๋ฆฌ๋Š” ์ด ๊ฒƒ์„ ๊ฐ€์ง€๊ณ 
03:27
we realized that we could use this new, universal interface
61
207244
4278
์ƒˆ๋กœ์šด ์„ธ๊ณ„์  ์ธํ„ฐํŽ˜์ด์Šค๋กœ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๊นจ๋‹ฌ์•˜์–ด์š”.
03:31
to allow anyone in the world to operate the robot in our lab.
62
211546
4428
์„ธ๊ณ„ ์–ด๋Š ๊ณณ์— ์žˆ๋Š” ๋ˆ„๊ตฌ๋ผ๋„
์šฐ๋ฆฌ ์—ฐ๊ตฌ์‹ค์— ์žˆ๋Š” ๋กœ๋ด‡์„ ์›€์ง์ผ ์ˆ˜ ์žˆ๋„๋ก ๋ง์ด์ฃ .
์šฐ๋ฆฌ๋Š” ๊ตฐ์šฉ์ด๋‚˜ ์‚ฐ์—…์šฉ ๋กœ๋ด‡๋ณด๋‹ค
03:37
So, rather than have it fight or do industrial work,
63
217339
4042
03:42
we decided to build a planter,
64
222413
2530
์‹๋ฌผ์„ ํ‚ค์šฐ๋Š” ๋กœ๋ด‡์„ ๋งŒ๋“ค๊ธฐ๋กœ ํ–ˆ์–ด์š”.
03:44
put the robot into the center of it,
65
224967
1951
์šฐ๋ฆฌ๊ฐ€ *"์›๊ฒฉ ์ •์›"*์ด๋ผ ์ด๋ฆ„ ๋ถ™์ธ (์—ญ์ฃผ : telegarden = tele- + garden)
03:46
and we called it the Telegarden.
66
226942
1678
์ •์› ๊ฐ€์šด๋ฐ์— ๋กœ๋ด‡์„ ๋†“๊ณ 
03:49
And we had put a camera in the gripper of the hand of the robot,
67
229736
4517
์นด๋ฉ”๋ผ๋ฅผ ๋กœ๋ด‡์˜ ์†์— ๋‹ฌ์•„
ํŠน๋ณ„ํ•œ ๋ช…๋ น๋ฌธ์„ ๋งŒ๋“ค์–ด์„œ
03:54
and we wrote some special scripts and software,
68
234277
2931
์ „์„ธ๊ณ„์˜ ๋ˆ„๊ตฌ๋‚˜ ๋งˆ์šฐ์Šค๋ฅผ ํด๋ฆญํ•ด์„œ
03:57
so that anyone in the world could come in,
69
237232
2034
๋กœ๋ด‡์˜ ํŒ”์„ ์›€์ง์ด๊ณ 
03:59
and by clicking on the screen,
70
239290
1784
04:01
they could move the robot around and visit the garden.
71
241098
3621
ํ™”๋ฉด์„ ํ†ตํ•ด์„œ
์ •์›์„ ๋ณผ ์ˆ˜ ์žˆ๋„๋ก ํ–ˆ์Šต๋‹ˆ๋‹ค.
04:05
But we also set up some other software
72
245416
3851
์šฐ๋ฆฌ๋Š” ์†Œํ”„ํŠธ์›จ์–ด๋ฅผ ์ถ”๊ฐ€ํ•ด์„œ
04:09
that lets you participate and help us water the garden, remotely.
73
249291
3916
์›๊ฒฉ์œผ๋กœ ์ •์›์— ๋ฌผ์„ ์ค„ ์ˆ˜ ์žˆ๊ฒŒ ํ–ˆ๊ณ ,
์ •์›์— ๋ฌผ์„ ๋ช‡ ๋ฒˆ ์ด์ƒ ์ฃผ๋ฉด
04:13
And if you watered it a few times,
74
253643
2289
04:15
we'd give you your own seed to plant.
75
255956
2275
์ž์‹ ์ด ์‹ฌ์šธ ์ˆ˜ ์žˆ๋„๋ก ์”จ์•—์„ ์ฃผ์—ˆ์–ด์š”.
04:19
Now, this was an engineering project,
76
259167
3476
์ด๊ฒƒ์€ ๊ณตํ•™์  ํ”„๋กœ์ ํŠธ์˜€๊ณ ,
04:22
and we published some papers on the system design of it,
77
262667
4112
์‹œ์Šคํ…œ ๋””์ž์ธ์— ๊ด€ํ•œ ๋…ผ๋ฌธ์„ ๋ฐœํ‘œํ–ˆ์–ด์š”.
๊ทธ๋Ÿฌ๋‚˜ ์šฐ๋ฆฌ๋Š” ํ•œํŽธ์œผ๋กœ
04:26
but we also thought of it as an art installation.
78
266803
2645
์ด๊ฒƒ์„ ์˜ˆ์ˆ  ์ž‘ํ’ˆ์ด๋ผ๊ณ  ์ƒ๊ฐํ–ˆ์Šต๋‹ˆ๋‹ค.
04:30
It was invited, after the first year,
79
270638
2149
5๋…„ ํ›„์— ์ด ์ •์› ํ”„๋กœ์ ํŠธ๋Š”
04:32
by the Ars Electronica Museum in Austria,
80
272811
3020
์˜ค์ŠคํŠธ๋ฆฌ์•„์— ์žˆ๋Š” ์•Œ์Šค ์ผ๋ ‰ํŠธ๋กœ๋‹ˆ์นด ๋ฐ•๋ฌผ๊ด€์˜
04:35
to have it installed in their lobby.
81
275855
2822
๋กœ๋น„์— ์„ค์น˜๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
์ด ์ž‘ํ’ˆ์ด 9๋…„ ๋™์•ˆ์— ๊ฑธ์ณ ์ง€๊ธˆ๋„
04:39
And I'm happy to say, it remained online there, 24 hours a day,
82
279558
3987
24์‹œ๊ฐ„ ๋™์•ˆ ์˜จ๋ผ์ธ์œผ๋กœ ์ž‘๋™ํ•œ๋‹ค๋Š” ๊ฒƒ์ด ๊ธฐ์ฉ๋‹ˆ๋‹ค.
04:43
for almost nine years.
83
283569
1831
04:46
That robot was operated by more people
84
286369
3775
์ด ๋กœ๋ด‡์€ ์—ญ์‚ฌ์ƒ ์–ด๋Š ๋กœ๋ด‡๋ณด๋‹ค
04:50
than any other robot in history.
85
290168
1897
๊ฐ€์žฅ ๋งŽ์€ ์‚ฌ๋žŒ์ด ์ž‘๋™์‹œ์ผœ๋ณธ ๋กœ๋ด‡์ž…๋‹ˆ๋‹ค.
04:53
Now, one day,
86
293303
1627
์–ด๋Š ๋‚ 
04:54
I got a call out of the blue from a student,
87
294954
3348
์ €๋Š” ํ•œ ํ•™์ƒ์œผ๋กœ๋ถ€ํ„ฐ
๋œป๋ฐ–์˜ ์ „ํ™”๋ฅผ ๋ฐ›์•˜์Šต๋‹ˆ๋‹ค.
04:59
who asked a very simple but profound question.
88
299211
4158
๊ทธ ํ•™์ƒ์€ ๊ฐ„๋‹จํ•˜์ง€๋งŒ ์‹ฌ์˜คํ•œ ์งˆ๋ฌธ์„ ๋˜์กŒ์Šต๋‹ˆ๋‹ค.
"๋กœ๋ด‡์€ ์‹ค์ œ์ธ๊ฐ€์š”?"
05:04
He said, "Is the robot real?"
89
304361
2826
05:08
Now, everyone else had assumed it was,
90
308599
2286
๋ชจ๋“  ์ด๋“ค์ด ๊ทธ๋ ‡๋‹ค๊ณ  ์ƒ๊ฐํ•˜๊ณ ,
05:10
and we knew it was, because we were working with it.
91
310909
2516
์šฐ๋ฆฌ๊ฐ€ ์‚ฌ์šฉํ•˜๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์‹ค์ œํ•œ๋‹ค๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
05:13
But I knew what he meant,
92
313449
1398
ํ•˜์ง€๋งŒ ์ €๋Š” ๊ทธ๊ฐ€ ๋ฌด์Šจ ์˜๋ฏธ๋กœ ๋ฌผ์—ˆ๋Š”์ง€ ์•Œ์•˜์–ด์š”.
05:14
because it would be possible
93
314871
1442
์™œ๋ƒํ•˜๋ฉด ์ •์›์˜ ๊ฝƒ๋“ค์„ ์ดฌ์˜ํ•˜๊ณ 
05:16
to take a bunch of pictures of flowers in a garden
94
316337
2785
์‚ฌ์ง„๋“ค์„ ์ปดํ“จํ„ฐ ์‹œ์Šคํ…œ์œผ๋กœ
05:19
and then, basically, index them in a computer system,
95
319146
3639
๋ถ„๋ฅ˜ํ•˜๋Š” ๋“ฑ ๊ทธ๊ณณ์— ๋กœ๋ด‡์ด ์—†๋Š”๋ฐ๋„
05:22
such that it would appear that there was a real robot,
96
322809
2627
์žˆ๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ๋Š๊ปด์ง€๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•˜๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
05:25
when there wasn't.
97
325460
1150
05:27
And the more I thought about it,
98
327088
1524
๊ทธ ๋ฌธ์ œ์— ๋Œ€ํ•ด ๋” ๊ณ ๋ฏผํ•ด๋ณด๋‹ˆ,
05:28
I couldn't think of a good answer for how he could tell the difference.
99
328636
3579
์–ด๋–ป๊ฒŒ ์ฐจ์ด๋ฅผ ๊ตฌ๋ณ„ํ•  ์ˆ˜ ์žˆ๋Š”์ง€์— ๋Œ€ํ•œ ์ข‹์€ ๋‹ต์ด ์ƒ๊ฐ๋‚ฌ์Šต๋‹ˆ๋‹ค.
๋งˆ์นจ ๊ทธ ๋•Œ ๋ฒ„ํด๋ฆฌ๋Œ€์—
05:32
This was right about the time that I was offered a position
100
332628
2797
๊ต์ˆ˜์ง์„ ์ œ์•ˆ ๋ฐ›์•˜์Šต๋‹ˆ๋‹ค.
05:35
here at Berkeley.
101
335449
1301
05:36
And when I got here,
102
336774
1645
์ด๊ณณ์— ์™€์„œ ์„ธ๊ณ„์ ์œผ๋กœ ์œ ๋ช…ํ•œ
05:38
I looked up Hubert Dreyfus,
103
338443
2362
05:40
who's a world-renowned professor of philosophy,
104
340829
2927
์ฒ ํ•™์ž์ด์‹  ํ—ˆ๋ฒ„ํŠธ ๋“œ๋ ˆํ“Œ์Šค ๊ต์ˆ˜๋‹˜์„ ์ฐพ์•„๊ฐ€
05:44
And I talked with him about this and he said,
105
344582
2730
์ด ๋ฌธ์ œ๋ฅผ ๋ง์”€๋“œ๋ ธ์„ ๋•Œ, ๊ต์ˆ˜๋‹˜๊ป˜์„œ๋Š”
"๊ฐ€์žฅ ์˜ค๋ž˜๋˜๊ณ  ๊ทผ๋ณธ์ ์ธ ์ฒ ํ•™์˜ ๋ฌธ์ œ ์ค‘ ํ•˜๋‚˜๋กœ
05:47
"This is one of the oldest and most central problems in philosophy.
106
347336
4102
ํšŒ์˜ํŒŒ๋กœ๋ถ€ํ„ฐ ์‹œ์ž‘๋˜์–ด
05:51
It goes back to the Skeptics and up through Descartes.
107
351462
4017
๋ฐ์นด๋ฅดํŠธ์— ์ด๋ฅด๋Š” ์งˆ๋ฌธ์ž…๋‹ˆ๋‹ค.
05:55
It's the issue of epistemology,
108
355503
3182
์ธ์‹๋ก ์˜ ๋ฌธ์ œ๋กœ์„œ
05:58
the study of how do we know that something is true."
109
358709
2868
์–ด๋–ป๊ฒŒ ํ•œ ์‚ฌ๋ฌผ์ด ์‹ค์ œํ•˜๋Š”์ง€ ์•„๋Š”๊ฐ€์— ๋Œ€ํ•œ ํ•™๋ฌธ์ด์ฃ .
06:02
So he and I started working together,
110
362625
2000
๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๋Š” ํ•จ๊ป˜ ์ผํ•˜๊ธฐ ์‹œ์ž‘ํ–ˆ์Šต๋‹ˆ๋‹ค.
06:04
and we coined a new term: "telepistemology,"
111
364649
2871
๊ทธ๋ฆฌ๊ณ  *"์›๊ฒฉ ์ธ์‹๋ก "*์ด๋ผ๋Š” ์šฉ์–ด๋ฅผ ๋งŒ๋“ค๊ณ , (์—ญ์ฃผ : telepistemology = tele- + epistemology)
์›๊ฑฐ๋ฆฌ์— ์žˆ๋Š” ์ง€์‹์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ํ–ˆ์Šต๋‹ˆ๋‹ค.
06:08
the study of knowledge at a distance.
112
368757
2136
06:11
We invited leading artists, engineers and philosophers
113
371303
4491
์œ ๋ช…ํ•œ ์˜ˆ์ˆ ๊ฐ€๋“ค๊ณผ ๊ณตํ•™์ž๋“ค,
์ฒ ํ•™์ž๋“ค์„ ์ดˆ์ฒญํ•˜์—ฌ ์ด ๋ฌธ์ œ์— ๋Œ€ํ•œ ๊ธ€์„ ์“ฐ๊ณ 
06:15
to write essays about this,
114
375818
1319
06:17
and the results are collected in this book from MIT Press.
115
377161
3704
๊ทธ ๊ฒฐ๊ณผ๋ฌผ์„ ํ•œ ๊ถŒ์œผ๋กœ ๋ชจ์•„
MIT ์ถœํŒ์‚ฌ์—์„œ ์ฑ…์œผ๋กœ ํŽด๋ƒˆ์Šต๋‹ˆ๋‹ค.
06:21
So thanks to this student,
116
381959
2096
๋ชจ๋‘๊ฐ€ ์‚ฌ์‹ค์ด๋ผ๊ณ  ์ƒ๊ฐํ•œ ๋ฌธ์ œ์— ๋Œ€ํ•ด
06:24
who questioned what everyone else had assumed to be true,
117
384079
3319
์งˆ๋ฌธํ•ด ์ค€ ํ•™์ƒ ๋•๋ถ„์— ์ด ํ”„๋กœ์ ํŠธ์—์„œ
06:27
this project taught me an important lesson about life,
118
387422
3977
ํ•ญ์ƒ ๊ฐ€์ •์— ์˜๋ฌธ์„ ๊ฐ€์ ธ์•ผ ํ•œ๋‹ค๋Š”
06:31
which is to always question assumptions.
119
391423
2987
์ธ์ƒ์˜ ์ค‘์š”ํ•œ ๊ตํ›ˆ์„ ์–ป์—ˆ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
06:35
Now, the second project I'll tell you about
120
395807
2176
์ž, ์—ฌ๋Ÿฌ๋ถ„๊ป˜ ๋ง์”€๋“œ๋ฆด ๋‘๋ฒˆ์งธ ํ”„๋กœ์ ํŠธ๋Š”
06:38
grew out of the Telegarden.
121
398007
1992
"์›๊ฒฉ ์ •์›"์—์„œ๋ถ€ํ„ฐ ํŒŒ์ƒ๋œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
06:40
As it was operating, my students and I were very interested
122
400023
2821
์ €์™€ ์ œ ํ•™์ƒ๋“ค์€ ์‚ฌ๋žŒ๋“ค์ด
06:42
in how people were interacting with each other,
123
402868
2341
์„œ๋กœ ์–ด๋–ป๊ฒŒ ๋ฐ˜์‘ํ•˜๋Š”์ง€, ๋˜ ์ •์›์—์„œ ๋ฌด์—‡์„ ํ•˜๋Š”์ง€๊ฐ€
06:45
and what they were doing with the garden.
124
405233
2057
๋งค์šฐ ํฅ๋ฏธ๋กœ์› ์Šต๋‹ˆ๋‹ค.
๊ทธ๋ž˜์„œ ๋งŒ์•ฝ ๋กœ๋ด‡์ด ์ •์›์„ ๋– ๋‚˜
06:47
So we started thinking:
125
407314
1151
06:48
what if the robot could leave the garden
126
408489
1968
๋‹ค๋ฅธ ์žฌ๋ฏธ์žˆ๋Š” ํ™˜๊ฒฝ์œผ๋กœ
06:50
and go out into some other interesting environment?
127
410481
2814
์˜ฎ๊ฒจ๊ฐˆ ์ˆ˜ ์žˆ๋‹ค๋ฉด ์–ด๋–จ๊นŒ ์ƒ๊ฐํ•ด๋ดค์Šต๋‹ˆ๋‹ค.
06:53
Like, for example, what if it could go to a dinner party
128
413319
2741
์˜ˆ๋ฅผ ๋“ค์–ด ๋ฐฑ์•…๊ด€์—์„œ ์—ด๋ฆฌ๋Š”
๋งŒ์ฐฌ ๊ฐ™์€ ๊ณณ์— ๊ฐ„๋‹ค๋ฉด ์–ด๋–จ๊นŒ์š”? (์›ƒ์Œ)
06:56
at the White House?
129
416084
1461
06:57
(Laughter)
130
417569
1499
07:00
So, because we were interested more in the system design
131
420401
3569
ํ•˜๋“œ์›จ์–ด๋ณด๋‹ค๋Š” ์‹œ์Šคํ…œ ๋””์ž์ธ๊ณผ ์‚ฌ์šฉ์ž ์ธํ„ฐํŽ˜์ด์Šค์—
07:03
and the user interface than in the hardware,
132
423994
2943
๋” ๋งŽ์€ ํฅ๋ฏธ๋ฅผ ๊ฐ–๊ณ  ์žˆ์—ˆ๊ธฐ ๋•Œ๋ฌธ์—
07:06
we decided that,
133
426961
1151
์‚ฌ๋žŒ์„ ๋Œ€์‹ ํ•ด ํŒŒํ‹ฐ์žฅ์— ๊ฐ€๋Š” ๋กœ๋ด‡์„ ๋งŒ๋“ค๊ธฐ ๋ณด๋‹ค๋Š”
07:08
rather than have a robot replace the human to go to the party,
134
428136
4487
๋กœ๋ด‡์„ ๋Œ€์‹ ํ•œ ์‚ฌ๋žŒ์„
07:12
we'd have a human replace the robot.
135
432647
2230
๊ธฐํšํ•ด ๋ณด๊ธฐ๋กœ ํ–ˆ์Šต๋‹ˆ๋‹ค.
07:15
We called it the Tele-Actor.
136
435679
1460
*"์›๊ฒฉ ๋ฐฐ์šฐ"*(Tele-Actor)๋ผ ์ด๋ฆ„ ๋ถ™์ธ
07:17
We got a human,
137
437978
2008
๋งค์šฐ ์‚ฌ๊ต์ ์ด๊ณ  ํ™œ๋™์ ์ธ
07:20
someone who's very outgoing and gregarious,
138
440010
3108
์‚ฌ๋žŒ์„ ๊ณ ์šฉํ•ด์„œ
07:23
and she was outfitted with a helmet with various equipment,
139
443142
4255
๋‹ค์–‘ํ•œ ์žฅ๋น„์™€ ์นด๋ฉ”๋ผ, ๋งˆ์ดํฌ๊ฐ€ ๋‹ฌ๋ฆฐ ํ—ฌ๋ฉง๊ณผ
๋ฌด์„  ์ธํ„ฐ๋„ท ์—ฐ๊ฒฐ ์žฅ๋น„๊ฐ€ ๋“ 
07:27
cameras and microphones,
140
447421
1284
07:28
and then a backpack with wireless Internet connection.
141
448729
3065
๊ฐ€๋ฐฉ์„ ์ฃผ์—ˆ์Šต๋‹ˆ๋‹ค.
07:32
And the idea was that she could go
142
452882
2144
๊ทธ๋ฆฌ๊ณ  ๋ฉ€๋ฆฌ ๋–จ์–ด์ง„ ํฅ๋ฏธ๋กœ์šด ํ™˜๊ฒฝ์— ๊ฐ€์„œ
07:35
into a remote and interesting environment,
143
455050
2450
์ธํ„ฐ๋„ท์„ ํ†ตํ•ด ์‚ฌ๋žŒ๋“ค์ด
07:37
and then over the Internet,
144
457524
2017
07:39
people could experience what she was experiencing.
145
459565
2592
๊ทธ ์‚ฌ๋žŒ์ด ๊ฒฝํ—˜ํ•˜๋Š” ๊ฒƒ์„ ๊ฒฝํ—˜ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š”๊ฑฐ์ง€์š”.
07:42
So they could see what she was seeing,
146
462736
2971
๊ทธ๋Ÿฌ๋‹ˆ๊นŒ ๊ทธ ์‚ฌ๋žŒ์ด ๋ณด๋Š” ๊ฒƒ์„ ์‚ฌ๋žŒ๋“ค์ด ๋ณผ ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š”๊ฑฐ์ง€์š”.
07:45
but then, more importantly, they could participate,
147
465731
3283
ํ•˜์ง€๋งŒ ๋”์šฑ ์ค‘์š”ํ•œ ๊ฒƒ์€ ์‚ฌ๋žŒ๋“ค์ด
07:49
by interacting with each other and coming up with ideas
148
469038
4750
์„œ๋กœ ๊ต๋ฅ˜ํ•˜๋ฉฐ ์ฐธ์—ฌํ•˜๊ณ 
๋‹ค์Œ์— ๊ทธ๊ฐ€ ๋ฌด์—‡์„ ํ•ด์•ผ ํ•˜๋Š”์ง€,
07:53
about what she should do next and where she should go,
149
473812
3969
์–ด๋””๋กœ ๊ฐ€์•ผ ํ•˜๋Š”์ง€๋ฅผ ์ •ํ•ด์„œ
07:57
and then conveying those to the Tele-Actor.
150
477805
2206
"์›๊ฒฉ ๋ฐฐ์šฐ"์—๊ฒŒ ์ „๋‹ฌํ•ด ์ฃผ๋Š” ๊ฒƒ์ด์—ˆ์Šต๋‹ˆ๋‹ค.
08:01
So we got a chance to take the Tele-Actor
151
481069
2421
์ด "์›๊ฒฉ ๋ฐฐ์šฐ"๋ฅผ ์ƒŒํ”„๋ž€์‹œ์Šค์ฝ”์—์„œ ์—ด๋ฆฌ๋Š”
08:03
to the Webby Awards in San Francisco.
152
483514
2808
์›จ๋น„ ์‹œ์ƒ์‹์— ๋ณด๋‚ผ ์ˆ˜ ์žˆ๋Š” ๊ธฐํšŒ๋ฅผ ์–ป์—ˆ์Šต๋‹ˆ๋‹ค.
08:07
And that year, Sam Donaldson was the host.
153
487129
3240
๊ทธ ํ•ด์˜ ์‚ฌํšŒ์ž๋Š” ์ƒ˜ ๋„๋‚ ์Šจ์ด์—ˆ์Šต๋‹ˆ๋‹ค.
๋ง‰์ด ์˜ค๋ฅด๊ธฐ ์ง์ „์— ๋”ฑ 30์ดˆ ๊ฐ„
08:12
Just before the curtain went up, I had about 30 seconds
154
492290
2690
๊ทธ์—๊ฒŒ ์šฐ๋ฆฌ๊ฐ€ ๋ญ˜ํ•  ๊ฑด์ง€ ์„ค๋ช…ํ•  ์ˆ˜ ์žˆ๋Š”
08:15
to explain to Mr. Donaldson what we were going to do.
155
495004
3742
์‹œ๊ฐ„์ด ์žˆ์—ˆ์–ด์š”.
08:20
And I said, "The Tele-Actor is going to be joining you onstage.
156
500119
3517
"์ด '์›๊ฒฉ ๋ฐฐ์šฐ'๋Š” ๋‹น์‹ ๊ณผ ํ•จ๊ป˜ ๋ฌด๋Œ€์— ์˜ฌ๋ผ๊ฐˆ ๊ฑฐ์—์š”.
08:23
This is a new experimental project,
157
503660
2354
์ƒˆ๋กœ์šด ์‹œํ—˜์ ์ธ ํ”„๋กœ์ ํŠธ์ธ๋ฐ,
์‚ฌ๋žŒ๋“ค์€ ํ™”๋ฉด์„ ํ†ตํ•ด ๊ทธ ์‚ฌ๋žŒ์„ ๋ณด๊ณ ์š”,
08:26
and people are watching her on their screens,
158
506038
2595
08:28
there's cameras involved and there's microphones
159
508657
3291
์นด๋ฉ”๋ผ๋ž‘ ๋งˆ์ดํฌ๊ฐ€ ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค,
๊ทธ๋ฆฌ๊ณ  ๊ท€์— ์ด์–ดํฐ์„ ๋‚„ ๊ฒ๋‹ˆ๋‹ค..
08:31
and she's got an earbud in her ear,
160
511972
1786
08:33
and people over the network are giving her advice
161
513782
2317
์‚ฌ๋žŒ๋“ค์ด ๋„คํŠธ์›Œํฌ๋ฅผ ํ†ตํ•ด ๊ทธ ์‚ฌ๋žŒ์—๊ฒŒ
๋‹ค์Œ์— ๋ญ˜ ํ• ์ง€ ์•Œ๋ ค์ค„๊บผ์—์š”."
08:36
about what to do next."
162
516123
1158
๊ทธ๋Ÿฌ์ž ๊ทธ๊ฐ€ ๋งํ–ˆ์Šต๋‹ˆ๋‹ค,
08:37
And he said, "Wait a second.
163
517305
1395
08:39
That's what I do."
164
519806
1173
"์ž ๊น๋งŒ์š”, ๊ทธ๊ฑด ์ œ๊ฐ€ ํ•˜๋Š” ๊ฑด๋ฐ์š”." (์›ƒ์Œ)
08:41
(Laughter)
165
521003
4977
08:46
So he loved the concept,
166
526004
1872
ํ•˜์—ฌ๊ฐ„ ๊ทธ๋Š” ํ”„๋กœ์ ํŠธ์˜ ์ปจ์…‰์„ ์ข‹์•„ํ–ˆ์–ด์š”.
08:47
and when the Tele-Actor walked onstage, she walked right up to him,
167
527900
4253
๊ทธ๋ฆฌ๊ณ  "์›๊ฒฉ ๋ฐฐ์šฐ"๊ฐ€ ๋ฌด๋Œ€์— ์˜ฌ๋ž์„ ๋•Œ
๊ทธ ์‚ฌ๋žŒ์€ ๊ทธ๋Œ€๋กœ ์‚ฌํšŒ์ž์—๊ฒŒ ๊ฐ€์„œ
08:52
and she gave him a big kiss right on the lips.
168
532177
2459
๊ทธ์˜ ์ž…์ˆ ์— ์ง„ํ•˜๊ฒŒ ํ‚ค์Šค๋ฅผ ํ–ˆ์–ด์š”. (์›ƒ์Œ)
08:54
(Laughter)
169
534660
1952
08:56
We were totally surprised -- we had no idea that would happen.
170
536636
2922
์šฐ๋ฆฌ๋Š” ๋ชจ๋‘ ์™„์ „ํžˆ ๋†€๋ž์ง€์š”.
๋ฌด์Šจ ์ผ์ด ๋ฒŒ์–ด์งˆ์ง€ ์ „ํ˜€ ๋ชฐ๋ž๊ฑฐ๋“ ์š”.
08:59
And he was great, he just gave her a big hug in return,
171
539582
2618
์‚ฌํšŒ์ž๋„ ๋Œ€๋‹จํ–ˆ์–ด์š”. ๊ทธ๋…€๋ฅผ ๊ผญ ์•ˆ์•„์ฃผ์—ˆ์ฃ .
09:02
and it worked out great.
172
542224
1657
ํ”„๋กœ์ ํŠธ๋Š” ์„ฑ๊ณต์ ์ด์—ˆ์Šต๋‹ˆ๋‹ค.
09:03
But that night, as we were packing up,
173
543905
2040
๊ทธ๋Ÿฌ๋‚˜ ๊ทธ๋‚  ์ง์„ ๊พธ๋ฆฌ๋ฉด์„œ
09:05
I asked the Tele-Actor, how did the Tele-Directors decide
174
545969
4555
"์›๊ฒฉ ๋ฐฐ์šฐ"์—๊ฒŒ ๋ฌผ์—ˆ์Šต๋‹ˆ๋‹ค. ์–ด๋–ป๊ฒŒ "์›๊ฒฉ ๊ฐ๋…" ๋“ค์ด
์‚ฌํšŒ์ž์—๊ฒŒ ํ‚ค์Šค๋ฅผ ํ•˜๋„๋ก ์ง€์‹œํ•  ์ˆ˜ ์žˆ์—ˆ๋Š”์ง€๋ฅผ์š”.
09:10
that they would give a kiss to Sam Donaldson?
175
550548
3000
09:15
And she said they hadn't.
176
555135
1457
๊ทธ๋…€๋Š” ๊ทธ๋Ÿฐ ์ ์ด ์—†๋‹ค๊ณ  ํ•˜๋”๋ผ๊ณ ์š”.
09:17
She said, when she was just about to walk onstage,
177
557274
2618
๋ฌด๋Œ€์— ์˜ค๋ฅด๊ธฐ ์ง์ „๊นŒ์ง€๋„
09:19
the Tele-Directors still were trying to agree on what to do,
178
559916
2974
"์›๊ฒฉ ๊ฐ๋…"๋“ค์€ ์—ฌ์ „ํžˆ ๋‹ค์Œ์— ๋ญ˜ ํ• ์ง€๋ฅผ ์˜๋…ผ์ค‘์ด์—ˆ์–ด์š”.
09:22
and so she just walked onstage and did what felt most natural.
179
562914
3100
๊ทธ๋ž˜์„œ ๊ทธ๋…€๋Š” ๊ทธ๋Œ€๋กœ ๋ฌด๋Œ€์— ์˜ฌ๋ผ๊ฐ€
๊ฐ€์žฅ ์ž์—ฐ์Šค๋Ÿฝ๋‹ค๊ณ  ์ƒ๊ฐ๋˜๋Š” ์ผ์„ ํ–ˆ๋‹ค๋”๊ตฐ์š”. (์›ƒ์Œ)
09:26
(Laughter)
180
566038
4514
09:30
So, the success of the Tele-Actor that night
181
570576
3092
์ฆ‰ ๊ทธ๋‚  ๋ฐค "์›๊ฒฉ ๋ฐฐ์šฐ" ํ”„๋กœ์ ํŠธ์˜ ์„ฑ๊ณต์€
09:33
was due to the fact that she was a wonderful actor.
182
573692
4253
๊ทธ๋…€๊ฐ€ ํ›Œ๋ฅญํ•œ ๋ฐฐ์šฐ์˜€๊ธฐ ๋•Œ๋ฌธ์ด์—ˆ์ง€์š”.
09:37
She knew when to trust her instincts.
183
577969
2429
๊ทธ๋…€๋Š” ์–ธ์ œ ์ž์‹ ์˜ ๋ณธ๋Šฅ์„ ๋ฏฟ์–ด์•ผ ํ•˜๋Š”์ง€๋ฅผ ์•Œ์•˜๊ณ ,
09:40
And so that project taught me another lesson about life,
184
580422
3929
์ €๋Š” ์ด ํ”„๋กœ์ ํŠธ๋ฅผ ํ†ตํ•ด ๋˜๋‹ค๋ฅธ ์ธ์ƒ์˜ ๊ตํ›ˆ์„ ์–ป์—ˆ์Šต๋‹ˆ๋‹ค.
09:44
which is that, when in doubt, improvise.
185
584375
3647
์˜์‹ฌ์Šค๋Ÿฌ์šธ ๋•Œ๋Š”, ์ฆ‰ํฅ์ ์œผ๋กœ ํ•˜๋ผ๋Š” ๊ฒƒ์ด์ฃ . (์›ƒ์Œ)
09:48
(Laughter)
186
588046
1666
09:50
Now, the third project grew out of my experience
187
590664
4919
์„ธ๋ฒˆ์งธ ํ”„๋กœ์ ํŠธ๋Š” ์•„๋ฒ„์ง€๊ป˜์„œ
๋ณ‘์›์— ๊ณ„์‹ค ๋•Œ์˜ ๊ฒฝํ—˜์„ ๋ฐ”ํƒ•์œผ๋กœ ์‹œ์ž‘๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
09:55
when my father was in the hospital.
188
595607
1849
์•„๋ฒ„์ง€๋Š” ํ™”ํ•™ ์น˜๋ฃŒ๋ฅผ ๋ฐ›๊ณ  ์žˆ์—ˆ์–ด์š”.
09:59
He was undergoing a treatment -- chemotherapy treatments --
189
599284
3353
๊ทธ๋ฆฌ๊ณ  ๊ทผ์ ‘ ๋ฐฉ์‚ฌ์„  ์น˜๋ฃŒ๋ผ๋Š” ๋‹ค๋ฅธ ์น˜๋ฃŒ๊ฐ€ ์žˆ์—ˆ๋Š”๋ฐ,
10:02
and there's a related treatment called brachytherapy,
190
602661
4270
์ด ์น˜๋ฃŒ๋Š” ๋งค์šฐ ์ž‘์€ ๋ฐฉ์‚ฌ๋Šฅ ํ•ต์„
10:06
where tiny, radioactive seeds are placed into the body
191
606955
3788
๋ชธ ์†์— ์žˆ๋Š” ์•” ์ข…์–‘์— ์ง‘์–ด ๋„ฃ๋Š” ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค.
10:10
to treat cancerous tumors.
192
610767
1734
10:13
And the way it's done, as you can see here,
193
613572
2271
์—ฌ๊ธฐ ๋ณด์‹œ๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ์ด ์น˜๋ฃŒ๋ฅผ ์œ„ํ•ด์„œ๋Š”
10:15
is that surgeons insert needles into the body
194
615867
4367
์˜์‚ฌ๊ฐ€ ๋ชธ ์†์— ๋ฐ”๋Š˜์„ ์ฐ”๋Ÿฌ๋„ฃ์–ด
10:20
to deliver the seeds.
195
620258
1315
๋ฐฉ์‚ฌ๋Šฅ ํ•ต์„ ๋„ฃ์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
10:21
And all these needles are inserted in parallel.
196
621974
3698
๋ฐ”๋Š˜์€ ํ‰ํ–‰ํ•˜๊ฒŒ ์‚ฝ์ž…๋˜๋Š”๋ฐ
10:26
So it's very common that some of the needles penetrate sensitive organs.
197
626445
5393
์ข…์ข… ๋ช‡๋ช‡ ๋ฐ”๋Š˜์ด
๋ฏผ๊ฐํ•œ ์žฅ๊ธฐ๋ฅผ ํ†ต๊ณผํ•˜๋ฉด์„œ
10:32
And as a result, the needles damage these organs, cause damage,
198
632635
6973
์žฅ๊ธฐ๋“ค์„ ์†์ƒ์‹œํ‚ค๊ณ 
10:39
which leads to trauma and side effects.
199
639632
2409
์‹ฌํ•œ ์™ธ์ƒ์ด๋‚˜ ๋ถ€์ž‘์šฉ์„ ์ผ์œผํ‚ต๋‹ˆ๋‹ค.
10:42
So my students and I wondered:
200
642581
1644
๊ทธ๋ž˜์„œ ํ•™์ƒ๋“ค๊ณผ ํ•จ๊ป˜
10:44
what if we could modify the system,
201
644249
4522
๋งŒ์•ฝ ์‹œ์Šคํ…œ์„ ๊ฐœ์„ ํ•ด์„œ ๋ฐ”๋Š˜์ด ์„œ๋กœ ๋‹ค๋ฅธ ๊ฐ๋„๋กœ
10:48
so that the needles could come in at different angles?
202
648795
2625
์‚ฝ์ž…๋˜๊ฒŒ ํ•˜๋ฉด ์–ด๋–จ์ง€๋ฅผ ์ƒ๊ฐํ•ด ๋ดค์Šต๋‹ˆ๋‹ค.
10:52
So we simulated this;
203
652395
1843
์‹œํ—˜์„ ๊ฑฐ์ณ ์šฐ๋ฆฌ๋Š” ๊ฐœ์„ ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๋งŒ๋“ค๊ณ 
10:54
we developed some optimization algorithms and we simulated this.
204
654262
3445
์ด๋ฅผ ๋‹ค์‹œ ์‹œํ—˜ํ•ด๋ดค์Šต๋‹ˆ๋‹ค.
10:57
And we were able to show
205
657731
1151
์ด๋ ‡๊ฒŒํ•ด์„œ ๋ฏผ๊ฐํ•œ ์žฅ๊ธฐ๋ฅผ ๊ฑด๋“œ๋ฆฌ์ง€ ์•Š๊ณ ๋„
10:58
that we are able to avoid the delicate organs,
206
658906
2562
์ข…์–‘์— ์ ‘๊ทผํ•ด์„œ ๋ฐฉ์‚ฌ๋Šฅ ํ•ต์„
11:01
and yet still achieve the coverage of the tumors with the radiation.
207
661492
5053
์ง‘์–ด ๋„ฃ์„ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค„ ์ˆ˜ ์žˆ์—ˆ์ง€์š”.
11:07
So now, we're working with doctors at UCSF
208
667313
3474
์ด์ œ UCSF์˜ ์˜์‚ฌ๋“ค๊ณผ (์—ญ์ฃผ : Univ. of California, San Fransisco)
11:10
and engineers at Johns Hopkins,
209
670811
2267
์กด์Šค ํ™‰ํ‚จ์Šค๋Œ€์˜ ๊ณตํ•™์ž๋“ค๊ณผ ํ•จ๊ป˜
11:13
and we're building a robot that has a number of --
210
673102
3962
์—ฌ๋Ÿฌ ๋Œ€์˜ ๋กœ๋ด‡์„ ๋งŒ๋“ค๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
11:17
it's a specialized design with different joints
211
677088
2599
์ด ๋กœ๋ด‡์€ ์„œ๋กœ ๋‹ค๋ฅธ ๊ด€์ ˆ์„ ๊ฐ€์ง„ ํŠน๋ณ„ํ•œ ๋””์ž์ธ์„ ํ†ตํ•ด
11:19
that can allow the needles to come in at an infinite variety of angles.
212
679711
4323
์ˆ˜์—†์ด ๋‹ค์–‘ํ•œ ๊ฐ๋„์—์„œ ๋ฐ”๋Š˜์„ ์‚ฝ์ž…ํ•  ์ˆ˜ ์žˆ์–ด์„œ
11:24
And as you can see here, they can avoid delicate organs
213
684483
3722
์—ฌ๊ธฐ์„œ ๋ณผ ์ˆ˜ ์žˆ๋“ฏ์ด, ๋ฏผ๊ฐํ•œ ์žฅ๊ธฐ๋ฅผ ํ”ผํ•ด
๋ชฉํ‘œ์— ๋‹ฟ์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
11:28
and still reach the targets they're aiming for.
214
688229
2664
๋ฐ”๋Š˜์€ ํ‰ํ–‰ํ•˜๊ฒŒ ๋“ค์–ด๊ฐ€์•ผ ํ•œ๋‹ค๋Š” ๊ฐ€์ •์— ๋Œ€ํ•ด
11:32
So, by questioning this assumption that all the needles have to be parallel,
215
692019
4985
์˜๋ฌธ์„ ํ’ˆ์€ ๊ฒฐ๊ณผ, ์ด ํ”„๋กœ์ ํŠธ๋ฅผ ํ†ตํ•ด
11:37
this project also taught me an important lesson:
216
697028
2626
์ €๋Š” ์ค‘์š”ํ•œ ๊ตํ›ˆ์„ ์–ป์—ˆ์Šต๋‹ˆ๋‹ค. ์˜์‹ฌ์ด ๋“ค ๋•Œ,
11:40
When in doubt, when your path is blocked, pivot.
217
700114
4755
๊ธธ์ด ๋ง‰ํ˜”์„ ๋•Œ๋Š” ๋‹ค๋ฅด๊ฒŒ ๋ณด์•„์•ผ ํ•œ๋‹ค๋Š” ๊ฒƒ์ด์ง€์š”.
11:45
And the last project also has to do with medical robotics.
218
705797
3840
๋งˆ์ง€๋ง‰์œผ๋กœ ๋ง์”€๋“œ๋ฆด ํ”„๋กœ์ ํŠธ ์—ญ์‹œ ์˜ํ•™ ๋กœ๋ด‡์ธ๋ฐ,
11:50
And this is something that's grown out of a system
219
710187
3570
"๋‹ค๋นˆ์น˜ ์ˆ˜์ˆ  ๋กœ๋ด‡"์ด๋ผ๊ณ  ๋ถˆ๋ฆฌ๋Š”
11:53
called the da Vinci surgical robot.
220
713781
3348
์‹œ์Šคํ…œ์œผ๋กœ๋ถ€ํ„ฐ ์‹œ์ž‘๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
11:57
And this is a commercially available device.
221
717866
2444
์ด ๋กœ๋ด‡์€ ์‹œ์žฅ์—์„œ ํŒ๋งค๋˜๊ณ  ์žˆ์ง€์š”.
12:00
It's being used in over 2,000 hospitals around the world.
222
720334
2973
์ „์„ธ๊ณ„ 2์ฒœ์—ฌ ๊ณณ์˜ ๋ณ‘์›์—์„œ ์‚ฌ์šฉ ์ค‘์ž…๋‹ˆ๋‹ค.
์™ธ๊ณผ ์˜์‚ฌ๋“ค์ด ์ž์‹ ์—๊ฒŒ ์ต์ˆ™ํ•œ ํ‹€๋กœ
12:04
The idea is it allows the surgeon to operate comfortably
223
724013
4373
์กฐ์ •ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๊ธฐ ์œ„ํ•ด ํ”„๋กœ์ ํŠธ๋ฅผ ์‹œ์ž‘ํ–ˆ์–ด์š”.
12:08
in his own coordinate frame.
224
728410
1777
๊ทธ๋Ÿฌ๋‚˜ ์ˆ˜์ˆ ์˜ ๋งŽ์€ ๋ถ€์ฐจ์ ์ธ ์ผ๋“ค์€
12:12
Many of the subtasks in surgery are very routine and tedious, like suturing,
225
732762
5769
๋ด‰ํ•ฉ๊ณผ ๊ฐ™์ด ๋งค์šฐ ๋ฐ˜๋ณต์ ์ด๊ณ  ์ง€๋ฃจํ•œ ์ผ๋“ค์ด์ง€์š”.
12:18
and currently, all of these are performed
226
738555
2267
๊ทธ๋ฆฌ๊ณ  ์ด๋Ÿฐ ์ผ๋“ค์€ ๋ชจ๋‘ ์™ธ๊ณผ์˜๋“ค์˜
12:20
under the specific and immediate control of the surgeon.
227
740846
3867
์ง์ ‘์ ์ด๊ณ  ํŠน๋ณ„ํ•œ ํ†ต์ œ์†์—์„œ ์ด๋ฃจ์–ด์ง€๊ธฐ ๋•Œ๋ฌธ์—
12:25
So the surgeon becomes fatigued over time.
228
745374
2268
์‹œ๊ฐ„์ด ์ง€๋‚ ์ˆ˜๋ก ์™ธ๊ณผ์˜๋“ค์€ ํ”ผ๊ณคํ•ด์ง‘๋‹ˆ๋‹ค.
๋งŒ์•ฝ ๋กœ๋ด‡์„ ํ”„๋กœ๊ทธ๋ž˜๋ฐํ•ด์„œ
12:28
And we've been wondering,
229
748086
1436
12:29
what if we could program the robot to perform some of these subtasks,
230
749546
4371
์ด์™€ ๊ฐ™์€ ์ผ๋ถ€ ๋ณด์กฐ ์ž‘์—…๋“ค์„
๋กœ๋ด‡์ด ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค๋ฉด
12:33
and thereby free the surgeon
231
753941
1381
์™ธ๊ณผ์˜๋“ค์ด ๋”์šฑ ๋ณต์žกํ•œ ์ˆ˜์ˆ  ๊ณผ์ •์—
12:35
to focus on the more complicated parts of the surgery,
232
755346
3235
์ง‘์ค‘ํ•  ์ˆ˜ ์žˆ๊ณ , ๋˜ํ•œ ๋กœ๋ด‡์ด ์ผํ•˜๋Š” ์†๋„๋ฅผ
12:38
and also cut down on the time that the surgery would take
233
758605
2800
๋” ๋น ๋ฅด๊ฒŒ ํ•œ๋‹ค๋ฉด ์ˆ˜์ˆ ์— ๊ฑธ๋ฆฌ๋Š” ์‹œ๊ฐ„์„
12:41
if we could get the robot to do them a little bit faster?
234
761429
2839
์ค„์ผ ์ˆ˜ ์žˆ์ง€ ์•Š์„๊นŒ ์ƒ๊ฐํ–ˆ์Šต๋‹ˆ๋‹ค.
12:44
Now, it's hard to program a robot to do delicate things like this.
235
764958
3422
๋กœ๋ด‡์ด ์ด๋ ‡๊ฒŒ ์„ฌ์„ธํ•œ ์ผ์„ ํ•˜๋„๋ก
ํ”„๋กœ๊ทธ๋ž˜๋ฐ ํ•˜๋Š” ๊ฒƒ์€ ๋งค์šฐ ์–ด๋ ต์Šต๋‹ˆ๋‹ค.
12:48
But it turns out my colleague Pieter Abbeel, who's here at Berkeley,
236
768943
4206
๊ทธ๋Ÿฌ๋‚˜ ๋ฒ„ํด๋ฆฌ๋Œ€ ๋™๋ฃŒ์ธ ํ”ผํ„ฐ ์•„๋นŒ์€ ์˜ˆ์ œ๋ฅผ ํ†ตํ•ด
12:53
has developed a new set of techniques for teaching robots from example.
237
773173
5480
๋กœ๋ด‡์„ ๊ฐ€๋ฅด์น  ์ˆ˜ ์žˆ๋Š” ๊ธฐ์ˆ ์„ ๊ฐœ๋ฐœํ–ˆ์Šต๋‹ˆ๋‹ค.
12:59
So he's gotten robots to fly helicopters,
238
779170
2743
๋กœ๋ด‡์€ ์‚ฌ๋žŒ์ด ์กฐ์ข…ํ•˜๋Š” ๊ฒƒ์„ ๋ณด๊ณ  ํ•™์Šต์„ ํ†ตํ•ด
13:01
do incredibly interesting, beautiful acrobatics,
239
781937
3254
ํ—ฌ๋ฆฌ์ฝฅํ„ฐ๋ฅผ ์กฐ์ข…ํ•ด์„œ ๋ฏฟ๊ธฐ์ง€ ์•Š์„ ์ •๋„๋กœ
13:05
by watching human experts fly them.
240
785215
1967
ํฅ๋ฏธ๋กญ๊ณ  ์•„๋ฆ„๋‹ค์šด ๊ณก์˜ˆ ๋น„ํ–‰์„ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
์ด ๋กœ๋ด‡์„ ํ•œ ๋Œ€ ๊ตฌํ•ด์„œ,
13:08
So we got one of these robots.
241
788152
1906
13:10
We started working with Pieter and his students.
242
790082
2540
ํ”ผํ„ฐ ๊ต์ˆ˜์™€ ๊ทธ์˜ ํ•™์ƒ๋“ค๊ณผ ํ•จ๊ป˜ ์ž‘์—…์„ ์‹œ์ž‘ํ–ˆ์Šต๋‹ˆ๋‹ค.
13:12
And we asked a surgeon to perform a task --
243
792646
4180
์™ธ๊ณผ์˜์—๊ฒŒ ์ž‘์—…์„ ํ•˜๋„๋ก ์š”์ฒญํ•˜๊ณ 
์šฐ๋ฆฌ๋Š” ๋กœ๋ด‡์„ ๊ฐ€์ง€๊ณ  ๊ทธ ์ผ์„ ํ–ˆ์Šต๋‹ˆ๋‹ค.
13:18
with the robot.
244
798761
1151
13:19
So what we're doing is asking the surgeon to perform the task,
245
799936
3025
์ฆ‰ ์šฐ๋ฆฌ๋Š” ์™ธ๊ณผ์˜์™€ ๋กœ๋ด‡์—๊ฒŒ
๊ฐ™์€ ์ž‘์—…์„ ํ•˜๋„๋ก ์š”์ฒญํ•œ ๊ฒƒ์ด์ฃ .
13:22
and we record the motions of the robot.
246
802985
2036
๊ทธ๋ฆฌ๊ณ  ๋กœ๋ด‡์˜ ์›€์ง์ž„์„ ๊ธฐ๋กํ–ˆ์Šต๋‹ˆ๋‹ค.
13:25
So here's an example.
247
805045
1426
์—ฌ๊ธฐ ์˜ˆ์ œ๊ฐ€ ์žˆ๋Š”๋ฐ, 8์ž ๋ชจ์–‘์„ ์‚ฌ์šฉํ•ด์„œ
13:26
I'll use tracing out a figure eight as an example.
248
806495
3121
๊ทธ๋Œ€๋กœ ๋”ฐ๋ผ๊ฐ€๋Š” ์›€์ง์ž„์„ ์‚ฌ์šฉํ•ด ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.
์—ฌ๊ธฐ ๋กœ๋ด‡์ด ์›€์ง์ธ ๊ฒฝ๋กœ๋Š”
13:30
So here's what it looks like when the robot --
249
810170
3634
13:33
this is what the robot's path looks like, those three examples.
250
813828
3068
์ด๋ ‡๊ฒŒ ๋ณด์ž…๋‹ˆ๋‹ค.
์„ธ๊ฐ€์ง€ ์˜ˆ๊ฐ€ ์žˆ์ง€์š”.
13:36
Now, those are much better than what a novice like me could do,
251
816920
4136
์ด ์›€์ง์ž„์€ ์ €๊ฐ™์€ ์ดˆ๋ณด๊ฐ€ ํ•˜๋Š” ๊ฒƒ๋ณด๋‹ค ํ›จ์”ฌ ๋‚ซ์ง€๋งŒ
์•„์ง ๊ณ ๋ฅด์ง€ ๋ชปํ•˜๊ณ  ๋ถ€์ •ํ™•ํ•˜์ง€์š”.
13:41
but they're still jerky and imprecise.
252
821080
2694
13:43
So we record all these examples, the data,
253
823798
2941
๊ทธ๋ž˜์„œ ๋ชจ๋“  ์˜ˆ์ œ๋ฅผ ๊ธฐ๋กํ•ด์„œ ๋ฐ์ดํ„ฐํ™”ํ•˜์—ฌ
๋‹จ๊ณ„๋ณ„ ์ˆœ์„œ๋ฅผ ๋งŒ๋“ค์—ˆ์Šต๋‹ˆ๋‹ค.
13:46
and then go through a sequence of steps.
254
826763
2861
๋จผ์ € ์Œ์„ฑ์ธ์‹์„ ํ†ตํ•œ ๋™์  ์‹œ๊ฐ„ ์ •ํ•ฉ์ด๋ผ๋Š”
13:50
First, we use a technique called dynamic time warping
255
830278
3126
13:53
from speech recognition.
256
833428
1490
๊ธฐ์ˆ ์„ ์ด์šฉํ•ด ์ž„์‹œ์ ์œผ๋กœ
13:54
And this allows us to temporally align all of the examples.
257
834942
3337
๋ชจ๋“  ์˜ˆ์ œ๋ฅผ ์ผ์น˜์‹œํ‚จ ๋‹ค์Œ
13:58
And then we apply Kalman filtering, a technique from control theory,
258
838918
5202
์ œ์–ด ์ด๋ก ์˜ ๊ธฐ์ˆ ์ธ
์นผ๋งŒํ•„ํ„ฐ๋ฅผ ์ ์šฉํ•˜์—ฌ
14:04
that allows us to statistically analyze all the noise
259
844144
2969
ํ†ต๊ณ„์ ์œผ๋กœ ๋ชจ๋“  ์žก์Œ์„ ๋ถ„์„ํ•œ ๋’ค
๊ทธ ์•ˆ์—์„œ ์›ํ•˜๋Š” ๊ถค์ ์„ ์ถ”์ถœํ•ด๋ƒˆ์Šต๋‹ˆ๋‹ค.
14:07
and extract the desired trajectory that underlies them.
260
847137
4122
14:13
Now we take those human demonstrations --
261
853283
2550
์ด์ œ ํ•  ์ผ์€ ์ด๋ ‡๊ฒŒ ์‚ฌ๋žŒ์ด ํ•˜๋Š” ์‹œ์—ฐ์„ ์ฐจ์šฉํ•ด
14:15
they're all noisy and imperfect --
262
855857
1675
์žก์Œ๊ณผ ๋ถ€์ •ํ™•ํ•จ์œผ๋กœ๋ถ€ํ„ฐ
14:17
and we extract from them an inferred task trajectory
263
857556
2598
์ถ”์ •๋˜๋Š” ์ž‘์—…์˜ ๊ถค์ ์„ ์ถ”์ถœํ•˜์—ฌ
14:20
and control sequence for the robot.
264
860178
2526
๋กœ๋ด‡์„ ์ œ์–ดํ•˜๋Š” ์ˆœ์„œ๋ฅผ ๋งŒ๋“œ๋Š” ๊ฒƒ์ด์ฃ .
14:23
We then execute that on the robot,
265
863181
2316
๊ทธ๋ฆฌ๊ณ  ๋กœ๋ด‡์— ์ ์šฉํ•ด ์ž‘๋™ํ•ด ๋ด…๋‹ˆ๋‹ค.
14:25
we observe what happens,
266
865521
2025
์–ด๋–ป๊ฒŒ ์ž‘๋™ํ•˜๋Š”์ง€๋ฅผ ๊ด€์ฐฐํ•˜๊ณ 
14:27
then we adjust the controls,
267
867570
1357
๊ธธ์žก์ด์— ๋งž๋„๋ก ์ œ์–ด๋ฅผ ์กฐ์ •ํ•ฉ๋‹ˆ๋‹ค.
14:28
using a sequence of techniques called iterative learning.
268
868951
2796
๋ฐ˜๋ณตํ•™์Šต์ด์ง€์š”.
14:33
Then what we do is we increase the velocity a little bit.
269
873129
3409
๊ทธ ๋‹ค์Œ์œผ๋กœ ์†๋„๋ฅผ ์กฐ๊ธˆ์”ฉ ์˜ฌ๋ ค
14:37
We observe the results, adjust the controls again,
270
877244
3135
๊ฒฐ๊ณผ๋ฅผ ๊ด€์ฐฐํ•˜๊ณ , ์ œ์–ด๋ฅผ ์žฌ์กฐ์ •ํ•˜๊ณ ,
๋‹ค์‹œ ๊ด€์ฐฐํ•ฉ๋‹ˆ๋‹ค.
14:41
and observe what happens.
271
881340
1772
14:43
And we go through this several rounds.
272
883136
2167
์—ฌ๋Ÿฌ๋ฒˆ ์ด ์ž‘์—…์„ ๋ฐ˜๋ณตํ•ด์„œ
14:45
And here's the result.
273
885327
1181
์ด๋Ÿฐ ๊ฒฐ๊ณผ๋ฅผ ์–ป์—ˆ์Šต๋‹ˆ๋‹ค.
14:46
That's the inferred task trajectory,
274
886968
1738
์ด๊ฒƒ์ด ์ถ”๋ก ๋œ ์ž‘์—… ๊ถค์ ์ž…๋‹ˆ๋‹ค.
14:48
and here's the robot moving at the speed of the human.
275
888730
3221
์ด๊ฒƒ์€ ์‚ฌ๋žŒ์ด ํ•˜๋Š” ์†๋„๋กœ ๋กœ๋ด‡์ด ์›€์ง์ด๋Š” ๊ฒƒ์ด๊ณ ,
14:51
Here's four times the speed of the human.
276
891975
2105
์ด๊ฒƒ์€ ๊ทธ 4๋ฐฐ์˜ ์†๋„,
14:54
Here's seven times.
277
894477
1484
์ด๊ฒƒ์€ ๊ทธ 7๋ฐฐ ์†๋„์ด๊ณ ,
14:57
And here's the robot operating at 10 times the speed of the human.
278
897004
4825
์ด๊ฒƒ์€ 10๋ฐฐ์˜ ์†๋„๋กœ
์ž‘์—…ํ•˜๋Š” ๋ชจ์Šต์ž…๋‹ˆ๋‹ค.
15:02
So we're able to get a robot to perform a delicate task
279
902762
2901
์ด๋ ‡๊ฒŒ ์ˆ˜์ˆ ์˜ ๋ถ€์ฐจ์ ์ธ ์ผ ๊ฐ™์€ ์„ฌ์„ธํ•œ ์ž‘์—…์„
15:05
like a surgical subtask,
280
905687
2886
์‚ฌ๋žŒ๋ณด๋‹ค 10๋ฐฐ ๋น ๋ฅธ ์†๋„๋กœ ํ•  ์ˆ˜ ์žˆ๋Š”
15:09
at 10 times the speed of a human.
281
909081
1881
๋กœ๋ด‡์„ ๋งŒ๋“ค ์ˆ˜ ์žˆ๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
15:12
So this project also,
282
912185
2260
์ด ํ”„๋กœ์ ํŠธ๋Š” ์—ฐ์Šต๊ณผ ํ•™์Šต, ์ฆ‰
15:14
because of its involved practicing and learning,
283
914469
2525
์–ด๋–ค ์ผ์„ ๊ณ„์† ๋ฐ˜๋ณตํ•ด์„œ ํ•˜๋Š” ์ผ์ด
15:17
doing something over and over again,
284
917018
1762
15:18
this project also has a lesson, which is:
285
918804
2577
์ค‘์š”ํ•œ ๋ถ€๋ถ„์ด๊ธฐ ๋•Œ๋ฌธ์— ์—ญ์‹œ ๊ตํ›ˆ์„ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
15:21
if you want to do something well,
286
921405
2404
๋ฌด์—‡์ธ๊ฐ€ ์ž˜ ํ•˜๊ณ  ์‹ถ์€ ์ผ์ด ์žˆ๋‹ค๋ฉด,
๋ฐ˜๋ณต๋˜๋Š” ์—ฐ์Šต์„ ๋Œ€์ฒดํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์€ ์—†๋‹ค๋Š” ์ ์ด์ฃ .
15:25
there's no substitute for practice, practice, practice.
287
925084
4440
์ด ๋„ค ๊ฐ€์ง€๊ฐ€ ์ œ๊ฐ€ ๋ช‡ ๋…„ ๊ฐ„ ๋กœ๋ด‡๊ณผ ๋กœ๋ด‡ํ•™์œผ๋กœ๋ถ€ํ„ฐ
15:33
So these are four of the lessons that I've learned from robots
288
933186
3487
๋ฐฐ์šด ๊ตํ›ˆ๋“ค์ž…๋‹ˆ๋‹ค.
15:36
over the years.
289
936697
1298
๋กœ๋ด‡ํ•™ ๋ถ„์•ผ๋Š” ํ•ด๊ฐ€ ์ง€๋‚  ์ˆ˜๋ก
15:39
And the field of robotics has gotten much better over time.
290
939312
5507
์ ์  ๋ฐœ์ „ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
15:46
Nowadays, high school students can build robots,
291
946319
2276
์˜ค๋Š˜๋‚  ๊ณ ๋“ฑํ•™์ƒ๋“ค๋„ ์•„๋ฒ„์ง€์™€ ์ œ๊ฐ€ ๋งŒ๋“ค๋ ค๊ณ  ํ–ˆ๋˜
15:48
like the industrial robot my dad and I tried to build.
292
948619
2884
์‚ฐ์—…์šฉ ๋กœ๋ด‡ ๊ฐ™์€ ๊ฒƒ์„ ๋งŒ๋“ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
15:52
But, it's very -- now ...
293
952675
2770
๊ทธ๋ฆฌ๊ณ  ์ œ๊ฒŒ๋Š”
15:55
And now, I have a daughter,
294
955954
3301
15:59
named Odessa.
295
959857
1157
์˜ค๋ฐ์‚ฌ๋ž€ ์ด๋ฆ„์˜ 8์‚ด ๋‚œ
16:01
She's eight years old.
296
961673
1253
๋”ธ์ด ํ•˜๋‚˜ ์žˆ์Šต๋‹ˆ๋‹ค.
16:03
And she likes robots, too.
297
963682
1649
๊ทธ ์•„์ด๋„ ๋กœ๋ด‡์„ ์ข‹์•„ํ•˜์ง€์š”.
16:05
Maybe it runs in the family.
298
965970
1396
์•„๋งˆ๋„ ์œ ์ „์ธ๊ฐ€ ๋ด…๋‹ˆ๋‹ค. (์›ƒ์Œ)
16:07
(Laughter)
299
967390
1240
16:08
I wish she could meet my dad.
300
968654
2095
ํ• ์•„๋ฒ„์ง€๋ฅผ ๋งŒ๋‚  ์ˆ˜ ์žˆ์—ˆ๋‹ค๋ฉด ์ข‹์•˜์„ํ…๋ฐ์š”.
16:12
And now I get to teach her how things work,
301
972303
2740
๋”ธ์—๊ฒŒ ๋ฌผ์ฒด๊ฐ€ ์–ด๋–ป๊ฒŒ ์›€์ง์ด๋Š” ์ง€๋ฅผ ๊ฐ€๋ฅด์น˜๊ณ ,
16:15
and we get to build projects together.
302
975067
2230
ํ•จ๊ป˜ ํ”„๋กœ์ ํŠธ๋ฅผ ๊ธฐํšํ•˜๊ณ  ์žˆ์–ด์š”.
16:17
And I wonder what kind of lessons she'll learn from them.
303
977321
3206
์ด๋Ÿฐ ๊ฒƒ๋“ค์„ ํ†ตํ•ด ๋”ธ ์•„์ด๊ฐ€ ์–ด๋–ค ๊ตํ›ˆ์„ ์–ป์„์ง€ ๊ถ๊ธˆํ•ฉ๋‹ˆ๋‹ค.
16:22
Robots are the most human of our machines.
304
982147
4007
๋กœ๋ด‡์€ ๋‹ค๋ฅธ ์–ด๋–ค ๊ธฐ๊ณ„๋“ค๋ณด๋‹ค๋„
์‚ฌ๋žŒ์„ ๋งŽ์ด ๋‹ฎ์•˜์Šต๋‹ˆ๋‹ค.
16:26
They can't solve all of the world's problems,
305
986983
2954
๋กœ๋ด‡์ด ์„ธ์ƒ์˜ ๋ชจ๋“  ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜๋Š” ์—†์ง€๋งŒ,
16:29
but I think they have something important to teach us.
306
989961
3523
์šฐ๋ฆฌ์—๊ฒŒ ๋ฌด์–ธ๊ฐ€ ์ค‘์š”ํ•œ ๊ฒƒ์„ ๊ฐ€๋ฅด์ณ ์ค€๋‹ค๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
16:34
I invite all of you
307
994276
2001
์—ฌ๋Ÿฌ๋ถ„ ๋ชจ๋‘๊ฐ€ ์—ฌ๋Ÿฌ๋ถ„์ด ๊ด€์‹ฌ์žˆ๊ณ ,
16:36
to think about the innovations that you're interested in,
308
996301
3578
์›ํ•˜๋Š” ๊ธฐ๊ณ„๊ฐ€ ์–ด๋–ค ๊ฒƒ์ธ์ง€์— ๋Œ€ํ•ด
16:40
the machines that you wish for.
309
1000712
2243
ํ˜์‹ ์ ์ธ ์ƒ๊ฐ์„ ํ•˜์‹œ๊ธธ ๋ฐ”๋ž๋‹ˆ๋‹ค.
16:43
And think about what they might be telling you.
310
1003660
2607
๊ทธ๋ฆฌ๊ณ  ๊ทธ ํ˜์‹ ๋“ค์ด ์—ฌ๋Ÿฌ๋ถ„์—๊ฒŒ ๋ผ์น  ์˜ํ–ฅ์„ ์ƒ๊ฐํ•ด๋ณด์„ธ์š”.
์™œ๋ƒํ•˜๋ฉด ๋งŽ์€ ๊ธฐ์ˆ  ํ˜์‹ ๊ณผ
16:47
Because I have a hunch that many of our technological innovations,
311
1007211
3745
์šฐ๋ฆฌ๊ฐ€ ๊ฟˆ๊ฟ”์™”๋˜ ์žฅ์น˜๋“ค์ด
16:50
the devices we dream about,
312
1010980
1671
์šฐ๋ฆฌ๋ฅผ ๋” ๋‚˜์€ ์‚ฌ๋žŒ์ด ๋˜๊ธฐ ์œ„ํ•ด ์ผ๊นจ์›Œ์ค„๊ฑฐ๋ผ๋Š”
์˜ˆ๊ฐ์ด ๋“ค๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
16:54
can inspire us to be better humans.
313
1014166
2849
16:57
Thank you.
314
1017984
1151
๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค. (๋ฐ•์ˆ˜)
16:59
(Applause)
315
1019159
1912
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7