Why specializing early doesn't always mean career success | David Epstein

562,080 views

2020-09-21 ใƒป TED


New videos

Why specializing early doesn't always mean career success | David Epstein

562,080 views ใƒป 2020-09-21

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

00:00
Transcriber: Leslie Gauthier Reviewer: Camille Martรญnez
0
0
7000
๋ฒˆ์—ญ: Da-Young Lee ๊ฒ€ํ† : Jihyeon J. Kim
์ž ์žฌ๋ ฅ ๊ฐœ๋ฐœ์— ๋Œ€ํ•œ ์ด์•ผ๊ธฐ๋ฅผ ํ•ด๋ณด๋ ค ํ•ฉ๋‹ˆ๋‹ค,
์•„๋งˆ ์˜ํ–ฅ๋ ฅ์ด ๊ฐ€์žฅ ๊ฐ•ํ•  ์ž๊ธฐ๊ณ„๋ฐœ์— ๋Œ€ํ•œ ์ตœ๊ทผ์˜ ์ด์•ผ๊ธฐ๋กœ ์‹œ์ž‘ํ•ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.
00:13
So, I'd like to talk about the development of human potential,
1
13690
2919
1๋งŒ ์‹œ๊ฐ„์˜ ๋ฒ•์น™์— ๋Œ€ํ•ด ์•„๋งˆ ๋งŽ์€ ๋ถ„๋“ค์ด ๋“ค์–ด๋ณด์…จ์„ ๊ฒ๋‹ˆ๋‹ค.
00:16
and I'd like to start with maybe the most impactful modern story of development.
2
16633
5090
์—ฌ๋Ÿฌ๋ถ„์˜ ์‚ถ์œผ๋กœ ์ด๋ฅผ ๋ณธ๋ฐ›์œผ๋ ค๊ณ  ํ•ด๋ณด์…จ์„์ง€๋„ ๋ชจ๋ฆ…๋‹ˆ๋‹ค.
๊ทผ๋ณธ์ ์œผ๋กœ ์ด ๋ฒ•์น™์€ ์–ด๋Š ๋ถ„์•ผ์—์„œ๊ฑด ์ž˜ ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š”
00:21
Many of you here have probably heard of the 10,000 hours rule.
3
21747
3780
1๋งŒ ์‹œ๊ฐ„์˜ ์ง‘์ค‘์ ์ธ ํ›ˆ๋ จ์ด ํ•„์š”ํ•˜๋‹ค๋Š” ๊ฐœ๋…์ด์ฃ .
๊ทธ๋Ÿฌ๋‹ˆ๊นŒ ๋นจ๋ฆฌ ์‹œ์ž‘ํ• ์ˆ˜๋ก ์ด๋“์ธ ๊ฒ๋‹ˆ๋‹ค.
00:25
Maybe you even model your own life after it.
4
25551
2110
00:27
Basically, it's the idea that to become great in anything,
5
27685
2749
์ด ์‚ฌ๋ก€์˜ ์ „ํ˜•์ ์ธ ์ธ๋ฌผ์€ ํƒ€์ด๊ฑฐ ์šฐ์ฆˆ์ž…๋‹ˆ๋‹ค.
00:30
it takes 10,000 hours of focused practice,
6
30458
2936
๊ทธ์˜ ์•„๋ฒ„์ง€๋Š” ๊ทธ๊ฐ€ 7๊ฐœ์›”์ด ๋˜์—ˆ์„ ๋•Œ ๊ณจํ”„์ฑ„๋ฅผ ์ฅ์—ฌ์ค€ ๊ฒƒ์œผ๋กœ ์œ ๋ช…ํ•ฉ๋‹ˆ๋‹ค.
00:33
so you'd better get started as early as possible.
7
33418
2354
10๊ฐœ์›” ์งธ์— ๊ทธ๋Š” ์•„๋ฒ„์ง€์˜ ์Šค์œ™์„ ๋”ฐ๋ผํ•˜๊ธฐ ์‹œ์ž‘ํ–ˆ์Šต๋‹ˆ๋‹ค.
00:35
The poster child for this story is Tiger Woods.
8
35796
3915
๋‘ ์‚ด ๋•Œ ์ „๊ตญ๋ฐฉ์†ก์— ์ถœ์—ฐํ–ˆ๋˜ ๊ทธ๋ฅผ ์œ ํŠœ๋ธŒ์—์„œ ํ™•์ธํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
00:39
His father famously gave him a putter when he was seven months old.
9
39735
3262
์‹œ๊ฐ„์„ ๋‹น๊ฒจ 21์‚ด์˜ ๋‚˜์ด์—
00:43
At 10 months, he started imitating his father's swing.
10
43408
3104
๊ทธ๋Š” ์„ธ๊ณ„์—์„œ ๊ฐ€์žฅ ์œ„๋Œ€ํ•œ ๊ณจํ”„์„ ์ˆ˜์ž…๋‹ˆ๋‹ค.
1๋งŒ ์‹œ๊ฐ„์˜ ๋ฒ•์น™์˜ ์ „ํ˜•์  ์‚ฌ๋ก€์ž…๋‹ˆ๋‹ค.
00:46
At two, you can go on YouTube and see him on national television.
11
46973
3470
๋งŽ์€ ๋ฒ ์ŠคํŠธ ์…€๋Ÿฌ ์ฑ…๋“ค์—์„œ ๋‹ค๋ฃจ๋Š” ์ด ๋ฒ•์น™์˜ ๋˜ ๋‹ค๋ฅธ ์‚ฌ๋ก€๋Š”
ํด๊ฐ€ ์„ธ ์ž๋งค์ธ๋ฐ์š”.
00:50
Fast-forward to the age of 21,
12
50467
1658
๊ทธ๋“ค์˜ ์•„๋ฒ„์ง€๋Š” ์•„์ฃผ ์ „๋ฌธ์ ์œผ๋กœ ์กฐ๊ธฐ์— ์ฒด์Šค๋ฅผ ๊ฐ€๋ฅด์น˜๊ฒ ๋‹ค๊ณ  ๊ฒฐ์‹ฌํ–ˆ์Šต๋‹ˆ๋‹ค.
00:52
he's the greatest golfer in the world.
13
52149
1859
00:54
Quintessential 10,000 hours story.
14
54032
1652
00:55
Another that features in a number of bestselling books
15
55708
2551
์ง„์งœ๋กœ ๊ทธ๋Š” ์ฆ๋ช…ํ•ด๋ณด์ด๊ณ  ์‹ถ์—ˆ์Šต๋‹ˆ๋‹ค
์ง‘์ค‘์ ์ธ ํ›ˆ๋ จ์„ ๋‚จ๋“ค๋ณด๋‹ค ๋จผ์ € ์‹œ์ž‘ํ•˜๋ฉด
00:58
is that of the three Polgar sisters,
16
58283
1777
์–ด๋–ค ๊ฒƒ์—์„œ๋“  ์–ด๋–ค ์•„์ด๋ผ๋„ ์ฒœ์žฌ๊ฐ€ ๋  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฑธ ๋ง์ด์ฃ .
01:00
whose father decided to teach them chess in a very technical manner
17
60084
3206
๊ทธ๋ฆฌ๊ณ  ์‹ค์ œ๋กœ
01:03
from a very early age.
18
63314
1156
๊ทธ์˜ ์ž๋…€ ์ค‘ ๋‘ ๋”ธ์€ ๊ฒฐ๊ตญ ์ตœ๊ณ  ์ˆ˜์ค€์˜ ์ฒด์Šค ์„ ์ˆ˜๊ฐ€ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
01:04
And, really, he wanted to show
19
64494
1459
01:05
that with a head start in focused practice,
20
65977
2019
๊ทธ๋ž˜์„œ ์ œ๊ฐ€ โ€œ์Šคํฌ์ธ  ์ผ๋Ÿฌ์ŠคํŠธ๋ ˆ์ดํ‹ฐ๋“œโ€ ์žก์ง€์‚ฌ์˜ ๊ณผํ•™ ์ €์ˆ ๊ฐ€๊ฐ€ ๋˜์—ˆ์„ ๋•Œ,
01:08
any child could become a genius in anything.
21
68020
2418
๊ถ๊ธˆํ•ด์กŒ์Šต๋‹ˆ๋‹ค.
01:10
And in fact,
22
70462
1176
๋งŒ์•ฝ ์ด 1๋งŒ ์‹œ๊ฐ„์˜ ๋ฒ•์น™์ด ์˜ณ๋‹ค๋ฉด
01:11
two of his daughters went on to become Grandmaster chess players.
23
71662
3152
์šฐ์ˆ˜ํ•œ ์šด๋™์„ ์ˆ˜๋“ค์ด ๋‚จ๋“ค๋ณด๋‹ค ์•ž์„œ ์‹œ์ž‘ํ•จ์„ ํ™•์ธ ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค
01:14
So when I became the science writer at "Sports Illustrated" magazine,
24
74838
3249
์†Œ์œ„ โ€œ์‹ ์ค‘ํ•œ ์—ฐ์Šตโ€œ์ด๋ผ ๋ถˆ๋ฆฌ์šฐ๋Š” ๊ฒƒ์„ ํ†ตํ•ด์„œ์š”.
์ด๋Š” ์•ฝ์  ์ˆ˜์ •์— ์ดˆ์ ์„ ๋งž์ถ˜ ์—ฐ์Šต์œผ๋กœ ์ง€๋„ํ•ฉ๋‹ˆ๋‹ค.
01:18
I got curious.
25
78111
1156
01:19
If this 10,000 hours rule is correct,
26
79291
1946
๊ทธ๋ƒฅ ๋†€๋ฉด์„œ ์‹œ๋„ํ•˜๋Š” ๊ฒŒ ์•„๋‹ˆ๋ผ์š”.
01:21
then we should see that elite athletes get a head start
27
81261
2598
๊ทธ๋ฆฌ๊ณ  ์‹ค์ œ๋กœ, ๊ณผํ•™์ž๋“ค์ด ์šฐ์ˆ˜ํ•œ ์šด๋™์„ ์ˆ˜๋“ค์„ ์—ฐ๊ตฌํ•ด๋ดค์„ ๋•Œ
01:23
in so-called "deliberate practice."
28
83883
1749
์„ ์ˆ˜๋“ค์ด ์‹ ์ค‘ํ•œ ์—ฐ์Šต์— ๋” ๋งŽ์€ ์‹œ๊ฐ„์„ ํ• ์• ํ•จ์„ ํ™•์ธํ–ˆ์Šต๋‹ˆ๋‹ค.
01:25
This is coached, error-correction-focused practice,
29
85656
2739
๋ณ„๋กœ ๋†€๋ž์ง€๋„ ์•Š์ฃ .
์„ ์ˆ˜๋“ค์˜ ์„ฑ์žฅ ๊ณผ์ •์„ ์ง€์†์ ์œผ๋กœ ๋”ฐ๋ผ๊ฐ€๋ฉฐ ๊ด€์ฐฐํ•ด๋ณด๋ฉด
01:28
not just playing around.
30
88419
1490
01:29
And in fact, when scientists study elite athletes,
31
89933
2356
์ด๋Ÿฐ ์‹์˜ ํŒจํ„ด์ด ๋ณด์ž…๋‹ˆ๋‹ค.
01:32
they see that they spend more time in deliberate practice --
32
92313
2846
๋ฏธ๋ž˜์— ์—˜๋ฆฌํŠธ๋กœ ์„ฑ์žฅํ•  ์„ ์ˆ˜๋“ค์€ ์‚ฌ์‹ค ์ดˆ๋ฐ˜์— ์‹œ๊ฐ„์„ ๋œ ์”๋‹ˆ๋‹ค
01:35
not a big surprise.
33
95183
1156
๊ทธ๋“ค์˜ ๊ถ๊ทน์ ์ธ ์Šคํฌ์ธ  ๋ถ„์•ผ์—์„œ ์‹ ์ค‘ํ•œ ์—ฐ์Šต์„ ํ•˜๋Š” ๋ฐ์— ์žˆ์–ด์„œ์š”.
01:36
When they actually track athletes over the course of their development,
34
96363
3394
๊ทธ๋“ค์€ ๊ณผํ•™์ž๋“ค์ด โ€œ๋ง›๋ณด๊ธฐ ์‹œ๊ธฐโ€œ๋ผ๊ณ  ๋ถ€๋ฅด๋Š” ์‹œ๊ฐ„์„ ๋ณด๋‚ด๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์Šต๋‹ˆ๋‹ค,
01:39
the pattern looks like this:
35
99781
1338
01:41
the future elites actually spend less time early on
36
101143
2635
์‹ ์ฒด ํ™œ๋™์— ์žˆ์–ด ๋‹ค์–‘ํ•œ ์‹œ๋„๋ฅผ ํ•ด๋ณด๋Š” ์‹œ๊ธฐ์ฃ .
01:43
in deliberate practice in their eventual sport.
37
103802
2761
ํญ ๋„“์€, ์—ฌ๋Ÿฌ๊ฐ€์ง€ ์ผ๋ฐ˜์ ์ธ ๊ธฐ์ˆ ์„ ํ„ฐ๋“ํ•˜๊ณ 
์ž์‹ ์˜ ํฅ๋ฏธ์™€ ๋Šฅ๋ ฅ์„ ์•Œ์•„๊ฐ€๋ฉฐ
01:46
They tend to have what scientists call a "sampling period,"
38
106587
3296
๋‚ฎ์€ ๋‹จ๊ณ„์—์„œ ์ •์ฒด๊ธฐ๋ฅผ ๊ฒช๊ฒŒ ๋˜๋Š” ๋˜๋ž˜๋“ค๋ณด๋‹ค ์ „๋ฌธํ™”๋ฅผ ๋Šฆ๋˜๊ฒŒ ๋ฏธ๋ฃน๋‹ˆ๋‹ค.
01:49
where they try a variety of physical activities,
39
109907
2255
01:52
they gain broad, general skills,
40
112186
1834
๊ทธ๋Ÿฌ๋‹ˆ๊นŒ ์ด๊ฑธ ์ฒ˜์Œ ํ™•์ธํ–ˆ์„ ๋•Œ ์ €๋Š” ์ด๋ ‡๊ฒŒ ๋งํ–ˆ์Šต๋‹ˆ๋‹ค,
01:54
they learn about their interests and abilities
41
114044
2153
โ€œ์ด๋Ÿฐ, ์ด๊ฑด 1๋งŒ ์‹œ๊ฐ„์˜ ๋ฒ•์น™๊ณผ๋Š” ๋งž์ง€ ์•Š๋Š” ์–˜๊ธด๋ฐ?โ€
01:56
and delay specializing until later than peers who plateau at lower levels.
42
116221
3963
๊ทธ๋ž˜์„œ ์ €๋Š” ๋‹ค๋ฅธ ๋ถ„์•ผ์—๋„ ์ ์šฉ๋˜๋Š”์ง€ ๊ถ๊ธˆํ•ด์กŒ์Šต๋‹ˆ๋‹ค
02:00
And so when I saw that, I said,
43
120847
2130
์˜๋ฌด์ ์ธ, ์ด๋ฅธ ์ „๋ฌธํ™”์™€ ์—ฐ๊ฒฐ์ง€์–ด ์šฐ๋ฆฌ๊ฐ€ ์—ฐ์ƒํ•˜๊ณค ํ•˜๋Š”
02:03
"Gosh, that doesn't really comport with the 10,000 hours rule, does it?"
44
123001
3437
์Œ์•… ๊ฐ™์€ ๋ถ„์•ผ์š”.
์ด ํŒจํ„ด์ด ์ž์ฃผ ์ผ์น˜ํ•œ๋‹ค๋Š” ๊ฒƒ์ด ๋ฐํ˜€์กŒ์Šต๋‹ˆ๋‹ค.
02:06
So I started to wonder about other domains
45
126462
2010
์ด๋Š” ์„ธ๊ณ„์ ์ธ ์ˆ˜์ค€์˜ ์Œ์•… ๊ต์Šต์›์—์„œ ํ–‰ํ•ด์ง„ ์—ฐ๊ตฌ์ž…๋‹ˆ๋‹ค.
02:08
that we associate with obligatory, early specialization,
46
128496
3131
์—ฌ๋Ÿฌ๋ถ„์ด ์ฃผ๋ชฉํ•˜์‹ค ๋ถ€๋ถ„์€
02:11
like music.
47
131651
1314
๋›ฐ์–ด๋‚œ ์Œ์•…๊ฐ€๋“ค์ด ์‹ ์ค‘ํ•œ ์—ฐ์Šต์— ๋” ๋งŽ์€ ์‹œ๊ฐ„์„ ์Ÿ์ง€ ์•Š์•˜๋‹ค๋Š” ๊ฒ๋‹ˆ๋‹ค.
02:12
Turns out the pattern's often similar.
48
132989
1852
02:14
This is research from a world-class music academy,
49
134865
2416
ํ‰๋ฒ”ํ•œ ์Œ์•…๊ฐ€๋“ค๋ณด๋‹ค์š”.
์ƒˆ๋กœ์šด ์„ธ ๋ฒˆ์งธ ์•…๊ธฐ๋ฅผ ๋‹ค๋ฃฐ ๋•Œ๊นŒ์ง€์š”.
02:17
and what I want to draw your attention to is this:
50
137305
2361
๊ทธ๋“ค ๋˜ํ•œ ๋ง›๋ณด๊ธฐ ์‹œ๊ธฐ๋ฅผ ๊ฐ€์ง€๋Š” ๊ฒฝํ–ฅ์ด ์žˆ๋Š” ๊ฒ๋‹ˆ๋‹ค.
02:19
the exceptional musicians didn't start spending more time in deliberate practice
51
139690
3818
์œ ๋ช…ํ•œ ์‹ ๋™์ด๋ผ ์ƒ๊ฐํ•˜๊ณค ํ•˜๋Š” ์Œ์•…๊ฐ€๋“ค์กฐ์ฐจ๋„ ๊ทธ๋Ÿฐ๋ฐ
์š”์š”๋งˆ ๊ฐ™์€ ์‚ฌ๋žŒ์ด์ฃ .
02:23
than the average musicians
52
143532
1239
๋ง›๋ณด๊ธฐ ์‹œ๊ธฐ๋ฅผ ๊ฑฐ์ณค์Šต๋‹ˆ๋‹ค,
02:24
until their third instrument.
53
144795
1391
๋‹ค๋งŒ ๋‹ค๋ฅธ ๋Œ€๋‹ค์ˆ˜์˜ ์Œ์•…์ธ๋“ค๋ณด๋‹ค ๊ทธ ์‹œ๊ธฐ๋ฅผ ๋น ๋ฅด๊ฒŒ ๊ฑฐ์ณค์„ ๋ฟ์ด์ฃ .
02:26
They, too, tended to have a sampling period,
54
146210
2079
๊ทธ๋ ‡๋‹ค ํ• ์ง€๋ผ๋„ ์ด ์—ฐ๊ตฌ๋Š” ๊ฑฐ์˜ ์™„์ „ํžˆ ๋ฌด์‹œ๋˜์–ด ์™”์Šต๋‹ˆ๋‹ค.
02:28
even musicians we think of as famously precocious,
55
148313
2415
02:30
like Yo-Yo Ma.
56
150752
1206
๊ทธ๋ฆฌ๊ณ  ๋” ์˜ํ–ฅ๋ ฅ์ด ๊ฐ•ํ•œ ๊ฑด
02:31
He had a sampling period,
57
151982
1245
โ€œํƒ€์ด๊ฑฐ ๋งˆ๋”โ€ ๊ฐ™์€ ์—„ํ•œ ์ž๋…€๊ต์œก ํšŒ๊ณ ๋ก์˜ ์ฒซ ํŽ˜์ด์ง€์ด์ง€์š”.
02:33
he just went through it more rapidly than most musicians do.
58
153251
2832
์ €์ž๊ฐ€ ๋”ธ์—๊ฒŒ ๋ฐ”์ด์˜ฌ๋ฆฐ์„ ํ•˜๋„๋ก ํšŒ๊ณ ํ•˜๋˜ ๋ถ€๋ถ„์ด์ฃ .
02:36
Nonetheless, this research is almost entirely ignored,
59
156107
3188
์•„๋ฌด๋„ ๊ทธ ์ฑ…์˜ ๋’ท๋ถ€๋ถ„์— ๋Œ€ํ•ด์„œ๋Š” ๊ธฐ์–ตํ•˜์ง€ ๋ชปํ•˜๋Š” ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค.
02:39
and much more impactful
60
159319
1327
02:40
is the first page of the book "Battle Hymn of the Tiger Mother,"
61
160670
3048
๋”ธ์ด โ€œ์—„๋งˆ๊ฐ€ ์‹œ์ผฐ์ž–์•„์š”, ์ œ ์Šค์Šค๋กœ๊ฐ€ ์•„๋‹ˆ๋ผ.โ€๋ผ๊ณ  ๋’ค๋Œ์•„ ๋งํ•œ ๋ถ€๋ถ„์š”.
02:43
where the author recounts assigning her daughter violin.
62
163742
3098
๊ทธ๋ฆฌ๊ณ  ๋Œ€์ฐจ๊ฒŒ ๊ทธ๋งŒ๋’€๊ณ ์š”.
์Šคํฌ์ธ ์™€ ์Œ์•…์—์„œ ์ด๋Ÿฐ ์ข…๋ฅ˜์˜ ๋†€๋ผ์šด ํŒจํ„ด์„ ํ™•์ธํ•œ ๋‹ค์Œ์—
02:46
Nobody seems to remember the part later in the book
63
166864
2456
์ „ ๋” ๋งŽ์€ ์‚ฌ๋žŒ๋“ค์—๊ฒŒ ์˜ํ–ฅ์„ ๋ผ์น˜๋Š” ๋ถ„์•ผ์— ๋Œ€ํ•ด๋„ ๊ถ๊ธˆํ•ด์ง€๊ธฐ ์‹œ์ž‘ํ–ˆ์ฃ .
02:49
where her daughter turns to her and says, "You picked it, not me,"
64
169344
3123
์˜ˆ๋ฅผ ๋“ค๋ฉด ๊ต์œก์ด์š”.
ํ•œ ๊ฒฝ์ œํ•™์ž๋Š” ์‹ฌ๋ฆฌํ•™ ๋ถ„์•ผ์˜ ๊ด€์ฐฐ ์—ฐ๊ตฌ ์ค‘ ํ•˜๋‚˜์ธ ์ž์—ฐ ์‹คํ—˜์œผ๋กœ
02:52
and largely quits.
65
172491
1150
02:53
So having seen this sort of surprising pattern in sports and music,
66
173665
3154
์˜๊ตญ๊ณผ ์Šค์ฝ”ํ‹€๋žœ๋“œ์˜ ๊ณ ๋“ฑ ๊ต์œก ์ฒด๊ณ„๋ฅผ ์—ฐ๊ตฌํ–ˆ์Šต๋‹ˆ๋‹ค.
02:56
I started to wonder about domains that affect even more people,
67
176843
2988
๊ทธ๊ฐ€ ์—ฐ๊ตฌํ–ˆ๋˜ ์‹œ๊ธฐ์—๋Š” ์•„์ฃผ ๋‘ ์ง€์—ญ์˜ ๊ต์œก ์ฒด๊ณ„๊ฐ€ ์œ ์‚ฌํ–ˆ์Šต๋‹ˆ๋‹ค.
02:59
like education.
68
179855
1156
์˜๊ตญ์˜ ๊ฒฝ์šฐ ํ•™์ƒ๋“ค์ด ์‹ญ๋Œ€ ์ค‘๋ฐ˜์— ์ „๋ฌธํ™” ๊ต์œก์„ ๋ฐ›์•„์•ผํ–ˆ๋‹ค๋Š” ๊ฒƒ ๋นผ๊ณ ์š”.
03:01
An economist found a natural experiment
69
181035
1884
03:02
in the higher-ed systems of England and Scotland.
70
182943
2295
๊ตฌ์ฒด์ ์ธ ๊ณต๋ถ€ ๊ณผ์ •์„ ๊ณจ๋ผ ์‹ ์ฒญํ•ด์•ผ ํ–ˆ์ฃ .
๋ฐ˜๋ฉด ์Šค์ฝ”ํ‹€๋žœ๋“œ์—์„œ๋Š” ๋Œ€ํ•™์ƒ๋“ค๊นŒ์ง€๋„ ๊ณ„์† ๋‹ค์–‘ํ•œ ์‹œ๋„๋ฅผ ํ•  ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
03:05
In the period he studied, the systems were very similar,
71
185262
2654
03:07
except in England, students had to specialize in their mid-teen years
72
187940
3253
๋‚ดํ‚จ๋‹ค๋ฉด ๋ง์ž…๋‹ˆ๋‹ค.
๊ทธ ๊ฒฝ์ œํ•™์ž๊ฐ€ ๊ถ๊ธˆํ–ˆ๋˜ ๊ฑด
์ ์€ ๊ธฐํšŒ๋น„์šฉ์ด ์–ด๋Š ์ชฝ์ด์—ˆ๋Š”์ง€์ž…๋‹ˆ๋‹ค. ์ „๋ฌธํ™”๊ฐ€ ์ด๋ฅธ ์ชฝ์ผ๊นŒ์š” ๋ฐ˜๋Œ€์ผ๊นŒ์š”?
03:11
to pick a specific course of study to apply to,
73
191217
2205
03:13
whereas in Scotland, they could keep trying things in the university
74
193446
3230
๊ทธ๋Š” ์ด๋ฅธ ์ „๋ฌธ๊ฐ€๋“ค์ด ๋‘๋“œ๋Ÿฌ์ง€๊ฒŒ ์ˆ˜์ž…์ด ๋งŽ์Œ์„ ํ™•์ธํ–ˆ์Šต๋‹ˆ๋‹ค.
03:16
if they wanted to.
75
196700
1151
๋ถ„์•ผ์— ๋Œ€ํ•œ ๊ตฌ์ฒด์ ์ธ ๊ธฐ์ˆ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด์—ˆ์Šต๋‹ˆ๋‹ค.
03:17
And his question was:
76
197875
1151
03:19
Who wins the trade-off, the early or the late specializers?
77
199050
2783
๋Šฆ๋œ ์ „๋ฌธ๊ฐ€๋“ค์€ ๋” ๋‹ค์–‘ํ•œ ๊ฒƒ๋“ค์„ ์‹œ๋„ํ•  ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
03:21
And what he saw was that the early specializers jump out to an income lead
78
201857
3495
๊ทธ๋“ค์ด ์ง์—…์„ ๊ณจ๋ž์„ ๋•Œ ๋” ์ž˜ ๋งž์•˜์Šต๋‹ˆ๋‹ค.
์ฆ‰ ๊ฒฝ์ œํ•™์ž๋“ค์ด โ€œ์ผ์ž๋ฆฌ์˜ ์งˆโ€์ด๋ผ๊ณ  ๋ถ€๋ฅด๋Š” ๋ถ€๋ถ„์—์„œ์š”.
03:25
because they have more domain-specific skills.
79
205376
2162
๊ทธ๋“ค์˜ ์„ฑ์žฅ๋ฅ ์€ ๋” ๊ฐ€ํŒ”๋ž์Šต๋‹ˆ๋‹ค.
03:27
The late specializers get to try more different things,
80
207562
2602
6๋…„์ด ์ง€๋‚ฌ์„ ๋•Œ
๊ทธ๋“ค์€ ๊ทธ ์†Œ๋“ ๊ฒฉ์ฐจ๋ฅผ ์—†์•ด์Šต๋‹ˆ๋‹ค.
03:30
and when they do pick, they have better fit,
81
210188
2066
๊ทธ ์‚ฌ์ด ์กฐ๊ธฐ์— ์ „๋ฌธ๊ฐ€๊ฐ€ ๋œ ์‚ฌ๋žŒ๋“ค์€ ์ง์—…์„ ๊ทธ๋งŒ๋‘๊ธฐ ์‹œ์ž‘ํ–ˆ์Šต๋‹ˆ๋‹ค.
03:32
or what economists call "match quality."
82
212278
1949
03:34
And so their growth rates are faster.
83
214251
2658
ํ›จ์”ฌ ๋งŽ์€ ์ˆ˜๊ฐ€์š”.
๋ณธ์งˆ์ ์œผ๋กœ ๋„ˆ๋ฌด ์ผ์ฐ ์„ ํƒํ•ด์•ผ๋งŒ ํ–ˆ๊ธฐ ๋•Œ๋ฌธ์—
03:36
By six years out,
84
216933
1157
03:38
they erase that income gap.
85
218114
1635
๊ทธ๋“ค์€ ์ž์ฃผ ์ข‹์ง€ ์•Š์€ ์„ ํƒ์„ ๋‚ด๋ฆฌ๊ณค ํ–ˆ์Šต๋‹ˆ๋‹ค.
03:39
Meanwhile, the early specializers start quitting their career tracks
86
219773
3200
์ด๋ ‡๊ฒŒ ๋Šฆ๋œ ์ „๋ฌธ๊ฐ€๋“ค์€ ์งง์€ ๊ธฐ๊ฐ„ ๋™์•ˆ์€ ๋’ค๋–จ์–ด์ง€๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ๋ณด์ผ์ง€ ๋ชฐ๋ผ๋„
์žฅ๊ธฐ๊ฐ„์œผ๋กœ ๋ณด๋ฉด ์Šน๋ฆฌํ•˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
03:42
in much higher numbers,
87
222997
1162
์ €๋Š” ์šฐ๋ฆฌ๊ฐ€ ์ง์—… ์„ ํƒ์„ ๋ฐ์ดํŠธ์ฒ˜๋Ÿผ ์ƒ๊ฐํ•œ๋‹ค๋ฉด
03:44
essentially because they were made to choose so early
88
224183
2509
์‚ฌ๋žŒ๋“ค์—๊ฒŒ ๋„ˆ๋ฌด ๋น ๋ฅด๊ฒŒ ์ •์ฐฉํ•˜๋„๋ก ์••๋ฐ•์„ ์ฃผ์ง„ ์•Š์„ ๊ฑฐ๋ผ๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
03:46
that they more often made poor choices.
89
226716
1889
03:48
So the late specializers lose in the short term
90
228629
2206
์ด ํŒจํ„ด์„ ๋‹ค์‹œ ํ™•์ธํ•จ์œผ๋กœ์จ ์ด๋ ‡๊ฒŒ ์ œ๊ฐ€ ํฅ๋ฏธ๋ฅผ ๊ฐ–๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
03:50
and win in the long run.
91
230859
1156
์ œ๊ฐ€ ์˜ค๋žซ๋™์•ˆ ์กด๊ฒฝํ–ˆ๋˜ ์—…์ ์„ ์Œ“์€ ์‚ฌ๋žŒ๋“ค์˜ ๋ฐœ๋‹ฌ ๋ฐฐ๊ฒฝ์— ๋Œ€ํ•ด ํƒ๊ตฌํ•จ์œผ๋กœ
03:52
I think if we thought about career choice like dating,
92
232039
2580
03:54
we might not pressure people to settle down quite so quickly.
93
234643
2871
์Œ์•… ๊ต์Šต์„ ํ”ผํ•ด๋‹ค๋‹ˆ๋Š” ์•„์ด์˜€๋˜ ๋“€ํฌ ์—˜๋งํ„ด ๊ฐ™์€ ์ด์š”.
03:57
So this got me interested, seeing this pattern again,
94
237538
2489
์•ผ๊ตฌ์™€ ์ƒ‰์น ํ•˜๊ณ  ๊ทธ๋ฆฌ๋Š” ๋ฐ์— ์ง‘์ค‘ํ•˜๊ธฐ ์œ„ํ•ด์„œ์š”.
์•„๋‹ˆ๋ฉด ์–ด๋ฆด ๋•Œ ์ˆ˜ํ•™์— ๊ด€์‹ฌ์ด ์—†์—ˆ๋˜ ๋งˆ๋ฆฌ์•” ๋ฏธ๋ฅด์žํ•˜๋‹ˆ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
04:00
in exploring the developmental backgrounds of people whose work I had long admired,
95
240051
3953
์†Œ์„ค๊ฐ€๊ฐ€ ๋˜๋Š” ๊ฒƒ์„ ๊ฟˆ๊พธ์—ˆ๋˜ ์ด์ฃ .
04:04
like Duke Ellington, who shunned music lessons as a kid
96
244028
2587
๊ทธ๋ฆฌ๊ณ  ๊ณ„์† ์ˆ˜ํ•™์„ ๊ณต๋ถ€ํ•˜์—ฌ ์ฒ˜์Œ์ด์ž ์ง€๊ธˆ๊นŒ์ง€ ์œ ์ผํ•œ ์—ฌ์„ฑ์œผ๋กœ์„œ
04:06
to focus on baseball and painting and drawing.
97
246639
2194
ํ•„์ฆˆ ์ƒ์„ ์ˆ˜์ƒํ–ˆ์ฃ .
04:08
Or Maryam Mirzakhani, who wasn't interested in math as a girl --
98
248857
3057
์ˆ˜ํ•™๊ณ„์—์„œ ๊ฐ€์žฅ ๋ช…๋ง์žˆ๋Š” ์ƒ์ด์ฃ .
์•„๋‹ˆ๋ฉด ๋‹ค์„ฏ ๊ฐ€์ง€์˜ ์ง์—…์„ ๊ฑฐ์ณค๋˜ ๋นˆ์„ผํŠธ ๋ฐ˜ ๊ณ ํ๊ฐ€ ์žˆ๊ฒ ์ฃ .
04:11
dreamed of becoming a novelist --
99
251938
1585
๊ฐ๊ฐ์˜ ์ง์—…๋“ค์„ ์ฒœ์ง์œผ๋กœ ์—ฌ๊ธฐ๋‹ค๊ฐ€ ๊ทน์ ์œผ๋กœ ์ง€์ณ ๋‚˜๊ฐ€๋–จ์–ด์กŒ์ฃ .
04:13
and went on to become the first and so far only woman
100
253547
2512
04:16
to win the Fields Medal,
101
256083
1156
๊ทธ๋ฆฌ๊ณ  20๋Œ€ ํ›„๋ฐ˜์—์„œ์•ผ โ€œ๋“œ๋กœ์ž‰์˜ ๊ธฐ์ดˆ ๊ฐ€์ด๋“œโ€ ์ฑ…์„ ์ง‘์–ด๋“ค์—ˆ์ฃ .
04:17
the most prestigious prize in the world in math.
102
257263
2272
04:19
Or Vincent Van Gogh had five different careers,
103
259559
2215
04:21
each of which he deemed his true calling before flaming out spectacularly,
104
261798
3516
์ž˜ ํ’€๋ ธ์ฃ .
ํด๋กœ๋“œ ์„€๋„Œ์€ ๋ฏธ์‹œ๊ฑด ๋Œ€ํ•™๊ต ์†Œ์žฌ ์ „๊ธฐ ๊ธฐ์ˆ ์ž์˜€์Šต๋‹ˆ๋‹ค.
04:25
and in his late 20s, picked up a book called "The Guide to the ABCs of Drawing."
105
265338
4203
ํ•„์ˆ˜ ๊ณผ๋ชฉ์„ ์ฑ„์šฐ๊ธฐ ์œ„ํ•ด์„œ ์ฒ ํ•™ ๊ฐ•์˜๋ฅผ ๋“ค์—ˆ์ฃ .
๊ทธ๊ณณ์—์„œ ํ•œ ์„ธ๊ธฐ ์ „์— ๊ฐ€๊นŒ์šด ๋…ผ๋ฆฌ ๊ตฌ์กฐ์— ๋Œ€ํ•ด ๊นจ๋‹ฌ์•˜์Šต๋‹ˆ๋‹ค.
04:30
That worked out OK.
106
270068
1324
04:31
Claude Shannon was an electrical engineer at the University of Michigan
107
271874
3408
์ฐธ๊ณผ ๊ฑฐ์ง“ ์ง„์ˆ ์ด ์–ด๋–ป๊ฒŒ 1๊ณผ 0์œผ๋กœ ๋ถ€ํ˜ธํ™”๋  ์ˆ˜ ์žˆ๋Š”์ง€
04:35
who took a philosophy course just to fulfill a requirement,
108
275306
2980
๊ทธ๋ฆฌ๊ณ  ์ˆ˜ํ•™ ๋ฌธ์ œ์ฒ˜๋Ÿผ ํ’€๋ฆด ์ˆ˜ ์žˆ๋Š”์ง€์š”.
04:38
and in it, he learned about a near-century-old system of logic
109
278310
3194
์ด๋Š” ์ด์ง„๋ฒ•์˜ ๋ฐœ๋‹ฌ์„ ์ด๋Œ์—ˆ์Šต๋‹ˆ๋‹ค,
๋ชจ๋“  ์˜ค๋Š˜๋‚  ๋””์ง€ํ„ธ ์ปดํ“จํ„ฐ์˜ ๊ธฐ์ €๊ฐ€ ๋˜๋Š” ๊ฒƒ์ด์ฃ .
04:41
by which true and false statements could be coded as ones and zeros
110
281528
3207
๋งˆ์ง€๋ง‰์œผ๋กœ, ์ œ ๋กค๋ชจ๋ธ์ด๋ผ๊ณ  ํ•  ๋งŒํ•œ, ํ”„๋žœ์‹œ์Šค ํ—ค์…€๋ฐ”์ธ์ด ์žˆ๊ฒ ์Šต๋‹ˆ๋‹ค.
04:44
and solved like math problems.
111
284759
1930
04:46
This led to the development of binary code,
112
286713
2327
์ด๊ฑด ๊ทธ๋…€์™€ ์ œ๊ฐ€ ๊ฐ™์ด ์ฐ์€ ์‚ฌ์ง„์ธ๋ฐ์š”.
๊ทธ๋…€๋Š” ์ฒซ ์ „๋ฌธ์ ์ธ ์ง์—…์„ 54์„ธ์˜ ๋‚˜์ด์— ์‹œ์ž‘ํ•˜์—ฌ
04:49
which underlies all of our digital computers today.
113
289064
3073
๊ณ„์†ํ•œ ๋์— ๊ฑธ์Šค์นด์šฐํŠธ์˜ CEO๊ฐ€ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค,
04:52
Finally, my own sort of role model, Frances Hesselbein --
114
292161
2708
๊ฑธ์Šค์นด์šฐํŠธ๋ฅผ ์ผ์œผ์ผœ ์„ธ์› ์ฃ .
04:54
this is me with her --
115
294893
1248
๋น„์ฃผ๋ฅ˜ ์†Œ์ˆ˜์ž ๋‹จ์ฒด ํšŒ์› ์ธ์›์„ ์„ธ ๋ฐฐ๋กœ ๋Š˜๋ ธ๊ณ 
04:56
she took her first professional job at the age of 54
116
296165
3151
130,000๋ช…์˜ ์ž์›๋ด‰์‚ฌ์ž๋ฅผ ๋“ฑ๋กํ•˜์˜€์Šต๋‹ˆ๋‹ค,
๊ทธ๋ฆฌ๊ณ  ๋ณด์—ฌ๋“œ๋ฆฌ๋Š” ์ด๊ฑด ๊ทธ๋…€์˜ ์ž„๊ธฐ ์ค‘ ์†Œ๋…€๋“ค์ด ์–ป์€ ๊ณต๋กœ ๋ฐฐ์ง€์ธ๋ฐ์š”.
04:59
and went on to become the CEO of the Girl Scouts,
117
299340
2306
05:01
which she saved.
118
301670
1176
05:02
She tripled minority membership,
119
302870
1742
์ปดํ“จํ„ฐ๋ฅผ ๋ฐฐ์šฐ๋Š” ์†Œ๋…€๋“ค์„ ์œ„ํ•˜์—ฌ ์ด์ง„๋ฒ• ๋ถ€ํ˜ธ๋กœ ์ด๋ฃจ์–ด์ ธ ์žˆ์Šต๋‹ˆ๋‹ค.
05:04
added 130,000 volunteers,
120
304636
2762
ํ˜„์žฌ, ํ”„๋žœ์‹œ์Šค๋Š” ๋ฆฌ๋”์‰ฝ ๊ต์œก ๊ธฐ๊ด€์„ ์šด์˜ํ•ฉ๋‹ˆ๋‹ค.
05:07
and this is one of the proficiency badges that came out of her tenure --
121
307422
3413
ํ‰์ผ์— ๋งจํ•ดํŠผ์—์„œ ์ผํ•˜์ง€์š”.
104์„ธ๋ฐ–์— ๋˜์ง€ ์•Š์œผ์…จ์Šต๋‹ˆ๋‹ค,
05:10
it's binary code for girls learning about computers.
122
310859
2675
์ด๋Ÿฐ ์ผ์ด ๋” ์ผ์–ด๋‚ ์ง€ ๋ˆ„๊ฐ€ ์•Œ๊ฒ ์–ด์š”.
(์›ƒ์Œ)
05:13
Today, Frances runs a leadership institute
123
313558
2069
์šฐ๋ฆฌ๋Š” ์ด๋Ÿฐ ์„ฑ์žฅ ์ด์•ผ๊ธฐ์— ๋Œ€ํ•ด์„œ๋Š” ์ •๋ง ๋“ค์–ด๋ณธ ์ ์ด ์—†์ฃ , ๊ทธ๋ ‡์ฃ ?
05:15
where she works every weekday, in Manhattan.
124
315651
2207
05:17
And she's only 104,
125
317882
1514
์ด์™€ ๊ฐ™์€ ์—ฐ๊ตฌ์— ๋Œ€ํ•ด์„œ ๋“ค์–ด๋ณธ ์ ์ด ์—†์Šต๋‹ˆ๋‹ค.
๋ฐœ๊ฒฌํ•˜๋Š” ์—ฐ๊ตฌ์š” ๋…ธ๋ฒจ์ƒ ์ˆ˜์ƒ ๊ณผํ•™์ž๋“ค์ด 22๋ฐฐ๋Š” ๋”
05:19
so who knows what's next.
126
319420
1519
05:20
(Laughter)
127
320963
1150
๋ฐ”๊นฅ์—์„œ ์ทจ๋ฏธ๋ฅผ ์ฆ๊ธฐ๋Š” ๊ฒฝํ–ฅ์ด ์žˆ๋‹ค๋Š” ๊ฑธ์š”.
05:22
We never really hear developmental stories like this, do we?
128
322740
2852
์ „ํ˜•์ ์ธ ๊ณผํ•™์ž๋“ค๋ณด๋‹ค์š”.
๋“ค์–ด๋ณธ ์ ์ด ์—†์Šต๋‹ˆ๋‹ค.
05:25
We don't hear about the research
129
325616
1551
๊ทธ ๊ณผ์—…์„ ์ˆ˜ํ–‰ํ•˜๋Š” ์‚ฌ๋žŒ์ด๋‚˜ ๊ณผ์—… ์ž์ฒด๊ฐ€ ๋งค์šฐ ์œ ๋ช…ํ•œ ๊ฒƒ์ด๋ผ๋„
05:27
that found that Nobel laureate scientists are 22 times more likely
130
327191
3123
์ด๋Ÿฐ ์„ฑ์žฅ ์ด์•ผ๊ธฐ๋Š” ๋“ฃ์ง€ ๋ชปํ•ฉ๋‹ˆ๋‹ค.
05:30
to have a hobby outside of work
131
330338
1482
์˜ˆ๋ฅผ ๋“ค์–ด, ์ œ๊ฐ€ ์ถ”์ ํ•ด ์˜จ ํ•œ ์„ ์ˆ˜๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
05:31
as are typical scientists.
132
331844
1243
์—ฌ๊ธฐ ์—ฌ์„ฏ ์‚ด์˜ ๊ทธ๊ฐ€ ์žˆ๋Š”๋ฐ์š”, ์Šค์ฝ”ํ‹€๋žœ๋“œ ๋Ÿญ๋น„ํŒ€ ๋ณต์žฅ์„ ์ž…๊ณ  ์žˆ์ฃ .
05:33
We never hear that.
133
333111
1158
05:34
Even when the performers or the work is very famous,
134
334293
2445
ํ…Œ๋‹ˆ์Šค, ์Šคํ‚ค, ๋ ˆ์Šฌ๋ง๋„ ์‹œ๋„ํ–ˆ์Šต๋‹ˆ๋‹ค.
05:36
we don't hear these developmental stories.
135
336762
1962
๊ทธ์˜ ์–ด๋จธ๋‹ˆ๋Š” ์‚ฌ์‹ค ํ…Œ๋‹ˆ์Šค ์ฝ”์น˜์˜€์ง€๋งŒ ๊ทธ๋ฅผ ๊ฐ€๋ฅด์น˜๊ธฐ๋ฅผ ๊ฑฐ์ ˆํ–ˆ์ฃ .
05:38
For example, here's an athlete I've followed.
136
338748
2131
05:40
Here he is at age six, wearing a Scottish rugby kit.
137
340903
2460
ํ‰๋ฒ”ํ•˜๊ฒŒ ๊ณต์„ ๋ฐ›์•„์น˜๋ ค ํ•˜์ง€ ์•Š์•˜์„ ํ„ฐ์ด๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
๋†๊ตฌ, ํƒ๊ตฌ, ์ˆ˜์˜๋„ ํ–ˆ์Šต๋‹ˆ๋‹ค.
05:43
He tried some tennis, some skiing, wrestling.
138
343387
2204
์ฝ”์น˜๋“ค์ด ์ˆ˜์ค€์„ ์˜ฌ๋ฆฌ๊ธธ ์›ํ–ˆ์„ ๋•Œ
05:45
His mother was actually a tennis coach but she declined to coach him
139
345615
3216
๋” ๋‚˜์ด๋“  ์†Œ๋…„๋“ค๊ณผ ๋†€์ˆ˜ ์žˆ๊ฒŒ๋”
05:48
because he wouldn't return balls normally.
140
348855
2196
๊ทธ๋Š” ๊ฑฐ์ ˆํ–ˆ๋Š”๋ฐ, ๊ทธ๋ƒฅ ํ”„๋กœ ๋ ˆ์Šฌ๋ง ์ด์•ผ๊ธฐ๋ฅผ ํ•˜๊ณ  ์‹ถ์–ด์„œ์˜€์Šต๋‹ˆ๋‹ค.
์—ฐ์Šต์„ ํ•œ ๋’ค์— ์นœ๊ตฌ๋“ค๊ณผ์š”.
05:51
He did some basketball, table tennis, swimming.
141
351075
2229
๊ทธ๋ฆฌ๊ณ  ๋” ๋‹ค์–‘ํ•œ ์Šคํฌ์ธ ๋ฅผ ์‹œ๋„ํ•˜๊ณค ํ–ˆ์—ˆ์ฃ .
05:53
When his coaches wanted to move him up a level
142
353328
2169
ํ•ธ๋“œ๋ณผ, ๋ฐฐ๊ตฌ, ์ถ•๊ตฌ, ๋ฐฐ๋“œ๋ฏผํ„ด, ์Šค์ผ€์ดํŠธ๋ณด๋“œ ...
05:55
to play with older boys,
143
355521
1151
05:56
he declined, because he just wanted to talk about pro wrestling
144
356696
2975
๊ทธ๋Ÿผ ์ด ์ทจ๋ฏธ ์• ํ˜ธ๊ฐ€๋Š” ๋ˆ„๊ตฌ์ผ๊นŒ์š”?
05:59
after practice with his friends.
145
359695
1536
๋กœ์ € ํŽ˜๋”๋Ÿฌ์ž…๋‹ˆ๋‹ค.
06:01
And he kept trying more sports:
146
361255
1496
06:02
handball, volleyball, soccer, badminton, skateboarding ...
147
362775
2990
ํƒ€์ด๊ฑฐ ์šฐ์ฆˆ๋งŒํผ ๋ชจ๋“  ๋ถ€๋ถ„์—์„œ ์œ ๋ช…ํ•œ ์–ด๋ฅธ์ด์ง€๋งŒ
06:05
So, who is this dabbler?
148
365789
2222
์‹ฌ์ง€์–ด ํ…Œ๋‹ˆ์Šค์— ์—ด๊ด‘ํ•˜๋Š” ์‚ฌ๋žŒ๋“ค์กฐ์ฐจ๋„ ์ผ๋ฐ˜์ ์œผ๋กœ ์•„๋ฌด๊ฒƒ๋„ ์•Œ์ง€ ๋ชปํ•ฉ๋‹ˆ๋‹ค.
06:08
This is Roger Federer.
149
368674
1856
๊ทธ์˜ ์„ฑ์žฅ ์ผ๋Œ€๊ธฐ์— ๋Œ€ํ•ด์„œ์š”.
06:10
Every bit as famous as an adult as Tiger Woods,
150
370554
3200
์™œ ๊ทธ๋Ÿด๊นŒ์š”, ๊ทธ๊ฒŒ ์ผ๋ฐ˜์ ์ธ ๊ณผ์ •์ž„์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ ?
ํƒ€์ด๊ฑฐ ์šฐ์ฆˆ์˜ ์ผ๋Œ€๊ธฐ๊ฐ€ ๋งค์šฐ ๊ทน์ ์ด์–ด์„œ ๊ทธ๋Ÿฐ ๊ฒƒ๋„ ์ผ๋ถ€ ์žˆ์œผ๋ฆฌ๋ผ ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
06:13
and yet even tennis enthusiasts don't usually know anything
151
373778
3283
๋˜ํ•œ ์šฐ์ฆˆ์˜ ๊น”๋”ํ•œ ์ด์•ผ๊ธฐ๋Š” ๋ณด์—ฌ์ฃผ๋Š” ๊ฒƒ ๊ฐ™์ฃ .
06:17
about his developmental story.
152
377085
1512
06:18
Why is that, even though it's the norm?
153
378621
2600
์ž˜ ํ•˜๊ณ  ์‹ถ์–ดํ•˜๋Š” ์–ด๋–ค ๊ฒƒ์ด๋“  ์ด์™€ ๊ฐ™์ด ์ถ”๋ก ํ•ด๋ณผ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„์š”.
06:21
I think it's partly because the Tiger story is very dramatic,
154
381245
3179
์šฐ๋ฆฌ ์ž์‹ ์˜ ์‚ถ์—์„œ์š”.
ํ•˜์ง€๋งŒ ์ œ ์ƒ๊ฐ์—๋Š”, ๊ทธ๊ฒŒ ๋ฌธ์ œ์ž…๋‹ˆ๋‹ค,
06:24
but also because it seems like this tidy narrative
155
384448
2387
๋งŽ์€ ๋ฐฉ์‹์œผ๋กœ ๋“œ๋Ÿฌ๋‚ฌ๊ธฐ ๋•Œ๋ฌธ์ด์ฃ , ๊ณจํ”„๋Š” ํŠน์ถœ๋‚˜๊ฒŒ ๋”์ฐํ•œ ๋ณธ๋ณด๊ธฐ์ด์ฃ .
06:26
that we can extrapolate to anything that we want to be good at
156
386859
2996
์‚ฌ๋žŒ๋“ค์ด ๋ฐฐ์šฐ๊ณ  ์‹ถ์–ดํ•˜๋Š” ๊ฑฐ์˜ ๋ชจ๋“  ๊ฒƒ ์ค‘์—์„œ์š”.
06:29
in our own lives.
157
389879
1362
(์›ƒ์Œ)
06:31
But that, I think, is a problem,
158
391265
1596
๊ณจํ”„๋Š” ์ž˜ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.
06:32
because it turns out that in many ways, golf is a uniquely horrible model
159
392885
3531
๋กœ๋นˆ ํ˜ธ๊ฐ€์Šค ๊ฐ™์€ ์‹ฌ๋ฆฌํ•™์ž๊ฐ€ โ€œ์นœ์ ˆํ•œ ํ•™์Šต ํ™˜๊ฒฝโ€œ ์ด๋ผ ํ•˜๋Š” ๊ฒƒ์ด์ฃ .
์นœ์ ˆํ•œ ํ•™์Šต ํ™˜๊ฒฝ์€ ๋ถ„๋ช…ํ•œ ๋‹ค์Œ ๋‹จ๊ณ„์™€ ๋ชฉํ‘œ๋ฅผ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค.
06:36
of almost everything that humans want to learn.
160
396440
2256
06:38
(Laughter)
161
398720
1330
๊ทœ์น™์€ ๋ถ„๋ช…ํ•˜๊ณ  ๋ฐ”๋€Œ์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
06:40
Golf is the epitome of
162
400074
1163
06:41
what the psychologist Robin Hogarth called a "kind learning environment."
163
401261
3471
๋ฌด์–ธ๊ฐ€ ์‹œ๋„ํ•˜๋ฉด, ๋น ๋ฅด๊ณ  ์ •ํ™•ํ•œ ํ”ผ๋“œ๋ฐฑ์„ ๋ฐ›์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค,
06:44
Kind learning environments have next steps and goals that are clear,
164
404756
3209
๋‹ค์Œ ๋…„๋„์˜ ๊ณผ์—…์ด ์ด์ „ ๋…„๋„์˜ ๊ณผ์—…๊ณผ ๋น„์Šทํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
์ฒด์Šค: ์—ญ์‹œ ์นœ์ ˆํ•œ ํ•™์Šต ํ™˜๊ฒฝ์ด์ฃ .
06:47
rules that are clear and never change,
165
407989
1850
06:49
when you do something, you get feedback that is quick and accurate,
166
409863
3252
์ฒด์Šค ์ตœ๊ณ  ๊ถŒ์œ„์ž์ธ ๊ทธ๋žœ๋“œ๋งˆ์Šคํ„ฐ์˜ ๊ฐ•์ ์€
๋ฐ˜๋ณต๋˜๋Š” ํŒจํ„ด์„ ์ธ์‹ํ•˜๋Š” ๋ฐ์— ํฐ ๊ธฐ๋ฐ˜์„ ๋‘๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค,
06:53
work next year will look like work last year.
167
413139
2200
์ž๋™ํ™”ํ•˜๊ธฐ ์‰ฌ์šด ์ด์œ ์ด๊ธฐ๋„ ํ•˜์ฃ .
06:55
Chess: also a kind learning environment.
168
415363
2436
โ€œ์‚ฌ์•…ํ•œ ํ•™์Šต ํ™˜๊ฒฝโ€œ์ด๋ผ๊ณ  ๋ถˆ๋ฆฌ๋Š” ๋Œ€์ฒ™์ ์— ์žˆ๋Š” ๋‹ค๋ฅธ ์˜์—ญ์—์„œ๋Š”
06:57
The grand master's advantage
169
417823
1382
๋‹ค์Œ ๋‹จ๊ณ„์™€ ๋ชฉํ‘œ๊ฐ€ ๋ช…ํ™•ํ•˜์ง€ ์•Š์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
06:59
is largely based on knowledge of recurring patterns,
170
419229
2463
๊ทœ์น™๋„ ๋ฐ”๋€” ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
07:01
which is also why it's so easy to automate.
171
421716
2049
๋ฌด์–ธ๊ฐˆ ํ–ˆ์„ ๋•Œ ํ”ผ๋“œ๋ฐฑ์„ ๋ฐ›๊ธฐ๋„ ํ•˜์ง€๋งŒ ๊ทธ๋ ‡์ง€ ๋ชปํ•  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
07:03
On the other end of the spectrum are "wicked learning environments,"
172
423789
3243
๋Š˜์–ด์งˆ ์ˆ˜ ์žˆ๊ณ , ์ •ํ™•ํ•˜์ง€ ์•Š์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค,
๊ทธ๋ฆฌ๊ณ  ๋‹ค์Œ ํ•ด์˜ ๊ณผ์—…์ด ์ €๋ฒˆ ๋…„๋„์™€ ๊ฐ™์ง€ ์•Š์•„ ๋ณด์ผ ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
07:07
where next steps and goals may not be clear.
173
427056
2220
07:09
Rules may change.
174
429300
1581
๊ทธ๋ ‡๋‹ค๋ฉด ์ด ์ค‘ ์–ด๋–ค ๊ฒƒ์ด ๋” ์šฐ๋ฆฌ๊ฐ€ ์‚ด๊ณ  ์žˆ๋Š” ์„ธ๊ณ„์— ๊ฐ€๊นŒ์šธ๊นŒ์š”?
07:10
You may or may not get feedback when you do something.
175
430905
2544
07:13
It may be delayed, it may be inaccurate,
176
433473
1941
์‹ค์ œ๋กœ ์šฐ๋ฆฌ๋Š” ์ ์‘ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ƒ๊ฐํ•ด๋ณผ ํ•„์š”๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
07:15
and work next year may not look like work last year.
177
435438
2678
์„œ๋กœ ์—ฐ๊ฒฐ๋˜์–ด์žˆ๋Š” ๋ถ€๋ถ„๋“ค์„ ๊ณ„์† ๋”ฐ๋ผ๊ฐ€ ๋ณผ ํ•„์š”๋„์š”
07:18
So which one of these sounds like the world we're increasingly living in?
178
438140
4212
๊ทผ๋ณธ์ ์œผ๋กœ ์šฐ๋ฆฌ์˜ ์ธ์‹์„ ๋ฐ”๊พผ
๊ทธ๋ž˜์„œ ์ด ๋„์‹์„ ๋ณด์•˜์„ ๋•Œ
07:22
In fact, our need to think in an adaptable manner
179
442376
2468
์˜ค๋ฅธ์ชฝ์— ์žˆ๋Š” ์ค‘์‹ฌ์›์€ ์•„๋งˆ ๋” ํฌ๊ฒŒ ๋ณด์ผ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
07:24
and to keep track of interconnecting parts
180
444868
2111
๋‡Œ๊ฐ€ ๊ทธ๋ ‡๊ฒŒ ์ด๋Œ๊ธฐ ๋•Œ๋ฌธ์ด์ฃ .
07:27
has fundamentally changed our perception,
181
447003
2337
์ „์ฒด์—์„œ ๋ถ€๋ถ„๊ฐ„์˜ ๊ด€๊ณ„๋กœ
07:29
so that when you look at this diagram,
182
449364
1833
๊ทธ๋Ÿฌ๋‚˜ ํ˜„๋Œ€ ๋ฏธ์ˆ ์„ ์ ‘ํ•ด๋ณด์ง€ ๋ชปํ•œ ๋ˆ„๊ตฐ๊ฐ€๋Š”
07:31
the central circle on the right probably looks larger to you
183
451221
3330
์ ์‘ํ•˜๊ณ  ๊ฐœ๋…ํ™”๋œ ์ƒ๊ฐ์ด ์š”๊ตฌ๋˜๋Š”
07:34
because your brain is drawn to
184
454575
1436
๊ทธ ์ค‘์‹ฌ์›์ด ๊ฐ™์€ ํฌ๊ธฐ์ž„์„ ์˜ฌ๋ฐ”๋ฅด๊ฒŒ ์•Œ์•„์ฐจ๋ฆด ๊ฒƒ์ž…๋‹ˆ๋‹ค.
07:36
the relationship of the parts in the whole,
185
456035
2135
07:38
whereas someone who hasn't been exposed to modern work
186
458194
2662
์šฐ๋ฆฌ๋Š” ์‚ฌ์•…ํ•œ ๊ณผ์—… ์„ธ์ƒ์— ์‚ด๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค,
07:40
with its requirement for adaptable, conceptual thought,
187
460880
2625
๊ทธ๋ฆฌ๊ณ  ๊ทธ ๊ณณ์—์„œ๋Š”, ๊ฐ€๋” ๊ณผ์ „๋ฌธํ™”๊ฐ€ ์‹ฌํ•œ ์—ญํšจ๊ณผ๋ฅผ ์ผ์œผํ‚ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
07:43
will see correctly that the central circles are the same size.
188
463529
3076
์˜ˆ๋ฅผ ๋“ค์–ด, 12๊ฐœ๊ตญ์„ ์ƒ๋Œ€๋กœ ํ•œ ์—ฐ๊ตฌ์—์„œ
07:47
So here we are in the wicked work world,
189
467073
3072
์—ฐ๊ตฌ ๋Œ€์ƒ์ž๋“ค์€ ๋ถ€๋ชจ์˜ ํ•™๋ ฅ์ด ๊ฐ™์•˜๊ณ 
07:50
and there, sometimes hyperspecialization can backfire badly.
190
470169
3511
์‹œํ—˜ ์ ์ˆ˜,
๋Œ€์ƒ์ž์˜ ํ•™๋ ฅ๋„ ๊ทธ๋Ÿฌํ–ˆ์Šต๋‹ˆ๋‹ค,
07:53
For example, in research in a dozen countries
191
473704
2333
์ฐจ์ด๋Š” ์ผ๋ถ€๋Š” ์ง์—…์— ์ดˆ์ ์„ ๋‘” ๊ต์œก์„ ๋ฐ›์•˜๊ณ 
๋‹ค๋ฅธ ์ด๋“ค์€ ๋” ๋‹ค์–‘ํ•˜๊ณ , ์ผ๋ฐ˜์ ์ธ ๊ต์œก์„ ๋ฐ›์•˜๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
07:56
that matched people for their parents' years of education,
192
476061
2818
๋‚˜ํƒ€๋‚œ ํŒจํ„ด์€ ์ง์—…์— ์ดˆ์ ์„ ๋งž์ถ˜ ๊ต์œก์„ ๋ฐ›์€ ์‚ฌ๋žŒ๋“ค์ด
07:58
their test scores,
193
478903
1164
08:00
their own years of education,
194
480091
1407
๊ต์œก์„ ๋ฐ›์ž๋งˆ์ž ๊ณ ์šฉ๋  ๊ฐ€๋Šฅ์„ฑ์ด ๋” ๋†’๋‹ค๋Š” ๊ฒƒ์ด์—ˆ์Šต๋‹ˆ๋‹ค,
08:01
the difference was some got career-focused education
195
481522
2704
๋” ๋งŽ์€ ๋ˆ์„ ๋‹น์žฅ ๋ฒŒ ๊ฐ€๋Šฅ์„ฑ๋„ ๋†’์•˜์Šต๋‹ˆ๋‹ค.
08:04
and some got broader, general education.
196
484250
2161
ํ•˜์ง€๋งŒ ๋ณ€ํ™”ํ•˜๋Š” ์ง์—…์˜ ์„ธ๊ณ„์— ํ›จ์”ฌ ์ ์‘์ ์ด์ง€ ๋ชปํ–ˆ์Šต๋‹ˆ๋‹ค.
08:06
The pattern was those who got the career-focused education
197
486435
2771
์ „๋ฐ˜์ ์œผ๋กœ ์—…๋ฌด์—์„œ ํ›จ์”ฌ ์ ์€ ์‹œ๊ฐ„์„ ๋ณด๋ƒˆ๊ณ 
08:09
are more likely to be hired right out of training,
198
489230
2384
๋‹จ๊ธฐ๊ฐ„์œผ๋กœ ๋ดค์„ ๋•Œ๋Š” ์šฐ์„ธํ–ˆ์ง€๋งŒ ์žฅ๊ธฐ๊ฐ„์œผ๋กœ ๋ดค์„ ๋•Œ ๋’ค๋–จ์–ด์กŒ์Šต๋‹ˆ๋‹ค.
08:11
more likely to make more money right away,
199
491638
2032
08:13
but so much less adaptable in a changing work world
200
493694
2405
์•„๋‹ˆ๋ฉด ์œ ๋ช…ํ•œ, 20๋…„ ๊ฐ„์˜ ์ „๋ฌธ๊ฐ€ ์—ฐ๊ตฌ๋ฅผ ๊ณ ๋ คํ•ด ๋ด…์‹œ๋‹ค.
08:16
that they spend so much less time in the workforce overall
201
496123
2737
์ง€์ •ํ•™์ , ๊ฒฝ์ œํ•™์ ์ธ ์˜ˆ์ธก์„ ๋„์ถœํ•˜๋Š” ๊ฒƒ์ด์ฃ .
08:18
that they win in the short term and lose in the long run.
202
498884
2902
์ œ์ผ ์ตœ์•…์˜ ์˜ˆ์ธก ์ „๋ฌธ๊ฐ€๋Š” ์ œ์ผ ์ „๋ฌธ์ ์ธ ์ „๋ฌธ๊ฐ€๋“ค์ด์—ˆ์Šต๋‹ˆ๋‹ค.
08:21
Or consider a famous, 20-year study of experts
203
501810
3379
๊ทธ๋“ค์˜ ์ „ ์ปค๋ฆฌ์–ด๋ฅผ ํ•œ๋‘ ๊ฐœ์˜ ๋ฌธ์ œ๋ฅผ ์—ฐ๊ตฌํ•˜๋Š” ๋ฐ ๋ณด๋ƒˆ๋˜ ์ด๋“ค์š”.
08:25
making geopolitical and economic predictions.
204
505213
2800
์„ธ์ƒ ์ „์ฒด๋ฅผ ๋ Œ์ฆˆ ํ•˜๋‚˜๋‚˜ ์ž์‹ ์˜ ๊ฐ€์น˜๋ฅผ ๋ฐ˜์˜ํ•œ ์‹ฌ์ƒ ๋ชจํ˜•์œผ๋กœ ์ฐพ์•„๋ณด๋ ค ํ–ˆ์ง€์š”.
08:28
The worst forecasters were the most specialized experts,
205
508037
4078
๊ทธ๋“ค ์ค‘ ์ผ๋ถ€๋Š” ์‚ฌ์‹ค ๋” ์ตœ์•…์ธ๋ฐ
๊ฒฝํ—˜๊ณผ ์ž๊ฒฉ์ฆ์„ ์Œ“์•˜๊ธฐ ๋•Œ๋ฌธ์ด์ฃ .
08:32
those who'd spent their entire careers studying one or two problems
206
512139
3188
์ตœ๊ณ ์˜ ์˜ˆ์ธก ์ „๋ฌธ๊ฐ€๋Š” ๊ทธ์ € ๋‹ค์–‘ํ•œ ๊ด€์‹ฌ์‚ฌ๋ฅผ ๊ฐ€์ง„ ๋˜‘๋˜‘ํ•œ ์‚ฌ๋žŒ๋“ค์ด์—ˆ์Šต๋‹ˆ๋‹ค.
08:35
and came to see the whole world through one lens or mental model.
207
515351
3110
08:38
Some of them actually got worse
208
518485
1509
์ด์ œ ์ œ์•ฝ๊ณผ ๊ฐ™์€, ๋ช‡๋ช‡ ๋ถ„์•ผ์—์„œ
08:40
as they accumulated experience and credentials.
209
520018
2428
์ฆ๊ฐ€ํ•˜๋Š” ์ „๋ฌธํ™”๋Š” ํ”ผํ•  ์ˆ˜ ์—†๊ธฐ๋„ ํ•˜๊ณ  ์œ ์ตํ•˜๊ธฐ๋„ ํ•ด ์™”์Šต๋‹ˆ๋‹ค.
08:42
The best forecasters were simply bright people with wide-ranging interests.
210
522470
4819
์˜๋ฌธ์˜ ์—ฌ์ง€๊ฐ€ ์—†์ฃ .
๊ทธ๋Ÿผ์—๋„ ์—ฌ์ „ํžˆ ์–‘๋ฉด์„ฑ์„ ๊ฐ–๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
08:47
Now in some domains, like medicine,
211
527789
1975
๋ช‡ ๋…„ ์ „, ๋ฌด๋ฆŽ ํ†ต์ฆ ๋ถ„์•ผ์—์„œ ์ œ์ผ ์œ ๋ช…ํ•œ ์ˆ˜์ˆ  ์ค‘ ํ•˜๋‚˜๊ฐ€
08:49
increasing specialization has been both inevitable and beneficial,
212
529788
3187
์œ„์•ฝ ํˆฌ์—ฌ ์ง‘๋‹จ๊ณผ ํ•จ๊ป˜ ๋ฌด์ž‘์œ„๋กœ ์‹œํ–‰๋˜๋Š” ์ž„์ƒ ์‹œํ—˜์— ๋“ค์–ด๊ฐ”์Šต๋‹ˆ๋‹ค.
08:52
no question about it.
213
532999
1160
ํ™˜์ž ์ค‘ ์ผ๋ถ€๋Š” โ€œ๊ฐ€์งœ ์ˆ˜์ˆ โ€์„ ๋ฐ›์•˜์Šต๋‹ˆ๋‹ค.
08:54
And yet, it's been a double-edged sword.
214
534183
1929
์ด๋Š” ์™ธ๊ณผ์˜๋“ค์ด ์ ˆ๊ฐœ๋ฅผ ํ•˜๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•˜๋Š”๋ฐ
08:56
A few years ago, one of the most popular surgeries in the world for knee pain
215
536136
3640
๊ทธ๋Ÿฌ๋ฉด์„œ ๋ฌด์–ธ๊ฐ€๋ฅผ ํ•˜๊ณ  ์žˆ๋Š” ์–‘ ์†์ด๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
08:59
was tested in a placebo-controlled trial.
216
539800
1987
๊ทธ๋ฆฌ๊ณ  ํ™˜์ž๋ฅผ ๋‹ค์‹œ ๋ด‰ํ•ฉํ•˜๊ณ ์š”.
09:01
Some of the patients got "sham surgery."
217
541811
1916
์ด ๊ณผ์ •๋“ค์€ ์œผ๋ ˆ ์ผ๋ฐ˜์ ์œผ๋กœ ์ˆ˜์ˆ ํ•˜๋“ฏ ์ด๋ฃจ์–ด์กŒ์Šต๋‹ˆ๋‹ค.
๊ทธ๋ ‡๋‹ค ํ•˜๋”๋ผ๋„ ์ˆ˜์ˆ  ๊ณผ์ •์˜ ์ „๋ฌธ๊ฐ€์ธ ์™ธ๊ณผ์˜๋“ค์€ ๊ณ„์†ํ•ด์„œ ์ˆ˜ํ–‰ํ•˜๊ฒ ์ฃ .
09:03
That means the surgeons make an incision,
218
543751
1963
09:05
they bang around like they're doing something,
219
545738
2181
์ˆ˜์—†์ด ๋ฐ˜๋ณตํ•ด์„œ์š”.
09:07
then they sew the patient back up.
220
547943
1669
์ดˆ์ „๋ฌธํ™”๊ฐ€ ์–ธ์ œ๋‚˜ ์‚ฌ์•…ํ•œ ์„ธ์ƒ์˜ ์†์ž„์ˆ˜๋งŒ์€ ์•„๋‹ˆ๋ผ๋ฉด, ์ •๋‹ต์€ ๋ญ˜๊นŒ์š”?
09:09
That performed just as a well.
221
549636
1485
09:11
And yet surgeons who specialize in the procedure continue to do it
222
551145
3153
์ œ๋Œ€๋กœ ๋…ผํ•˜๊ธฐ์— ์–ด๋ ค์šธ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
๊ทธ๊ฑด ํ•ญ์ƒ ์ด๋Ÿฐ ์‹์˜ ๊ณ„ํš ๊ฐ™์•„ ๋ณด์ด์ง„ ์•Š๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
09:14
by the millions.
223
554322
1150
๊ฐ€๋” ๊ทธ๊ฑด ๊ตฌ๋ถˆ๊ตฌ๋ถˆํ•˜๊ฑฐ๋‚˜ ์ง€๊ทธ์žฌ๊ทธ์ฒ˜๋Ÿผ ๋ณด์ด๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค.
09:16
So if hyperspecialization isn't always the trick in a wicked world, what is?
224
556043
4217
๋„“์€ ๊ด€์ ์„ ์œ ์ง€ํ•˜๋Š” ๊ฒƒ์ด๋‚˜์š”.
๋’ค๋–จ์–ด์ง€๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ๋ณด์ผ ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
09:20
That can be difficult to talk about,
225
560284
1761
ํ•˜์ง€๋งŒ ์ €๋Š” ์ด๋Ÿฐ ์†์ž„์ˆ˜์˜ ์ผ๋ถ€๊ฐ€ ๋ฌด์—‡์ด ๋  ์ˆ˜ ์žˆ๋Š”์ง€ ๋งํ•˜๊ณ  ์‹ถ์Šต๋‹ˆ๋‹ค.
09:22
because it doesn't always look like this path.
226
562069
2214
๊ธฐ์ˆ  ๋ณ€ํ˜์— ๋Œ€ํ•œ ์กฐ์‚ฌ๋ฅผ ํ•  ๋•Œ, ์ด๋Š” ์ ์  ๋” ์ฆ๊ฐ€ํ•จ์„ ๋ณด์—ฌ์ฃผ๋Š”๋ฐ
09:24
Sometimes it looks like meandering or zigzagging
227
564307
2316
09:26
or keeping a broader view.
228
566647
1293
09:27
It can look like getting behind.
229
567964
1571
์ œ์ผ ์˜ํ–ฅ๋ ฅ์ด ๊ฐ•ํ•œ ํŠนํ—ˆ๋“ค์€ ๊ฐœ์ธ์— ์˜ํ•ด ๋งŒ๋“ค์–ด์ง€์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
09:29
But I want to talk about what some of those tricks might be.
230
569559
2830
๊นŠ๊ณ , ๊นŠ๊ณ , ๊นŠ๊ฒŒ ๊ธฐ์ˆ ์˜ ํ•œ ์˜์—ญ์„ ํŒŒ๊ณ ๋“ค์–ด๊ฐ€๋Š” ๊ฐœ์ธ์ด์š”.
09:32
If we look at research on technological innovation, it shows that increasingly,
231
572413
3747
๋ฏธ๊ตญ ํŠนํ—ˆ์ฒญ์˜ ๋ถ„๋ฅ˜์— ๋”ฐ๋ฅด๋ฉด์š”.
๊ทธ๋ณด๋‹ค ๊ฐœ์ธ์„ ํฌํ•จํ•œ ํŒ€๋“ค์ด ๊ทธ๋Ÿฌํ•ฉ๋‹ˆ๋‹ค.
09:36
the most impactful patents are not authored by individuals
232
576184
2765
09:38
who drill deeper, deeper, deeper into one area of technology
233
578973
2872
๋‹ค์–‘ํ•œ ๊ธฐ์ˆ  ์ง‘๋‹จ๋“ค ๋‹ค์ˆ˜์—์„œ ์ผํ•ด ์˜จ ์ด๋“ค์ด์š”.
09:41
as classified by the US Patent Office,
234
581869
1837
๊ทธ๋ฆฌ๊ณ  ์ž์ฃผ ๋‹ค๋ฅธ ๋ถ„์•ผ์˜ ์š”์†Œ๋ฅผ ํ†ตํ•ฉํ•˜๋Š” ์‚ฌ๋žŒ๋“ค์ด์š”.
09:43
but rather by teams that include individuals
235
583730
2972
์ œ๊ฐ€ ์กด๊ฒฝํ•˜๋Š” ์—…์ ์„ ์Œ“์€ ์ด ์ตœ์ „์„ ์— ์žˆ๋‹ค๊ณ  ๋งํ•  ์ˆ˜ ์žˆ๋Š” ๋ˆ„๊ตฐ๊ฐ€๊ฐ€ ์žˆ๋Š”๋ฐ
09:46
who have worked across a large number of different technology classes
236
586726
3266
์š”์ฝ”์ด ๊ตฐํŽ˜์ด๋ผ๋Š” ์ด๋ฆ„์„ ๊ฐ€์ง„ ์ผ๋ณธ์ธ ๋‚จ์„ฑ์ž…๋‹ˆ๋‹ค.
์š”์ฝ”์ด๋Š” ํ•™๊ต์—์„œ ์ „์ž ๊ณตํ•™ ์‹œํ—˜์„ ์ž˜ ์น˜์ง€ ๋ชปํ–ˆ์Šต๋‹ˆ๋‹ค.
09:50
and often merge things from different domains.
237
590016
2192
๊ทธ๋ž˜์„œ ๊ธฐ๊ธฐ ์ˆ˜๋ฆฌ๊ณต๊ฐ™์€ ๋‚ฎ์€ ์ˆ˜์ค€์˜ ์ผ์— ๋จธ๋ฌผ๋Ÿฌ์•ผ๋งŒ ํ–ˆ๋Š”๋ฐ
09:52
Someone whose work I've admired who was sort of on the forefront of this
238
592232
3431
09:55
is a Japanese man named Gunpei Yokoi.
239
595687
1893
๊ตํ† ์˜ ์นด๋“œ ๊ฒŒ์ž„ ํšŒ์‚ฌ์—์„œ ๊ทธ๋žฌ์Šต๋‹ˆ๋‹ค.
09:57
Yokoi didn't score well on his electronics exams at school,
240
597604
2777
๊ทธ๋Š” ์ž์‹ ์ด ์ตœ์ฒจ๋‹จ์—์„œ ์ผํ•  ๋งŒํผ ์ค€๋น„๋˜์ง€ ์•Š์•˜์Œ์„ ์•Œ์•„์ฐจ๋ ธ์ง€๋งŒ
10:00
so he had to settle for a low-tier job as a machine maintenance worker
241
600405
3296
๊ทธ ๊ณณ์—” ์‰ฝ๊ฒŒ ์–ป๊ธฐ ๊ฐ€๋Šฅํ•œ ๋งŽ์€ ์ •๋ณด๋“ค์ด ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
10:03
at a playing card company in Kyoto.
242
603725
1821
์ด๋ฏธ ์ž˜ ์•Œ๋ ค์ ธ ์žˆ๋Š” ๊ฒƒ๋“ค์„ ํ•ฉ์ณ๋ณผ ์ˆ˜ ์žˆ์„์ง€ ๋ชจ๋ฅด๋Š” ๊ฒƒ๋“ค์ด์š”.
10:05
He realized he wasn't equipped to work on the cutting edge,
243
605570
3046
์ „๋ฌธ๊ฐ€๋“ค์ด ๋„ˆ๋ฌด ์ข๊ฒŒ ๋ณด๊ณ  ์žˆ์–ด ๋†“์น˜๋Š” ๋ฐฉ์‹์œผ๋กœ์š”.
10:08
but that there was so much information easily available
244
608640
2924
๊ทธ๋ž˜์„œ ๊ทธ๋Š” ๊ณ„์‚ฐ๊ธฐ ์‚ฐ์—…์—์„œ ์ž˜ ์•Œ๋ ค์ง„ ๋ช‡๋ช‡ ๊ธฐ์ˆ ์„ ํ•ฉ์ณค์Šต๋‹ˆ๋‹ค.
10:11
that maybe he could combine things that were already well-known
245
611588
2974
์‹ ์šฉ ์นด๋“œ ์‚ฐ์—…์—์„œ ์ž˜ ์•Œ๋ ค์ง„ ๋ช‡๋ช‡ ๊ธฐ์ˆ ๊ณผ์š”.
10:14
in ways that specialists were too narrow to see.
246
614586
2569
๊ทธ๋ฆฌ๊ณ  ์†์— ์ฅ๊ณ  ํ•  ์ˆ˜ ์žˆ๋Š” ์†Œํ˜• ๊ฒŒ์ž„์„ ๋งŒ๋“ค์—ˆ์Šต๋‹ˆ๋‹ค.
๋Œ€๋ฐ•์ด ๋‚ฌ์ฃ .
10:17
So he combined some well-known technology from the calculator industry
247
617179
3500
์ด ์นด๋“œ ๊ฒŒ์ž„ ํšŒ์‚ฌ๋ฅผ ๋ฐ”๊ฟ”๋†“์•˜์Šต๋‹ˆ๋‹ค.
10:20
with some well-known technology from the credit card industry
248
620703
2916
19์„ธ๊ธฐ์— ๋ชฉ์žฌ๋กœ ์ง€์–ด์กŒ๋˜ ์ƒ์  ์•ž์„
10:23
and made handheld games.
249
623643
1441
์žฅ๋‚œ๊ฐ๊ณผ ๊ฒŒ์ž„ ์‚ฌ์—…์ฒด๋กœ์š”.
10:25
And they were a hit.
250
625108
1354
๋“ค์–ด๋ณด์…จ์„์ง€๋„ ๋ชจ๋ฅด๊ฒ ๋„ค์š”; ๋‹Œํ…๋„๋ผ๊ณ  ๋ถˆ๋ฆฌ๋Š” ๊ณณ์ž…๋‹ˆ๋‹ค.
10:26
And it turned this playing card company,
251
626486
2222
์š”์ฝ”์ด์˜ ์ฐฝ์กฐ ์ฒ ํ•™์€
10:28
which was founded in a wooden storefront in the 19th century,
252
628732
3571
โ€œ์ €๋ฌผ์–ด๊ฐ€๋Š” ๊ธฐ์ˆ ์— ๋Œ€ํ•œ ์ˆ˜ํ‰์  ์‚ฌ๊ณ โ€ ๋ผ๊ณ  ๋ฒˆ์—ญ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
10:32
into a toy and game operation.
253
632327
1757
์ž˜ ์•Œ๋ ค์ง„ ๊ธฐ์ˆ ์„ ๊ฑฐ๋‘์–ด ์ƒˆ ๋ฐฉ๋ฒ•์œผ๋กœ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์ด์ฃ .
10:34
You may have heard of it; it's called Nintendo.
254
634108
2226
๊ทธ๋ฆฌ๊ณ  ๊ทธ์˜ ์ตœ๊ณ ์ž‘์€ ์ด๊ฒƒ์ž…๋‹ˆ๋‹ค.
10:36
Yokoi's creative philosophy
255
636358
1297
10:37
translated to "lateral thinking with withered technology,"
256
637679
3181
๊ฒŒ์ž„ ๋ณด์ด์š”.
๊ธฐ์ˆ  ๋†๋‹ด์€ ์–ด๋””์—๋‚˜ ์žˆ๊ณ  ๊ฒŒ์ž„๊ธฐ ์ด๋ฆ„์—๋„ ์žˆ์ฃ .
10:40
taking well-known technology and using it in new ways.
257
640884
2928
์„ธ๊ฐ€์™€ ์•„ํƒ€๋ฆฌ๊ฐ€ ๋ฐœ์ƒ‰์„ ๊ฐ€์ง€๊ณ  ๊ฒฝ์Ÿํ•˜๊ณ  ์žˆ๋˜ ๊ฐ™์€ ์‹œ๊ธฐ์— ์ถœ์‹œ๋˜์—ˆ๊ณ 
10:43
And his magnum opus was this:
258
643836
1939
์™„์ „ํžˆ ๊ทธ๋“ค์„ ๋ณด๋‚ด๋ฒ„๋ ธ์ฃ .
10:45
the Game Boy.
259
645799
1180
์š”์ฝ”์ด๊ฐ€ ๊ทธ์˜ ์†Œ๋น„์ž๊ฐ€ ์‹ ๊ฒฝ์“ฐ๋Š” ๊ฒƒ์ด ๋ฌด์–ธ์ง€ ์•Œ์•˜๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
10:47
Technological joke in every way.
260
647003
2437
10:49
And it came out at the same time as color competitors from Saga and Atari,
261
649464
3815
๋‹ค์–‘ํ•œ ์ƒ‰์ƒ์ด ์•„๋‹ˆ์—ˆ์ฃ .
๋‚ด๊ตฌ์„ฑ, ํœด๋Œ€์„ฑ, ๊ฐ€๊ฒฉ ํ•ฉ๋ฆฌ์„ฑ, ๋ฐฐํ„ฐ๋ฆฌ ์ˆ˜๋ช…,
10:53
and it blew them away,
262
653303
1662
10:54
because Yokoi knew what his customers cared about
263
654989
2640
๊ฒŒ์ž„ ์„ ํƒ์˜ ๋‹ค์–‘์„ฑ์ด์—ˆ์Šต๋‹ˆ๋‹ค.
์ด๊ฑด ๋ถ€๋ชจ๋‹˜์˜ ์ง€ํ•˜์‹ค์—์„œ ๋ฐœ๊ฒฌํ•œ ์ œ ๊ฒŒ์ž„๋ณด์ด์ž…๋‹ˆ๋‹ค.
10:57
wasn't color.
264
657653
1150
10:58
It was durability, portability, affordability, battery life,
265
658827
3961
(์›ƒ์Œ)
์ข‹์€ ๋•Œ์˜€์ฃ .
ํ•˜์ง€๋งŒ ์•„์ง๋„ ๊ทธ ๋นจ๊ฐ„ ๋ถˆ์ด ๋“ค์–ด์˜ค๋Š” ๊ฑธ ๋ณด์‹ค ์ˆ˜ ์žˆ์ฃ .
11:02
game selection.
266
662812
1300
๋’ค์ง‘์–ด ํ…ŒํŠธ๋ฆฌ์Šค ๊ฐ™์€ ๊ฑธ ํ–ˆ์Šต๋‹ˆ๋‹ค.
11:04
This is mine that I found in my parents' basement.
267
664136
2453
ํŠนํžˆ ์ธ์ƒ์ ์ด๋ผ๊ณ  ์ƒ๊ฐํ–ˆ๋˜ ๋ถ€๋ถ„์€
11:06
(Laughter)
268
666613
1160
๋ฐฐํ„ฐ๋ฆฌ๋“ค ๋ณด์ฆ ๊ธฐ๊ฐ„์ด 2007๋…„๋„์™€ 13๋…„๋„๊นŒ์ง€๋ผ๋Š” ๊ฒ๋‹ˆ๋‹ค.
11:07
It's seen better days.
269
667797
1554
11:09
But you can see the red light is on.
270
669375
1745
(์›ƒ์Œ)
11:11
I flipped it on and played some Tetris,
271
671144
1891
์ž ์ด ํญ๋„“์Œ์— ๋Œ€ํ•œ ๊ฐ•์ ์€ ๋” ์ฃผ๊ด€์ ์ธ ์˜์—ญ ๋˜ํ•œ ํฌํ•จํ•ฉ๋‹ˆ๋‹ค.
11:13
which I thought was especially impressive
272
673059
1986
๋ฌด์—‡์ด ์ผ๋ถ€ ๋งŒํ™”์ฑ… ์ฐฝ์ž‘์ž๋“ค์„ ์šฐ์œ„๋กœ ์ด๋„๋Š” ์ง€์— ๋Œ€ํ•œ ํฅ๋ฏธ๋กœ์šด ์—ฐ๊ตฌ์—์„œ
11:15
because the batteries had expired in 2007 and 2013.
273
675069
2464
11:17
(Laughter)
274
677557
1344
๋Œ€๋ฐ•์ด ๋‚˜๋Š” ๋งŒํ™”์ฑ…์„ ๋งŒ๋“ค ๊ฐ€๋Šฅ์„ฑ์ด ๋†’๊ฒŒ์š”.
11:19
So this breadth advantage holds in more subjective realms as well.
275
679489
3589
์—ฐ๊ตฌ์ž ๋‘ ๋ช…์ด ๋ฐœ๊ฒฌํ–ˆ์Šต๋‹ˆ๋‹ค.
๊ทธ๊ฑด ์—…๊ณ„์—์„œ ๋ณด๋‚ธ ๊ฒฝํ—˜ ์—ฐ์ˆ˜๋„ ์•„๋‹ˆ์—ˆ๊ณ 
11:23
In a fascinating study of what leads some comic book creators
276
683102
3472
์ถœํŒ์‚ฌ์˜ ์ž์‚ฐ๋„ ์•„๋‹ˆ์—ˆ์Šต๋‹ˆ๋‹ค.
11:26
to be more likely to make blockbuster comics,
277
686598
2840
์ „์ž‘์˜ ์ˆ˜๋„ ๊ด€๋ จ์ด ์—†์—ˆ์Šต๋‹ˆ๋‹ค.
11:29
a pair of researchers found
278
689462
1309
11:30
that it was neither the number of years of experience in the field
279
690795
3532
์ฐฝ์ž‘์ž๊ฐ€ ๋งŒ๋“ค์–ด ์˜จ ๋‹ค์–‘ํ•œ ์žฅ๋ฅด์˜ ์ˆ˜์˜€์Šต๋‹ˆ๋‹ค.
11:34
nor the resources of the publisher
280
694351
2866
ํฅ๋ฏธ๋กญ๊ฒŒ๋„
ํญ๋„“์€ ์ง€์‹์„ ๊ฐ€์ง„ ๊ฐœ๊ฐœ์ธ์ด ์™„์ „ํžˆ ๋Œ€์ฒด๋  ์ˆ˜ ์—†์—ˆ์Šต๋‹ˆ๋‹ค.
11:37
nor the number of previous comics made.
281
697241
2216
11:39
It was the number of different genres that a creator had worked across.
282
699481
4468
์ „๋ฌธ๊ฐ€ ํŒ€์— ์˜ํ•ด์„œ์š”.
์•„๋งˆ ์šฐ๋ฆฌ๋Š” ๋…ธ๋ ฅํ•ด๋„ ๊ทธ๋“ค์ฒ˜๋Ÿผ์€ ๋งŽ์ด ๋ฒŒ์ง€ ๋ชปํ•  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
11:43
And interestingly,
283
703973
1322
11:45
a broad individual could not be entirely replaced
284
705319
3649
์™œ๋ƒํ•˜๋ฉด ์ด๋ฅธ ๋•Œ์—, ๊ทธ๋“ค์€ ๋’ค๋–จ์–ด์ง€๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ๋ณด์˜€๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
11:48
by a team of specialists.
285
708992
1794
๋˜ ์šฐ๋ฆฌ๋Š” ์ด๋ฅธ ์‹œ์ž‘์ด ์•„๋‹Œ ๊ฒƒ ๊ฐ™์€ ์–ด๋–ค ๊ฒƒ๋„ ์žฅ๋ คํ•˜์ง€ ์•Š๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์ฃ .
11:51
We probably don't make as many of those people as we could
286
711154
2970
์•„๋‹ˆ๋ฉด ์ „๋ฌธํ™”๋‚˜์š”.
์‚ฌ์‹ค, ์ „ ์ข‹์€ ์˜๋„๋กœ ์ด๋ฅธ ์‹œ์ž‘์„ ์œ„ํ•ด ๋ชฐ์•„๊ฐ€๊ธฐ๋„ ํ•œ๋‹ค๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
11:54
because early on, they just look like they're behind
287
714148
2809
11:56
and we don't tend to incentivize anything that doesn't look like a head start
288
716981
3696
์‹ฌ์ง€์–ด ์šฐ๋ฆฌ๋Š” ์ž์ฃผ ์ƒ์‚ฐ์„ฑ์ด ์ €ํ•ด๋˜๊ณ  ์ง€์น˜๋Š” ๋ฐฉ์‹์œผ๋กœ
์ƒˆ ๋ถ„์•ผ๋ฅผ ๋ฐฐ์›๋‹ˆ๋‹ค.
12:00
or specialization.
289
720701
1177
๊ธฐ์ดˆ ๋‹จ๊ณ„๋ถ€ํ„ฐ์š”.
12:01
In fact, I think in the well-meaning drive for a head start,
290
721902
2847
์ง€๋‚œ ์—ฐ๋„์˜ ํ•œ ์—ฐ๊ตฌ์—์„ , ๋ฏธ๊ตญ์˜ 7ํ•™๋…„ ์ˆ˜ํ•™ ํ•™๊ธ‰์—
12:04
we often even counterproductively short-circuit even the way
291
724773
2852
๊ฐ๊ธฐ ๋‹ค๋ฅธ ํ˜•ํƒœ์˜ ํ•™์Šต์ด ๋ฌด์ž‘์œ„๋กœ ๋ฐฐ์ •๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
12:07
we learn new material,
292
727649
1297
12:08
at a fundamental level.
293
728970
1585
์ผ๋ถ€์—๊ฒ โ€œ๋ง‰๋Š” ์—ฐ์Šตโ€ ๊ณผ์ •์ด ์ฃผ์–ด์กŒ์Šต๋‹ˆ๋‹ค.
12:10
In a study last year, seventh-grade math classrooms in the US
294
730579
3846
์ด๊ฑด ์ด๋Ÿฐ ๊ฑด๋ฐ, A๋ผ๋Š” ํ˜•ํƒœ์˜ ๋ฌธ์ œ๊ฐ€ ์ฃผ์–ด์กŒ์„ ๋•Œ
๊ณ„์† ๊ทธ ๋ฐฉ์‹์—๋งŒ ์ง‘์ค‘ํ•˜๋Š” ๋ฐฉ์‹์ž…๋‹ˆ๋‹ค. AAAAA, BBBBB, ๊ณ„์†ํ•ด์„œ์š”.
12:14
were randomly assigned to different types of learning.
295
734449
2876
์ง„๋„๋Š” ๋น ๋ฆ…๋‹ˆ๋‹ค,
12:17
Some got what's called "blocked practice."
296
737349
2576
์•„์ด๋“ค์€ ๋งŒ์กฑํ•ฉ๋‹ˆ๋‹ค,
๋ชจ๋“  ๊ฑด ์ข‹์Šต๋‹ˆ๋‹ค.
12:19
That's like, you get problem type A,
297
739949
1742
๋‹ค๋ฅธ ํ•™๊ธ‰์—์„œ๋Š” โ€œ์—ฎ์–ด๋ผ์šฐ๋Š” ์—ฐ์Šตโ€ ์ด๋ผ๊ณ  ๋ถ€๋ฅด๋Š” ๊ฒƒ์ด ๋ฐฐ์ •๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
12:21
AAAAA, BBBBB, and so on.
298
741715
2909
12:24
Progress is fast,
299
744648
1425
๋ชจ๋“  ์œ ํ˜•์˜ ๋ฌธ์ œ๊ฐ€ ์ฃผ์–ด์กŒ๋‹ค๋ฉด ๊ทธ๊ฒƒ๋“ค์„ ๋ชจ์ž ์†์— ์ง‘์–ด๋„ฃ๊ณ 
12:26
kids are happy,
300
746097
1151
12:27
everything's great.
301
747272
1164
๋ฌด์ž‘์œ„๋กœ ๊บผ๋‚ด๋Š” ๊ฒƒ์ด์ง€์š”.
12:28
Other classrooms got assigned to what's called "interleaved practice."
302
748460
4038
์ง„๋„๋Š” ๋” ๋Š๋ฆฝ๋‹ˆ๋‹ค, ์•„์ด๋“ค์€ ๋” ์‹ค๋งํ•ฉ๋‹ˆ๋‹ค.
ํ•˜์ง€๋งŒ ๊ณผ์ •์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ๋ฐฐ์šฐ๋Š” ๊ฒƒ ๋Œ€์‹ ์—
12:32
That's like if you took all the problem types and threw them in a hat
303
752522
3256
๋ฌธ์ œ์˜ ์œ ํ˜•์— ๋Œ€ํ•œ ์ „๋žต์„ ์–ด๋–ป๊ฒŒ ๋Œ€์‘ํ•  ๊ฒƒ์ธ์ง€ ๋ฐฐ์›๋‹ˆ๋‹ค.
12:35
and drew them out at random.
304
755802
1344
12:37
Progress is slower, kids are more frustrated.
305
757170
2927
์‹œํ—˜์ด ๋Œ์•„์™”์„ ๋•Œ
์—ฎ์–ด๋ผ์šฐ๋Š” ๊ทธ๋ฃน์€ ๋ง‰๋Š” ์—ฐ์Šต ๊ทธ๋ฃน์„ ์ˆ˜์›”ํ•˜๊ฒŒ ์ด๊ฒผ์Šต๋‹ˆ๋‹ค.
12:40
But instead of learning how to execute procedures,
306
760121
2663
12:42
they're learning how to match a strategy to a type of problem.
307
762808
3813
์‹ฌ์ง€์–ด ๋น„์Šทํ•œ ์ ์ˆ˜๋„ ์•„๋‹ˆ์—ˆ์Šต๋‹ˆ๋‹ค.
์ด์ œ, ์ „ ์ด ์—ฐ๊ตฌ์˜ ๋งŽ์€ ๋ถ€๋ถ„์ด ๋งค์šฐ ์ง๊ด€์— ๋ฐ˜ํ•œ๋‹ค๋Š” ๊ฒƒ์„ ๋ฐœ๊ฒฌํ–ˆ์Šต๋‹ˆ๋‹ค,
12:46
And when the test comes around,
308
766645
1595
12:48
the interleaved group blew the block practice group away.
309
768264
3434
์ด๋ฅธ ์‹œ์ž‘์ด๋ผ๋Š” ์•„์ด๋””์–ด๋Š”
์ง์—…์„ ๊ณ ๋ฅผ ๋•Œ ์•„๋‹ˆ๋ฉด ๊ต์œก ๊ณผ์ •์„ ๊ณ ๋ฅผ ๋•Œ
12:51
It wasn't even close.
310
771722
1407
๋˜๋Š” ์ƒˆ ๋ถ„์•ผ๋ฅผ ๋ฐฐ์šธ ๋•Œ,
12:53
Now, I found a lot of this research deeply counterintuitive,
311
773825
3620
๋•Œ๋•Œ๋กœ ์žฅ๊ธฐ๊ฐ„์˜ ์„ฑ์žฅ์„ ์•ฝํ™”์‹œํ‚ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
12:57
the idea that a head start,
312
777469
1349
๊ทธ๋ฆฌ๊ณ  ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ, ์ €๋Š” ์„ฑ๊ณต์— ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•์ด ์žˆ๋‹ค๊ณ  ์ƒ๊ฐํ•˜๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
12:58
whether in picking a career or a course of study
313
778842
2279
์‚ฌ๋žŒ๋“ค์˜ ์ˆ˜๋งŒํผ์š”.
13:01
or just in learning new material,
314
781145
1619
ํ•˜์ง€๋งŒ ์šฐ๋ฆฌ๋Š” ๊ทธ์ € ๋ฏธ๋ฆฌ ์ •ํ•ด์ง„ ๊ธธ์„ ์žฅ๋ คํ•˜๊ณ  ์‘์›ํ•˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์Šต๋‹ˆ๋‹ค,
13:02
can sometimes undermine long-term development.
315
782788
2693
13:05
And naturally, I think there are as many ways to succeed
316
785505
2783
์ด ์ˆœ๊ฐ„ ์ ์  ๋”, ์‚ฌ์•…ํ•œ ์„ธ์ƒ์—์„œ
์šฐ๋ฆฌ๋Š” ๊ฐ€์ง€ ์•Š์€ ๊ธธ์„ ์—ฌํ–‰ํ•˜๋Š” ์‚ฌ๋žŒ๋“ค๋„ ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.
13:08
as there are people.
317
788312
1368
13:09
But I think we tend only to incentivize and encourage the Tiger path,
318
789704
4221
ํ˜น์€ ํƒ์›”ํ•œ ๋ฌผ๋ฆฌํ•™์ž์ด์ž ์ˆ˜ํ•™์ž๋กœ์„œ
๊ทธ๋ฆฌ๊ณ  ๋ฉ‹์ง„ ์ €์ˆ ๊ฐ€์ด๊ธฐ๋„ ํ•œ, ํ”„๋ฆฌ๋จผ ๋‹ค์ด์Šจ์€ ๋งํ•œ ๋ฐ”๊ฐ€ ์žˆ์ฃ .
13:13
when increasingly, in a wicked world,
319
793949
1787
13:15
we need people who travel the Roger path as well.
320
795760
2929
๋‹ค์ด์Šจ์€ ์–ด์ œ ์„ธ์ƒ์„ ๋– ๋‚ฌ์Šต๋‹ˆ๋‹ค.
13:18
Or as the eminent physicist and mathematician
321
798713
2558
์ €๋Š” ๊ทธ์˜ ๋ง์„ ์˜๊ด‘์Šค๋Ÿฝ๊ฒŒ๋„ ์—ฌ๊ธฐ์— ์˜ฎ๊ธฐ๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค.
13:21
and wonderful writer, Freeman Dyson, put it --
322
801295
3424
๊ทธ๊ฐ€ ๋งํ–ˆ๋“ฏ์ด: ๊ฑด๊ฐ•ํ•œ ์ƒํƒœ๊ณ„์—์„œ, ์šฐ๋ฆฌ๋Š” ์ƒˆ์™€ ๊ฐœ๊ตฌ๋ฆฌ ๋ชจ๋‘ ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.
13:24
and Dyson passed away yesterday,
323
804743
2895
๊ฐœ๊ตฌ๋ฆฌ๋Š” ์ง„ํ™ ์•„๋ž˜์—์„œ
13:27
so I hope I'm doing his words honor here --
324
807662
2275
๋ชจ๋“  ์„ธ๋ถ€ ์‚ฌํ•ญ ์•Œ๊ฐฑ์ด๋ฅผ ๋ด…๋‹ˆ๋‹ค.
13:29
as he said: for a healthy ecosystem, we need both birds and frogs.
325
809961
4893
์ƒˆ๋“ค์€ ์ด๋Ÿฐ ์„ธ๋ถ€ ์‚ฌํ•ญ์„ ๋ณด์ง€ ๋ชปํ•˜๊ณ  ํ•˜๋Š˜๋กœ ์น˜์†Ÿ์Šต๋‹ˆ๋‹ค.
ํ•˜์ง€๋งŒ ๊ฐœ๊ตฌ๋ฆฌ๋“ค์˜ ์ง€์‹์„ ํ†ตํ•ฉํ•ฉ๋‹ˆ๋‹ค.
13:34
Frogs are down in the mud,
326
814878
1303
๊ทธ๋ฆฌ๊ณ  ์šฐ๋ฆฌ๋Š” ๋‘˜ ๋‹ค ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.
13:36
seeing all the granular details.
327
816205
2098
๋ฌธ์ œ๋Š”, ๋‹ค์ด์Šจ์€ ๋งํ–ˆ์Šต๋‹ˆ๋‹ค.
์šฐ๋ฆฌ๊ฐ€ ๋ชจ๋‘์—๊ฒŒ ๊ฐœ๊ตฌ๋ฆฌ๊ฐ€ ๋˜๋ผ๊ณ  ๋งํ•˜๊ณ  ์žˆ๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค.
13:38
The birds are soaring up above not seeing those details
328
818327
2757
๊ทธ๋ฆฌ๊ณ  ์ œ ์ƒ๊ฐ์—๋Š”
13:41
but integrating the knowledge of the frogs.
329
821108
2048
์‚ฌ์•…ํ•œ ์„ธ์ƒ์—์„œ
13:43
And we need both.
330
823180
1311
์ด๋Š” ๊ฐˆ์ˆ˜๋ก ๋” ๊ทผ์‹œ์•ˆ์ ์ž…๋‹ˆ๋‹ค.
13:44
The problem, Dyson said,
331
824515
1695
๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
13:46
is that we're telling everyone to become frogs.
332
826234
2675
(๋ฐ•์ˆ˜)
13:48
And I think,
333
828933
1202
13:50
in a wicked world,
334
830159
1452
13:51
that's increasingly shortsighted.
335
831635
2151
13:53
Thank you very much.
336
833810
1292
13:55
(Applause)
337
835126
2960
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7