John Wilbanks: Let's pool our medical data

31,519 views ใƒป 2012-10-16

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

00:00
Translator: Joseph Geni Reviewer: Morton Bast
0
0
7000
ืžืชืจื’ื: Zeeva Livshitz ืžื‘ืงืจ: Ido Dekkers
00:15
So I have bad news, I have good news,
1
15358
3061
ืื– ื™ืฉ ืœื™ ื—ื“ืฉื•ืช ืจืขื•ืช, ื™ืฉ ืœื™ ื—ื“ืฉื•ืช ื˜ื•ื‘ื•ืช,
00:18
and I have a task.
2
18419
1865
ื•ื™ืฉ ืœื™ ืžืฉื™ืžื”.
00:20
So the bad news is that we all get sick.
3
20284
2943
ืื– ื”ื—ื“ืฉื•ืช ื”ืจืขื•ืช ื”ืŸ ืฉื›ื•ืœื ื• ื ืขืฉื™ื ื—ื•ืœื™ื.
00:23
I get sick. You get sick.
4
23227
2272
ืื ื™ ื ื”ื™ื” ื—ื•ืœื”, ืืชื ื ื”ื™ื™ื ื—ื•ืœื™ื.
00:25
And every one of us gets sick, and the question really is,
5
25499
2542
ื•ื›ืœ ืื—ื“ ืžืื™ืชื ื• ื ื”ื™ื” ื—ื•ืœื”, ื•ื”ืฉืืœื” ื‘ืืžืช ื”ื™ื,
00:28
how sick do we get? Is it something that kills us?
6
28041
2877
ืขื“ ื›ืžื” ื—ื•ืœื™ื ืื ื—ื ื• ื ืขืฉื™ื? ื”ืื ื–ื” ืžืฉื”ื• ืฉื”ื•ืจื’ ืื•ืชื ื•?
00:30
Is it something that we survive?
7
30918
1345
ื”ืื ื–ื” ืžืฉื”ื• ืฉื ืฉืจื•ื“ ืื•ืชื•?
00:32
Is it something that we can treat?
8
32263
1928
ื”ืื ื–ื” ืžืฉื”ื• ืฉื ื™ืชืŸ ืœื˜ื™ืคื•ืœ?
00:34
And we've gotten sick as long as we've been people.
9
34191
3256
ื•ืื ื—ื ื• ื ืขืฉื™ื ื—ื•ืœื™ื ื›ืœ ืขื•ื“ ืื ื—ื ื• ื‘ื ื™ ืื“ื.
00:37
And so we've always looked for reasons to explain why we get sick.
10
37447
3486
ื•ื›ืš, ืชืžื™ื“ ื—ื™ืคืฉื ื• ืกื™ื‘ื•ืช ืฉื™ืกื‘ื™ืจื• ืœืžื” ืื ื—ื ื• ื ืขืฉื™ื ื—ื•ืœื™ื.
00:40
And for a long time, it was the gods, right?
11
40933
1957
ื•ื‘ืžืฉืš ื–ืžืŸ ืจื‘ ืืœื” ื”ื™ื• ื”ืืœื™ื, ื ื›ื•ืŸ?
00:42
The gods are angry with me, or the gods are testing me,
12
42890
3154
ื”ืืœื™ื ื›ื•ืขืกื™ื ืขืœื™, ืื• ื”ืืœื™ื ื‘ื•ื—ื ื™ื ืื•ืชื™,
00:46
right? Or God, singular, more recently,
13
46044
2416
ื ื›ื•ืŸ? ืื• ืืœื•ื”ื™ื, ื”ืื—ื“, ืžืื•ื—ืจ ื™ื•ืชืจ ื‘ื–ืžืŸ,
00:48
is punishing me or judging me.
14
48460
2664
ืžืขื ื™ืฉ ืื•ืชื™, ืื• ืฉื•ืคื˜ ืื•ืชื™.
00:51
And as long as we've looked for explanations,
15
51124
2680
ื•ื›ืœ ืขื•ื“ ื—ื™ืคืฉื ื• ื”ืกื‘ืจื™ื,
00:53
we've wound up with something that gets closer and closer to science,
16
53804
3711
ืžืฆืื ื• ืขืฆืžื ื• ืขื ืžืฉื”ื• ืฉืžืชืงืจื‘ ื™ื•ืชืจ ื•ื™ื•ืชืจ ืœืžื“ืข,
00:57
which is hypotheses as to why we get sick,
17
57515
2489
ืฉื–ื• ื”ื™ืคื•ืชื™ื–ื” ืœืžื” ืื ื—ื ื• ื ืขืฉื™ื ื—ื•ืœื™ื.
01:00
and as long as we've had hypotheses about why we get sick, we've tried to treat it as well.
18
60004
4740
ื•ื›ืœ ืขื•ื“ ื™ืฉ ืœื ื• ื”ื™ืคื•ืชื™ื–ื•ืช ืขืœ ืžื“ื•ืข ืื ื• ื ืขืฉื™ื ื—ื•ืœื™ื, ื ื™ืกื™ื ื• ื’ื ื›ืŸ ืœื˜ืคืœ ื‘ื–ื” .
01:04
So this is Avicenna. He wrote a book over a thousand years ago called "The Canon of Medicine,"
19
64744
4033
ืื– ื–ื”ื• ืื‘ืŸ-ืกื™ื ื. ื”ื•ื ื›ืชื‘ ืกืคืจ ืœืคื ื™ ืœืžืขืœื” ืžืืœืฃ ืฉื ื™ื ืฉื ืงืจื "ื”ืงืื ื•ืŸ ืฉืœ ื”ืจืคื•ืื”,"
01:08
and the rules he laid out for testing medicines
20
68777
2406
ื•ื”ื—ื•ืงื™ื ืฉื”ื•ื ื”ืฆื™ื’ ื›ื“ื™ ืœื‘ื“ื•ืง ืชืจื•ืคื•ืช
01:11
are actually really similar to the rules we have today,
21
71183
1789
ื‘ืืžืช ื“ื•ืžื™ื ืœืžืขืฉื” ืœื—ื•ืงื™ื ืฉื™ืฉ ืœื ื• ื”ื™ื•ื,
01:12
that the disease and the medicine must be the same strength,
22
72972
2945
ืฉื”ืžื—ืœื” ื•ื”ืชืจื•ืคื” ื™ื”ื™ื• ื‘ืขืœื•ืช ืื•ืชื• ื—ื•ื–ืง,
01:15
the medicine needs to be pure, and in the end we need
23
75917
2397
ื”ืชืจื•ืคื” ื—ื™ื™ื‘ืช ืœื”ื™ื•ืช ื˜ื”ื•ืจื”, ื•ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ
01:18
to test it in people. And so if you put together these themes
24
78314
3141
ืฆืจื™ืš ืœื ืกื•ืช ืื•ืชื” ืขืœ ื‘ื ื™ ืื“ื. ื•ื›ืš ืฉืื ืืชื” ืžื—ื‘ืจ ื™ื—ื“ ืžื•ื˜ื™ื‘ื™ื ืžืจื›ื–ื™ื™ื ืืœื”
01:21
of a narrative or a hypothesis in human testing,
25
81455
4465
ืฉืœ ื ืจื˜ื™ื‘ ืื• ื”ื™ืคื•ืชื™ื–ื” ื‘ื‘ื“ื™ืงื” ืฉืœ ืื“ื
01:25
right, you get some beautiful results,
26
85920
2656
ื ื›ื•ืŸ, ืืชื ืžืงื‘ืœื™ื ืชื•ืฆืื•ืช ื™ืคื•ืช,
01:28
even when we didn't have very good technologies.
27
88576
1442
ืืคื™ืœื• ื›ืืฉืจ ืœื ื”ื™ื• ืœื›ื ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ื˜ื•ื‘ื•ืช ืžืื“.
01:30
This is a guy named Carlos Finlay. He had a hypothesis
28
90018
3062
ื–ื” ืื“ื ืฉืฉืžื• ืงืจืœื•ืก ืคื™ื ืœื™. ื”ื™ืชื” ืœื• ื”ื™ืคื•ืชื™ื–ื”
01:33
that was way outside the box for his time, in the late 1800s.
29
93080
2905
ืฉื”ื™ืชื” ืžื—ื•ืฅ ืœืงื•ืคืกื ื‘ืชืงื•ืคืชื•, ื‘ืกื•ืฃ ื”ืžืื” ื”-19.
01:35
He thought yellow fever was not transmitted by dirty clothing.
30
95985
2848
ื”ื•ื ื—ืฉื‘ ืฉืงื“ื—ืช ืฆื”ื•ื‘ื” ืœื ื”ื•ืขื‘ืจื” ืขืœ ื™ื“ื™ ื‘ื’ื“ื™ื ืžืœื•ื›ืœื›ื™ื.
01:38
He thought it was transmitted by mosquitos.
31
98833
2426
ื”ื•ื ื—ืฉื‘ ืฉื”ื™ื ื”ื•ืขื‘ืจื” ืขืœ ื™ื“ื™ ื™ืชื•ืฉื™ื.
01:41
And they laughed at him. For 20 years, they called this guy
32
101259
2362
ื•ื”ื ืฆื—ืงื• ืขืœื™ื•. ื‘ืžืฉืš 20 ืฉื ื” ืงืจืื• ืœื•
01:43
"the mosquito man." But he ran an experiment in people,
33
103621
3489
"ืื™ืฉ ื”ื™ืชื•ืฉื™ื." ืื‘ืœ ื”ื•ื ืขืจืš ื ื™ืกื•ื™ ื‘ืื ืฉื™ื,
01:47
right? He had this hypothesis, and he tested it in people.
34
107110
3103
ื ื›ื•ืŸ? ื”ื™ืชื” ืœื• ื”ื”ื™ืคื•ืชื™ื–ื” ื”ื–ื•, ื•ื”ื•ื ื‘ื“ืง ืื•ืชื” ืขืœ ืื ืฉื™ื.
01:50
So he got volunteers to go move to Cuba and live in tents
35
110213
4642
ื›ืš ืฉื”ื•ื ืžืฆื ืžืชื ื“ื‘ื™ื ืฉื™ืขื‘ืจื• ืœื’ื•ืจ ื‘ืงื•ื‘ื” ื•ื™ื’ื•ืจื• ื‘ืื”ืœื™ื
01:54
and be voluntarily infected with yellow fever.
36
114855
3035
ื•ื™ื™ื“ื‘ืงื• ืžืจืฆื•ืŸ ื‘ืงื“ื—ืช ืฆื”ื•ื‘ื”.
01:57
So some of the people in some of the tents had dirty clothes
37
117890
3022
ืื– ืœื›ืžื” ืžื”ืื ืฉื™ื ื‘ืื—ื“ื™ื ืžื”ืื•ื”ืœื™ื ื”ื™ื• ื‘ื’ื“ื™ื ืžืœื•ื›ืœื›ื™ื
02:00
and some of the people were in tents that were full
38
120912
1219
ื•ืื—ื“ื™ื ืžื”ืื ืฉื™ื ื”ื™ื• ื‘ืื•ื”ืœื™ื ืžืœืื™ื
02:02
of mosquitos that had been exposed to yellow fever.
39
122131
2256
ื‘ื™ืชื•ืฉื™ื ืฉื ื—ืฉืคื• ืœืงื“ื—ืช ื”ืฆื”ื•ื‘ื”.
02:04
And it definitively proved that it wasn't this magic dust
40
124387
3401
ื•ื–ื” ื”ื•ื›ื™ื— ื‘ื•ื•ื“ืื•ืช ืฉื–ื• ืœื ื”ื™ืชื” ืื‘ืงืช ืงืกื
02:07
called fomites in your clothes that caused yellow fever.
41
127788
3422
ืฉื ืงืจืื” ืคื•ืžื™ื˜ืก ื‘ื‘ื’ื“ื™ื ืฉืœื›ื ืฉื—ื•ืœืœื” ืงื“ื—ืช ืฆื”ื•ื‘ื”.
02:11
But it wasn't until we tested it in people that we actually knew.
42
131210
3376
ืื‘ืœ ื–ื” ืœื ื”ื™ื” ืขื“ ืฉื‘ื“ืงื ื• ื–ืืช ื‘ืื ืฉื™ื ืฉื‘ืืžืช ื™ื“ืขื ื•.
02:14
And this is what those people signed up for.
43
134586
1959
ื•ืœื–ื” ื”ืื ืฉื™ื ื ืจืฉืžื•.
02:16
This is what it looked like to have yellow fever in Cuba
44
136545
3090
ื›ืš ื–ื” ื ืจืื” ืœื”ื™ื•ืช ื—ื•ืœื” ื‘ืงื“ื—ืช ืฆื”ื•ื‘ื” ื‘ืงื•ื‘ื”
02:19
at that time. You suffered in a tent, in the heat, alone,
45
139635
4534
ื‘ื–ืžืŸ ื”ื”ื•ื. ืกื‘ืœืช ื‘ืื•ื”ืœ, ื‘ื—ื•ื, ืœื‘ื“
02:24
and you probably died.
46
144169
2696
ื•ื›ื ืจืื” ืกื™ื™ืžืช ื‘ืžื•ื•ืช.
02:26
But people volunteered for this.
47
146865
3217
ืื‘ืœ ืื ืฉื™ื ื”ืชื ื“ื‘ื• ืœืขืฉื•ืช ื–ืืช.
02:30
And it's not just a cool example of a scientific design
48
150082
3311
ื•ื–ื• ืœื ืจืง ื“ื•ื’ืžื” ืงื•ืœื™ืช ืฉืœ ืขื™ืฆื•ื‘ ืžื“ืขื™
02:33
of experiment in theory. They also did this beautiful thing.
49
153393
2913
ืฉืœ ื ื™ืกื•ื™ ื‘ืชื™ืื•ืจื™ื”. ื”ื ื’ื ืขืฉื• ื“ื‘ืจ ื™ืคื” ื–ื”.
02:36
They signed this document, and it's called an informed consent document.
50
156306
3919
ื”ื ื—ืชืžื• ืขืœ ื”ืžืกืžืš ื”ื–ื”, ื•ื–ื” ื ืงืจื ืžืกืžืš ื”ืกื›ืžื” ืžื“ืขืช.
02:40
And informed consent is an idea that we should be
51
160225
2513
ื•ื”ืกื›ืžื” ืžื“ืขืช ื”ื•ื ืจืขื™ื•ืŸ ืฉืื ื—ื ื• ืฆืจื™ื›ื™ื
02:42
very proud of as a society, right? It's something that
52
162738
2226
ืœื”ื™ื•ืช ืžืื“ ื’ืื™ื ื‘ื• ื›ื—ื‘ืจื”, ื ื›ื•ืŸ? ื–ื” ืžืฉื”ื•
02:44
separates us from the Nazis at Nuremberg,
53
164964
2766
ืฉืžื‘ื“ื™ืœ ืื•ืชื ื• ืžื”ื ืืฆื™ื ื‘ื ื™ืจื ื‘ืจื’,
02:47
enforced medical experimentation. It's the idea
54
167730
2875
ื ื™ืกื•ื™ื™ื ืจืคื•ืื™ื™ื ื‘ื›ืคื™ื™ื”. ื–ื” ื”ืจืขื™ื•ืŸ
02:50
that agreement to join a study without understanding isn't agreement.
55
170605
3788
ืฉื”ืกื›ื ื”ืฆื˜ืจืคื•ืช ืœืžื—ืงืจ ืžื‘ืœื™ ืœื”ื‘ื™ืŸ ืื™ื ื• ื”ืกื›ื.
02:54
It's something that protects us from harm, from hucksters,
56
174393
4109
ื–ื” ืžืฉื”ื• ืฉืžื’ืŸ ืขืœื™ื ื• ืžื ื–ืง, ืžื”ืงืกื˜ืจื™ื,
02:58
from people that would try to hoodwink us into a clinical
57
178502
2853
ืžืื ืฉื™ื ืฉื™ื ืกื• ืœืคืชื•ืช ืื•ืชื ื• ื‘ื“ืจืš ืฉืœ ืจืžื™ื™ื” ืœื”ืฆื˜ืจืฃ ืœืžื—ืงืจ
03:01
study that we don't understand, or that we don't agree to.
58
181355
3752
ืจืคื•ืื™ ืฉืื ื—ื ื• ืœื ืžื‘ื™ื ื™ื, ืื• ืฉืื ื—ื ื• ืœื ืžืกื›ื™ืžื™ื ืœื•.
03:05
And so you put together the thread of narrative hypothesis,
59
185107
4329
ื•ื›ืš ืืชื ืžืจื›ื™ื‘ื™ื ืืช ืฉืจืฉืจืช ื”ื”ื™ืคื•ืชื–ื” ื”ื ืจื˜ื™ื‘ื™ืช ,
03:09
experimentation in humans, and informed consent,
60
189436
2597
ื ื™ืกื•ื™ื™ื ื‘ื‘ื ื™ ืื“ื, ื•ื”ืกื›ืžื” ืžื“ืขืช,
03:12
and you get what we call clinical study, and it's how we do
61
192033
2665
ื•ืืชื ืžืงื‘ืœื™ื ืืช ืžื” ืฉืื ื• ืžื›ื ื™ื ืžื—ืงืจ ืงืœื™ื ื™, ื•ื–ื” ื”ืื•ืคืŸ ืฉื‘ื• ืื ื• ืขื•ืฉื™ื
03:14
the vast majority of medical work. It doesn't really matter
62
194698
3015
ืืช ื”ืจื•ื‘ ื”ืžื›ืจื™ืข ืฉืœ ื”ืขื‘ื•ื“ื” ื”ืจืคื•ืื™ืช. ื–ื” ืœื ืžืžืฉ ืžืฉื ื”
03:17
if you're in the north, the south, the east, the west.
63
197713
2342
ืื ืืชื” ื ืžืฆื ื‘ืฆืคื•ืŸ, ื‘ื“ืจื•ื, ื‘ืžื–ืจื—, ื‘ืžืขืจื‘.
03:20
Clinical studies form the basis of how we investigate,
64
200055
4113
ืžื—ืงืจื™ื ืงืœื™ื ื™ื™ื ื™ื•ืฆืจื™ื ืืช ื”ื‘ืกื™ืก ืœืื•ืคืŸ ืฉื‘ื• ืื ื• ื—ื•ืงืจื™ื,
03:24
so if we're going to look at a new drug, right,
65
204168
1859
ื›ืš ืฉืื ืื ื—ื ื• ื”ื•ืœื›ื™ื ืœื—ืคืฉ ืชืจื•ืคื” ื—ื“ืฉื”, ื ื›ื•ืŸ,
03:26
we test it in people, we draw blood, we do experiments,
66
206027
2998
ืื ื• ื‘ื•ื“ืงื™ื ื–ืืช ืขืœ ื‘ื ื™ ืื“ื, ืื ื—ื ื• ืžืงื™ื–ื™ื ื“ื, ืื ื• ืขื•ืฉื™ื ื ื™ืกื•ื™ื™ื,
03:29
and we gain consent for that study, to make sure
67
209025
2329
ื•ืื ื• ืžืฉื™ื’ื™ื ื”ืกื›ืžื” ืœืžื—ืงืจ ื–ื”, ื›ื“ื™ ืœื•ื•ื“ื
03:31
that we're not screwing people over as part of it.
68
211354
2649
ืฉืื ื—ื ื• ืœื ื“ื•ืคืงื™ื ืื ืฉื™ื ื›ื—ืœืง ืžื–ื”.
03:34
But the world is changing around the clinical study,
69
214003
3664
ืืš ื”ืขื•ืœื ืžืฉืชื ื” ืกื‘ื™ื‘ ื”ืžื—ืงืจ ื”ืงืœื™ื ื™,
03:37
which has been fairly well established for tens of years
70
217667
3366
ืฉื”ื•ื ื›ื‘ืจ ืžื‘ื•ืกืก ื”ื™ื˜ื‘ ื‘ืžืฉืš ืขืฉืจื•ืช ืฉื ื™ื
03:41
if not 50 to 100 years.
71
221033
1900
ืื ืœื 50 ืขื“ 100 ืฉื ื™ื.
03:42
So now we're able to gather data about our genomes,
72
222933
3051
ืื– ืขื›ืฉื™ื• ืื ื—ื ื• ืžืกื•ื’ืœื™ื ืœืืกื•ืฃ ื ืชื•ื ื™ื ืื•ื“ื•ืช ื”ื’ื ื•ื ืฉืœื ื•,
03:45
but, as we saw earlier, our genomes aren't dispositive.
73
225984
2860
ืื•ืœื, ื›ืคื™ ืฉืจืื™ื ื• ืงื•ื“ื ืœื›ืŸ, ื”ื’ื ื•ื ืฉืœื ื• ืื™ื ื• ื“ื™ืกืคื•ื–ื™ื˜ื™ื‘ื™.
03:48
We're able to gather information about our environment.
74
228844
2766
ืื ื—ื ื• ืžืกื•ื’ืœื™ื ืœืืกื•ืฃ ืžื™ื“ืข ืื•ื“ื•ืช ื”ืกื‘ื™ื‘ื” ืฉืœื ื•.
03:51
And more importantly, we're able to gather information
75
231610
1910
ื•ื—ืฉื•ื‘ ื™ื•ืชืจ, ืื ื—ื ื• ืžืกื•ื’ืœื™ื ืœืืกื•ืฃ ืžื™ื“ืข
03:53
about our choices, because it turns out that what we think of
76
233520
2840
ืื•ื“ื•ืช ื”ื‘ื—ื™ืจื•ืช ืฉืœื ื•, ื›ื™ ืžืกืชื‘ืจ ืฉืžื” ืฉืื ื—ื ื• ื—ื•ืฉื‘ื™ื
03:56
as our health is more like the interaction of our bodies,
77
236360
2720
ืฉื–ื” ื”ื‘ืจื™ืื•ืช ืฉืœื ื• ื”ื•ื ื™ื•ืชืจ ื›ืžื• ื”ืื™ื ื˜ืจืืงืฆื™ื” ืฉืœ ื’ื•ืคื ื•,
03:59
our genomes, our choices and our environment.
78
239080
3649
ื”ื’ื ื•ื ืฉืœื ื•, ื”ื‘ื—ื™ืจื•ืช ืฉืœื ื• ื•ื”ืกื‘ื™ื‘ื” ืฉืœื ื•.
04:02
And the clinical methods that we've got aren't very good
79
242729
2744
ื•ื”ืฉื™ื˜ื•ืช ื”ืงืœื™ื ื™ื•ืช ืฉื™ืฉ ืœื ื• ืื™ื ืŸ ืžืื“ ื˜ื•ื‘ื•ืช
04:05
at studying that because they are based on the idea
80
245473
2632
ื‘ืœืœืžื•ื“ ื–ืืช ืžื›ื™ื•ื•ืŸ ืฉื”ื• ืžื‘ื•ืกืกื•ืช ืขืœ ืจืขื™ื•ืŸ
04:08
of person-to-person interaction. You interact
81
248105
1914
ืื™ื ื˜ืจืืงืฆื™ื” ื‘ื™ืŸ ืื™ืฉื™ืช. ืืชื” ื‘ืื™ื ื˜ืจืืงืฆื™ื”
04:10
with your doctor and you get enrolled in the study.
82
250019
2095
ืขื ื”ืจื•ืคื ืฉืœืš ื•ืืชื” ืžืชืงื‘ืœ ื›ื ืจืฉื ืœืžื—ืงืจ.
04:12
So this is my grandfather. I actually never met him,
83
252114
2615
ืื– ื–ื” ืกื‘ื ืฉืœื™. ืœืžืขืฉื” ืžืขื•ืœื ืœื ืคื’ืฉืชื™ ืื•ืชื•,
04:14
but he's holding my mom, and his genes are in me, right?
84
254729
3795
ืื‘ืœ ื”ื•ื ืžื—ื–ื™ืง ืืช ืืžื ืฉืœื™, ื•ื”ื’ื ื™ื ืฉืœื• ื ืžืฆืื™ื ื‘ืชื•ื›ื™, ื ื›ื•ืŸ?
04:18
His choices ran through to me. He was a smoker,
85
258524
2891
ื”ื‘ื—ื™ืจื•ืช ืฉืœื• ืขื‘ืจื• ื“ืจื›ื™. ื”ื•ื ื”ื™ื” ืžืขืฉืŸ,
04:21
like most people were. This is my son.
86
261415
2584
ื›ืžื• ืฉืจื•ื‘ ื”ืื ืฉื™ื ื”ื™ื•. ื–ื” ื”ื‘ืŸ ืฉืœื™.
04:23
So my grandfather's genes go all the way through to him,
87
263999
3442
ื›ืš ืฉื”ื’ื ื™ื ืฉืœ ืกื‘ื ืฉืœื™ ืขื•ื‘ืจื™ื ืืช ื›ืœ ื”ื“ืจืš ืืœื™ื•,
04:27
and my choices are going to affect his health.
88
267441
2552
ื•ื”ื‘ื—ื™ืจื•ืช ืฉืœื™ ื”ื•ืœื›ื•ืช ืœื”ืฉืคื™ืข ืขืœ ื‘ืจื™ืื•ืชื•.
04:29
The technology between these two pictures
89
269993
2694
ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ื‘ื™ืŸ ืฉืชื™ ืชืžื•ื ื•ืช ืืœื•
04:32
cannot be more different, but the methodology
90
272687
3673
ืœื ื™ื›ื•ืœื” ืœื”ื™ื•ืช ืฉื•ื ื” ื™ื•ืชืจ, ืืš ื”ืžืชื•ื“ื•ืœื•ื’ื™ื”
04:36
for clinical studies has not radically changed over that time period.
91
276360
4124
ืขื‘ื•ืจ ืžื—ืงืจื™ื ืงืœื™ื ื™ื™ื ืœื ื”ืฉืชื ืชื” ื‘ืื•ืคืŸ ืงื™ืฆื•ื ื™ ื‘ืžื”ืœืš ืชืงื•ืคื” ื–ื•.
04:40
We just have better statistics.
92
280484
2668
ื™ืฉ ืœื ื• ืจืง ืกื˜ื˜ื™ืกื˜ื™ืงื” ื˜ื•ื‘ื” ื™ื•ืชืจ.
04:43
The way we gain informed consent was formed in large part
93
283152
3452
ื”ื“ืจืš ืฉื‘ื” ืื ื• ืžืฉื™ื’ื™ื ื”ืกื›ืžื”-ืžื“ืขืช ื ื•ืฆืจื” ื‘ืจื•ื‘ื”
04:46
after World War II, around the time that picture was taken.
94
286604
2591
ืœืื—ืจ ืžืœื—ืžืช ื”ืขื•ืœื ื”ืฉื ื™ื™ื”, ื‘ืกื‘ื™ื‘ื•ืช ื”ื–ืžืŸ ืฉืชืžื•ื ื” ื–ื• ืฆื•ืœืžื”.
04:49
That was 70 years ago, and the way we gain informed consent,
95
289195
3934
ื–ื” ื”ื™ื” ืœืคื ื™ 70 ืฉื ื”, ื•ื”ืื•ืคืŸ ืฉื‘ื• ืื ื• ืžืฉื™ื’ื™ื ื”ืกื›ืžื”-ืžื“ืขืช,
04:53
this tool that was created to protect us from harm,
96
293129
2877
ื›ืœื™ ื–ื” ืฉื ื•ืฆืจ ื›ื“ื™ ืœื”ื’ืŸ ืขืœื™ื ื• ืžืคื ื™ ื ื–ืง,
04:56
now creates silos. So the data that we collect
97
296006
3666
ื™ื•ืฆืจ ื›ืขืช ืžืžื’ื•ืจื•ืช. ืื– ื”ื ืชื•ื ื™ื ืฉืื ื• ืื•ืกืคื™ื
04:59
for prostate cancer or for Alzheimer's trials
98
299672
2726
ืขื‘ื•ืจ ืกืจื˜ืŸ ื”ืขืจืžื•ื ื™ืช ืื• ื ื™ืกื•ื™ื™ื ืœืืœืฆื”ื™ื™ืžืจ
05:02
goes into silos where it can only be used
99
302398
2615
ื ื›ื ืกื™ื ืœืžืžื’ื•ืจื•ืช ืฉื‘ื”ืŸ ื”ื ื™ื›ื•ืœื™ื ืœืฉืžืฉ ืจืง
05:05
for prostate cancer or for Alzheimer's research.
100
305013
3224
ืขื‘ื•ืจ ืกืจื˜ืŸ ื”ืขืจืžื•ื ื™ืช ืื• ืœืžื—ืงืจ ืืœืฆื”ื™ื™ืžืจ.
05:08
Right? It can't be networked. It can't be integrated.
101
308237
2894
ื ื›ื•ืŸ? ื–ื” ืœื ื™ื›ื•ืœ ืœื”ื™ื•ืช ืžื—ื•ื‘ืจ ืœืจืฉืช. ืื™ ืืคืฉืจ ืœืฉืœื‘ ืื•ืชื•.
05:11
It cannot be used by people who aren't credentialed.
102
311131
3533
ื”ื•ื ืœื ื ื™ืชืŸ ืœืฉื™ืžื•ืฉ ืขืœ-ื™ื“ื™ ืื ืฉื™ื ืฉืื™ื ื ืžื•ืจืฉื™ื.
05:14
So a physicist can't get access to it without filing paperwork.
103
314664
2953
ื›ืš ืฉืœืคื™ื–ื™ืงืื™ ืื™ืŸ ืืคืฉืจื•ืช ืœืงื‘ืœ ื’ื™ืฉื” ืืœื™ื• ืœืœื ื”ื’ืฉืช ื ื™ื™ืจืช.
05:17
A computer scientist can't get access to it without filing paperwork.
104
317617
3068
ืœืžื“ืขืŸ ืžื—ืฉื‘ ืื™ืŸ ืืคืฉืจื•ืช ืœืงื‘ืœ ื’ื™ืฉื” ืืœื™ื• ืœืœื ื”ื’ืฉืช ื ื™ื™ืจืช.
05:20
Computer scientists aren't patient. They don't file paperwork.
105
320685
4143
ืžื“ืขื ื™ ืžื—ืฉื‘ ืื™ื ื ืกื•ื‘ืœื ื™ื. ื”ื ืื™ื ื ืžื’ื™ืฉื™ื ื ื™ื™ืจืช.
05:24
And this is an accident. These are tools that we created
106
324828
3986
ื•ื–ื• ืชืื•ื ื”. ืืœื” ื”ื ื›ืœื™ื ืฉื™ืฆืจื ื•
05:28
to protect us from harm, but what they're doing
107
328814
3267
ื›ื“ื™ ืœื”ื’ืŸ ืขืœ ืขืฆืžื ื• ืžืคื ื™ ืคื’ื™ืขื”, ืื‘ืœ ืžื” ืฉื”ื ืขื•ืฉื™ื
05:32
is protecting us from innovation now.
108
332081
2530
ื–ื” ืฉื”ื ืžื’ื™ื ื™ื ืขืœื™ื ื• ืžืคื ื™ ื—ื“ืฉื ื•ืช ื›ืขืช.
05:34
And that wasn't the goal. It wasn't the point. Right?
109
334611
3265
ื•ื–ื• ืœื ื”ื™ืชื” ื”ืžื˜ืจื”. ื–ื• ืœื ื”ื ืงื•ื“ื”. ื ื›ื•ืŸ?
05:37
It's a side effect, if you will, of a power we created
110
337876
2699
ื–ื•ื”ื™ ืชื•ืคืขืช ืœื•ื•ืื™, ืื ืชืจืฆื•, ืฉืœ ื›ื•ื— ืฉื™ืฆืจื ื•
05:40
to take us for good.
111
340575
2359
ืœืงื—ืช ืื•ืชื ื• ืœืชืžื™ื“.
05:42
And so if you think about it, the depressing thing is that
112
342934
3144
ืื– ืื ืืชื ื—ื•ืฉื‘ื™ื ืขืœ ื–ื”, ื”ื“ื‘ืจ ื”ืžื“ื›ื ื”ื•ื
05:46
Facebook would never make a change to something
113
346078
2133
ืฉืคื™ื™ืกื‘ื•ืง ืœืขื•ืœื ืœื ื™ืขืฉื” ืฉื™ื ื•ื™ ืœืžืฉื”ื•
05:48
as important as an advertising algorithm
114
348211
2571
ื›ื” ื—ืฉื•ื‘ ื›ืžื• ืืœื’ื•ืจื™ืชื ืคืจืกื•ื
05:50
with a sample size as small as a Phase III clinical trial.
115
350782
4411
ืขื ื’ื•ื“ืœ ืžื“ื’ื ื›ื” ืงื˜ืŸ ื›ืžื• ืฉืœื‘ III ืฉืœ ื ื™ืกื•ื™ ืงืœื™ื ื™ .
05:55
We cannot take the information from past trials
116
355193
3662
ืื ื—ื ื• ืœื ื™ื›ื•ืœื™ื ืœืงื—ืช ืืช ื”ืžื™ื“ืข ืžื ื™ืกื•ื™ื™ื ืงื•ื“ืžื™ื
05:58
and put them together to form statistically significant samples.
117
358855
4154
ื•ืœืฉื™ื ื–ืืช ื™ื—ื“ ื›ื“ื™ ืœื™ืฆื•ืจ ื“ื•ื’ืžืื•ืช ืžืฉืžืขื•ืชื™ื•ืช ืกื˜ื˜ื™ืกื˜ื™ืช.
06:03
And that sucks, right? So 45 percent of men develop
118
363009
3484
ื•ื–ื” ืžื‘ืืก, ื ื›ื•ืŸ? ืื– 45 ืื—ื•ื– ืžื”ื’ื‘ืจื™ื ืžืคืชื—ื™ื
06:06
cancer. Thirty-eight percent of women develop cancer.
119
366493
3097
ืกืจื˜ืŸ. ืฉืœื•ืฉื™ื ื•ืฉืžื•ื ื” ืื—ื•ื–ื™ื ืžื”ื ืฉื™ื ืžืคืชื—ื•ืช ืกืจื˜ืŸ.
06:09
One in four men dies of cancer.
120
369590
2344
ืื—ื“ ืžื›ืœ ืืจื‘ืขื” ื’ื‘ืจื™ื ืžืช ืžืกืจื˜ืŸ.
06:11
One in five women dies of cancer, at least in the United States.
121
371934
3556
ืื—ืช ืžื›ืœ ื—ืžืฉ ื ืฉื™ื ืžืชื” ืžืกืจื˜ืŸ, ืœืคื—ื•ืช ื‘ืืจืฆื•ืช ื”ื‘ืจื™ืช.
06:15
And three out of the four drugs we give you
122
375490
2228
ื•ืฉืœื•ืฉ ืžืชื•ืš ืืจื‘ืข ืชืจื•ืคื•ืช ืฉืื ื• ื ื•ืชื ื™ื ืœื›ื
06:17
if you get cancer fail. And this is personal to me.
123
377718
3513
ืื ืชืงื‘ืœื• ืกืจื˜ืŸ ื›ื•ืฉืœื•ืช. ื•ื–ื” ืžืฉื”ื• ืื™ืฉื™ ืฉืœื™.
06:21
My sister is a cancer survivor.
124
381231
1963
ืื—ื•ืชื™ ื”ื™ื ื ื™ืฆื•ืœืช ืกืจื˜ืŸ.
06:23
My mother-in-law is a cancer survivor. Cancer sucks.
125
383194
3589
ื—ืžื•ืชื™ ื”ื™ื ื ื™ืฆื•ืœืช ืกืจื˜ืŸ. ืกืจื˜ืŸ ื–ื” ืžื‘ืืก.
06:26
And when you have it, you don't have a lot of privacy
126
386783
2190
ื•ื›ืืฉืจ ื™ืฉ ืœืš ืืช ื–ื”, ื•ืื™ืŸ ืœืš ื”ืจื‘ื” ืคืจื˜ื™ื•ืช
06:28
in the hospital. You're naked the vast majority of the time.
127
388973
3487
ื‘ื‘ื™ืช ื”ื—ื•ืœื™ื. ืืชื” ืขื™ืจื•ื ื‘ืจื•ื‘ ื”ืžื›ืจื™ืข ืฉืœ ื”ื–ืžืŸ.
06:32
People you don't know come in and look at you and poke you and prod you,
128
392460
3695
ืื ืฉื™ื ืฉืื™ื ืš ืžื›ื™ืจ ื ื›ื ืกื™ื ืืœื™ืš, ืžืกืชื›ืœื™ื ืขืœื™ืš ืชื•ืงืขื™ื ืœืš ื•ื“ื•ื—ืคื™ื ืœืš,
06:36
and when I tell cancer survivors that this tool we created
129
396155
3441
ื•ื›ืืฉืจ ืื ื™ ืื•ืžืจ ืœื ื™ืฆื•ืœื™ ืกืจื˜ืŸ ื›ื™ ื›ืœื™ ื–ื” ืฉื™ืฆืจื ื• ืื ื—ื ื•
06:39
to protect them is actually preventing their data from being used,
130
399596
3098
ื›ื“ื™ ืœื”ื’ืŸ ืขืœื™ื”ื ืœืžืขืฉื” ืžื•ื ืข ืžื”ื ืชื•ื ื™ื ืฉืœื”ื ืœื‘ื•ื ืœื™ื“ื™ ืฉื™ืžื•ืฉ,
06:42
especially when only three to four percent of people
131
402694
2050
ื‘ืžื™ื•ื—ื“ ื›ืืฉืจ ืจืง ืฉืœื•ืฉื” ืื• ืืจื‘ืขื” ืื—ื•ื–ื™ื ืฉืœ ืื ืฉื™ื
06:44
who have cancer ever even sign up for a clinical study,
132
404744
2798
ืฉื™ืฉ ืœื”ื ืกืจื˜ืŸ ืืคื™ืœื• ืœื ื—ืชืžื• ืื™ ืคืขื ืขื‘ื•ืจ ืžื—ืงืจ ืงืœื™ื ื™,
06:47
their reaction is not, "Thank you, God, for protecting my privacy."
133
407542
3558
ื”ืชื’ื•ื‘ื•ืช ืฉืœื”ื ืื™ื ืŸ, "ืชื•ื“ื”, ืืœื•ื”ื™ื, ืฉื”ื’ื ืช ืขืœ ื”ืคืจื˜ื™ื•ืช ืฉืœื™."
06:51
It's outrage
134
411100
2697
ื–ื” ื–ืขื
06:53
that we have this information and we can't use it.
135
413797
2125
ืฉื™ืฉ ืœื ื• ืžื™ื“ืข ื–ื”, ื•ืื ื• ืœื ื™ื›ื•ืœื™ื ืœื”ืฉืชืžืฉ ื‘ื•.
06:55
And it's an accident.
136
415922
2476
ื•ื–ื• ืชืื•ื ื”.
06:58
So the cost in blood and treasure of this is enormous.
137
418398
3055
ืื– ืขืœื•ืช ื”ื“ื ื•ื•ื”ืžืฉืื‘ื™ื ื”ื™ื ืขืฆื•ืžื”.
07:01
Two hundred and twenty-six billion a year is spent on cancer in the United States.
138
421453
3655
ืžืืชื™ื™ื ื•ืขืฉืจื™ื ื•ืฉื™ืฉื” ืžื™ืœื™ืืจื“ ืœืฉื ื” ืžื•ืฆืื™ื ืขืœ ืกืจื˜ืŸ ื‘ืืจืฆื•ืช ื”ื‘ืจื™ืช.
07:05
Fifteen hundred people a day die in the United States.
139
425108
3219
ืืœืฃ ื—ืžืฉ ืžืื•ืช ืื ืฉื™ื ื‘ื™ื•ื ืžืชื™ื ื‘ืืจืฆื•ืช ื”ื‘ืจื™ืช.
07:08
And it's getting worse.
140
428327
2573
ื•ื–ื” ื ืขืฉื” ื™ื•ืชืจ ื’ืจื•ืข.
07:10
So the good news is that some things have changed,
141
430900
2982
ืื– ื”ื—ื“ืฉื•ืช ื”ื˜ื•ื‘ื•ืช ื”ืŸ ืฉื”ืฉืชื ื• ื›ืžื” ื“ื‘ืจื™ื,
07:13
and the most important thing that's changed
142
433882
1553
ื•ื”ื“ื‘ืจ ื”ื—ืฉื•ื‘ ื‘ื™ื•ืชืจ ืฉื”ืฉืชื ื” ื”ื•ื
07:15
is that we can now measure ourselves in ways
143
435435
2338
ืฉืื ื• ื™ื›ื•ืœื™ื ืขื›ืฉื™ื• ืœืžื“ื•ื“ ืืช ืขืฆืžื ื• ื‘ื“ืจื›ื™ื
07:17
that used to be the dominion of the health system.
144
437773
3058
ืฉื ื”ื’ื• ืœื”ื™ื•ืช ื‘ืจื™ื‘ื•ื ื•ืชื” ืฉืœ ืžืขืจื›ืช ื”ื‘ืจื™ืื•ืช.
07:20
So a lot of people talk about it as digital exhaust.
145
440831
2158
ื›ืš ืฉื”ืจื‘ื” ืื ืฉื™ื ืžื“ื‘ืจื™ื ืขืœ ื–ื” ื›ืขืœ ืžืคืœื˜ ื“ื™ื’ื™ื˜ืœื™.
07:22
I like to think of it as the dust that runs along behind my kid.
146
442989
3042
ืื ื™ ืจื•ืฆื” ืœื”ืชื™ื™ื—ืก ืืœื™ื• ื›ืืœ ื”ืื‘ืง ืฉื ืžืฆื ืžืื—ื•ืจื™ ื”ื™ืœื“ ืฉืœื™.
07:26
We can reach back and grab that dust,
147
446031
2376
ืื ื• ื™ื›ื•ืœื™ื ืœืฉื•ื‘ ื—ื–ืจื”, ื•ืœืชืคื•ืก ืืช ื”ืื‘ืง,
07:28
and we can learn a lot about health from it, so if our choices
148
448407
2414
ื•ืื ื• ื™ื›ื•ืœื™ื ืœืœืžื•ื“ ืžืžื ื• ื”ืจื‘ื” ืขืœ ื‘ืจื™ืื•ืช , ื›ืš ืฉืื ื”ื‘ื—ื™ืจื•ืช ืฉืœื ื•
07:30
are part of our health, what we eat is a really important
149
450821
2680
ื”ืŸ ื—ืœืง ืžื”ื‘ืจื™ืื•ืช ืฉืœื ื•, ืžื” ืฉืื ื—ื ื• ืื•ื›ืœื™ื ื–ื” ื‘ืืžืช ื”ื™ื‘ื˜
07:33
aspect of our health. So you can do something very simple
150
453501
2689
ื‘ืจื™ืื•ืชื™ ื—ืฉื•ื‘ ืฉืœื ื•. ืื– ืืชื ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ืžืฉื”ื• ืคืฉื•ื˜ ืžืื•ื“
07:36
and basic and take a picture of your food,
151
456190
1957
ื•ื‘ืกื™ืกื™ ืœืงื—ืช ืชืžื•ื ื” ืฉืœ ื”ืื•ื›ืœ ืฉืœืš,
07:38
and if enough people do that, we can learn a lot about
152
458147
2884
ื•ืื ืžืกืคื™ืง ืื ืฉื™ื ืขื•ืฉื™ื ืืช ื–ื”, ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืœืžื•ื“ ื”ืจื‘ื” ืขืœ
07:41
how our food affects our health.
153
461031
1425
ื”ื“ืจืš ืฉื‘ื” ื”ืื•ื›ืœ ืฉืœื ื• ืžืฉืคื™ืข ืขืœ ื”ื‘ืจื™ืื•ืช ืฉืœื ื•.
07:42
One interesting thing that came out of this โ€” this is an app for iPhones called The Eatery โ€”
154
462456
4516
ื“ื‘ืจ ืžืขื ื™ื™ืŸ ืื—ื“ ืฉื™ืฆื ืžืชื•ืš ื–ื” โ€” ื–ื”ื• ื™ื™ืฉื•ื ืœืื™ื™ืคื•ืŸ ืฉื ืงืจื ื”ืžื–ืœืœื” โ€”
07:46
is that we think our pizza is significantly healthier
155
466972
2490
ื”ื•ื ืฉืื ื—ื ื• ื—ื•ืฉื‘ื™ื ืฉื”ืคื™ืฆื” ืฉืœื ื• ื”ื™ื ื‘ืจื™ืื” ื™ื•ืชืจ ื‘ืื•ืคืŸ ืžืฉืžืขื•ืชื™
07:49
than other people's pizza is. Okay? (Laughter)
156
469462
3438
ืžืืฉืจ ื”ืคื™ืฆื” ืฉืœ ืื ืฉื™ื ืื—ืจื™ื. ื‘ืกื“ืจ? (ืฆื—ื•ืง)
07:52
And it seems like a trivial result, but this is the sort of research
157
472900
3608
ื–ื” ื ืจืื” ื›ืžื• ืชื•ืฆืื” ื˜ืจื™ื•ื•ื™ืืœื™ืช, ืืš ื–ื” ืกื•ื’ ืฉืœ ืžื—ืงืจ
07:56
that used to take the health system years
158
476508
2314
ืฉื”ื™ื” ืžืชืžืฉืš ืฉื ื™ื ื‘ืžืขืจื›ืช ื”ื‘ืจื™ืื•ืช
07:58
and hundreds of thousands of dollars to accomplish.
159
478822
2293
ื•ืขืœื” ืžืื•ืช ืืœืคื™ ื“ื•ืœืจื™ื ื›ื“ื™ ืœื”ืฉืœื™ืžื•.
08:01
It was done in five months by a startup company of a couple of people.
160
481115
3724
ื–ื” ื ืขืฉื” ื‘ืชื•ืš ื—ืžื™ืฉื” ื—ื•ื“ืฉื™ื ืขืœ ื™ื“ื™ ื—ื‘ืจืช ื”ื–ื ืง ืฉืœ ื›ืžื” ืื ืฉื™ื.
08:04
I don't have any financial interest in it.
161
484839
2624
ืื™ืŸ ืœื™ ื›ืœ ืขื ื™ื™ืŸ ื›ืœื›ืœื™ ื‘ื•.
08:07
But more nontrivially, we can get our genotypes done,
162
487463
2696
ืื‘ืœ ืคื—ื•ืช ื˜ืจื™ื•ื•ื™ืืœื™ , ืื ื• ื™ื›ื•ืœื™ื ืœืงื‘ืœ ืืช ื”ืžืขืจืš ื”ื’ื ื˜ื™ ืฉืœื ื•
08:10
and although our genotypes aren't dispositive, they give us clues.
163
490159
2818
ื•ืœืžืจื•ืช ืฉื”ืžืขืจื›ื™ื ื”ื’ื ื˜ื™ื™ื ืฉืœื ื• ืื™ื ื ื“ื™ืกืคื•ื–ื™ื˜ื™ื‘ื™ื, ื”ื•ื ื ื•ืชื ื™ื ืœื ื• ืจืžื–ื™ื.
08:12
So I could show you mine. It's just A's, T's, C's and G's.
164
492977
2806
ื›ืš ืฉืื ื™ ื™ื›ื•ืœ ืœื”ืจืื•ืช ืœื›ื ืืช ืฉืœื™. ืืœื” ืคืฉื•ื˜ A' T, C ื•-G.
08:15
This is the interpretation of it. As you can see,
165
495783
2232
ื–ื”ื• ื”ืคื™ืจื•ืฉ ืฉืœ ื–ื”. ื›ืคื™ ืฉืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช,
08:18
I carry a 32 percent risk of prostate cancer,
166
498015
2600
ืื ื™ ื ื•ืฉื ืกื™ื›ื•ืŸ ืฉืœ 32% ืฉืœ ืกืจื˜ืŸ ื”ืขืจืžื•ื ื™ืช,
08:20
22 percent risk of psoriasis and a 14 percent risk of Alzheimer's disease.
167
500615
4223
22% ืกื™ื›ื•ืŸ ืฉืœ ืคืกื•ืจื™ืื–ื™ืก, 14% ืกื™ื›ื•ืŸ ืฉืœ ืžื—ืœืช ืืœืฆื”ื™ื™ืžืจ.
08:24
So that means, if you're a geneticist, you're freaking out,
168
504838
2607
ืื– ื–ื” ืื•ืžืจ, ืื ืืชื” ื’ื ื˜ื™ืงืื™, ืืชื” ืžืชื—ืจืคืŸ ืžื–ื”,
08:27
going, "Oh my God, you told everyone you carry the ApoE E4 allele. What's wrong with you?"
169
507445
4034
ื•ืื•ืžืจ, "ื”ื• ืืœื•ื”ื™ื, ืกื™ืคืจืช ืœื›ื•ืœื ืฉืืชื” ื ืฉื ืฉืœ ืืœืœ ApoE E4. ืžื” ืœื ื‘ืกื“ืจ ืื™ืชืš?"
08:31
Right? When I got these results, I started talking to doctors,
170
511479
3688
ื ื›ื•ืŸ? ื›ืฉืงื™ื‘ืœืชื™ ืืช ื”ืชื•ืฆืื•ืช ื”ืืœื•, ื”ืชื—ืœืชื™ ืœื“ื‘ืจ ืขื ืจื•ืคืื™ื,
08:35
and they told me not to tell anyone, and my reaction is,
171
515167
2409
ื•ื”ื ืืžืจื• ืœื™ ืœื ืœืกืคืจ ืœืืฃ ืื—ื“, ื•ื”ืชื’ื•ื‘ื” ืฉืœื™ ื”ื™ื,
08:37
"Is that going to help anyone cure me when I get the disease?"
172
517576
3288
"ื”ืื ื–ื” ื”ื•ืœืš ืœืขื–ื•ืจ ืœืžื™ืฉื”ื• ืœืจืคื ืื•ืชื™ ื›ืืฉืจ ืื ื™ ืžืงื‘ืœ ืืช ื”ืžื—ืœื”?"
08:40
And no one could tell me yes.
173
520864
3064
ื•ืืฃ ืื—ื“ ืœื ื”ื™ื” ื™ื›ื•ืœ ืœื•ืžืจ ืœื™ ื›ืŸ.
08:43
And I live in a web world where, when you share things,
174
523928
2806
ื•ืื ื™ ื—ื™ ื‘ืขื•ืœื ื”ืื™ื ื˜ืจื ื˜ ืฉื‘ื•, ื›ืฉืืชื” ืžืฉืชืฃ ื“ื‘ืจื™ื,
08:46
beautiful stuff happens, not bad stuff.
175
526734
2710
ื“ื‘ืจื™ื ื™ืคื™ื ืงื•ืจื™ื, ืœื ื“ื‘ืจื™ื ืจืขื™ื.
08:49
So I started putting this in my slide decks,
176
529444
1900
ืœื›ืŸ ื”ืชื—ืœืชื™ ืœืฉื™ื ืืช ื–ื” ื‘ืชื™ื‘ื•ืช ื”ืฉืงื•ืคื™ื•ืช ืฉืœื™,
08:51
and I got even more obnoxious, and I went to my doctor,
177
531344
2461
ื•ื ืขืฉื™ืชื™ ืืคื™ืœื• ื™ื•ืชืจ ืžืขืฆื‘ืŸ, ื•ื”ืœื›ืชื™ ืœืจื•ืคื ืฉืœื™,
08:53
and I said, "I'd like to actually get my bloodwork.
178
533805
1982
ื•ืืžืจืชื™, "ืื ื™ ืจื•ืฆื” ืœืงื‘ืœ ื‘ืคื•ืขืœ ืืช ื‘ื“ื™ืงื•ืช ื”ื“ื ืฉืœื™.
08:55
Please give me back my data." So this is my most recent bloodwork.
179
535787
2790
ื‘ื‘ืงืฉื” ื”ื—ื–ืจ ืœื™ ืืช ื”ื ืชื•ื ื™ื ืฉืœื™. ืื– ื–ื•ื”ื™ ื‘ื“ื™ืงืช ื”ื“ื ื”ืื—ืจื•ื ื” ืฉืœื™.
08:58
As you can see, I have high cholesterol.
180
538577
2369
ื›ืคื™ ืฉื ื™ืชืŸ ืœืจืื•ืช, ื™ืฉ ืœื™ ื›ื•ืœืกื˜ืจื•ืœ ื’ื‘ื•ื”.
09:00
I have particularly high bad cholesterol, and I have some
181
540946
2751
ื™ืฉ ืœื™ ื›ื•ืœืกื˜ืจื•ืœ ืจืข ื’ื‘ื•ื” ื‘ืžื™ื•ื—ื“, ื•ื™ืฉ ืœื™ ื›ืžื”
09:03
bad liver numbers, but those are because we had a dinner party with a lot of good wine
182
543697
3003
ื ืชื•ื ื™ ื›ื‘ื“ ื’ืจื•ืขื™ื, ืื– ื–ื” ื‘ื’ืœืœ ืฉื”ื™ืชื” ืœื ื• ืกืขื•ื“ื” ื—ื’ื™ื’ื™ืช ืขื ื”ืจื‘ื” ื™ื™ืŸ ื˜ื•ื‘
09:06
the night before we ran the test. (Laughter)
183
546700
2709
ื‘ืขืจื‘ ืœืคื ื™ ื”ื‘ื“ื™ืงื”. (ืฆื—ื•ืง)
09:09
Right. But look at how non-computable this information is.
184
549409
4413
ื ื›ื•ืŸ, ืื‘ืœ ื”ื‘ื™ื˜ื• ืื™ืš ืžื™ื“ืข ื–ื” ืื™ื ื• ื‘ืจ-ื—ื™ืฉื•ื‘.
09:13
This is like the photograph of my granddad holding my mom
185
553822
2974
ื–ื”ื• ื›ืžื• ื”ืฆื™ืœื•ื ืฉื‘ื• ื”ืกื‘ ืฉืœื™ ืžื—ื–ื™ืง ืืช ืืžื ืฉืœื™
09:16
from a data perspective, and I had to go into the system
186
556796
3599
ืžืคืจืกืคืงื˜ื™ื‘ืช ืžื™ื“ืข, ื•ืื ื™ ื ืืœืฆืชื™ ืœื”ื™ื›ื ืก ืœืชื•ืš ื”ืžืขืจื›ืช
09:20
and get it out.
187
560395
2162
ื•ืœื”ื•ืฆื™ื ืืช ื–ื”.
09:22
So the thing that I'm proposing we do here
188
562557
3282
ื›ืš ืฉื”ื“ื‘ืจ ื”ื–ื” ืฉืื ื™ ืžืฆื™ืข ืฉืื ื—ื ื• ืขื•ืฉื™ื ื›ืืŸ
09:25
is that we reach behind us and we grab the dust,
189
565839
2416
ื”ื™ื, ืฉืื ื• ืžื’ื™ืขื™ื ืžืื—ื•ืจื™ื ื• ื•ื ื•ื›ืœ ืœืชืคื•ืก ืืช ื”ืื‘ืง,
09:28
that we reach into our bodies and we grab the genotype,
190
568255
2978
ื›ืฉืื ื• ื ื›ื ืกื™ื ืœืชื•ืš ื’ื•ืคื ื•, ื•ืชื•ืคืกื™ื ืืช ื”ืžื‘ื ื” ื”ื’ื ื˜ื™,
09:31
and we reach into the medical system and we grab our records,
191
571233
2701
ื•ื ื›ื ืกื™ื ืœืชื•ืš ื”ืžืขืจื›ืช ื”ืจืคื•ืื™ืช ื•ืชื•ืคืกื™ื ืืช ื”ืจืฉื•ืžื•ืช ืฉืœื ื•,
09:33
and we use it to build something together, which is a commons.
192
573934
3440
ื•ื ืฉืชืžืฉ ื‘ื”ื ื›ื“ื™ ืœื‘ื ื•ืช ืžืฉื”ื• ื‘ื™ื—ื“, ืงื•ืžื•ื ืก (ื ื—ืœืช ื”ื›ืœืœ).
09:37
And there's been a lot of talk about commonses, right,
193
577374
3144
ื•ื”ื™ื• ื›ื‘ืจ ื”ืžื•ืŸ ื“ื™ื‘ื•ืจื™ื ืื•ื“ื•ืช ืงื•ืžื•ื ืกืก ,ื ื›ื•ืŸ,
09:40
here, there, everywhere, right. A commons is nothing more
194
580518
2948
ื›ืืŸ, ืฉื, ื‘ื›ืœ ืžืงื•ื, ืžืžืฉ. ืงื•ืžื•ื ืก ื”ื•ื ืœื ื™ื•ืชืจ
09:43
than a public good that we build out of private goods.
195
583466
2928
ืžืืฉืจ ื˜ื•ื‘ืช ื”ืฆื™ื‘ื•ืจ ืฉืื ื• ื‘ื•ื ื™ื ืžืชื•ืš ืชื•ืขืœืช ืคืจื˜ื™ืช.
09:46
We do it voluntarily, and we do it through standardized
196
586394
2769
ืื ื—ื ื• ืขื•ืฉื™ื ืืช ื–ื” ื‘ื”ืชื ื“ื‘ื•ืช, ื•ืื ื—ื ื• ืขื•ืฉื™ื ืืช ื–ื” ื“ืจืš
09:49
legal tools. We do it through standardized technologies.
197
589163
2800
ื›ืœื™ื ืžืฉืคื˜ื™ื™ื ืกื˜ื ื“ืจื˜ื™ื. ืื ื—ื ื• ืขื•ืฉื™ื ืืช ื–ื” ื‘ืืžืฆืขื•ืช ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ืกื˜ื ื“ืจื˜ื™ื•ืช.
09:51
Right. That's all a commons is. It's something that we build
198
591963
3271
ื ื›ื•ืŸ. ื•ื–ื” ื›ืœ ืžื” ืฉืงื•ืžื•ื ืก ื”ื•ื. ื–ื” ืžืฉื”ื• ืฉืื ื—ื ื• ื‘ื•ื ื™ื
09:55
together because we think it's important.
199
595234
2520
ื™ื—ื“ ื›ื™ ืื ื—ื ื• ื—ื•ืฉื‘ื™ื ืฉื–ื” ื—ืฉื•ื‘.
09:57
And a commons of data is something that's really unique,
200
597754
2632
ื•ืงื•ืžื•ื ืก ืฉืœ ื ืชื•ื ื™ื ื”ื•ื ืžืฉื”ื• ื™ื™ื—ื•ื“ื™ ื‘ืืžืช,
10:00
because we make it from our own data. And although
201
600386
2868
ื›ื™ ืื ื—ื ื• ืขื•ืฉื™ื ืื•ืชื• ืขืœ ืคื™ ื”ื ืชื•ื ื™ื ืฉืœื ื•. ื•ืœืžืจื•ืช
10:03
a lot of people like privacy as their methodology of control
202
603254
2287
ืฉื”ืจื‘ื” ืื ืฉื™ื ืื•ื”ื‘ื™ื ืคืจื˜ื™ื•ืช ื›ืžืชื•ื“ื•ืœื•ื’ื™ืช ื”ืฉืœื™ื˜ื” ืฉืœื”ื
10:05
around data, and obsess around privacy, at least
203
605541
2255
ืกื‘ื™ื‘ ื ืชื•ื ื™ื, ื•ืื•ื‘ืกืกื™ื‘ื™ื ืกื‘ื™ื‘ ืคืจื˜ื™ื•ืช, ืœืคื—ื•ืช
10:07
some of us really like to share as a form of control,
204
607796
3048
ื›ืžื” ืžืื™ืชื ื• ื‘ืืžืช ืจื•ืฆื™ื ืœืฉืชืฃ ื›ืฆื•ืจื” ืฉืœ ืฉืœื™ื˜ื”,
10:10
and what's remarkable about digital commonses
205
610844
2353
ืžื” ืฉื™ื•ืฆื ื“ื•ืคืŸ ื‘ื ื•ื’ืข ืœืงื•ืžื•ื ืกื™ื ื“ื™ื’ื™ื˜ืœื™ื
10:13
is you don't need a big percentage if your sample size is big enough
206
613197
3532
ื”ื•ื ืฉืืชื” ืœื ืฆืจื™ืš ืื—ื•ื– ื’ื“ื•ืœ ืื ื’ื•ื“ืœ ื”ืžื“ื’ื ืฉืœืš ื”ื•ื ื’ื“ื•ืœ ืžืกืคื™ืง
10:16
to generate something massive and beautiful.
207
616729
2511
ื›ื“ื™ ืœื”ืคื™ืง ืžืฉื”ื• ืžืืกื™ื‘ื™ ื•ื™ืคื”.
10:19
So not that many programmers write free software,
208
619240
2558
ืื– ืœื ืฉืžืชื›ื ืชื™ื ืจื‘ื™ื ื›ื•ืชื‘ื™ื ืชื•ื›ื ื” ื—ื•ืคืฉื™ืช,
10:21
but we have the Apache web server.
209
621798
2335
ืื‘ืœ ื™ืฉ ืœื ื• ืืช ืฉืจืช ื”ืื™ื ื˜ืจื ื˜ ืืคืืฆ'ื™.
10:24
Not that many people who read Wikipedia edit,
210
624133
2697
ืœื ืฉื”ืจื‘ื” ืื ืฉื™ื ืฉืงื•ืจืื™ื ืืช ืขืจื™ื›ืช ื•ื™ืงื™ืคื“ื™ื” ,
10:26
but it works. So as long as some people like to share
211
626830
4009
ืื‘ืœ ื–ื” ืขื•ื‘ื“. ืื– ื›ืœ ืขื•ื“ ื›ืžื” ืื ืฉื™ื ืจื•ืฆื™ื ืœื—ืœื•ืง
10:30
as their form of control, we can build a commons, as long as we can get the information out.
212
630839
3744
ื›ืื•ืคืŸ ืฉืœื™ื˜ื” ืฉืœื”ื, ืื ื• ื™ื›ื•ืœื™ื ืœื‘ื ื•ืช "ืงื•ืžื•ื ืก", ื›ืœ ืขื•ื“ ืื ื• ื™ื›ื•ืœื™ื ืœืงื‘ืœ ืืช ื”ืžื™ื“ืข.
10:34
And in biology, the numbers are even better.
213
634583
2376
ื•ื‘ื‘ื™ื•ืœื•ื’ื™ื”, ื”ืžืกืคืจื™ื ืืคื™ืœื• ื˜ื•ื‘ื™ื ื™ื•ืชืจ.
10:36
So Vanderbilt ran a study asking people, we'd like to take
214
636959
2552
ื›ืš ื•ืื ื“ืจื‘ื™ืœื˜ ื”ืจื™ืฅ ืžื—ืงืจ ืฉืฉืืœ ืื ืฉื™ื, ืื ื—ื ื• ืจื•ืฆื™ื ืœืงื—ืช
10:39
your biosamples, your blood, and share them in a biobank,
215
639511
3322
ื“ื’ื™ืžื•ืช-ื‘ื™ื• ืฉืœื›ื, ืืช ื”ื“ื ืฉืœื›ื, ื•ืœืฉืชืฃ ืื•ืชื ื‘ื‘ื™ื•-ื‘ื ืง,
10:42
and only five percent of the people opted out.
216
642833
2372
ื•ืจืง ื—ืžื™ืฉื” ืื—ื•ื–ื™ื ืฉืœ ื”ืื ืฉื™ื ืœื ื”ืฆื˜ืจืคื•.
10:45
I'm from Tennessee. It's not the most science-positive state
217
645205
3092
ืื ื™ ืžื˜ื ืกื™. ื–ื• ืื™ื ื” ื”ืžื“ื™ื ื” ื”ื›ื™ ื—ื™ื•ื‘ื™ืช ืœืžื“ืข
10:48
in the United States of America. (Laughter)
218
648297
3039
ื‘ืืจืฆื•ืช ื”ื‘ืจื™ืช ืฉืœ ืืžืจื™ืงื”. (ืฆื—ื•ืง)
10:51
But only five percent of the people wanted out.
219
651336
2378
ืื‘ืœ ืจืง ื—ืžื™ืฉื” ืื—ื•ื–ื™ื ืฉืœ ื”ืื ืฉื™ื ืจืฆื• ืœืขื–ื•ื‘.
10:53
So people like to share, if you give them the opportunity and the choice.
220
653714
4023
ืื– ืื ืฉื™ื ืื•ื”ื‘ื™ื ืœืฉืชืฃ, ืื ืืชื” ื ื•ืชืŸ ืœื”ื ืืช ื”ื”ื–ื“ืžื ื•ืช, ื•ืืช ื”ื‘ื—ื™ืจื”.
10:57
And the reason that I got obsessed with this, besides the obvious family aspects,
221
657737
4483
ื•ืืช ื”ืกื™ื‘ื” ืœื›ืš ืฉื ืขืฉื™ืชื™ ืื•ื‘ืกืกื™ื‘ื™ ืœื–ื”, ืžืœื‘ื“ ื”ื”ื™ื‘ื˜ื™ื ื”ืžืฉืคื—ืชื™ื™ื ื”ื‘ืจื•ืจื™ื,
11:02
is that I spend a lot of time around mathematicians,
222
662220
3273
ื”ื•ื ืฉืื ื™ ืžื‘ืœื” ื”ืžื•ืŸ ื–ืžืŸ ื‘ืกื‘ื™ื‘ืช ืžืชืžื˜ื™ืงืื™ื,
11:05
and mathematicians are drawn to places where there's a lot of data
223
665493
2914
ืžืชืžื˜ื™ืงืื™ื ื ืžืฉื›ื™ื ืœืžืงื•ืžื•ืช ืฉื™ืฉ ื‘ื”ื ื”ืจื‘ื” ื ืชื•ื ื™ื
11:08
because they can use it to tease signals out of noise.
224
668407
2943
ื›ื™ ื”ื ื™ื•ื›ืœื• ืœื”ืฉืชืžืฉ ื‘ื”ื ื›ื“ื™ ืœื—ืœืฅ ืื•ืชื•ืช ืžืชื•ืš ืจืขืฉ.
11:11
And those correlations that they can tease out, they're not
225
671350
2968
ื•ืงื•ืจืœืฆื™ื•ืช ืืœื• ืฉื”ื ื™ื›ื•ืœื™ื ืœื—ืœืฅ, ืื™ื ื
11:14
necessarily causal agents, but math, in this day and age,
226
674318
3872
ื‘ื”ื›ืจื— ืกื•ื›ื ื™ื ืกื™ื‘ืชื™ื™ื , ืื‘ืœ ืžืชืžื˜ื™ืงื”, ื‘ื™ืžื™ื ื• ื•ืชืงื•ืคืชื ื• ,
11:18
is like a giant set of power tools
227
678190
2360
ื“ื•ืžื” ืœืžืขืจื›ืช ืขื ืงื™ืช ืฉืœ ื›ืœื™ ืขื‘ื•ื“ื” ืžืžื•ื ืขื™ื
11:20
that we're leaving on the floor, not plugged in in health,
228
680550
3875
ืฉืื ื—ื ื• ืžืฉืื™ืจื™ื ืขืœ ื”ืจืฆืคื”, ืœื ืžื—ื•ื‘ืจื™ื ืœื—ืฉืžืœ ื‘ื‘ืจื™ืื•ืช,
11:24
while we use hand saws.
229
684425
2312
ื‘ืขื•ื“ ืฉืื ื• ืžืฉืชืžืฉื™ื ื‘ืžืกื•ืจื™ ื™ื“.
11:26
If we have a lot of shared genotypes, and a lot of shared
230
686737
4438
ืื ื™ืฉ ืœื ื• ื”ืžื•ืŸ ืžืขืจื›ื•ืช ื’ื ื™ื ืžืฉื•ืชืคื•ืช, ื”ืจื‘ื” ืชื•ืฆืื•ืช
11:31
outcomes, and a lot of shared lifestyle choices,
231
691175
2748
ืžืฉื•ืชืคื•ืช, ื•ืขื•ื“ ื”ืจื‘ื” ื‘ื—ื™ืจื•ืช ืžืฉื•ืชืคื•ืช ืฉืœ ืกื’ื ื•ืŸ ื—ื™ื™ื,
11:33
and a lot of shared environmental information, we can start
232
693923
2776
ื•ื”ืจื‘ื” ืžื™ื“ืข ืกื‘ื™ื‘ืชื™ ืžืฉื•ืชืฃ, ื ื•ื›ืœ ืœื”ืชื—ื™ืœ
11:36
to tease out the correlations between subtle variations
233
696699
2896
ืœื—ืœืฅ ืืช ื”ืงื•ืจืœืฆื™ื•ืช ื‘ื™ืŸ ื”ื‘ื“ืœื™ื ืžืขื•ื“ื ื™ื
11:39
in people, the choices they make and the health that they create as a result of those choices,
234
699595
5311
ื‘ืื ืฉื™ื, ื”ื‘ื—ื™ืจื•ืช ืฉื”ื ืขื•ืฉื™ื, ื•ื”ื‘ืจื™ืื•ืช ืฉื”ื ื™ื•ืฆืจื™ื ื›ืชื•ืฆืื” ืžื‘ื—ื™ืจื•ืช ืืœื•,
11:44
and there's open-source infrastructure to do all of this.
235
704906
2486
ื•ื™ืฉ ืชืฉืชื™ื•ืช ืงื•ื“-ืคืชื•ื— ืœืขืฉื•ืช ืืช ื›ืœ ื–ื”.
11:47
Sage Bionetworks is a nonprofit that's built a giant math system
236
707392
3094
ืกื™ื™ื’' ื‘ื™ื•ื ื˜ื•ื•ืจืงืก ื”ื™ื ืขืžื•ืชื” ืœื ืœืžื˜ืจื•ืช ืจื•ื•ื— ืฉื‘ื ืชื” ืžืขืจื›ืช ืขื ืง ืžืชื™ืžื˜ื™ืช
11:50
that's waiting for data, but there isn't any.
237
710486
4572
ืฉืžื—ื›ื” ืœื ืชื•ื ื™ื, ืืš ืื™ืŸ ื›ืืœื”.
11:55
So that's what I do. I've actually started what we think is
238
715058
3888
ืื– ื–ื” ืžื” ืฉืื ื™ ืขื•ืฉื”. ืœืžืขืฉื” ื›ื‘ืจ ื”ืชื—ืœืชื™ ืžื” ืฉืื ื—ื ื• ื—ื•ืฉื‘ื™ื ืฉื”ื•ื
11:58
the world's first fully digital, fully self-contributed,
239
718946
3938
ื”ืžื—ืงืจ ื”ืงืœื™ื ื™ ื”ื“ื™ื’ื™ื˜ืœื™ ื”ืจืืฉื•ืŸ ื‘ืขื•ืœื, ื‘ืชืจื•ืžื” ืขืฆืžื™ืช,
12:02
unlimited in scope, global in participation, ethically approved
240
722884
5035
ืœืœื ื”ื’ื‘ืœื” ื‘ื˜ื•ื•ื—, ื‘ื”ืฉืชืชืคื•ืช ื’ืœื•ื‘ืœื™ืช, ืžืื•ืฉืจ ืžื‘ื—ื™ื ื” ืืชื™ืช
12:07
clinical research study where you contribute the data.
241
727919
3655
ืฉืœื• ืืชื ืชื•ืจืžื™ื ืืช ื”ื ืชื•ื ื™ื.
12:11
So if you reach behind yourself and you grab the dust,
242
731574
2206
ืื– ืื ืชืกื‘ ืœืื—ื•ืจืš ื•ืชืกื™ืจ ืืช ื”ืื‘ืง,
12:13
if you reach into your body and grab your genome,
243
733780
2626
ืื ืชื™ื›ื ืก ืœื’ื•ืคืš ื•ืชืชืคื•ืก ืืช ื”ื’ื ื•ื ืฉืœืš,
12:16
if you reach into the medical system and somehow extract your medical record,
244
736406
3047
ืื ืชื™ื›ื ืก ืœืชื•ืš ื”ืžืขืจื›ืช ื”ืจืคื•ืื™ืช, ื•ืชื—ืœืฅ ืืช ื”ื ืชื•ื ื™ื ื”ืจืคื•ืื™ื™ื ืฉืœืš,
12:19
you can actually go through an online informed consent process --
245
739453
3323
ืืชื” ื‘ืขืฆื ื™ื›ื•ืœ ืœืขื‘ื•ืจ ืชื”ืœื™ืš ื”ืกื›ืžื” ืžื“ืขืช ื‘ืื™ื ื˜ืจื ื˜-
12:22
because the donation to the commons must be voluntary
246
742776
2646
ืžื›ื™ื•ื•ืŸ ืฉื”ืชืจื•ืžื” ืœืงื•ืžื•ื ืก ื—ื™ื™ื‘ืช ืœื”ื™ื•ืช ืžืจืฆื•ืŸ
12:25
and it must be informed -- and you can actually upload
247
745422
2793
ื•ื—ื™ื™ื‘ืช ืœื”ื™ื•ืช ืžื™ื•ื“ืขืช โ€“ ื•ืืชื” ื‘ืขืฆื ื™ื›ื•ืœ ืœื”ืขืœื•ืช
12:28
your information and have it syndicated to the
248
748215
2592
ืืช ื”ืžื™ื“ืข ืฉืœืš ื•ืœืžืกื•ืจ ืื•ืชื•
12:30
mathematicians who will do this sort of big data research,
249
750807
3096
ืœืžืชืžื˜ื™ืงืื™ื ืฉื™ืขืฉื• ืžืขื™ืŸ ืกื•ื’ ืฉืœ ื—ืงืจ ื ืชื•ื ื™ื ื’ื“ื•ืœ,
12:33
and the goal is to get 100,000 in the first year
250
753903
2856
ื”ืžื˜ืจื” ื”ื™ื ืœื”ื’ื™ืข 100,000 ื‘ืฉื ื” ื”ืจืืฉื•ื ื”
12:36
and a million in the first five years so that we have
251
756759
2358
ื•ืœืžื™ืœื™ื•ืŸ ื‘ื—ืžืฉ ื”ืฉื ื™ื ื”ืจืืฉื•ื ื•ืช ื›ืš ืฉื™ืฉ ืœื ื•
12:39
a statistically significant cohort that you can use to take
252
759117
3834
ืงื•ื”ื•ืจื˜ื” ืกื˜ื˜ื™ืกื˜ื™ืช ืžืฉืžืขื•ืชื™ืช ื‘ื”ื ืฉืชื•ื›ืœื• ืœื”ืฉืชืžืฉ ื‘ื” ื›ื“ื™ ืœืงื—ืช
12:42
smaller sample sizes from traditional research
253
762951
2422
ืžื“ื’ื ื‘ืžื™ื“ื•ืช ืงื˜ื ื•ืช ื™ื•ืชืจ ืžื”ืžื—ืงืจ ื”ืžืกื•ืจืชื™
12:45
and map it against,
254
765373
1599
ื•ืœืžืคื•ืช ืื•ืชื• ื ื’ื“,
12:46
so that you can use it to tease out those subtle correlations
255
766972
2922
ื›ืš ืฉืชื•ื›ืœื• ืœื”ืฉืชืžืฉ ื‘ื• ื›ื“ื™ ืœื—ืœืฅ ื”ื—ื•ืฆื” ืžืชืืžื™ื ืžืขื•ื“ื ื™ื ืืœื”
12:49
between the variations that make us unique
256
769894
2529
ื‘ื™ืŸ ื”ื•ืจื™ืืฆื™ื•ืช ืฉืขื•ืฉื•ืช ืื•ืชื ื• ืœื™ื™ื—ื•ื“ื™ื™ื
12:52
and the kinds of health that we need to move forward as a society.
257
772423
4024
ื•ืกื•ื’ื™ ื‘ืจื™ืื•ืช ืฉืื ื—ื ื• ืฆืจื™ื›ื™ื ื›ื“ื™ ืœื ื•ืข ืงื“ื™ืžื” ื›ื—ื‘ืจื”.
12:56
And I've spent a lot of time around other commons.
258
776447
3024
ื•ื‘ื™ืœื™ืชื™ ื”ืจื‘ื” ื–ืžืŸ ืกื‘ื™ื‘ ืงื•ืžื•ื ืก ืื—ืจื™ื.
12:59
I've been around the early web. I've been around
259
779471
2680
ืื ื™ ื ืžืฆื ื›ื‘ืจ ื‘ืฉื˜ื— ืžืื– ื”ืื™ื ื˜ืจื ื˜ ื”ืžื•ืงื“ื. ืื ื™ ื”ื™ื™ืชื™ ื›ื‘ืจ ื‘ืฉื˜ื—
13:02
the early creative commons world, and there's four things
260
782151
2608
ื”ืงืจื™ืื™ื™ื˜ื™ื‘ ืงื•ืžื•ื ืก ื”ืžื•ืงื“ื , ื•ื™ืฉ ืืจื‘ืขื” ื“ื‘ืจื™ื
13:04
that all of these share, which is, they're all really simple.
261
784759
3354
ืฉืžืฉื•ืชืคื™ื ืœื›ืœ ืืœื”, ืฉื”ื, ื”ื ื›ื•ืœื ืžืžืฉ ืคืฉื•ื˜ื™ื.
13:08
And so if you were to go to the website and enroll in this study,
262
788113
2727
ื•ืœื›ืŸ ืื ื”ื™ื™ืช ื”ื•ืœืš ืœืืชืจ ื”ืื™ื ื˜ืจื ื˜ ื•ื ืจืฉื ืœืžื—ืงืจ ื–ื”,
13:10
you're not going to see something complicated.
263
790840
2255
ืืชื” ืœื ืขื•ืžื“ ืœืจืื•ืช ืžืฉื”ื• ืžืกื•ื‘ืš.
13:13
But it's not simplistic. These things are weak intentionally,
264
793095
5049
ืื‘ืœ ื–ื” ืœื ืคืฉื˜ื ื™. ื”ื“ื‘ืจื™ื ื”ืืœื” ื—ืœืฉื™ื ื‘ืžืชื›ื•ื•ืŸ,
13:18
right, because you can always add power and control to a system,
265
798144
3023
ื ื›ื•ืŸ, ื›ื™ ืืชื” ืชืžื™ื“ ื™ื›ื•ืœ ืœื”ื•ืกื™ืฃ ื›ื•ื— ื•ื‘ืงืจื” ืœืžืขืจื›ืช,
13:21
but it's very difficult to remove those things if you put them in at the beginning,
266
801167
3964
ืื‘ืœ ื–ื” ืงืฉื” ืžืื•ื“ ืœืกืœืง ื“ื‘ืจื™ื ืืœื” ืื ืฉืžื™ื ืื•ืชื ื‘ื”ืชื—ืœื”,
13:25
and so being simple doesn't mean being simplistic,
267
805131
2545
ืื– ืœื”ื™ื•ืช ืคืฉื•ื˜ ืื™ื ื• ืื•ืžืจ ืœื”ื™ื•ืช ืคืฉื˜ื ื™,
13:27
and being weak doesn't mean weakness.
268
807676
2184
ื—ืœืฉ ืœื ืื•ืžืจ ื—ื•ืœืฉื”.
13:29
Those are strengths in the system.
269
809860
2351
ืืœื” ื”ืŸ ื ืงื•ื“ื•ืช ื”ื—ื•ื–ืง ื‘ืžืขืจื›ืช.
13:32
And open doesn't mean that there's no money.
270
812211
2665
ื•ืคืชื•ื— ืœื ืื•ืžืจ ืฉืื™ืŸ ื›ืกืฃ.
13:34
Closed systems, corporations, make a lot of money
271
814876
3020
ืžืขืจื›ื•ืช ืกื’ื•ืจื•ืช, ืชืื’ื™ื“ื™ื, ืžืจื•ื•ื™ื—ื™ื ื”ืจื‘ื” ื›ืกืฃ
13:37
on the open web, and they're one of the reasons why the open web lives
272
817896
3539
ื‘ืื™ื ื˜ืจื ื˜ ื”ืคืชื•ื—, ื•ื”ื ืื—ืช ื”ืกื™ื‘ื•ืช ืžื“ื•ืข ื”ืื™ื ื˜ืจื ื˜ ื”ืคืชื•ื— ื—ื™
13:41
is that corporations have a vested interest in the openness
273
821435
2827
ืฉืœืชืื’ื™ื“ื™ื ื™ืฉ ื–ื›ื•ืช ืงื ื™ื™ืŸ ื—ื–ืงื” ื‘ืคืชื™ื—ื•ืช
13:44
of the system.
274
824262
2334
ืฉืœ ื”ืžืขืจื›ืช.
13:46
And so all of these things are part of the clinical study that we've created,
275
826596
3794
ืื– ื›ืœ ื”ื“ื‘ืจื™ื ื”ืืœื” ื”ื ื—ืœืง ืžืžื—ืงืจ ืงืœื™ื ื™ ืฉื™ืฆืจื ื•,
13:50
so you can actually come in, all you have to be is 14 years old,
276
830390
3429
ืื– ืืชื” ื™ื›ื•ืœ ืœืžืขืฉื” ืœื”ืฆื˜ืจืฃ, ื›ืœ ืžื” ืฉืืชื” ืฆืจื™ืš ื”ื•ื ืœื”ื™ื•ืช ื‘ืŸ 14,
13:53
willing to sign a contract that says I'm not going to be a jerk,
277
833819
2027
ืฉืžื•ื›ืŸ ืœื—ืชื•ื ืขืœ ื—ื•ื–ื” ืฉืื•ืžืจ ืฉืื ื™ ืœื ื”ื•ืœืš ืœื”ื™ื•ืช ืžื˜ื•ืžื˜ื,
13:55
basically, and you're in.
278
835846
2665
ื‘ืขื™ืงืจื•ืŸ, ื•ืืชื” ื‘ืคื ื™ื.
13:58
You can start analyzing the data.
279
838511
1573
ืืชื” ื™ื›ื•ืœ ืœื”ืชื—ื™ืœ ืœื ืชื— ืืช ื”ื ืชื•ื ื™ื.
14:00
You do have to solve a CAPTCHA as well. (Laughter)
280
840084
4159
ืืชื” ืฆืจื™ืš ื’ื ืœืคืชื•ืจ ื’ื ืืช ืžื‘ื—ืŸ ื”ืงืคื˜ืฆ'ื” (ืฆื—ื•ืง)
14:04
And if you'd like to build corporate structures on top of it,
281
844243
3581
ื•ืื ืืชื” ืจื•ืฆื” ืœื‘ื ื•ืช ืžื‘ื ื™ื ืชืื’ื™ื“ื™ื ืžืขืœื™ื•,
14:07
that's okay too. That's all in the consent,
282
847824
3146
ื’ื ื–ื” ื‘ืกื“ืจ. ื–ื” ื ื›ืœืœ ื‘ื”ืกื›ืžื”,
14:10
so if you don't like those terms, you don't come in.
283
850970
2564
ืื– ืื ืืชื ืœื ืื•ื”ื‘ื™ื ืžื•ื ื—ื™ื ืืœื”, ืืชื ืœื ื ื›ื ืกื™ื.
14:13
It's very much the design principles of a commons
284
853534
3092
ื–ื” ื”ืจื‘ื” ืžืื•ื“ ืžืขืงืจื•ื ื•ืช ื”ืงืจื™ืื™ื™ื˜ื™ื‘ ืงื•ืžื•ื ืก
14:16
that we're trying to bring to health data.
285
856626
2594
ืฉืื ื—ื ื• ืžื ืกื™ื ืœื”ื‘ื™ื ืœืžื™ื“ืข ื”ืจืคื•ืื™.
14:19
And the other thing about these systems is that it only takes
286
859220
2979
ื•ื”ื“ื‘ืจ ื”ืฉื ื™ ืื•ื“ื•ืช ืžืขืจื›ื•ืช ืืœื” ื”ื•ื ืฉื–ื” ืจืง ืžืฆืจื™ืš
14:22
a small number of really unreasonable people working together
287
862199
3179
ืžืกืคืจ ืงื˜ืŸ ืฉืœ ืื ืฉื™ื ืœื ืžืžืฉ ื”ื’ื™ื•ื ื™ื™ื ืฉืขื•ื‘ื“ื™ื ื™ื—ื“
14:25
to create them. It didn't take that many people
288
865378
3182
ื›ื“ื™ ืœื™ืฆื•ืจ ืื•ืชื. ื–ื” ืœื ืžืฆืจื™ืš ื›ืœ ื›ืš ื”ืจื‘ื” ืื ืฉื™ื
14:28
to make Wikipedia Wikipedia, or to keep it Wikipedia.
289
868560
3472
ื›ื“ื™ ืœื”ืคื•ืš ืืช ื•ื™ืงื™ืคื“ื™ื” ื•ื™ืงื™ืคื“ื™ื”, ืื• ื›ื“ื™ ืœืฉืžื•ืจ ืขืœื™ื” ื•ื™ืงื™ืคื“ื™ื”.
14:32
And we're not supposed to be unreasonable in health,
290
872032
2068
ื•ืื ื—ื ื• ืœื ืืžื•ืจื™ื ืœื”ื™ื•ืช ื‘ืœืชื™ ื”ื’ื™ื•ื ื™ื™ื ื‘ื‘ืจื™ืื•ืช,
14:34
and so I hate this word "patient."
291
874100
2276
ื•ื›ืš ืฉืื ื™ ืฉื•ื ื ืืช ื”ืžื™ืœื” "ืคืฆื™ื™ื ื˜".
14:36
I don't like being patient when systems are broken,
292
876376
3167
ืื ื™ ืœื ืื•ื”ื‘ ืœื”ื™ื•ืช ืกื‘ืœื ื™ ื›ืืฉืจ ื”ืžืขืจื›ื•ืช ืžืงื•ืœืงืœื•ืช,
14:39
and health care is broken.
293
879543
2627
ื•ืฉืจื•ืชื™ ื”ื‘ืจื™ืื•ืช ืจืฆื•ืฆื™ื.
14:42
I'm not talking about the politics of health care, I'm talking about the way we scientifically approach health care.
294
882170
4164
ืื ื™ ืœื ืžื“ื‘ืจ ืขืœ ื”ืคื•ืœื™ื˜ื™ืงื” ืฉืœ ืฉื™ืจื•ืชื™ ื”ื‘ืจื™ืื•ืช, ืื ื™ ืžื“ื‘ืจ ืขืœ ื”ื“ืจืš ืฉืื ื—ื ื• ื ื•ืงื˜ื™ื ื‘ื’ื™ืฉื” ืžื“ืขื™ืช ืœืฉืจื•ืชื™ ื”ื‘ืจื™ืื•ืช .
14:46
So I don't want to be patient. And the task I'm giving to you
295
886334
3270
ืื– ืื ื™ ืœื ืจื•ืฆื” ืœื”ื™ื•ืช ืกื‘ืœื ื™. ื•ื”ืžืฉื™ืžื” ืฉืœื™ ื‘ืฉื‘ื™ืœื›ื
14:49
is to not be patient. So I'd like you to actually try,
296
889604
3046
ื”ื™ื ืœื ืœื”ื™ื•ืช ืกื‘ืœื ื™ื™ื. ืื– ืื ื™ ืจื•ืฆื” ืฉื‘ืืžืช ืชื ืกื•,
14:52
when you go home, to get your data.
297
892650
2717
ื›ืืฉืจ ืชืœื›ื• ื”ื‘ื™ืชื”, ืœื”ืฉื™ื’ ืืช ื”ื ืชื•ื ื™ื ืฉืœื›ื.
14:55
You'll be shocked and offended and, I would bet, outraged,
298
895367
2717
ืืชื” ืชื–ื“ืขื–ืขื• ื•ืชื™ืขืœื‘ื• ื•ืื ื™ ืžื”ืžืจ ืขืœ ื›ืš ืฉื’ื ืชื–ืขืžื•,
14:58
at how hard it is to get it.
299
898084
2876
ืขื“ ื›ืžื” ืงืฉื” ืœืงื‘ืœ ืืช ื–ื”.
15:00
But it's a challenge that I hope you'll take,
300
900960
2619
ืื‘ืœ ื–ื” ืืชื’ืจ ืฉืื ื™ ืžืงื•ื•ื” ืฉืชื•ื›ืœื• ืœืงื—ืช ืขืœ ืขืฆืžื›ื,
15:03
and maybe you'll share it. Maybe you won't.
301
903579
2461
ื•ืื•ืœื™ ืชืฉืชืคื• ืื•ืชื•. ื•ืื•ืœื™ ืืชื ืœื.
15:06
If you don't have anyone in your family who's sick,
302
906040
1444
ืื ืื™ืŸ ืœื›ื ืžื™ืฉื”ื• ื—ื•ืœื” ื‘ืžืฉืคื—ื” ,
15:07
maybe you wouldn't be unreasonable. But if you do,
303
907484
2993
ืื•ืœื™ ืœื ืชื”ื™ื• ื‘ืœืชื™ ื”ื’ื™ื•ื ื™ื™ื. ืืš ืื ืชืขืฉื• ื–ืืช,
15:10
or if you've been sick, then maybe you would.
304
910477
2207
ืื• ืื ื”ื™ื™ืชื ื—ื•ืœื™ื, ืื– ืื•ืœื™ ืชืจืฆื•.
15:12
And we're going to be able to do an experiment in the next several months
305
912684
3088
ื•ืื ื—ื ื• ืขื•ืžื“ื™ื ืœื”ื™ื•ืช ืžืกื•ื’ืœื™ื ืœืขืฉื•ืช ื ื™ืกื•ื™ ื‘ื—ื•ื“ืฉื™ื ื”ืงืจื•ื‘ื™ื
15:15
that lets us know exactly how many unreasonable people are out there.
306
915772
3157
ืฉื™ืืคืฉืจ ืœื ื• ืœื“ืขืช ื‘ื“ื™ื•ืง ื›ืžื” ืื ืฉื™ื ืœื ื”ื’ื™ื•ื ื™ื™ื ื™ืฉื ื ืฉื ื‘ื—ื•ืฅ.
15:18
So this is the Athena Breast Health Network. It's a study
307
918929
2122
ืื– ื–ื•ื”ื™ ืจืฉืช ื‘ืจื™ืื•ืช ื”ืฉื“ ืฉืœ ืืชื ื”. ื–ื”ื• ืžื—ืงืจ
15:21
of 150,000 women in California, and they're going to
308
921051
3818
ื‘- 150,000 ื ืฉื™ื ื‘ืงืœื™ืคื•ืจื ื™ื”, ื•ื”ื ืขื•ืžื“ื™ื
15:24
return all the data to the participants of the study
309
924869
2718
ืœื”ื—ื–ื™ืจ ืืช ื›ืœ ื”ื ืชื•ื ื™ื ืœืžืฉืชืชืคื•ืช ื‘ืžื—ืงืจ
15:27
in a computable form, with one-clickability to load it into
310
927587
3146
ื‘ื˜ื•ืคืก ืžืžื•ื—ืฉื‘, ืขื ืืคืฉืจื•ืช-ืงืœื™ืง ืื—ื“ ืœื˜ืขื•ืŸ ืื•ืชื” ืœืชื•ืš
15:30
the study that I've put together. So we'll know exactly
311
930733
2616
ื”ืžื—ืงืจ ืฉื”ืจื›ื‘ืชื™. ื›ืš ืฉื ื“ืข ื‘ื“ื™ื•ืง
15:33
how many people are willing to be unreasonable.
312
933349
2304
ื›ืžื” ืื ืฉื™ื ืžื•ื›ื ื™ื ืœื”ื™ื•ืช ื‘ืœืชื™ ื”ื’ื™ื•ื ื™ื™ื.
15:35
So what I'd end [with] is,
313
935653
2384
ืžื” ืฉืืกื™ื™ื ืืชื• ื”ื•ื,
15:38
the most beautiful thing I've learned since I quit my job
314
938037
3320
ื”ื“ื‘ืจ ื”ื™ืคื” ื‘ื™ื•ืชืจ ืฉืœืžื“ืชื™ ืžืื– ืฉืขื–ื‘ืชื™ ืืช ื”ืžืฉืจื” ืฉืœื™
15:41
almost a year ago to do this, is that it really doesn't take
315
941357
3383
ื›ืžืขื˜ ืœืคื ื™ ื›ืฉื ื” ื›ื“ื™ ืœืขืฉื•ืช ื–ืืช, ื”ื•ื ืฉื–ื” ื‘ืืžืช ืœื ืžืฆืจื™ืš
15:44
very many of us to achieve spectacular results.
316
944740
3808
ื”ืจื‘ื” ืžืื•ื“ ืžืื™ืชื ื• ืœื”ื’ื™ืข ืœืชื•ืฆืื•ืช ืžืจื”ื™ื‘ื•ืช.
15:48
You just have to be willing to be unreasonable,
317
948548
2712
ืืชื ืจืง ืฆืจื™ื›ื™ื ืœื”ื™ื•ืช ืžื•ื›ื ื™ื ืœื”ื™ื•ืช ื‘ืœืชื™ ื”ื’ื™ื•ื ื™ื™ื,
15:51
and the risk we're running is not the risk those 14 men
318
951260
2331
ื•ื”ืกื™ื›ื•ืŸ ืฉืื ื—ื ื• ืœื•ืงื—ื™ื ื”ื•ื ืœื ื”ืกื™ื›ื•ืŸ ืฉืœ ืื•ืชื 14 ื’ื‘ืจื™ื
15:53
who got yellow fever ran. Right?
319
953591
1868
ืฉื—ืœื• ื‘ืงื“ื—ืช ืฆื”ื•ื‘ื”. ื ื›ื•ืŸ?
15:55
It's to be naked, digitally, in public. So you know more
320
955459
2861
ื–ื” ืœื”ื™ื•ืช ืขื™ืจื•ื, ื‘ืื•ืคืŸ ื“ื™ื’ื™ื˜ืœื™, ื‘ืคื•ืžื‘ื™. ื›ืš ืฉืืชื” ื™ื•ื“ืข ื™ื•ืชืจ
15:58
about me and my health than I know about you. It's asymmetric now.
321
958320
3433
ืขืœื™ ื•ืขืœ ื‘ืจื™ืื•ืชื™ ืžืืฉืจ ืื ื™ ื™ื•ื“ืข ืขืœื™ืš. ื›ื™ื•ื ื–ื”ื• ืืกื™ืžื˜ืจื™.
16:01
And being naked and alone can be terrifying.
322
961753
3630
ื•ืœื”ื™ื•ืช ืขื™ืจื•ื ื•ืœื‘ื“ ื™ื›ื•ืœ ืœื”ื™ื•ืช ืžืคื—ื™ื“.
16:05
But to be naked in a group, voluntarily, can be quite beautiful.
323
965383
4467
ืื‘ืœ ืœื”ื™ื•ืช ืขื™ืจื•ื ื‘ืงื‘ื•ืฆื”, ื‘ื”ืชื ื“ื‘ื•ืช, ื™ื›ื•ืœ ืœื”ื™ื•ืช ื“ื™ ื™ืคื”.
16:09
And so it doesn't take all of us.
324
969850
1888
ืื– ื–ื” ืœื ื“ื•ืจืฉ ื›ืœ ืื—ื“ ืžืื™ืชื ื•.
16:11
It just takes all of some of us. Thank you.
325
971738
3006
ื–ื” ืจืง ื“ื•ืจืฉ ื”ื›ืœ ืžืื—ื“ื™ื ืžืื™ืชื ื•. ืชื•ื“ื”.
16:14
(Applause)
326
974744
5590
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7