John Wilbanks: Let's pool our medical data

31,309 views ・ 2012-10-16

TED


μ•„λž˜ μ˜λ¬Έμžλ§‰μ„ λ”λΈ”ν΄λ¦­ν•˜μ‹œλ©΄ μ˜μƒμ΄ μž¬μƒλ©λ‹ˆλ‹€.

00:00
Translator: Joseph Geni Reviewer: Morton Bast
0
0
7000
λ²ˆμ—­: Kyo young Chu κ²€ν† : Han Jungran
00:15
So I have bad news, I have good news,
1
15358
3061
쒋은 μ†Œμ‹κ³Ό, λ‚˜μœ μ†Œμ‹,
00:18
and I have a task.
2
18419
1865
그리고 ν•  일이 ν•˜λ‚˜ μžˆμŠ΅λ‹ˆλ‹€
00:20
So the bad news is that we all get sick.
3
20284
2943
λ‚˜μœ μ†Œμ‹μ€ 우리 λͺ¨λ‘κ°€ 병에 κ±Έλ¦°λ‹€λŠ” κ²λ‹ˆλ‹€
00:23
I get sick. You get sick.
4
23227
2272
저도 병에 걸리고, μ—¬λŸ¬λΆ„λ„ 걸리고,
00:25
And every one of us gets sick, and the question really is,
5
25499
2542
우리 λͺ¨λ‘κ°€ 병에 κ±Έλ¦½λ‹ˆλ‹€ μ§„μ§œ μ§ˆλ¬Έμ€ λ°”λ‘œ
00:28
how sick do we get? Is it something that kills us?
6
28041
2877
μ–Όλ§ˆλ‚˜ μ•„ν”„λƒλŠ” κ±°μ£  죽을 μ •λ„λ‘œ μ•„ν”ˆ κ±΄κ°€μš”?
00:30
Is it something that we survive?
7
30918
1345
μ‚΄μ•„ 남을 수 μžˆμ„ μ •λ„μΈκ°€μš”?
00:32
Is it something that we can treat?
8
32263
1928
μ•„λ‹ˆλ©΄ μΉ˜λ£Œν•  수 μžˆμ„ μ •λ„λ‘œμš”?
00:34
And we've gotten sick as long as we've been people.
9
34191
3256
μš°λ¦¬κ°€ μ‚¬λžŒμœΌλ‘œ μ‚΄μ•„κ°€λŠ” 이상 μ•„ν”„κΈ° λ§ˆλ ¨μž…λ‹ˆλ‹€
00:37
And so we've always looked for reasons to explain why we get sick.
10
37447
3486
κ·Έλž˜μ„œ μš°λ¦¬λŠ” μ™œ μ•„ν”„κ²Œ λ˜λŠ” 지에 λŒ€ν•œ 이유λ₯Ό 항상 μ°Ύκ³€ ν•©λ‹ˆλ‹€
00:40
And for a long time, it was the gods, right?
11
40933
1957
였랜 κΈ°κ°„λ™μ•ˆ μ‹  λ•Œλ¬Έμ΄λΌκ³  λ―Ώμ—ˆμ–΄μš” κ·Έλ ‡μ£ ?
00:42
The gods are angry with me, or the gods are testing me,
12
42890
3154
신이 λ‚˜μ—κ²Œ λ…Έν•˜μ…¨λ‹€κ±°λ‚˜, 신이 λ‚˜λ₯Ό μ‹œν—˜ν•œλ‹€ 맞죠?
00:46
right? Or God, singular, more recently,
13
46044
2416
μ’€ 더 μ΅œκ·Όμ—λŠ” 주둜 신이 λ‚˜λ₯Ό λ²Œν•œλ‹€κ±°λ‚˜
00:48
is punishing me or judging me.
14
48460
2664
μ‹¬νŒν•œλ‹€κ³  믿게 λ˜μ—ˆμ£ 
00:51
And as long as we've looked for explanations,
15
51124
2680
μš°λ¦¬κ°€ 이유λ₯Ό 찾으렀고 ν• μˆ˜λ‘
00:53
we've wound up with something that gets closer and closer to science,
16
53804
3711
μ™œ μš°λ¦¬κ°€ 병에 κ±Έλ¦¬λŠ” 지에 κ΄€ν•œ κ°€μ •κ³Ό 같은
00:57
which is hypotheses as to why we get sick,
17
57515
2489
과학적인 츑면에 점점 더 κ°€κΉŒμ›Œμ§€λŠ” 것에 이λ₯΄λ €κ³ ,
01:00
and as long as we've had hypotheses about why we get sick, we've tried to treat it as well.
18
60004
4740
μš°λ¦¬κ°€ κ·ΈλŸ¬ν•œ 가정을 ν•˜λŠ” ν•œ, 치료λ₯Ό ν•˜λ €κ³  μ‹œλ„ν•΄μ™”μŠ΅λ‹ˆλ‹€
01:04
So this is Avicenna. He wrote a book over a thousand years ago called "The Canon of Medicine,"
19
64744
4033
자, 이 μ‚¬λžŒμ€ 이븐 μ‹œλ‚˜(Avicenna)μΈλ°μš”, 수천 λ…„ 전에 "μ˜ν•™μ •μ „"μ΄λΌλŠ” 책을 μΌμŠ΅λ‹ˆλ‹€
01:08
and the rules he laid out for testing medicines
20
68777
2406
약을 μ‹œν—˜ν•˜λŠ”λ° μžˆμ–΄μ„œ κ·Έκ°€ λ‚˜μ—΄ν•œ 방법듀은
01:11
are actually really similar to the rules we have today,
21
71183
1789
μ‹€μ œλ‘œ 병원균과 μ‹œμ•½μ€ 같은 κ°•λ„μ—¬μ•Όλ§Œ ν•˜κ³ ,
01:12
that the disease and the medicine must be the same strength,
22
72972
2945
약은 μ •μ œλ˜μ–΄μ•Όν•˜λ©°, λ§ˆμ§€λ§‰μœΌλ‘œ μ‚¬λžŒμ—κ²Œ μ‹œν—˜ν•΄μ•Όν•œλ‹€λŠ”
01:15
the medicine needs to be pure, and in the end we need
23
75917
2397
μ˜€λŠ˜λ‚ μ˜ 법칙과 μ•„μ£Ό μœ μ‚¬ν•©λ‹ˆλ‹€
01:18
to test it in people. And so if you put together these themes
24
78314
3141
κ·Έλž˜μ„œ λ§Œμ•½ μ΄λŸ¬ν•œ μ„œμˆ μ΄λ‚˜ κ°€μ •μ˜ 주제λ₯Ό
01:21
of a narrative or a hypothesis in human testing,
25
81455
4465
μž„μƒμ‹œν—˜μ— μ μš©ν•œλ‹€λ©΄,
01:25
right, you get some beautiful results,
26
85920
2656
μ•„μ£Ό λ›°μ–΄λ‚œ κΈ°μˆ μ„ 가지고 μžˆμ§€ μ•Šλ”λΌλ„
01:28
even when we didn't have very good technologies.
27
88576
1442
쒋은 κ²°κ³Όλ₯Ό 얻을 κ²ƒμž…λ‹ˆλ‹€
01:30
This is a guy named Carlos Finlay. He had a hypothesis
28
90018
3062
이 λ‚¨μžλŠ” μΉ΄λ₯Όλ‘œμŠ€ 핀라이(Carlos Finlay)μž…λ‹ˆλ‹€
01:33
that was way outside the box for his time, in the late 1800s.
29
93080
2905
그의 가정은 1800λ…„λŒ€ ν›„λ°˜μ΄λΌλŠ” μ‹œλŒ€μ™€λŠ” μ–΄μšΈλ¦¬μ§€ μ•ŠλŠ” κ²ƒμ΄μ—ˆμŠ΅λ‹ˆλ‹€
01:35
He thought yellow fever was not transmitted by dirty clothing.
30
95985
2848
κ·ΈλŠ” 황열이 λ”λŸ¬μš΄ μ˜·μ— μ˜ν•΄ 전염이 λ˜λŠ” 것이 μ•„λ‹ˆλΌκ³  μƒκ°ν–ˆμŠ΅λ‹ˆλ‹€
01:38
He thought it was transmitted by mosquitos.
31
98833
2426
λͺ¨κΈ°μ— μ˜ν•΄ μ „μ—Όλœλ‹€κ³  λ―Ώμ—ˆμ£ 
01:41
And they laughed at him. For 20 years, they called this guy
32
101259
2362
μ‚¬λžŒλ“€μ€ κ·Έλ₯Ό λΉ„μ›ƒμ—ˆκ³ , 20λ…„ λ™μ•ˆμ΄λ‚˜
01:43
"the mosquito man." But he ran an experiment in people,
33
103621
3489
"λͺ¨κΈ°λ‚¨"이라고 λΉ„μ›ƒμ—ˆμŠ΅λ‹ˆλ‹€ ν•˜μ§€λ§Œ κ·ΈλŠ” μ‚¬λžŒλ“€μ—κ²Œ μ‹€ν—˜μ„ ν•΄λ΄€μŠ΅λ‹ˆλ‹€
01:47
right? He had this hypothesis, and he tested it in people.
34
107110
3103
μ΄λŸ¬ν•œ 가정을 가지고, μ‚¬λžŒλ“€μ—κ²Œ μ‹œν—˜μ„ ν•œ 것이죠
01:50
So he got volunteers to go move to Cuba and live in tents
35
110213
4642
κ·Έλž˜μ„œ μΏ λ°”λ‘œ κ°€μ„œ ν…νŠΈμ—μ„œ μ‚΄λ©΄μ„œ
01:54
and be voluntarily infected with yellow fever.
36
114855
3035
자발적으둜 황열에 감염될 μ§€μ›μžλ“€μ„ κ΅¬ν–ˆμŠ΅λ‹ˆλ‹€
01:57
So some of the people in some of the tents had dirty clothes
37
117890
3022
μΌλΆ€λŠ” λ”λŸ¬μš΄ μ˜·μ„ λ„£μ–΄ 놓은 ν…νŠΈμ—μ„œ μ§€λƒˆκ³ ,
02:00
and some of the people were in tents that were full
38
120912
1219
μΌλΆ€λŠ” 황열에 κ°μ—Όλœ λͺ¨κΈ°λ“€λ‘œ
02:02
of mosquitos that had been exposed to yellow fever.
39
122131
2256
가득찬 ν…νŠΈμ—μ„œ μ‚΄μ•˜μŠ΅λ‹ˆλ‹€
02:04
And it definitively proved that it wasn't this magic dust
40
124387
3401
그리고 이 μ‹€ν—˜μ€ 황열을 μΌμœΌν‚€λŠ” 것은
02:07
called fomites in your clothes that caused yellow fever.
41
127788
3422
맀개물(fomites)이라고 λΆˆλ¦¬λŠ” λ§ˆλ²•μ˜ 가루가 μ•„λ‹ˆλΌλŠ” 것을 ν™•μ‹€νžˆ 증λͺ…ν•΄λƒˆμ£ 
02:11
But it wasn't until we tested it in people that we actually knew.
42
131210
3376
ν•˜μ§€λ§Œ μš°λ¦¬κ°€ μ•„λŠ” μ‚¬λžŒλ“€μ—κ²Œ 직접 μ‹€ν—˜μ„ ν•˜κΈ° μ „κΉŒμ§€λŠ” λͺ°λžμŠ΅λ‹ˆλ‹€
02:14
And this is what those people signed up for.
43
134586
1959
그리고 μ‚¬λžŒλ“€μ΄ 여기에 자발적으둜 λ™μ°Έν–ˆμ£ .
02:16
This is what it looked like to have yellow fever in Cuba
44
136545
3090
λ‹Ήμ‹œ μΏ λ°”μ—μ„œ 황열에 걸렸을 λ•Œ λ‚˜νƒ€λ‚˜λŠ” μ¦μƒμœΌλ‘œλŠ”
02:19
at that time. You suffered in a tent, in the heat, alone,
45
139635
4534
ν…νŠΈ μ•ˆμ—μ„œ ν˜Όμžμ„œ 고열에
02:24
and you probably died.
46
144169
2696
μ‹œλ¦„μ‹œλ¦„ μ•“λ‹€κ°€ κ²°κ΅­μ—” 죽게 λ˜λŠ” κ²ƒμ΄μ—ˆμŠ΅λ‹ˆλ‹€.
02:26
But people volunteered for this.
47
146865
3217
ν•˜μ§€λ§Œ μ‚¬λžŒλ“€μ€ 기꺼이 μžμ›ν–ˆμŠ΅λ‹ˆλ‹€
02:30
And it's not just a cool example of a scientific design
48
150082
3311
κ²Œλ‹€κ°€ 이건 단지 μ΄λ‘ μƒμ˜ 과학적 μ‹€ν—˜ κ³„νšλ²•μ˜
02:33
of experiment in theory. They also did this beautiful thing.
49
153393
2913
예인 κ²ƒλ§Œμ€ μ•„λ‹ˆμ—ˆμŠ΅λ‹ˆλ‹€ λ‹€μŒκ³Ό 같은 멋진 일도 ν•΄λƒˆμ£ 
02:36
They signed this document, and it's called an informed consent document.
50
156306
3919
그듀은 이 λ¬Έμ„œμ—λ„ μ„œλͺ…을 ν–ˆμ—ˆλŠ”λ°, μ΄λŠ” μ‚¬μ „λ™μ˜μ„œλΌκ³ λ„ λΆˆλ¦½λ‹ˆλ‹€
02:40
And informed consent is an idea that we should be
51
160225
2513
이 μ‚¬μ „λ™μ˜μ„œλŠ” μ‚¬νšŒ κ΅¬μ„±μ›μœΌλ‘œμ„œ
02:42
very proud of as a society, right? It's something that
52
162738
2226
μ•„μ£Ό μžλž‘μŠ€λŸ¬μ›Œν•΄μ•Όν•˜λŠ” 아이디어 μ•„λ‹κΉŒμš”?
02:44
separates us from the Nazis at Nuremberg,
53
164964
2766
이게 μš°λ¦¬μ™€ λ‚˜μΉ˜μ˜ λ‰˜λ₯Έλ² λ₯΄ν¬
02:47
enforced medical experimentation. It's the idea
54
167730
2875
κ°•μ œ μ˜ν•™ μ‹€ν—˜μ„ κ΅¬λΆ„ν•΄μ£Όλ‹ˆκΉŒμš”
02:50
that agreement to join a study without understanding isn't agreement.
55
170605
3788
λ°”λ‘œ 연ꡬ에 λŒ€ν•œ 이해가 λ™λ°˜λ˜μ§€ μ•Šμ€ λ™μ˜μ„œλŠ” λ™μ˜μ„œκ°€ μ•„λ‹ˆλΌλŠ” κ±Έ μ‹œμ‚¬ν•˜κ³  μžˆμŠ΅λ‹ˆλ‹€.
02:54
It's something that protects us from harm, from hucksters,
56
174393
4109
이것 덕뢄에 μš°λ¦¬κ°€ μƒν•΄λ‚˜, 강맀상인,
02:58
from people that would try to hoodwink us into a clinical
57
178502
2853
λ˜λŠ” μš°λ¦¬κ°€ μ΄ν•΄ν•˜μ§€ λͺ»ν•˜κ±°λ‚˜ λ™μ˜ν•˜μ§€ μ•ŠλŠ” μ˜ν•™ μ—°κ΅¬λ‘œ
03:01
study that we don't understand, or that we don't agree to.
58
181355
3752
우리λ₯Ό μ†μ΄λ €λŠ” μ‚¬λžŒλ“€λ‘œλΆ€ν„° λ³΄ν˜Έλ°›μ„ 수 μžˆλŠ” κ±°μ£ 
03:05
And so you put together the thread of narrative hypothesis,
59
185107
4329
κ·Έλž˜μ„œ κ°€μ„€κ³Ό μž„μƒμ‹œν—˜, 그리고 μ‚¬μ „λ™μ˜μ„œλ₯Ό ν•©μΉ˜λ©΄
03:09
experimentation in humans, and informed consent,
60
189436
2597
저희가 μ˜ν•™ 연ꡬ라고 λΆ€λ₯΄λŠ” 것이 되고,
03:12
and you get what we call clinical study, and it's how we do
61
192033
2665
λŒ€λΆ€λΆ„μ˜ μ˜ν•™μ μΈ 일은
03:14
the vast majority of medical work. It doesn't really matter
62
194698
3015
이런 λ°©μ‹μœΌλ‘œ 진행 λ©λ‹ˆλ‹€.
03:17
if you're in the north, the south, the east, the west.
63
197713
2342
μ—¬λŸ¬λΆ„μ΄ λ™μ„œλ‚¨λΆ 어디에 있던 간에 λ¬Έμ œκ°€ μ•ˆ λ©λ‹ˆλ‹€.
03:20
Clinical studies form the basis of how we investigate,
64
200055
4113
μ˜ν•™ μ—°κ΅¬λŠ” μš°λ¦¬κ°€ μ–΄λ–»κ²Œ μ—°κ΅¬ν•˜λŠ”μ§€μ— λŒ€ν•œ 바탕을 μ΄λ£Ήλ‹ˆλ‹€.
03:24
so if we're going to look at a new drug, right,
65
204168
1859
κ·Έλž˜μ„œ λ§Œμ•½μ— μƒˆλ‘œμš΄ 약을 κ²€μ‚¬ν•΄λ³΄κ³ μž ν•œλ‹€λ©΄
03:26
we test it in people, we draw blood, we do experiments,
66
206027
2998
연ꡬλ₯Ό 톡해 μ‚¬λžŒλ“€μ—κ²Œ ν•΄λ₯Ό λΌμΉ˜μ§€ μ•ŠλŠ”λ‹€λŠ” 것을
03:29
and we gain consent for that study, to make sure
67
209025
2329
ν™•μ‹€νžˆ ν•˜κΈ° μœ„ν•΄μ„œ μž„μƒμ‹œν—˜μ„ ν•˜κ³ , μ±„ν˜ˆμ„ ν•˜κ³ ,
03:31
that we're not screwing people over as part of it.
68
211354
2649
μ‹€ν—˜μ„ ν•˜κ³ , 이 연ꡬ에 λŒ€ν•œ λ™μ˜μ„œλ₯Ό μ–»μŠ΅λ‹ˆλ‹€
03:34
But the world is changing around the clinical study,
69
214003
3664
ν•˜μ§€λ§Œ μˆ˜μ‹­ λ…„, ν˜Ήμ€ 50λ…„μ—μ„œ 100년에 이λ₯΄λŠ” κΈ°κ°„ λ™μ•ˆ
03:37
which has been fairly well established for tens of years
70
217667
3366
κ½€λ‚˜ 잘 μ •λ¦½λ˜μ–΄ 있던 μ˜ν•™ 연ꡬ λΆ„μ•Όκ°€
03:41
if not 50 to 100 years.
71
221033
1900
λ³€ν™”ν•˜κ³  μžˆμŠ΅λ‹ˆλ‹€
03:42
So now we're able to gather data about our genomes,
72
222933
3051
이제 μš°λ¦¬λŠ” μœ μ „μžμ— λŒ€ν•œ 정보λ₯Ό μˆ˜μ§‘ν•  수 있게 λ˜μ—ˆμ§€λ§Œ,
03:45
but, as we saw earlier, our genomes aren't dispositive.
73
225984
2860
μ•žμ—μ„œ λ³΄μ…¨λ‹€μ‹œν”Ό μœ μ „μž μ •λ³΄λŠ” κ²°μ •λ˜μ–΄μžˆμ§€ μ•ŠμŠ΅λ‹ˆλ‹€.
03:48
We're able to gather information about our environment.
74
228844
2766
그리고 ν™˜κ²½μ— λŒ€ν•œ 정보도 얻을 수 있죠.
03:51
And more importantly, we're able to gather information
75
231610
1910
더 μ€‘μš”ν•œ 사싀은 우리의 선택에 λŒ€ν•œ 정보도 μˆ˜μ§‘ν•  수 있게 λ˜μ—ˆμŠ΅λ‹ˆλ‹€.
03:53
about our choices, because it turns out that what we think of
76
233520
2840
μš°λ¦¬κ°€ 건강이라고 μƒκ°ν•˜λŠ” 것이
03:56
as our health is more like the interaction of our bodies,
77
236360
2720
신체와 μœ μ „μž, 우리의 선택,
03:59
our genomes, our choices and our environment.
78
239080
3649
그리고 ν™˜κ²½μ˜ μƒν˜Έμž‘μš©μœΌλ‘œ λ°ν˜€μ‘ŒκΈ° λ•Œλ¬Έμ΄μ£ .
04:02
And the clinical methods that we've got aren't very good
79
242729
2744
또 μš°λ¦¬κ°€ μ˜ν•™μ μΈ 방법이라고 ν–ˆλ˜ 것듀도
04:05
at studying that because they are based on the idea
80
245473
2632
μ‚¬λžŒκ³Ό μ‚¬λžŒ μ‚¬μ΄μ˜ μƒν˜Έμž‘μš©μ— κΈ°λ°˜ν•œ κ²ƒμ΄λ―€λ‘œ
04:08
of person-to-person interaction. You interact
81
248105
1914
연ꡬ에 그리 쒋은 것은 μ•„λ‹™λ‹ˆλ‹€.
04:10
with your doctor and you get enrolled in the study.
82
250019
2095
μ—¬λŸ¬λΆ„λ“€μ˜ μ˜μ‚¬μ™€ 이야기λ₯Ό ν•˜κ³  연ꡬ에 λ“€μ–΄κ°€λŠ” 것이죠
04:12
So this is my grandfather. I actually never met him,
83
252114
2615
이 사진은 저희 ν• μ•„λ²„μ§€μž…λ‹ˆλ‹€. μ „ λ§Œλ‚˜λ΅Œ 적이 μ—†μ£ .
04:14
but he's holding my mom, and his genes are in me, right?
84
254729
3795
ν•˜μ§€λ§Œ ν• μ•„λ²„μ§€κ»˜μ„œλŠ” 저희 μ–΄λ¨Έλ‹ˆλ₯Ό μ•ˆκ³  κ³„μ‹œκ³ , 제 μ•ˆμ—λŠ” κ·ΈλΆ„μ˜ μœ μ „μžκ°€ μžˆμŠ΅λ‹ˆλ‹€
04:18
His choices ran through to me. He was a smoker,
85
258524
2891
ν• μ•„λ²„μ§€μ˜ 선택은 μ œκ²Œλ‘œλ„ μ™”μŠ΅λ‹ˆλ‹€ λ§Žμ€ μ‚¬λžŒλ“€μ΄ κ·Έλž¬λ“―μ΄ λ‹΄λ°°λ₯Ό ν”Όμ…¨μ£ .
04:21
like most people were. This is my son.
86
261415
2584
이 사진은 제 μ•„λ“€μž…λ‹ˆλ‹€.
04:23
So my grandfather's genes go all the way through to him,
87
263999
3442
즉, 제 ν• μ•„λ²„μ§€μ˜ μœ μ „μžλŠ” 이 μ•„μ΄μ—κ²ŒκΉŒμ§€ λ‹Ώμ•„μžˆκ³ ,
04:27
and my choices are going to affect his health.
88
267441
2552
μ œκ°€ ν•˜λŠ” 일은 제 μ•„λ“€μ˜ 건강에도 영ν–₯을 μ€λ‹ˆλ‹€.
04:29
The technology between these two pictures
89
269993
2694
이 두 사진 μ‚¬μ΄μ˜ κΈ°μˆ μ€
04:32
cannot be more different, but the methodology
90
272687
3673
μ™„μ „νžˆ λ‹€λ₯΄μ§€λ§Œ, μ˜ν•™μ  연ꡬλ₯Ό μœ„ν•œ 방법둠은
04:36
for clinical studies has not radically changed over that time period.
91
276360
4124
μ—¬νƒœ κΈ‰κ²©ν•˜κ²Œ λ³€ν™”ν•˜μ§€ μ•Šμ•˜μŠ΅λ‹ˆλ‹€.
04:40
We just have better statistics.
92
280484
2668
λ‹€λ§Œ ν†΅κ³„ν•™λ§Œ λ°œμ „ν–ˆμ£ .
04:43
The way we gain informed consent was formed in large part
93
283152
3452
μš°λ¦¬κ°€ 사전 λ™μ˜μ„œλ₯Ό λ°›μ•˜λ˜ λ°©λ²•μ˜ λŒ€λΆ€λΆ„μ€
04:46
after World War II, around the time that picture was taken.
94
286604
2591
첫 번째 사진이 μ°ν˜”λ˜ 제2μ°¨ μ„Έκ³„λŒ€μ „ 이후에 정립이 λ˜μ—ˆμŠ΅λ‹ˆλ‹€.
04:49
That was 70 years ago, and the way we gain informed consent,
95
289195
3934
ν•œ 70λ…„ 정도 된 μΌμ΄λ„€μš”. 그리고 ν”Όν•΄λ‘œλΆ€ν„° 우리λ₯Ό λ³΄ν˜Έν•΄μ£Όλ„λ‘ κ³ μ•ˆλœ
04:53
this tool that was created to protect us from harm,
96
293129
2877
μ‚¬μ „λ™μ˜μ„œλŠ” 이제 μ €μž₯μ†Œλ₯Ό λ§Œλ“€κ²Œ λ˜μ—ˆμŠ΅λ‹ˆλ‹€.
04:56
now creates silos. So the data that we collect
97
296006
3666
즉, μ „λ¦½μ„ μ•”μ΄λ‚˜ μ•ŒμΈ ν•˜μ΄λ¨Έ μ‹€ν—˜μ„ μœ„ν•΄
04:59
for prostate cancer or for Alzheimer's trials
98
299672
2726
λͺ¨μ€ μžλ£Œλ“€μ€
05:02
goes into silos where it can only be used
99
302398
2615
였직 κ·Έ μ—°κ΅¬λ§Œμ„ μœ„ν•΄ 쓰일 수 μžˆλŠ” μ €μž₯μ†Œλ‘œ
05:05
for prostate cancer or for Alzheimer's research.
100
305013
3224
λ“€μ–΄κ°€κ²Œ λ©λ‹ˆλ‹€.
05:08
Right? It can't be networked. It can't be integrated.
101
308237
2894
이 μžλ£Œλ“€μ€ μ„œλ‘œ 곡유될 수 μ—†μœΌλ©°, 톡합될 수 μ—†κ³ ,
05:11
It cannot be used by people who aren't credentialed.
102
311131
3533
자격이 μ—†λŠ” μ‚¬λžŒλ“€μ€ μ ‘κ·Όν•  수 μ—†μŠ΅λ‹ˆλ‹€.
05:14
So a physicist can't get access to it without filing paperwork.
103
314664
2953
λ¬Όλ¦¬ν•™μžλ‚˜ 컴퓨터 κ³Όν•™μžλŠ”
05:17
A computer scientist can't get access to it without filing paperwork.
104
317617
3068
μ„œλ₯˜μ— μ„œλͺ…ν•˜μ§€ μ•Šκ³ λŠ” 이 μžλ£Œμ— μ ˆλŒ€ μ†λŒˆ 수 μ—†μ£ .
05:20
Computer scientists aren't patient. They don't file paperwork.
105
320685
4143
컴퓨터 κ³Όν•™μžλŠ” 인내심이 μ—†μŠ΅λ‹ˆλ‹€. κ·Έλž˜μ„œ μ„œλ₯˜μ— μ„œλͺ…을 μ•ˆ ν•˜μ£ .
05:24
And this is an accident. These are tools that we created
106
324828
3986
이건 μž¬μ•™μž…λ‹ˆλ‹€. 이 방법듀은 ν”Όν•΄λ‘œλΆ€ν„°
05:28
to protect us from harm, but what they're doing
107
328814
3267
우리λ₯Ό λ³΄ν˜Έν•˜λ €κ³  λ§Œλ“  것인데,
05:32
is protecting us from innovation now.
108
332081
2530
그듀은 μ§€κΈˆ 우리λ₯Ό ν˜μ‹ μœΌλ‘œλΆ€ν„° 막고 μžˆμŠ΅λ‹ˆλ‹€.
05:34
And that wasn't the goal. It wasn't the point. Right?
109
334611
3265
그럴렀고 λ§Œλ“  것이 μ•„λ‹ˆμ—ˆμŠ΅λ‹ˆλ‹€. 그게 λͺ©μ μ΄ μ•„λ‹ˆμ£ , 그렇지 μ•Šλ‚˜μš”?
05:37
It's a side effect, if you will, of a power we created
110
337876
2699
이건 λ§ν•˜μžλ©΄, 쒋은 λͺ©μ μœΌλ‘œ λ§Œλ“  힘의
05:40
to take us for good.
111
340575
2359
λΆ€μž‘μš©μ΄λΌκ³  ν•  수 μžˆκ² λ„€μš”.
05:42
And so if you think about it, the depressing thing is that
112
342934
3144
쑰금 더 생각해봀을 λ•Œ, μš°μšΈν•œ 것은 λ°”λ‘œ
05:46
Facebook would never make a change to something
113
346078
2133
νŽ˜μ΄μŠ€λΆμ€ 3κΈ° μž„μƒμ‹œν—˜λ§ŒνΌμ˜
05:48
as important as an advertising algorithm
114
348211
2571
ν‘œλ³Έμ„ 가진 κ΄‘κ³  μ•Œκ³ λ¦¬μ¦˜κ³Ό 같이 μ€‘μš”ν•œ 것듀에
05:50
with a sample size as small as a Phase III clinical trial.
115
350782
4411
λ³€ν™”λ₯Ό 주진 λͺ»ν•œλ‹€λŠ” κ²ƒμž…λ‹ˆλ‹€.
05:55
We cannot take the information from past trials
116
355193
3662
ν†΅κ³„μ μœΌλ‘œ μœ μ˜ν•œ ν‘œλ³Έμ„ λ§Œλ“€κΈ° μœ„ν•΄
05:58
and put them together to form statistically significant samples.
117
358855
4154
μ§€λ‚œ μ‹œν—˜μ˜ 정보λ₯Ό ν•©μΉ  μˆ˜λŠ” μ—†λŠ” λ…Έλ¦‡μž…λ‹ˆλ‹€.
06:03
And that sucks, right? So 45 percent of men develop
118
363009
3484
μ°Έ μ•ˆλœ 일이지 μ•Šλ‚˜μš”? 자, 45% λ‚¨μ„±μ—κ²Œ 암이 λ°œλ³‘ν•©λ‹ˆλ‹€.
06:06
cancer. Thirty-eight percent of women develop cancer.
119
366493
3097
μ—¬μ„±μ˜ 38%μ—κ²Œμ„œ 암이 λ°œλ³‘ν•˜κ³ μš”.
06:09
One in four men dies of cancer.
120
369590
2344
남성 4λͺ… 쀑 1λͺ… 꼴둜 μ•”μœΌλ‘œ μ£½κ³ ,
06:11
One in five women dies of cancer, at least in the United States.
121
371934
3556
λ―Έκ΅­μ—μ„œλ§Œν•΄λ„ μ—¬μ„± 5λͺ…λ‹Ή 1λͺ…이 μ•”μœΌλ‘œ μ£½μ—ˆμŠ΅λ‹ˆλ‹€.
06:15
And three out of the four drugs we give you
122
375490
2228
그리고 암에 걸렸을 λ•Œ μ˜μ‚¬λ“€μ΄ μ²˜λ°©ν•˜λŠ” μ•½ 쀑 4λΆ„μ˜ 3은 νš¨κ³Όκ°€ μ—†μŠ΅λ‹ˆλ‹€.
06:17
if you get cancer fail. And this is personal to me.
123
377718
3513
이건 제 개인적인 λ¬Έμ œμ΄κΈ°λ„ ν•©λ‹ˆλ‹€.
06:21
My sister is a cancer survivor.
124
381231
1963
제 여동생도 μ•”μ—μ„œ μ‚΄μ•„λ‚¨μ•˜κ³ ,
06:23
My mother-in-law is a cancer survivor. Cancer sucks.
125
383194
3589
저희 μž₯λͺ¨λ‹˜κ»˜μ„œλ„ μ‚΄μ•„λ‚¨μœΌμ…¨μŠ΅λ‹ˆλ‹€. 암은 μ°Έ 거지 κ°™μ£ .
06:26
And when you have it, you don't have a lot of privacy
126
386783
2190
암에 걸리게 되면 λ³‘μ›μ—μ„œ μ‚¬μƒν™œμ€ 거의 없어지죠.
06:28
in the hospital. You're naked the vast majority of the time.
127
388973
3487
λŒ€λΆ€λΆ„μ˜ μ‹œκ°„ λ™μ•ˆ λ²Œκ±°λ²—κ³  μžˆμŠ΅λ‹ˆλ‹€.
06:32
People you don't know come in and look at you and poke you and prod you,
128
392460
3695
μ•Œμ§€λ„ λͺ»ν•˜λŠ” μ‚¬λžŒλ“€μ΄ μ™€μ„œ 쳐닀보고, μ‘€μ‹œκ³  μ°”λŸ¬λŒ€μ£ .
06:36
and when I tell cancer survivors that this tool we created
129
396155
3441
그리고 μ œκ°€ μ•”μ—μ„œ νšŒλ³΅ν•œ μ‚¬λžŒλ“€μ—κ²Œ
06:39
to protect them is actually preventing their data from being used,
130
399596
3098
그듀을 λ³΄ν˜Έν•˜κΈ° μœ„ν•΄ κ³ μ•ˆν•œ 방법이
06:42
especially when only three to four percent of people
131
402694
2050
μ‹€μ œλ‘œλŠ” κ·Έλ“€μ˜ 데이터가 μ‚¬μš©λ˜λŠ” 것을 막고 μžˆλ‹€λŠ” 것을 말해주면,
06:44
who have cancer ever even sign up for a clinical study,
132
404744
2798
특히 μž„μƒμ‹œν—˜μ— λ“±λ‘ν•œ 3~4%에 λΆˆκ³Όν•œ μ‚¬λžŒλ“€μ˜ λ°˜μ‘μ€
06:47
their reaction is not, "Thank you, God, for protecting my privacy."
133
407542
3558
μ ˆλŒ€λ‘œ "ν•˜λŠλ‹˜, 제 μ‚¬μƒν™œμ„ λ³΄ν˜Έν•΄μ£Όμ…”μ„œ κ°μ‚¬ν•©λ‹ˆλ‹€"κ°€ μ•„λ‹™λ‹ˆλ‹€.
06:51
It's outrage
134
411100
2697
이 정보가 μžˆλŠ”λ°λ„ μ‚¬μš©ν•  수 μ—†λ‹€λŠ” 건
06:53
that we have this information and we can't use it.
135
413797
2125
μ•„μ£Ό 톡탄할 μΌμž…λ‹ˆλ‹€.
06:55
And it's an accident.
136
415922
2476
그리고 사고이기도 ν•©λ‹ˆλ‹€.
06:58
So the cost in blood and treasure of this is enormous.
137
418398
3055
즉, ν”Όμ˜ κ°€μΉ˜μ™€ 이에 λ‹΄κΈ΄ 보물은 μ•„μ£Ό λ§‰λŒ€ν•©λ‹ˆλ‹€.
07:01
Two hundred and twenty-six billion a year is spent on cancer in the United States.
138
421453
3655
λ―Έκ΅­μ—μ„œλŠ” 맀년 2,260μ–΅ λ‹¬λŸ¬κ°€ 암에 μ“°μž…λ‹ˆλ‹€.
07:05
Fifteen hundred people a day die in the United States.
139
425108
3219
그리고 맀일 1,500λͺ…이 μ£½μŠ΅λ‹ˆλ‹€.
07:08
And it's getting worse.
140
428327
2573
그리고 점점 더 λ‚˜λΉ μ§€κ³  있죠.
07:10
So the good news is that some things have changed,
141
430900
2982
쒋은 μ†Œμ‹μ€ μ‘°κΈˆμ”© λ°”λ€Œκ³  μžˆλ‹€λŠ” κ²ƒμž…λ‹ˆλ‹€.
07:13
and the most important thing that's changed
142
433882
1553
그리고 바뀐 것 쀑에 κ°€μž₯ μ€‘μš”ν•œ 것은 이제 우리 μžμ‹ μ„
07:15
is that we can now measure ourselves in ways
143
435435
2338
λ³΄κ±΄κ³„μ—μ„œ μ§€λ°°μ μ΄μ—ˆλ˜ λ°©λ²•μœΌλ‘œ
07:17
that used to be the dominion of the health system.
144
437773
3058
μΈ‘μ •ν•  수 있게 λ˜μ—ˆλ‹€λŠ” μ μž…λ‹ˆλ‹€.
07:20
So a lot of people talk about it as digital exhaust.
145
440831
2158
λ§Žμ€ μ‚¬λžŒλ“€μ€ 이λ₯Ό 인터넷 정보 λ²”λžŒμ˜ λ²”μ£Όμ—μ„œ λ§ν•˜κ³€ ν•©λ‹ˆλ‹€.
07:22
I like to think of it as the dust that runs along behind my kid.
146
442989
3042
μ „ 이걸 아이듀 뒀에 λ”°λΌμ˜€λŠ” 먼지라고 μƒκ°ν•˜κ³  μ‹ΆμŠ΅λ‹ˆλ‹€.
07:26
We can reach back and grab that dust,
147
446031
2376
아이듀을 λ’€λ”°λΌκ°€λ©΄μ„œ 이 먼지λ₯Ό 가지고
07:28
and we can learn a lot about health from it, so if our choices
148
448407
2414
건강에 λŒ€ν•΄μ„œ μ•Œ μˆ˜λ„ 있고, λ§Œμ•½ 우리의 선택이 κ±΄κ°•μ˜ 일뢀뢄이라면
07:30
are part of our health, what we eat is a really important
149
450821
2680
무엇을 λ¨ΉλŠ”μ§€λ„ 우리의 κ±΄κ°•μ—μ„œ μ•„μ£Ό μ€‘μš”ν•œ λΆ€λΆ„μΌν…Œλ‹ˆκΉŒμš”.
07:33
aspect of our health. So you can do something very simple
150
453501
2689
즉, μŒμ‹μ„ 사진 μ°λŠ” κ²ƒμ²˜λŸΌ μ•„μ£Ό 쉽고 κ°„λ‹¨ν•œ κ±Έ ν•  수 있겠죠.
07:36
and basic and take a picture of your food,
151
456190
1957
λ§Œμ•½ μΆ©λΆ„νžˆ λ§Žμ€ μ‚¬λžŒλ“€μ΄ λ™μ°Έν•œλ‹€λ©΄
07:38
and if enough people do that, we can learn a lot about
152
458147
2884
μš°λ¦¬κ°€ λ¨ΉλŠ”κ²Œ μ–΄λ–€ 영ν–₯을 μ£ΌλŠ”μ§€λ„
07:41
how our food affects our health.
153
461031
1425
μ•Œ 수 있게 될 κ²λ‹ˆλ‹€.
07:42
One interesting thing that came out of this β€” this is an app for iPhones called The Eatery β€”
154
462456
4516
이건 'The Eatery'λΌλŠ” 아이폰 μ–΄ν”ŒμΈλ°μš”, μ—¬κΈ°μ„œ μ•Œ 수 μžˆλŠ” ν•œ 가지 ν₯미둜운 점은
07:46
is that we think our pizza is significantly healthier
155
466972
2490
μžμ‹ μ΄ λ¨ΉλŠ” ν”ΌμžλŠ” λ‹€λ₯Έ μ‚¬λžŒλ“€μ˜ ν”Όμžλ³΄λ‹€
07:49
than other people's pizza is. Okay? (Laughter)
156
469462
3438
훨씬 더 κ±΄κ°•ν•˜λ‹€λŠ” κ²λ‹ˆλ‹€. μ•„μ‹œκ² μ–΄μš”? (μ›ƒμŒ)
07:52
And it seems like a trivial result, but this is the sort of research
157
472900
3608
뭐 이게 μ•„μ£Ό μ‚¬μ†Œν•œ 결과둜 보일지도 λͺ¨λ₯΄κ² μ§€λ§Œ,
07:56
that used to take the health system years
158
476508
2314
μ˜ˆμ „μ—λŠ” λ³΄κ±΄κ³„μ—μ„œ μˆ˜λ…„ λ™μ•ˆ μˆ˜μ‹­λ§Œ λ‹¬λŸ¬λ₯Ό νΌλΆ“κ³€ν–ˆλ˜
07:58
and hundreds of thousands of dollars to accomplish.
159
478822
2293
그런 μ’…λ₯˜μ˜ μ—°κ΅¬μž…λ‹ˆλ‹€.
08:01
It was done in five months by a startup company of a couple of people.
160
481115
3724
그런데 두어λͺ…μ˜ λ²€μ²˜νšŒμ‚¬κ°€ 5달 λ§Œμ— μ™„μˆ˜ν–ˆμ£ .
08:04
I don't have any financial interest in it.
161
484839
2624
μ œκ°€ κΈˆμ „μ μΈ 이읡에 관심이 μžˆμ§„ μ•ŠμŠ΅λ‹ˆλ‹€.
08:07
But more nontrivially, we can get our genotypes done,
162
487463
2696
근데 더 μ€‘λŒ€ν•˜κ²ŒλŠ”, μœ μ „μž νƒ€μž…λ„ 끝낼 수 μžˆλ‹€λŠ” κ±°μ£ .
08:10
and although our genotypes aren't dispositive, they give us clues.
163
490159
2818
비둝 μœ μ „μž νƒ€μž…μ΄ λͺ¨λ“  κ±Έ κ²°μ •ν•˜μ§„ μ•Šμ§€λ§Œ, μ•½κ°„μ˜ νžŒνŠΈλŠ” 얻을 수 있죠.
08:12
So I could show you mine. It's just A's, T's, C's and G's.
164
492977
2806
제걸 λ³΄μ—¬λ“œλ¦¬μ£ . κ·Έλƒ₯ μ—¬λŸ¬ 개의 A, T, C, G만 있긴 ν•˜μ§€λ§Œμš”.
08:15
This is the interpretation of it. As you can see,
165
495783
2232
이건 κ·Έκ±Έ ν•΄μ„ν•œ κ²ƒμž…λ‹ˆλ‹€. μ—¬λŸ¬λΆ„κ»˜μ„œλ„ λ³΄μ‹œλ‹€μ‹œν”Ό,
08:18
I carry a 32 percent risk of prostate cancer,
166
498015
2600
μ €λŠ” 전립선암에 걸릴 μœ„ν—˜μ΄ 32%,
08:20
22 percent risk of psoriasis and a 14 percent risk of Alzheimer's disease.
167
500615
4223
건선 μœ„ν—˜μ΄ 22%, 그리고 μ•ŒμΈ ν•˜μ΄λ¨Έμ— 걸릴 μœ„ν—˜μ΄ 14% 정도 λ˜λ„€μš”.
08:24
So that means, if you're a geneticist, you're freaking out,
168
504838
2607
λ‹€μ‹œ λ§ν•˜μžλ©΄, λ§Œμ•½ μ—¬λŸ¬λΆ„κ»˜μ„œ μœ μ „ν•™μžλΌλ©΄ "λ§™μ†Œμ‚¬, λͺ¨λ“  μ‚¬λžŒμ—κ²Œ ApoE E4 λŒ€λ¦½μœ μ „μžκ°€ μžˆλ‹€κ³ 
08:27
going, "Oh my God, you told everyone you carry the ApoE E4 allele. What's wrong with you?"
169
507445
4034
λ§ν•˜κ³  λ‹€λ‹ˆμ‹ κ±°μ—μš”? 제 μ •μ‹ μ΄μ„Έμš”?" 라고 ν•˜λ©° ν™˜μž₯ν•˜λŠ”κ±°μ£ .
08:31
Right? When I got these results, I started talking to doctors,
170
511479
3688
κ·Έλ ‡μ£ ? 이 κ²°κ³Όλ₯Ό λ°›κ³  λ‚˜μ„œ μ˜μ‚¬λ“€κ³Ό 이야기λ₯Ό λ‚˜λˆ„κΈ° μ‹œμž‘ν–ˆκ³ ,
08:35
and they told me not to tell anyone, and my reaction is,
171
515167
2409
그듀은 μ•„λ¬΄μ—κ²Œλ„ λ§ν•˜μ§€ 말라고 ν•˜λ”κ΅°μš”. μ €λŠ” "κ·Έλž˜μ„œ κ·Έλ ‡κ²Œ ν•˜λ©΄
08:37
"Is that going to help anyone cure me when I get the disease?"
172
517576
3288
λˆ„κ΅°κ°€κ°€ 제 병을 κ³ μΉ˜λŠ”λ° 도움이 λ©λ‹ˆκΉŒ?"라고 λ°˜μ‘μ„ ν–ˆμ£ .
08:40
And no one could tell me yes.
173
520864
3064
아무도 제게 κ·Έλ ‡λ‹€κ³  말해주진 μ•Šμ•˜μŠ΅λ‹ˆλ‹€.
08:43
And I live in a web world where, when you share things,
174
523928
2806
μ €ν¬λŠ” μ§€κΈˆ 무언가λ₯Ό κ³΅μœ ν–ˆμ„ λ•Œ
08:46
beautiful stuff happens, not bad stuff.
175
526734
2710
λ‚˜μœ 일이 μ•„λ‹ˆλΌ 멋진 일이 μΌμ–΄λ‚˜λŠ” 인터넷 세계에 μ‚΄κ³  μžˆμŠ΅λ‹ˆλ‹€
08:49
So I started putting this in my slide decks,
176
529444
1900
κ·Έλž˜μ„œ μ €λŠ” ν”„λ ˆμ  ν…Œμ΄μ…˜μ— 이걸 올리기 μ‹œμž‘ν–ˆκ³ ,
08:51
and I got even more obnoxious, and I went to my doctor,
177
531344
2461
더 기뢄이 λ‚˜λΉ μ Έμ„œ μ£ΌμΉ˜μ˜μ—κ²Œ μ°Ύμ•„κ°€μ„œ
08:53
and I said, "I'd like to actually get my bloodwork.
178
533805
1982
"ν˜ˆμ•‘ 뢄석 κ²°κ³Όλ₯Ό λ°›κ³  μ‹Άμ–΄μš”. 제 μžλ£Œμ’€ μ£Όμ„Έμš”."라고 λ§ν–ˆμŠ΅λ‹ˆλ‹€.
08:55
Please give me back my data." So this is my most recent bloodwork.
179
535787
2790
이게 κ°€μž₯ 졜근의 제 ν˜ˆμ•‘λΆ„μ„ κ²°κ³Όμž…λ‹ˆλ‹€.
08:58
As you can see, I have high cholesterol.
180
538577
2369
λ³΄μ‹œλ‹€μ‹œν”Ό μ½œλ ˆμŠ€ν…Œλ‘€ μˆ˜μΉ˜κ°€ μ’€ λ†’λ„€μš”.
09:00
I have particularly high bad cholesterol, and I have some
181
540946
2751
특히 λ‚˜μœ μ½œλ ˆμŠ€ν…Œλ‘€ μˆ˜μΉ˜κ°€ λ†’κ³ μš”, κ°„μˆ˜μΉ˜λ„ μ•ˆ μ’‹λ„€μš”.
09:03
bad liver numbers, but those are because we had a dinner party with a lot of good wine
182
543697
3003
μ•„, 이건 검사 μ „λ‚  저녁에
09:06
the night before we ran the test. (Laughter)
183
546700
2709
κ·Όμ‚¬ν•œ 와인을 곁듀인 νŒŒν‹°κ°€ μžˆμ–΄μ„œ 그런 κ±°μ—μš”. (μ›ƒμŒ)
09:09
Right. But look at how non-computable this information is.
184
549409
4413
자, 그런데 이 정보가 μ–Όλ§ˆλ‚˜ 계산이 λΆˆκ°€λŠ₯ν•œμ§€ ν•œ 번 λ³΄μ„Έμš”.
09:13
This is like the photograph of my granddad holding my mom
185
553822
2974
λ°μ΄ν„°μ˜ κ΄€μ μ—μ„œ λ³Έλ‹€λ©΄ 마치 저희 μ–΄λ¨Έλ‹ˆλ₯Ό μ•ˆκ³  κ³„μ‹œλ˜
09:16
from a data perspective, and I had to go into the system
186
556796
3599
ν• μ•„λ²„μ§€μ˜ μ‚¬μ§„μ΄λž‘ λ³„λ°˜ λ‹€λ₯΄μ§€κ°€ μ•Šμ•„μš”.
09:20
and get it out.
187
560395
2162
μ œκ°€ 직접 κ·Έ μ‹œμŠ€ν…œμœΌλ‘œ λ“€μ–΄κ°€μ„œ μ°Ύμ•„λ‚΄μ•Όλ§Œ ν–ˆμ—ˆμ£ 
09:22
So the thing that I'm proposing we do here
188
562557
3282
κ·Έλž˜μ„œ μ œκ°€ μ—¬κΈ°μ„œ μ œμ•ˆλ“œλ¦¬κ³  싢은 것은
09:25
is that we reach behind us and we grab the dust,
189
565839
2416
λ’€λ‘œ 손을 λ»—μ–΄μ„œ 먼지λ₯Ό μž‘λŠ” 것,
09:28
that we reach into our bodies and we grab the genotype,
190
568255
2978
λͺΈ μ†μœΌλ‘œ λ“€μ–΄κ°€μ„œ μœ μ „μž νƒ€μž…μ„ μ°ΎλŠ” 것,
09:31
and we reach into the medical system and we grab our records,
191
571233
2701
그리고 μ˜ν•™ μ‹œμŠ€ν…œ μ•ˆμœΌλ‘œ λ“€μ–΄κ°€μ„œ 기둝을 μ–»λŠ” κ²ƒμž…λ‹ˆλ‹€.
09:33
and we use it to build something together, which is a commons.
192
573934
3440
그리고 이λ₯Ό 가지고 λͺ¨λ“  μ‚¬λžŒμ—κ²Œ ν†΅μš©κ°€λŠ₯ν•œ 것을 같이 λ§Œλ“œλŠ” κ±°μ£ .
09:37
And there's been a lot of talk about commonses, right,
193
577374
3144
μ—¬κΈ°, μ €κΈ°, λͺ¨λ“  κ³³μ—μ„œ κ³΅κ³΅μž¬μ— λŒ€ν•œ 말이 λ§ŽμŠ΅λ‹ˆλ‹€.
09:40
here, there, everywhere, right. A commons is nothing more
194
580518
2948
κ³΅κ³΅μž¬λΌλŠ” 것은 개인의 μž¬ν™”μ—μ„œ λ§Œλ“€μ–΄μ§„ 곡곡의 물건,
09:43
than a public good that we build out of private goods.
195
583466
2928
κ·Έ 이상도 κ·Έ μ΄ν•˜λ„ μ•„λ‹ˆμ£ .
09:46
We do it voluntarily, and we do it through standardized
196
586394
2769
우린 자발적으둜, 그리고 ν‘œμ€€ν™”λœ 법적 도ꡬλ₯Ό ν†΅ν•΄μ„œ 이λ₯Ό ν–‰ν•˜κ³  μžˆμŠ΅λ‹ˆλ‹€.
09:49
legal tools. We do it through standardized technologies.
197
589163
2800
ν‘œμ€€ν™”λœ κΈ°μˆ μ„ ν†΅ν•΄μ„œ ν•˜κ³  있죠.
09:51
Right. That's all a commons is. It's something that we build
198
591963
3271
이게 λ°”λ‘œ κ³΅κ³΅μž¬κ°€ μ˜λ―Έν•˜λŠ” λ°”μž…λ‹ˆλ‹€. μš°λ¦¬κ°€ μ€‘μš”ν•˜λ‹€κ³  μƒκ°ν•˜κΈ° λ•Œλ¬Έμ— 같이 λ§Œλ“œλŠ” 것듀이죠.
09:55
together because we think it's important.
199
595234
2520
같이 λ§Œλ“œλŠ” 것듀이죠.
09:57
And a commons of data is something that's really unique,
200
597754
2632
λ°μ΄ν„°λ‘œμ¨μ˜ κ³΅κ³΅μž¬λΌλŠ” 것은
10:00
because we make it from our own data. And although
201
600386
2868
우리 μžμ‹ μ˜ μžλ£Œλ‘œλΆ€ν„° λ§Œλ“œλŠ” 것이기 λ•Œλ¬Έμ— μ•„μ£Ό νŠΉλ³„ν•˜λ‹€κ³ ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
10:03
a lot of people like privacy as their methodology of control
202
603254
2287
비둝 λ§Žμ€ μ‚¬λžŒλ“€μ΄ 자료λ₯Ό μ·¨κΈ‰ν•˜λŠ” 방법 쀑에 ν•˜λ‚˜λ‘œ
10:05
around data, and obsess around privacy, at least
203
605541
2255
μ‚¬μƒν™œμ„ λ“€κ³  μžˆμ§€λ§Œ,
10:07
some of us really like to share as a form of control,
204
607796
3048
데이터λ₯Ό λ‚˜λˆ„κ³  μ‹Άμ–΄ν•˜λŠ” μ‚¬λžŒλ“€μ€ 있기 마련이죠.
10:10
and what's remarkable about digital commonses
205
610844
2353
그리고 디지털 κ³΅κ³΅μž¬κ°€ λ†€λΌμš΄ μ΄μœ λŠ”
10:13
is you don't need a big percentage if your sample size is big enough
206
613197
3532
ν‘œλ³Έμ΄ κ±°λŒ€ν•˜κ³  μ•„λ¦„λ‹€μš΄ λ­”κ°€λ₯Ό λ§Œλ“€ 수 μžˆμ„λ§ŒνΌ 크닀면
10:16
to generate something massive and beautiful.
207
616729
2511
λΉ„μœ¨μ€ λ¬Έμ œκ°€ λ˜μ§€ μ•ŠλŠ”λ‹€λŠ” κ²λ‹ˆλ‹€.
10:19
So not that many programmers write free software,
208
619240
2558
κ·Έλž˜μ„œ 무료 μ†Œν”„νŠΈμ›¨μ–΄λ₯Ό λ§Œλ“€κ³  μ‹Άμ–΄ν•˜λŠ” ν”„λ‘œκ·Έλž˜λ¨Έκ°€ λ§Žμ§€λŠ” μ•Šμ§€λ§Œ,
10:21
but we have the Apache web server.
209
621798
2335
μ•„νŒŒμΉ˜(Apache) μ›Ή μ„œλ²„κ°€ λ§Œλ“€μ–΄μ‘Œμ£ .
10:24
Not that many people who read Wikipedia edit,
210
624133
2697
μœ„ν‚€ν”Όλ””μ•„λ₯Ό μ½λŠ” μ‚¬λžŒλ“€ μ€‘μ—μ„œ λ§Žμ€ μ‚¬λžŒλ“€μ΄
10:26
but it works. So as long as some people like to share
211
626830
4009
νŽΈμ§‘μ„ ν•˜μ§„ μ•Šμ§€λ§Œ, 잘 λŒμ•„κ°€κ³  있죠. κ·ΈλŸ¬λ‹ˆκΉŒ λͺ‡λͺ‡ μ‚¬λžŒλ“€μ΄ κ΄€λ¦¬μ˜ ν˜•νƒœλ‘œ 곡유λ₯Ό ν•˜λŠ” ν•œ,
10:30
as their form of control, we can build a commons, as long as we can get the information out.
212
630839
3744
그리고 κ±°κΈ°μ„œ 정보λ₯Ό μ–»μ–΄λ‚Ό 수 μžˆλŠ” ν•œ μš°λ¦¬λŠ” 곡곡재λ₯Ό λ§Œλ“€ 수 μžˆμŠ΅λ‹ˆλ‹€.
10:34
And in biology, the numbers are even better.
213
634583
2376
그리고 μƒλ¬Όν•™μ—μ„œλŠ” κ·Έ μˆ«μžκ°€ 훨씬 더 λ§ŽμŠ΅λ‹ˆλ‹€.
10:36
So Vanderbilt ran a study asking people, we'd like to take
214
636959
2552
λ°˜λ”λ°œνŠΈ(Vanderbilt)λŠ” μ‚¬λžŒλ“€μ—κ²Œ
10:39
your biosamples, your blood, and share them in a biobank,
215
639511
3322
μ‘°μ§μƒ˜ν”Œκ³Ό ν”Όλ₯Ό μ–»μ–΄μ„œ μƒλ¬Όμ€ν–‰μ—μ„œ κ³΅μœ ν•˜κ³  μ‹Άλ‹€κ³  λ¬»λŠ” 쑰사λ₯Ό ν–ˆμ—ˆλŠ”λ°,
10:42
and only five percent of the people opted out.
216
642833
2372
였직 5%의 μ‚¬λžŒλ“€λ§Œμ΄ κ±°μ ˆν–ˆμŠ΅λ‹ˆλ‹€.
10:45
I'm from Tennessee. It's not the most science-positive state
217
645205
3092
μ „ ν…Œλ„€μ‹œμ—μ„œ μ™”μŠ΅λ‹ˆλ‹€.
10:48
in the United States of America. (Laughter)
218
648297
3039
ν…Œλ„€μ‹œλŠ” λ―Έκ΅­μ—μ„œ 과학에 κ°€μž₯ 긍정적인 μ£ΌλŠ” μ•„λ‹™λ‹ˆλ‹€. (μ›ƒμŒ)
10:51
But only five percent of the people wanted out.
219
651336
2378
κ·ΈλŸΌμ—λ„ λΆˆκ΅¬ν•˜κ³  였직 5%만 κ±°λΆ€ν–ˆμ£ .
10:53
So people like to share, if you give them the opportunity and the choice.
220
653714
4023
즉, κΈ°νšŒμ™€ μ„ νƒλ§Œ 주어진닀면 μ‚¬λžŒλ“€μ€ λ‚˜λˆ„κΈΈ μ›ν•œλ‹€λŠ” λœ»μž…λ‹ˆλ‹€.
10:57
And the reason that I got obsessed with this, besides the obvious family aspects,
221
657737
4483
λΆ„λͺ…ν•œ 가쑱적 관점은 μ°¨μΉ˜ν•˜κ³ , μ œκ°€ 이 일에 μ§‘μ°©ν•˜λŠ” μ΄μœ λŠ”
11:02
is that I spend a lot of time around mathematicians,
222
662220
3273
μ œκ°€ μˆ˜ν•™μžλ“€ μ˜†μ—μ„œ λ§Žμ€ μ‹œκ°„μ„ 보내고,
11:05
and mathematicians are drawn to places where there's a lot of data
223
665493
2914
μˆ˜ν•™μžλ“€μ€ μž‘μŒμœΌλ‘œλΆ€ν„° μ‹ ν˜Έλ₯Ό μž‘μ•„λ‚΄λŠ”λ° 데이터λ₯Ό μ‚¬μš©ν•  수 μžˆμ–΄μ„œ
11:08
because they can use it to tease signals out of noise.
224
668407
2943
μžλ£Œλ“€μ΄ λ§Žμ€ 곳으둜 이리저리 λΆˆλ €λ‹€λ‹ˆκΈ° λ•Œλ¬Έμž…λ‹ˆλ‹€.
11:11
And those correlations that they can tease out, they're not
225
671350
2968
그리고 그듀이 정리할 수 μžˆλ‹€λŠ” 것이 인과관계λ₯Ό μ˜λ―Έν•˜μ§„ μ•ŠμŠ΅λ‹ˆλ‹€.
11:14
necessarily causal agents, but math, in this day and age,
226
674318
3872
ν•˜μ§€λ§Œ μ˜€λŠ˜λ‚ μ˜ μˆ˜ν•™μ€ 보건에 μžˆμ–΄μ„œ
11:18
is like a giant set of power tools
227
678190
2360
μ½˜μ„ΌνŠΈμ— κ½‚νžˆμ§€ μ•Šμ€ 채
11:20
that we're leaving on the floor, not plugged in in health,
228
680550
3875
λ°”λ‹₯에 놓인 전기톱과 κ°™λ‹€κ³ ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
11:24
while we use hand saws.
229
684425
2312
μ†μœΌλ‘œ ν†±μ§ˆμ„ ν•˜κ³  μžˆμœΌλ©΄μ„œ 말이죠.
11:26
If we have a lot of shared genotypes, and a lot of shared
230
686737
4438
λ§Œμ•½ μ•„μ£Ό λ§Žμ€ μœ μ „μž νƒ€μž…κ³Ό
11:31
outcomes, and a lot of shared lifestyle choices,
231
691175
2748
κ²°κ³Ό, μƒν™œ 방식 선택,
11:33
and a lot of shared environmental information, we can start
232
693923
2776
그리고 ν™˜κ²½μ  정보가 κ³΅μœ λœλ‹€λ©΄
11:36
to tease out the correlations between subtle variations
233
696699
2896
μ‚¬λžŒλ“€μ˜ κ²°μ •, κ·ΈλŸ¬ν•œ κ²°μ •λ“€λ‘œ 인해 μ•ΌκΈ°λœ 건강과 같은
11:39
in people, the choices they make and the health that they create as a result of those choices,
234
699595
5311
μ‚¬λžŒλ“€ μ‚¬μ΄μ˜ λ―Έμ„Έν•œ 변동듀 μ‚¬μ΄μ˜ 상관관계λ₯Ό 정리할 수 있게 될 것이고,
11:44
and there's open-source infrastructure to do all of this.
235
704906
2486
이λ₯Ό κ°€λŠ₯ν•˜κ²Œ ν•˜λŠ” μ˜€ν”ˆμ†ŒμŠ€ μΈν”„λΌλŠ” 이미 μ€€λΉ„λ˜μ–΄ μžˆμŠ΅λ‹ˆλ‹€.
11:47
Sage Bionetworks is a nonprofit that's built a giant math system
236
707392
3094
Sage BionetwooksλΌλŠ” λΉ„μ˜λ¦¬ 단체가
11:50
that's waiting for data, but there isn't any.
237
710486
4572
κ±°λŒ€ν•œ μˆ˜ν•™ μ‹œμŠ€ν…œμ„ λ§Œλ“€μ—ˆμ§€λ§Œ μžλ£Œκ°€ μ—†μŠ΅λ‹ˆλ‹€.
11:55
So that's what I do. I've actually started what we think is
238
715058
3888
κ·Έλž˜μ„œ μ €λŠ” 이런 일을 ν•˜κ³  μžˆμŠ΅λ‹ˆλ‹€. μ—¬λŸ¬λΆ„λ“€κ»˜μ„œ 데이터λ₯Ό μ œκ³΅ν•΄μ£Όμ‹€ 수 μžˆλŠ”
11:58
the world's first fully digital, fully self-contributed,
239
718946
3938
세계 졜초둜 μ™„μ „ λ””μ§€ν„Έν™”λ˜μ–΄ 있고, μ „μ μœΌλ‘œ μžκ°€ κ³΅ν—Œμ΄λ©°,
12:02
unlimited in scope, global in participation, ethically approved
240
722884
5035
크기에 μ œν•œμ΄ μ—†κ³ , 전세계 λˆ„κ΅¬λ‚˜ μ°Έμ—¬ν•  수 있으며, λ„λ•μ μœΌλ‘œ μΈμ •λœ
12:07
clinical research study where you contribute the data.
241
727919
3655
의료적 탐색 연ꡬ라고 μƒκ°ν•˜κ³  μžˆλŠ” 일을 μ‹œμž‘ν–ˆμŠ΅λ‹ˆλ‹€.
12:11
So if you reach behind yourself and you grab the dust,
242
731574
2206
즉, μ—¬λŸ¬λΆ„κ»˜μ„œ 본인의 뒀에 μžˆλŠ” 먼지λ₯Ό μž‘μœΌμ‹€ 수 μžˆμœΌμ‹œκ±°λ‚˜,
12:13
if you reach into your body and grab your genome,
243
733780
2626
μœ μ „μ •λ³΄λ₯Ό μ–»μœΌμ‹€ 수 μžˆμœΌμ‹œκ±°λ‚˜,
12:16
if you reach into the medical system and somehow extract your medical record,
244
736406
3047
ν˜Ήμ€ μ˜λ£Œμ²΄κ³„μ—μ„œ 의료 기둝을 μ–»μœΌμ‹€ 수 μžˆμœΌμ‹œλ‹€λ©΄
12:19
you can actually go through an online informed consent process --
245
739453
3323
κ³΅κ³΅μž¬μ— λŒ€ν•œ κΈ°λΆ€λŠ” 자발적이고 사전곡지가 μžˆμ–΄μ•Όν•˜κΈ°μ—,
12:22
because the donation to the commons must be voluntary
246
742776
2646
온라인 μ‚¬μ „λ™μ˜ μž‘μ—…μ„ κ±°μΉ˜μ‹œλ©΄,
12:25
and it must be informed -- and you can actually upload
247
745422
2793
μ—¬λŸ¬λΆ„μ˜ 정보λ₯Ό μ˜¬λ¦¬μ‹€ 수 있고,
12:28
your information and have it syndicated to the
248
748215
2592
이런 μ’…λ₯˜μ˜ 빅데이터 연ꡬλ₯Ό ν•˜λŠ”
12:30
mathematicians who will do this sort of big data research,
249
750807
3096
μˆ˜ν•™μžλ“€μ—κ²Œ 보낼 수 μžˆμŠ΅λ‹ˆλ‹€.
12:33
and the goal is to get 100,000 in the first year
250
753903
2856
μ €ν¬μ˜ λͺ©ν‘œλŠ” 첫 해에 10만 건을 λͺ¨μœΌκ³ ,
12:36
and a million in the first five years so that we have
251
756759
2358
5λ…„ λ™μ•ˆ 백만 건을 λͺ¨μ•„μ„œ 전톡적인 μ—°κ΅¬μ—μ„œ
12:39
a statistically significant cohort that you can use to take
252
759117
3834
더 μž‘μ€ ν‘œλ³Έμ„ λ½‘μ•„μ„œ 비ꡐ할 수 μžˆλŠ”,
12:42
smaller sample sizes from traditional research
253
762951
2422
그리고 우리λ₯Ό νŠΉλ³„ν•˜κ²Œ λ§Œλ“€μ–΄μ£ΌλŠ” 변동과
12:45
and map it against,
254
765373
1599
μ‚¬νšŒλ‘œμ¨ ν•œ 발짝 더 λ‚˜μ•„κ°€μ•Όλ§Œ ν•˜λŠ”
12:46
so that you can use it to tease out those subtle correlations
255
766972
2922
그런 μ’…λ₯˜μ˜ 보건 μ‚¬μ΄μ˜
12:49
between the variations that make us unique
256
769894
2529
μž‘μ€ μƒκ΄€κ΄€κ³„κΉŒμ§€ λ°ν˜€λ‚Ό 수 μžˆλŠ”
12:52
and the kinds of health that we need to move forward as a society.
257
772423
4024
ν†΅κ³„μ μœΌλ‘œ μœ μ˜ν•œ 집단을 λ§Œλ“œλŠ” κ²ƒμž…λ‹ˆλ‹€.
12:56
And I've spent a lot of time around other commons.
258
776447
3024
μ €λŠ” 또 λ‹€λ₯Έ μ»€λ¨Όμ¦ˆμ—λ„ λ§Žμ€ μ‹œκ°„μ„ λ³΄λƒˆμŠ΅λ‹ˆλ‹€
12:59
I've been around the early web. I've been around
259
779471
2680
초기의 웹에도 μžˆμ—ˆκ³ , ν¬λ¦¬μ—μ΄ν‹°λΈŒ 컀먼즈 μ„Έκ³„μ˜ μ΄ˆλ°˜μ—λ„ 잠깐 μ°Έμ—¬ν–ˆμ—ˆμ£ .
13:02
the early creative commons world, and there's four things
260
782151
2608
이 λͺ¨λ“  ν™œλ™λ“€μ΄ κ³΅μœ ν•˜κ³  μžˆλŠ”
13:04
that all of these share, which is, they're all really simple.
261
784759
3354
μ•„μ£Ό κ°„λ‹¨ν•œ λ„€ 가지가 μžˆμŠ΅λ‹ˆλ‹€.
13:08
And so if you were to go to the website and enroll in this study,
262
788113
2727
그리고 λ§Œμ•½ μ—¬λŸ¬λΆ„λ“€κ»˜μ„œ μ›Ήμ‚¬μ΄νŠΈμ— κ°€μ„œ 연ꡬ에 λ“±λ‘ν•œλ‹€κ³  해도
13:10
you're not going to see something complicated.
263
790840
2255
μ ˆλŒ€ λ³΅μž‘ν•œ κ±Έ λ³΄λŠ” 일은 없을 κ²λ‹ˆλ‹€.
13:13
But it's not simplistic. These things are weak intentionally,
264
793095
5049
ν•˜μ§€λ§Œ μ§€λ‚˜μΉ˜κ²Œ λ‹¨μˆœν™” λ˜μ–΄μžˆμ§„ μ•ŠμŠ΅λ‹ˆλ‹€ 이것듀은 μ˜λ„μ μœΌλ‘œ μ•½ν•˜κ²Œ λ§Œλ“€μ—ˆμŠ΅λ‹ˆλ‹€
13:18
right, because you can always add power and control to a system,
265
798144
3023
μ™œλƒν•˜λ©΄ ν•œ 체계에 힘과 ν†΅μ œλ₯Ό λ”ν•˜λŠ” 것은 μ‰½μ§€λ§Œ
13:21
but it's very difficult to remove those things if you put them in at the beginning,
266
801167
3964
μ΄ˆλ°˜μ— λ”ν•˜κ²Œ 되면 μ œκ±°ν•˜κΈ΄ μ–΄λ ΅κΈ° λ•Œλ¬Έμ΄μ£ .
13:25
and so being simple doesn't mean being simplistic,
267
805131
2545
κ·ΈλŸ¬λ‹ˆκΉŒ κ°„λ‹¨ν•˜λ‹€λŠ” 것이 μ§€λ‚˜μΉ˜κ²Œ λ‹¨μˆœν™”λœ 것은 μ•„λ‹ˆκ³ ,
13:27
and being weak doesn't mean weakness.
268
807676
2184
μ•½ν•œ 것이 약점은 μ•„λ‹™λ‹ˆλ‹€.
13:29
Those are strengths in the system.
269
809860
2351
였히렀 이 μ‹œμŠ€ν…œμ˜ κ°•μ λ“€μž…λ‹ˆλ‹€.
13:32
And open doesn't mean that there's no money.
270
812211
2665
그리고 κ³΅κ°œλ˜μ—ˆλ‹€λŠ” 것이 무료λ₯Ό μ˜λ―Έν•˜μ§„ μ•ŠμŠ΅λ‹ˆλ‹€.
13:34
Closed systems, corporations, make a lot of money
271
814876
3020
νμ‡„λœ μ‹œμŠ€ν…œκ³Ό 기업은 μ˜€ν”ˆ μ›Ήμ—μ„œ λ§Žμ€ λˆμ„ λ²Œμ–΄λ“€μ΄κ³  있고,
13:37
on the open web, and they're one of the reasons why the open web lives
272
817896
3539
μ˜€ν”ˆ 웹이 μ‚΄μ•„κ°€λŠ” 이유 쀑에 ν•˜λ‚˜λŠ”
13:41
is that corporations have a vested interest in the openness
273
821435
2827
그런 기업듀이 μ‹œμŠ€ν…œμ˜ κ°œλ°©μ„±μ—
13:44
of the system.
274
824262
2334
κΈ°λ“κΆŒμ„ 가지고 있기 λ•Œλ¬Έμž…λ‹ˆλ‹€.
13:46
And so all of these things are part of the clinical study that we've created,
275
826596
3794
κ·ΈλŸ¬λ‹ˆκΉŒ 이 λͺ¨λ“  것듀이 저희가 λ§Œλ“  μž„μƒμ‹œν—˜μ˜ 일뢀이며,
13:50
so you can actually come in, all you have to be is 14 years old,
276
830390
3429
μ—¬λŸ¬λΆ„κ»˜μ„œλŠ” μ‹€μ œλ‘œ μ°Έμ—¬ν•˜μ‹€ 수 있고,
13:53
willing to sign a contract that says I'm not going to be a jerk,
277
833819
2027
ν•„μš”ν•œ 것이라곀 14μ„Έ 이상에, μ‰½κ²Œ λ§ν•΄μ„œ 'λ˜λΌμ΄μ§“ μ•ˆ ν•˜κ² μŠ΅λ‹ˆλ‹€'라고
13:55
basically, and you're in.
278
835846
2665
적힌 κ³„μ•½μ„œμ— μ‹ΈμΈλ§Œ ν•˜μ‹œλ©΄ λ©λ‹ˆλ‹€.
13:58
You can start analyzing the data.
279
838511
1573
그럼 데이터λ₯Ό 뢄석할 수 μžˆμŠ΅λ‹ˆλ‹€.
14:00
You do have to solve a CAPTCHA as well. (Laughter)
280
840084
4159
μ•„, 그리고 CAPCHA도 ν’€μ–΄μ•Όν•©λ‹ˆλ‹€. (μ›ƒμŒ)
14:04
And if you'd like to build corporate structures on top of it,
281
844243
3581
또 이λ₯Ό 기반으둜 사업을 ν•˜μ‹œλŠ” 것도 κ°€λŠ₯ν•©λ‹ˆλ‹€.
14:07
that's okay too. That's all in the consent,
282
847824
3146
λͺ¨λ‘ λ™μ˜μ„œμ— ν¬ν•¨λ˜μ–΄ μžˆμœΌλ‹ˆκΉŒμš”.
14:10
so if you don't like those terms, you don't come in.
283
850970
2564
λ§Œμ•½ 이게 μ‹«μœΌμ‹œλ‹€λ©΄ μ•ˆ μ˜€μ‹œλ©΄ λ©λ‹ˆλ‹€.
14:13
It's very much the design principles of a commons
284
853534
3092
이게 λ°”λ‘œ 저희가 보건 데이터λ₯Ό μ–»μœΌλ €κ³  ν•˜λŠ”
14:16
that we're trying to bring to health data.
285
856626
2594
컀먼즈의 섀립 λͺ©μ μž…λ‹ˆλ‹€.
14:19
And the other thing about these systems is that it only takes
286
859220
2979
그리고 또 λ‹€λ₯Έ 것은 이λ₯Ό λ§Œλ“€κ³ μž 같이 μΌν•˜λŠ”
14:22
a small number of really unreasonable people working together
287
862199
3179
μ•„μ£Ό 비이성적인 μ†Œμˆ˜μ˜ μ‚¬λžŒλ“€λ§Œ
14:25
to create them. It didn't take that many people
288
865378
3182
있으면 λœλ‹€λŠ” μ μž…λ‹ˆλ‹€. μœ„ν‚€ν”Όλ””μ•„λ₯Ό μœ„ν‚€ν”Όλ””μ•„λ‘œ λ§Œλ“€κ±°λ‚˜
14:28
to make Wikipedia Wikipedia, or to keep it Wikipedia.
289
868560
3472
μœ μ§€ν•˜λŠ”λ° λ§Žμ€ μ‚¬λžŒμ„ ν•„μš”λ‘œν•˜μ§„ μ•Šμ•˜μŠ΅λ‹ˆλ‹€.
14:32
And we're not supposed to be unreasonable in health,
290
872032
2068
그리고 μš°λ¦¬λŠ” 건강에 μžˆμ–΄μ„œλŠ” 비이성적이면 μ•ˆ λ©λ‹ˆλ‹€.
14:34
and so I hate this word "patient."
291
874100
2276
μ „ κ·Έλž˜μ„œ "patient"λΌλŠ” 단어λ₯Ό μ•„μ£Ό μ‹«μ–΄ν•©λ‹ˆλ‹€.
14:36
I don't like being patient when systems are broken,
292
876376
3167
μ „ μ‹œμŠ€ν…œμ΄ λ§κ°€μ‘Œμ„ λ•Œ 인내심을 κ°–κ³  싢진 μ•Šμ•„μš”.
14:39
and health care is broken.
293
879543
2627
그리고 보건은 μ§€κΈˆ μ—‰λ§μž…λ‹ˆλ‹€.
14:42
I'm not talking about the politics of health care, I'm talking about the way we scientifically approach health care.
294
882170
4164
μ „ μ§€κΈˆ 보건의 정책이 μ•„λ‹ˆλΌ, μš°λ¦¬κ°€ 보건에 κ³Όν•™μ μœΌλ‘œ μ ‘κ·Όν•˜λŠ” 방법을 λ§ν•˜κ³  μžˆμŠ΅λ‹ˆλ‹€.
14:46
So I don't want to be patient. And the task I'm giving to you
295
886334
3270
즉, μ „ μ°ΈκΈ° μ‹«μŠ΅λ‹ˆλ‹€. μ œκ°€ μ—¬λŸ¬λΆ„κ»˜ λ“œλ¦¬λŠ” μž„λ¬΄λ„ 참지 μ•ŠλŠ” κ²ƒμž…λ‹ˆλ‹€.
14:49
is to not be patient. So I'd like you to actually try,
296
889604
3046
μ „ μ—¬λŸ¬λΆ„κ»˜μ„œ 집에 가셨을 λ•Œ
14:52
when you go home, to get your data.
297
892650
2717
본인의 자료λ₯Ό μ–»μœΌλ €κ³  해보라고 κΆŒν•΄λ“œλ¦¬κ³  μ‹ΆμŠ΅λ‹ˆλ‹€.
14:55
You'll be shocked and offended and, I would bet, outraged,
298
895367
2717
λΆ„λͺ…νžˆ 좩격을 λ°›κ³ , 기뢄이 μƒν•˜μ‹€ κ²λ‹ˆλ‹€.
14:58
at how hard it is to get it.
299
898084
2876
μž₯λ‹΄ν•˜κ±΄λ°, μ–»κΈ°κ°€ 무척 μ–΄λ ΅λ‹€λŠ” 사싀에 λΆ„λ…Έν•˜μ‹€ κ²λ‹ˆλ‹€.
15:00
But it's a challenge that I hope you'll take,
300
900960
2619
ν•˜μ§€λ§Œ 이건 μ—¬λŸ¬λΆ„κ»˜μ„œ μˆ˜ν–‰ν•˜μ…¨μœΌλ©΄ ν•˜λŠ” κ³Όμ œμž…λ‹ˆλ‹€.
15:03
and maybe you'll share it. Maybe you won't.
301
903579
2461
곡유λ₯Ό ν•˜μ‹€ μˆ˜λ„ 있고, μ•ˆ ν•˜μ‹€ μˆ˜λ„ 있겠죠.
15:06
If you don't have anyone in your family who's sick,
302
906040
1444
λ§Œμ•½ κ°€μ‘±λ“€ 쀑 μ•„ν”ˆ μ‚¬λžŒμ΄ μ—†λ‹€λ©΄,
15:07
maybe you wouldn't be unreasonable. But if you do,
303
907484
2993
λΆ€λ‹Ήν•΄ν•˜μ‹œμ§„ μ•Šμ„ κ²λ‹ˆλ‹€. ν•˜μ§€λ§Œ μžˆκ±°λ‚˜, 본인이 μ•„νŒ λ˜ 적이 μžˆλ‹€λ©΄
15:10
or if you've been sick, then maybe you would.
304
910477
2207
κ·ΈλŸ¬μ‹€ μˆ˜λ„ μžˆμŠ΅λ‹ˆλ‹€.
15:12
And we're going to be able to do an experiment in the next several months
305
912684
3088
μ €ν¬λŠ” μ•žμœΌλ‘œ λͺ‡ 달간 μ •ν™•νžˆ λͺ‡ λͺ…μ΄λ‚˜
15:15
that lets us know exactly how many unreasonable people are out there.
306
915772
3157
비이성적인 μ‚¬λžŒλ“€μ΄ μžˆλŠ”μ§€ μ•Œμ•„λ³΄λŠ” μ‹€ν—˜μ„ ν•  수 μžˆμ„ κ²ƒμž…λ‹ˆλ‹€.
15:18
So this is the Athena Breast Health Network. It's a study
307
918929
2122
자, 이건 Athena Breast Health Networkμž…λ‹ˆλ‹€.
15:21
of 150,000 women in California, and they're going to
308
921051
3818
μΊ˜λ¦¬ν¬λ‹ˆμ•„μ— μžˆλŠ” 15만 λͺ…μ˜ 여성듀에 λŒ€ν•œ 연ꡬ죠.
15:24
return all the data to the participants of the study
309
924869
2718
그듀은 μ°Έκ°€μžμ—κ²Œ λͺ¨λ“  데이터λ₯Ό
15:27
in a computable form, with one-clickability to load it into
310
927587
3146
μ œκ°€ λ§Œλ“  연ꡬ에 클릭 ν•œ 번으둜 λΆˆλŸ¬λ“€μΌ 수 μžˆλŠ”
15:30
the study that I've put together. So we'll know exactly
311
930733
2616
계산가λŠ₯ν•œ ν˜•νƒœλ‘œ λŒλ €μ€„ κ²ƒμž…λ‹ˆλ‹€. 그러면 μ–Όλ§ˆλ‚˜ λ§Žμ€ μ‚¬λžŒλ“€μ΄
15:33
how many people are willing to be unreasonable.
312
933349
2304
기꺼이 λΆˆν•©λ¦¬ν•˜κ²Œ 되렀고 ν•˜λŠ”μ§€ μ•Œ 수 있겠죠.
15:35
So what I'd end [with] is,
313
935653
2384
μ œκ°€ λ§ˆμ§€λ§‰μœΌλ‘œ λ“œλ¦¬κ³  싢은 말씀은,
15:38
the most beautiful thing I've learned since I quit my job
314
938037
3320
이 일을 ν•˜λ €κ³  μ•½ 1λ…„ 전에 제 일을 κ·Έλ§Œλ‘κ³  λ‚˜μ„œ
15:41
almost a year ago to do this, is that it really doesn't take
315
941357
3383
깨달은 κ°€μž₯ μ•„λ¦„λ‹€μš΄ 사싀은
15:44
very many of us to achieve spectacular results.
316
944740
3808
λ†€λΌμš΄ κ²°κ³Όλ₯Ό μ–»κΈ° μœ„ν•΄μ„œλŠ” κ·Έλ ‡κ²Œ λ§Žμ€ μ‚¬λžŒμ„ ν•„μš”λ‘œν•˜μ§„ μ•ŠλŠ”λ‹€λŠ” κ²ƒμž…λ‹ˆλ‹€.
15:48
You just have to be willing to be unreasonable,
317
948548
2712
단지 λΉ„μ΄μ„±μ μ΄κΈ°λ§Œ ν•˜λ©΄ λ©λ‹ˆλ‹€.
15:51
and the risk we're running is not the risk those 14 men
318
951260
2331
그리고 저희가 κ°μˆ˜ν•˜κ³  μžˆλŠ” μœ„ν—˜μ€
15:53
who got yellow fever ran. Right?
319
953591
1868
ν™©μ—΄ 연ꡬ에 μ°Έκ°€ν•œ 14λͺ…μ˜ κ²ƒκ³ΌλŠ” μ’€ λ‹€λ₯΄μ£ .
15:55
It's to be naked, digitally, in public. So you know more
320
955459
2861
이건 λ””μ§€ν„Έμ μœΌλ‘œ κ³΅κ³΅μ—κ²Œ λ²Œκ±°λ²—κ²¨μ§€λŠ” κ²ƒμž…λ‹ˆλ‹€. κ·ΈλŸ¬λ‹ˆκΉŒ μ—¬λŸ¬λΆ„μ΄ 저와 제 건강을
15:58
about me and my health than I know about you. It's asymmetric now.
321
958320
3433
μ œκ°€ μ—¬λŸ¬λΆ„μ˜ 것을 μ•„λŠ” 것 보닀 더 많이 μ•ˆλ‹€λŠ” 것이죠. 이제 λΉ„λŒ€μΉ­μ μ΄κ²Œ λ˜μ—ˆμŠ΅λ‹ˆλ‹€.
16:01
And being naked and alone can be terrifying.
322
961753
3630
그리고 λ²Œκ±°λ²—κ²¨μ§€κ³  ν™€λ‘œ λ‚¨λŠ” 것은 λ¬΄μ„­μŠ΅λ‹ˆλ‹€.
16:05
But to be naked in a group, voluntarily, can be quite beautiful.
323
965383
4467
ν•˜μ§€λ§Œ μ—¬λŸ¬ μ‚¬λžŒλ“€κ³Ό ν•¨κ»˜ 자발적으둜 ν•˜λŠ” 것은 κ½€λ‚˜ 아름닡죠.
16:09
And so it doesn't take all of us.
324
969850
1888
즉, 우리 λͺ¨λ‘κ°€ λ‹€ ν•  ν•„μš”λŠ” μ—†μŠ΅λ‹ˆλ‹€.
16:11
It just takes all of some of us. Thank you.
325
971738
3006
μš°λ¦¬λ“€ 쀑 μΌλΆ€μ˜ λͺ¨λ“  μ‚¬λžŒλ“€λ§Œ 있으면 λ©λ‹ˆλ‹€. κ°μ‚¬ν•©λ‹ˆλ‹€.
16:14
(Applause)
326
974744
5590
(λ°•μˆ˜)
이 μ›Ήμ‚¬μ΄νŠΈ 정보

이 μ‚¬μ΄νŠΈλŠ” μ˜μ–΄ ν•™μŠ΅μ— μœ μš©ν•œ YouTube λ™μ˜μƒμ„ μ†Œκ°œν•©λ‹ˆλ‹€. μ „ 세계 졜고의 μ„ μƒλ‹˜λ“€μ΄ κ°€λ₯΄μΉ˜λŠ” μ˜μ–΄ μˆ˜μ—…μ„ 보게 될 κ²ƒμž…λ‹ˆλ‹€. 각 λ™μ˜μƒ νŽ˜μ΄μ§€μ— ν‘œμ‹œλ˜λŠ” μ˜μ–΄ μžλ§‰μ„ 더블 ν΄λ¦­ν•˜λ©΄ κ·Έκ³³μ—μ„œ λ™μ˜μƒμ΄ μž¬μƒλ©λ‹ˆλ‹€. λΉ„λ””μ˜€ μž¬μƒμ— 맞좰 μžλ§‰μ΄ μŠ€ν¬λ‘€λ©λ‹ˆλ‹€. μ˜κ²¬μ΄λ‚˜ μš”μ²­μ΄ μžˆλŠ” 경우 이 문의 양식을 μ‚¬μš©ν•˜μ—¬ λ¬Έμ˜ν•˜μ‹­μ‹œμ˜€.

https://forms.gle/WvT1wiN1qDtmnspy7